JP4788991B2 - Mn-Zn ferrite and electronic component using the same - Google Patents
Mn-Zn ferrite and electronic component using the same Download PDFInfo
- Publication number
- JP4788991B2 JP4788991B2 JP2004339981A JP2004339981A JP4788991B2 JP 4788991 B2 JP4788991 B2 JP 4788991B2 JP 2004339981 A JP2004339981 A JP 2004339981A JP 2004339981 A JP2004339981 A JP 2004339981A JP 4788991 B2 JP4788991 B2 JP 4788991B2
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- temperature range
- transformer
- magnetic
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims description 32
- 230000035699 permeability Effects 0.000 claims description 21
- 238000004804 winding Methods 0.000 claims description 21
- 238000004891 communication Methods 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010304 firing Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
- Coils Or Transformers For Communication (AREA)
Description
本発明はMn−Zn系フェライトおよびそれを用いた電子部品に関し、特には通信用トランス等の磁心に用いられ、特に広温度帯域において直流重畳特性に優れたMn−Zn系フェライト及びそれを用いた電子部品に関する。 The present invention relates to a Mn—Zn ferrite and an electronic component using the same, and more particularly to a magnetic core such as a communication transformer, and more particularly to a Mn—Zn ferrite excellent in DC superposition characteristics in a wide temperature range and the same. It relates to electronic components.
従来の差動伝送回路に給電回路が取り付けられた回路の規格としてIEEE802.3af規格が規格化された。この規格は、POE (Power over Ethernet(登録商標))とも呼ばれ、差動信号を扱うLANケーブルなどの信号線を通してデータと同時に電源電力を流す規格である。
具体的には48Vで15.4Wの電力が給電でき、電源を取りにくい場所に置く機器や、従来電源が必要なかった機器をEthernet(登録商標)対応にする場合などに使われ、LANケーブルに接続するLAN機器を電源配線なしで動作させるものである。IP電話や無線LANのアクセスポイント、スイッチングハブ、Webカメラ等の機器や給電用アダプターに適用される。
The IEEE 802.3af standard has been standardized as a standard for a circuit in which a power feeding circuit is attached to a conventional differential transmission circuit. This standard is also called POE (Power over Ethernet (registered trademark)), and is a standard in which power is supplied simultaneously with data through a signal line such as a LAN cable that handles differential signals.
Specifically, it can be used to power devices that are capable of supplying 15.4W at 48V and are difficult to get power, or devices that do not require a conventional power source, and are compatible with Ethernet (registered trademark). The LAN device to be connected is operated without power supply wiring. It is applied to devices such as IP telephones, wireless LAN access points, switching hubs, Web cameras, and power supply adapters.
図1は、前記POE対応回路を備えた機器の伝送路(LANケーブル)と接続するためのコネクタ端側の回路を示す回路図である。前記コネクタCNには、機器と伝送路とを電気的に絶縁するパルストランスPTとコモンモードノイズを抑圧するためのコモンモードチョークコイルCMCが用いられる。 FIG. 1 is a circuit diagram showing a circuit on the connector end side for connection to a transmission line (LAN cable) of a device having the POE-compatible circuit. For the connector CN, a pulse transformer PT that electrically insulates the device from the transmission path and a common mode choke coil CMC for suppressing common mode noise are used.
前記パルストランスPTは、両端が送信側回路TXあるいは受信側回路RXと接続する一次巻線と、中間タップを有し両端がコモンモードチョークコイルCMCの巻線の一端と直列接続される二次巻線を有するものである。前記コモンモードチョークコイルCMCは一次巻線及び二次巻線を有し、前記巻線の他端はコネクタCNと接続される。以下パルストランスPTとコモンモードチョークコイルCMCを組み合わせたものをモジュールと呼ぶ場合がある。パルストランスPTやコモンモードチョークコイルCMCは、それぞれ磁性材料としてフェライトを用いたトロイダル形状の磁心を用いる場合が多い。
送信回路側のモジュールにおいて、パルストランスPTに巻設された二次巻線に形成された中間タップに、給電源から電圧が与えられ、直流電流(図中矢印で示す)がコモンモードチョークコイルCMCの各巻線を通じ、LANケーブルを介して受信回路側のモジュールに流入し、受信回路側のパルストランスPTの二次巻線に形成された中間タップから負荷(受信側の機器)へ直流電流が流出する。
The pulse transformer PT has a primary winding having both ends connected to the transmission side circuit TX or the reception side circuit RX, and a secondary winding having an intermediate tap and both ends connected in series to one end of the winding of the common mode choke coil CMC. It has a line. The common mode choke coil CMC has a primary winding and a secondary winding, and the other end of the winding is connected to a connector CN. Hereinafter, a combination of the pulse transformer PT and the common mode choke coil CMC may be referred to as a module. In many cases, the pulse transformer PT and the common mode choke coil CMC each use a toroidal magnetic core using ferrite as a magnetic material.
In the module on the transmission circuit side, a voltage is applied from the power supply to the intermediate tap formed in the secondary winding wound around the pulse transformer PT, and a direct current (indicated by an arrow in the figure) is applied to the common mode choke coil CMC. Flows into the module on the receiver circuit side via the LAN cable, and direct current flows from the intermediate tap formed on the secondary winding of the pulse transformer PT on the receiver circuit side to the load (receiver side device). To do.
また他の例として図2に示す回路の様に、パルストランスPTの一次巻線に中間タップを設けて給電源と接続する場合がある。前記一次巻線の中間タップに与えられた電圧による直流電流が、前記一次巻線の両端と接続された増幅器等を含むトランシーバICに供給される。 As another example, an intermediate tap may be provided in the primary winding of the pulse transformer PT and connected to a power supply as in the circuit shown in FIG. A direct current due to a voltage applied to an intermediate tap of the primary winding is supplied to a transceiver IC including an amplifier and the like connected to both ends of the primary winding.
この様にパルストランスPT等には直流電流が流入されるため、電源電流で発生する磁束によりフェライトコアの磁束密度が飽和磁束密度に近くなりインダクタンスが低下するという問題がある。このため、POE対応回路には、前記直流電流で磁気飽和しないフェライトコアが必要となる。また、通信用機器は使用環境の多様であり、従来からパルストランスPT等の電子部品の温度依存性を小さくするという要請がある。
この様な要請に応じて、パルストランスPT等に用いられるフェライトコアも、直流電流で磁気飽和せず、広温度帯域で使用可能なものが求められている。
本発明者等は、既に広温度帯域で使用可能なフェライトとして、環境温度の変化に対して安定した磁気特性を示すMn−Zn系フェライトを提案している(特許文献1)。
In response to such a demand, a ferrite core used for a pulse transformer PT or the like is required to be usable in a wide temperature range without being magnetically saturated with a direct current.
The present inventors have already proposed a Mn—Zn-based ferrite exhibiting stable magnetic characteristics against changes in environmental temperature as a ferrite that can be used in a wide temperature range (Patent Document 1).
特許文献1のMn−Znフェライトは、副成分としてCaO,SiO2,CoOを含有させ、組成を制御することによって、−20℃〜100℃における初透磁率が10000以上としている。しかしながら、70℃を超える高温度領域における直流バイアス重畳時のインダクタンス特性(直流重畳特性)が十分でないことが判明した。
そこで本発明は。このような課題を解決するために、−40〜85℃の広温度帯域において直流重畳特性が良好なトランスを構成するMn−Zn系フェライト、およびこれを用いた電子部品を提供することを目的とする。
The Mn—Zn ferrite of Patent Document 1 contains CaO, SiO 2 , and CoO as subcomponents, and the initial permeability at −20 ° C. to 100 ° C. is 10,000 or more by controlling the composition. However, it has been found that the inductance characteristic (DC superimposition characteristic) at the time of DC bias superimposition in a high temperature region exceeding 70 ° C. is not sufficient.
Therefore, the present invention. In order to solve such problems, it is an object to provide a Mn—Zn-based ferrite constituting a transformer having good DC superposition characteristics in a wide temperature range of −40 to 85 ° C., and an electronic component using the same. To do.
第1の発明は、主成分が、Fe2O3 :52〜53.2mol%(ただし53.2mol%は含まず)、ZnO:11〜13mol%、残部がMnOであり、副成分として、CoO:0.21wt%〜0.35wt%、CaO:0.005wt%〜0.2wt%、Nb 2 O 5 :0.005〜0.03wt%、ZrO 2 :0.005〜0.08wt%、SiO 2 :0.005wt%〜0.025wt%を含み、−40℃〜85℃の温度領域において、直流バイアス重畳時の透磁率μδが1000以上であり、−20℃〜+60℃の間において透磁率μδの最大値を有し、前記透磁率μδの最大値が1500以上であるMn−Zn系フェライトである。 The first invention is a main component, Fe 2 O 3: 52~ 53.2mol % ( although 53.2Mol% not including), ZnO: 11~13mol%, balance being MnO, as an auxiliary component, CoO 2 : 0.21 wt% to 0.35 wt%, CaO 3 : 0.005 wt% to 0.2 wt% , Nb 2 O 5 : 0.005 to 0.03 wt %, ZrO 2 : 0.005 to 0.08 wt %, SiO 2 : 0.005 wt% to 0.025 wt% , and in the temperature range of −40 ° C. to 85 ° C., the magnetic permeability μδ when DC bias is superimposed is 1000 or more, and the permeability is between −20 ° C. and + 60 ° C. The Mn—Zn-based ferrite has a maximum value of magnetic permeability μδ, and the maximum value of magnetic permeability μδ is 1500 or more.
本発明においては、前記主成分の内、Fe 2 O 3 :52.6〜52.99mol%であり、副成分の内、CoO:0.21wt%〜0.3wt%であるのが好ましい。 In the present invention, among the main component, Fe 2 O 3: a 52.6~52.99Mol%, of the subcomponent, CoO: is preferably 0.21wt% ~0.3wt%.
第2の発明は、第1の発明のMn−Zn系フェライトで構成された磁心に巻線を巻設したトランスを用いた電子部品である。
第3に発明は、第1の発明のMn−Zn系フェライトで構成された磁心に巻線を巻設したトランスを用いた通信用機器である。
The second invention is an electronic component using a transformer in which a winding is wound around a magnetic core composed of the Mn—Zn ferrite of the first invention.
A third invention is a communication device using a transformer in which a winding is wound around a magnetic core made of the Mn—Zn ferrite of the first invention.
本発明のMn−Zn系フェライトによれば、直流バイアス重畳時において高い透磁率を示し、かつ広温度領域において優れた直流重畳特性を有する。このため前記フェライトを用いて構成されたトランスをIP電話や無線LANのアクセスポイント、スイッチングハブ、Webカメラ等のPOE対応回路を備えた機器に用いれば、広温度帯域で使用可能な通信機器を得ることが出来る。 According to the Mn—Zn ferrite of the present invention, the magnetic permeability is high at the time of DC bias superposition, and the DC superposition characteristics are excellent in a wide temperature range. For this reason, if a transformer configured using the ferrite is used in a device equipped with a POE-compatible circuit such as an IP phone, a wireless LAN access point, a switching hub, or a Web camera, a communication device usable in a wide temperature band is obtained. I can do it.
本発明者等は、Mn−Zn系フェライトに含まれるFe,Zn,Co、Caの相対的な組成関係に着目し、フェライト中に含ませるCo、Caの量と、主成分であるFeの含有量およびZnの含有量を最適にすることにより、広温度帯域における直流重畳特性を改善させることができることを見出し、本発明を完成させるに至った。
主成分におけるFeの含有量の範囲を、Fe2O3換算で52〜53.5mol%としたのは、Fe2O3換算含有量が52mol%より少ない組成の場合には、低温度域における直流重畳特性の低下が顕著となり、53.5mol%より多い組成の場合には、高温度域における直流重畳特性の低下が顕著となるからである。好ましくは52.6〜53.2mol%であり、−40℃〜85℃の温度領域において、直流バイアス重畳時の透磁率μδを2000以上とすることが出来る。
The present inventors pay attention to the relative compositional relationship of Fe, Zn, Co, and Ca contained in the Mn—Zn-based ferrite, and include the amounts of Co and Ca to be included in the ferrite and the main component of Fe. It has been found that by optimizing the amount and the Zn content, the DC superposition characteristics in a wide temperature range can be improved, and the present invention has been completed.
The range of the content of Fe in the main component, was a 52~53.5Mol% in terms of Fe 2 O 3, when calculated as Fe 2 O 3 content is less composition than 52 mol% is in the low temperature region This is because the direct current superimposition characteristic is significantly reduced, and in the case of a composition higher than 53.5 mol%, the direct current superposition characteristic is significantly reduced in a high temperature range. Preferably, the content is 52.6 to 53.2 mol%, and in the temperature range of −40 ° C. to 85 ° C., the permeability μδ when the DC bias is superimposed can be 2000 or more.
主成分におけるZnの含有量をZnO換算で11〜13mol%としたのは、ZnO含有量が11mol%より少ない組成の場合には、低温度域における直流重畳特性の低下が顕著となり、13mol%より多い組成の場合には、高温度域における直流重畳特性の低下が顕著となるからである。 The reason why the Zn content in the main component is set to 11 to 13 mol% in terms of ZnO is that the composition of the ZnO content is less than 11 mol%, the deterioration of the DC superposition characteristics in the low temperature range becomes significant, and from 13 mol% This is because, in the case of many compositions, the decrease in the DC superimposition characteristics in a high temperature range becomes significant.
本発明に係るMn−Zn系フェライトは、副成分として酸化コバルトのCoO換算で0.1wt%〜0.35wt%、CaO換算で0.005wt%〜0.2wt%を含む。
Coは直流重畳特性の改善に寄与するが、前記範囲で含むことで特には室温から低温度域にかけての直流重畳特性を向上させる機能を発揮する。CoOが0.1wt%未満であると、直流重畳特性を向上するのに十分でなく、0.35wt%を超えると直流重畳特性を逆に低下させてしまうからである。好ましくは、0.2〜0.3wt%であり、−40℃〜85℃の温度領域において、直流バイアス重畳時の透磁率μδが2000以上とすることが出来る。
Caは固有抵抗ρを向上させ、直流重畳特性の改善に寄与するが、前記範囲で含むことで特には室温から高温度域にかけての直流重畳特性を向上させる機能を発揮する。
The Mn—Zn ferrite according to the present invention contains 0.1 wt% to 0.35 wt% in terms of CoO of cobalt oxide and 0.005 wt% to 0.2 wt% in terms of CaO as subcomponents.
Co contributes to the improvement of the DC superposition characteristics, but when included in the above range, Co exhibits a function of improving the DC superposition characteristics especially from room temperature to a low temperature range. This is because if the CoO is less than 0.1 wt%, it is not sufficient to improve the DC superposition characteristics, and if it exceeds 0.35 wt%, the DC superposition characteristics are adversely reduced. Preferably, it is 0.2 to 0.3 wt%, and in a temperature range of −40 ° C. to 85 ° C., the magnetic permeability μδ when DC bias is superimposed can be 2000 or more.
Ca improves the specific resistance ρ and contributes to the improvement of the DC superposition characteristics. However, when Ca is included in the above range, it exhibits a function of improving the DC superposition characteristics particularly from room temperature to a high temperature range.
本発明に係るMn−Zn系フェライトの副成分として、Nb、Si、Ta,Zrの少なくとも一種を含んでも良い。好ましい範囲は、NbをNb2O5換算で0.005〜0.03wt%、TaをTa2O5換算で0.01〜0.08wt%、ZrをZrO2換算で0.005〜0.08wt%である。もちろん、酸化ニオブ、酸化ケイ素、酸化タンタル、酸化ジルコニアは、上記含有量の範囲内で、それぞれ単独で含有させてもよいし、複数を含有させてもよい。これらの成分は固有抵抗ρを向上させ、−40℃〜85℃の広温度領域における直流重畳特性を、僅かであるが向上させる効果を有する。
Nb、Si、Ta,Zrの副成分を所定の範囲よりも多く添加すると、焼成過程で異常粒成長を生じたりして、所望の磁気特性を得ることができない場合や、機械的強度を低下させる場合がある。
As a subcomponent of the Mn—Zn ferrite according to the present invention, at least one of Nb, Si, Ta, and Zr may be included. Preferred ranges are Nb 0.005 to 0.03 wt% in terms of Nb 2 O 5 , Ta 0.01 to 0.08 wt% in terms of Ta 2 O 5 , and Zr 0.005 to 0.005 in terms of ZrO 2 . It is 08 wt%. Needless to say, niobium oxide, silicon oxide, tantalum oxide, and zirconia may be contained singly or plurally within the above-mentioned content range. These components have the effect of improving the specific resistance ρ and slightly improving the direct current superposition characteristics in a wide temperature range of −40 ° C. to 85 ° C.
Addition of Nb, Si, Ta, and Zr subcomponents in excess of a predetermined range may cause abnormal grain growth during the firing process, resulting in failure to obtain desired magnetic characteristics, or lowering mechanical strength. There is a case.
以下、本発明に係る一実施例について説明する。
主成分の出発原料として、Fe2O3、MnO、ZnO、副成分の出発原料として、Co3O4、SiO2、CaCO3、Nb2O5、Ta2O5、ZrO2を用意した。用意した出発原料を、焼成後の組成が表1に示す主成分組成と、CoO 0.25wt%、CaO 0.09wt%、SiO2 0.01wt%、Nb2O5 0.005wt%、ZrO2 0.02wt%の副成分組成となるように秤量し、まず主成分原料を混合し、仮焼温度890℃、仮焼時間2時間で大気中にて仮焼した。これに副成分原料を加えてボールミルにより所定の大きさに。混合粉砕し、バインダーとしてポリビニルアルコールを加え、スプレードライヤーを用いて造粒した。得られた造粒物を乾式圧縮成形機と金型を用いて成形し、リング状の成形体を得た。
An embodiment according to the present invention will be described below.
Fe 2 O 3 , MnO and ZnO were prepared as the main starting materials, and Co 3 O 4 , SiO 2 , CaCO 3 , Nb 2 O 5 , Ta 2 O 5 and ZrO 2 were prepared as the subcomponent starting materials. The prepared starting material is composed of the main component composition shown in Table 1 after firing, CoO 0.25 wt%, CaO 0.09 wt%, SiO 2 0.01 wt%, Nb 2 O 5 0.005 wt%, ZrO 2. It weighed so that it might become a subcomponent composition of 0.02 wt%, first, the main component raw materials were mixed, and calcined in the atmosphere at a calcining temperature of 890 ° C. and a calcining time of 2 hours. Add subcomponent raw materials to this and use a ball mill to make the desired size. The mixture was pulverized, added with polyvinyl alcohol as a binder, and granulated using a spray dryer. The obtained granulated product was molded using a dry compression molding machine and a mold to obtain a ring-shaped molded body.
次いで、成形体を200℃/hrで昇温した焼成炉にて1370℃で5時間焼成した。安定温度までの雰囲気は酸素分圧PO2を1%とし、安定温度以降は150℃/hrで徐冷し、室温まで冷却した。安定温度から室温までの雰囲気はフェライトの平衡酸素分圧に従い設定した。このようにして、外径10mm、内径6mm、高さ3mmのトロイダル形状のフェライトコアを得た。 Next, the compact was fired at 1370 ° C. for 5 hours in a firing furnace heated at 200 ° C./hr. The atmosphere up to the stable temperature was oxygen partial pressure PO 2 of 1%, and after the stable temperature, it was gradually cooled at 150 ° C./hr and cooled to room temperature. The atmosphere from the stable temperature to room temperature was set according to the equilibrium oxygen partial pressure of ferrite. In this way, a toroidal ferrite core having an outer diameter of 10 mm, an inner diameter of 6 mm, and a height of 3 mm was obtained.
こうして得られたフェライトコアに線径が0.1mmのワイヤを15ターン巻き、直流重畳特性を測定した。本実施例では、交流成分の周波数、振幅を一定にし、直流バイアス磁界下(H=30A/m)で、測定周波数100kHz、測定電圧100mVで、LCRメーターを用いて、−40℃,25℃,85℃における透磁率μδを測定した。また、直流バイアス磁界を印加しない状態での初透磁率μiもあわせて測定した。測定結果を表1に示した。 The ferrite core thus obtained was wound with 15 turns of a wire having a wire diameter of 0.1 mm, and the DC superposition characteristics were measured. In this example, the frequency and amplitude of the AC component are made constant, a DC bias magnetic field (H = 30 A / m), a measurement frequency of 100 kHz, a measurement voltage of 100 mV, and an LCR meter at −40 ° C., 25 ° C., The magnetic permeability μδ at 85 ° C. was measured. In addition, the initial permeability μi in a state where no DC bias magnetic field was applied was also measured. The measurement results are shown in Table 1.
表1に示すように、本発明に係る実施例(No.2〜6)の組成範囲では、−40℃〜85℃の温度範囲内で、直流バイアス磁界下(H=30A/m)の透磁率μδが1000以上の値が得られた。本請求範囲外である比較例(No.1,7)では透磁率μδを1000以上に保つことができないことが分かる。また、Fe2O3が52.6〜53.2mol%であれば、透磁率μδを2000以上とすることが出来る。 As shown in Table 1, in the composition range of the examples (Nos. 2 to 6) according to the present invention, the permeability under a DC bias magnetic field (H = 30 A / m) is within a temperature range of −40 ° C. to 85 ° C. A value of magnetic permeability μδ of 1000 or more was obtained. It can be seen that in the comparative examples (Nos. 1 and 7) which are outside the scope of this claim, the magnetic permeability μδ cannot be maintained at 1000 or more. Further, when Fe 2 O 3 is 52.6 to 53.2 mol%, the magnetic permeability μδ can be 2000 or more.
焼成後の組成がFe2O3 52.95mol%、ZnO 12mol%、残部MnOとなるように秤量した主成分原料を、ボールミルで湿式混合し、スプレードライヤーで乾燥させた後、900℃で2時間仮焼した。この仮焼粉に副成分として焼成後、CaO 0.09wt%、SiO2 0.01wt%、Nb2O5 0.005wt%、ZrO2 0.02wt%を含有するように加え、さらに表2に示す分量含むようにCoOを加えた。その後、実施例1と同様の手順で試料を作製し、評価を行った。その結果を表2に示す。 The main component raw materials weighed so that the composition after firing is 52.95 mol% Fe 2 O 3 , 12 mol% ZnO, and the remaining MnO are wet mixed with a ball mill and dried with a spray dryer, and then at 900 ° C. for 2 hours. It was calcined. After calcining this calcined powder as an auxiliary component, it is added so as to contain 0.09 wt% of CaO, 0.01 wt% of SiO 2 , 0.005 wt% of Nb 2 O 5 , 0.02 wt% of ZrO 2 . CoO was added to include the indicated amount. Then, the sample was produced in the same procedure as Example 1 and evaluated. The results are shown in Table 2.
表2より実施例(No.9〜13)のCoOを含有する範囲では−40℃〜85℃の温度範囲内で直流バイアス磁界下(H=30A/m)の透磁率μδは1000以上の値が得られている。本請求範囲外である比較例(No.8,14)ではCoOの効果が乏しく透磁率μδを1000以上に保つことができないことが分かる。CoOが0.2〜0.3wt%であれば、透磁率μδを2000以上とすることが出来る。
なお、実施例1,2の試料(No.1〜14)の固有抵抗は副成分を含有させているため10〜20(Ω・m)と高い値であった。
From Table 2, in the range containing CoO of Examples (Nos. 9 to 13), the permeability μδ under a DC bias magnetic field (H = 30 A / m) within a temperature range of −40 ° C. to 85 ° C. is a value of 1000 or more. Is obtained. It can be seen that in the comparative examples (Nos. 8 and 14) which are outside the scope of this claim, the effect of CoO is poor and the magnetic permeability μδ cannot be maintained at 1000 or more. When CoO is 0.2 to 0.3 wt%, the permeability μδ can be 2000 or more.
In addition, the specific resistance of the samples (Nos. 1 to 14) of Examples 1 and 2 was a high value of 10 to 20 (Ω · m) because the subcomponent was included.
No.11のフェライトコアに、ワイヤを巻設してパルストランスとした。これを樹脂基板に配置し、一次巻線の両端を前記樹脂基板に設けられた、それぞれ異なる外部接続端子と電気的に接続した。二次巻線の中間タップから延出するワイヤも他の外部接続端子と電気的に接続している。前記二次巻線の両端は、それぞれコモンモードチョークコイルの巻線の一端と直列接続され、前記ワイヤの他端はそれぞれ他の外部接続端子と電気的に接続した。コモンモードチョークコイルはパルストランスと同一の樹脂基板に実装されており、エポキシ樹脂あるいはシリコーン樹脂で封止し、パルストランスとコモンモードチョークコイルを複合した面実装可能なモジュールとした。
コモンモードチョークコイルはパルストランスとを複合して樹脂封止し、一つの絶縁パッケージ構造とすることで、それぞれを回路基板に配置する場合よりも実装面積を減じることが出来、また面実装可能な部品として形成したことで、実装時の取り扱いが容易な広温度帯域で使用可能な電子部品を得ることが出来ることができた。
No. A wire was wound around 11 ferrite cores to form a pulse transformer. This was placed on a resin substrate, and both ends of the primary winding were electrically connected to different external connection terminals provided on the resin substrate. A wire extending from the intermediate tap of the secondary winding is also electrically connected to other external connection terminals. Both ends of the secondary winding are connected in series with one end of the winding of the common mode choke coil, and the other end of the wire is electrically connected to another external connection terminal. The common mode choke coil is mounted on the same resin substrate as the pulse transformer, sealed with an epoxy resin or silicone resin, and a module capable of surface mounting in which the pulse transformer and the common mode choke coil are combined.
The common mode choke coil is combined with a pulse transformer and sealed with resin to form a single insulation package structure, which reduces the mounting area compared to the case where each is placed on a circuit board and can be surface mounted. By forming it as a component, it was possible to obtain an electronic component usable in a wide temperature range that is easy to handle during mounting.
実施例3で形成したモジュールを用いて、パルストランスの一次巻線が接続される外部接続端子と増幅器等が形成されたトランシーバICと接続し、コモンモードチョークコイルの巻線が接続された外部接続端子をコネクタに接続して、LANカードを作製した。前記LANカードには送受信をコントロールするICも備えている。本実施例によれば、広温度帯域で使用可能な通信用機器を得ることが出来た。
なお本実施例では、パルストランスとコモンモードチョークコイルをモジュール化したものを用いたが、これに限定されるものでは無く、本発明のMn−Zn系フェライトを用いたトランスを採用した通信用機器であれば、本発明の範囲である。
Using the module formed in the third embodiment, an external connection terminal to which a primary winding of a pulse transformer is connected and a transceiver IC in which an amplifier or the like is formed are connected to an external connection to which a winding of a common mode choke coil is connected. A terminal was connected to the connector to produce a LAN card. The LAN card also includes an IC for controlling transmission and reception. According to this example, it was possible to obtain a communication device that can be used in a wide temperature range.
In this embodiment, the pulse transformer and the common mode choke coil that are modularized are used. However, the present invention is not limited to this, and the communication device adopting the transformer using the Mn-Zn ferrite of the present invention. If so, it is within the scope of the present invention.
本発明によれば、直流バイアス重畳時において高い透磁率μδを示し、かつ広温度領域において優れた直流重畳特性を有するMn−Zn系フェライトを提供することが出来る。このため前記フェライトを用いて構成されたトランスをIP電話や無線LANのアクセスポイント、スイッチングハブ、Webカメラ等のPOE対応回路を備えた機器に用いれば、広温度帯域で使用可能な通信機器を得ることが出来る。
According to the present invention, it is possible to provide a Mn—Zn-based ferrite that exhibits a high magnetic permeability μδ at the time of DC bias superposition and has excellent DC superposition characteristics in a wide temperature range. For this reason, if a transformer configured using the ferrite is used in a device equipped with a POE-compatible circuit such as an IP phone, a wireless LAN access point, a switching hub, or a Web camera, a communication device usable in a wide temperature band is obtained. I can do it.
PT パルストランス
CMC コモンモードチョークコイル
CN コネクタ
TX 送信回路
RX 受信回路
PT pulse transformer CMC common mode choke coil CN connector TX transmitter circuit RX receiver circuit
Claims (4)
副成分として、CoO:0.21wt%〜0.35wt%、CaO:0.005wt%〜0.2wt%、Nb 2 O 5 : 0.005〜0.03wt%、ZrO 2 :0.005〜0.08wt%、SiO 2 :0.005wt%〜0.025wt%を含み、
−40℃〜85℃の温度領域において、直流バイアス重畳時の透磁率μδが1000以上であり、−20℃〜+60℃の間において透磁率μδの最大値を有し、前記透磁率μδの最大値が1500以上であることを特徴とするMn−Zn系フェライト。 Main component, Fe 2 O 3: 52~ 53.2mol % ( although 53.2Mol% not including), ZnO: 11~13mol%, balance being MnO,
As a subcomponent, CoO: 0.21wt% ~0.35wt%, CaO: 0.005wt% ~0.2wt%, Nb 2 O 5: 0.005~0.03wt%, ZrO 2: 0.005~ Including 0.08 wt %, SiO 2 : 0.005 wt% to 0.025 wt% ,
In a temperature range of −40 ° C. to 85 ° C., the magnetic permeability μδ at the time of DC bias superposition is 1000 or more, and has a maximum value of the magnetic permeability μδ between −20 ° C. and + 60 ° C., and the maximum of the magnetic permeability μδ A Mn—Zn-based ferrite having a value of 1500 or more.
前記主成分の内、Fe 2 O 3 :52.6〜52.99mol%であり、副成分の内、CoO:0.21wt%〜0.3wt%であることを特徴とするMn−Zn系フェライト。 The Mn-Zn ferrite according to claim 1,
Among the main components, Fe 2 O 3 is 52.6 to 59.99 mol%, and among the subcomponents, CoO is 0.21 wt% to 0.3 wt%. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004339981A JP4788991B2 (en) | 2004-11-25 | 2004-11-25 | Mn-Zn ferrite and electronic component using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004339981A JP4788991B2 (en) | 2004-11-25 | 2004-11-25 | Mn-Zn ferrite and electronic component using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006151701A JP2006151701A (en) | 2006-06-15 |
JP2006151701A5 JP2006151701A5 (en) | 2007-11-29 |
JP4788991B2 true JP4788991B2 (en) | 2011-10-05 |
Family
ID=36630441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004339981A Active JP4788991B2 (en) | 2004-11-25 | 2004-11-25 | Mn-Zn ferrite and electronic component using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4788991B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008154033A (en) * | 2006-12-19 | 2008-07-03 | Nec Infrontia Corp | Inter-system connection method and its method for sharing radio control channel synchronizing signal |
JP5578766B2 (en) * | 2008-01-23 | 2014-08-27 | Jfeケミカル株式会社 | MnZn ferrite and transformer core |
JP5546139B2 (en) * | 2009-01-29 | 2014-07-09 | Jfeケミカル株式会社 | MnZnCo ferrite core and method for producing the same |
JP5546135B2 (en) * | 2009-01-29 | 2014-07-09 | Jfeケミカル株式会社 | MnZn-based ferrite core and manufacturing method thereof |
JP2017126634A (en) * | 2016-01-13 | 2017-07-20 | Tdk株式会社 | Coil component |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02124724A (en) * | 1988-11-02 | 1990-05-14 | Taiyo Yuden Co Ltd | Mn-zn ferrite material |
JP3849808B2 (en) * | 1995-06-23 | 2006-11-22 | 日立金属株式会社 | Low loss ferrite for LCD backlight |
JP4761175B2 (en) * | 2000-02-07 | 2011-08-31 | 日立金属株式会社 | Low-loss ferrite and magnetic core using the same |
JP4279995B2 (en) * | 2001-02-07 | 2009-06-17 | Tdk株式会社 | MnZn ferrite |
JP3924272B2 (en) * | 2002-09-02 | 2007-06-06 | Tdk株式会社 | Mn-Zn ferrite, transformer core and transformer |
JP3889354B2 (en) * | 2002-12-20 | 2007-03-07 | Tdk株式会社 | Mn-Zn ferrite, transformer core and transformer |
-
2004
- 2004-11-25 JP JP2004339981A patent/JP4788991B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006151701A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1314697B1 (en) | Ferrite material | |
US7378036B2 (en) | Ferrite material and electronic component using the same | |
US6458286B1 (en) | Manganese-zinc (Mn-Zn) based ferrite | |
JP3889354B2 (en) | Mn-Zn ferrite, transformer core and transformer | |
JP2002141216A (en) | Magnetic material and inductor | |
JP4788991B2 (en) | Mn-Zn ferrite and electronic component using the same | |
KR100389821B1 (en) | MnZn ferrite production process, MnZn ferrite, and ferrite core for power supplies | |
WO2010113772A1 (en) | Ferrite material and electronic component | |
JP3288113B2 (en) | Mn-Zn ferrite magnetic material | |
EP1231614A1 (en) | Oxide magnetic material and core using the same | |
JP2007063123A (en) | Ferrite material and electronic component using the same | |
JP2006210493A (en) | Antenna coil and transponder | |
JP4831457B2 (en) | Ferrite magnetic material and electronic component using the same | |
JP3487552B2 (en) | Ferrite material | |
JPH0851012A (en) | Magnetic oxide material | |
US20010028051A1 (en) | Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components | |
JP2006151742A (en) | Ferrite material and electronic component using the same | |
JP2802839B2 (en) | Oxide soft magnetic material | |
JP4799808B2 (en) | Ferrite composition, magnetic core and electronic component | |
JP4233083B2 (en) | Mn-Zn ferrite | |
JP2005187247A (en) | Manufacturing method of low-loss oxide magnetic material | |
JP3487243B2 (en) | Mn-Zn ferrite material | |
JP2004006809A (en) | Mn-Zn-BASED FERRITE, FERRITE MAGNETIC CORE AND ELECTRONIC COMPONENT FOR COMMUNICATION EQUIPMENT | |
JP3692057B2 (en) | Ferrite material | |
JP2510788B2 (en) | Low power loss oxide magnetic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071011 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100924 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110428 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110707 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4788991 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |