JP4788579B2 - Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof - Google Patents

Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4788579B2
JP4788579B2 JP2006324906A JP2006324906A JP4788579B2 JP 4788579 B2 JP4788579 B2 JP 4788579B2 JP 2006324906 A JP2006324906 A JP 2006324906A JP 2006324906 A JP2006324906 A JP 2006324906A JP 4788579 B2 JP4788579 B2 JP 4788579B2
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
nickel
manganese composite
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006324906A
Other languages
Japanese (ja)
Other versions
JP2008137837A (en
Inventor
康浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006324906A priority Critical patent/JP4788579B2/en
Publication of JP2008137837A publication Critical patent/JP2008137837A/en
Application granted granted Critical
Publication of JP4788579B2 publication Critical patent/JP4788579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はリチウム二次電池用正極活物質等に使用されるリチウム−ニッケル−マンガン複合酸化物、及びその製造方法、並びにその用途に関するものである。   The present invention relates to a lithium-nickel-manganese composite oxide used for a positive electrode active material for a lithium secondary battery, a production method thereof, and an application thereof.

携帯電話、ノートパソコン、AV機器、および電気自動車などの電源としてリチウムイオン二次電池(LIB)が使用されている。当該二次電池の正極材料には主にLiCoOが使用されている。しかし、LiCoOは希少元素であるCoを主成分とするためコストおよび資源面で問題があった。また、Li脱離に伴う相転移を生じることによって実効容量は理論容量の約半分までであり、電池容量の面で制約があった。さらに、安全性の面でも、有機系電解液に対し酸化反応を起こしやすく、熱的安定性に劣っていた。 Lithium ion secondary batteries (LIBs) are used as power sources for mobile phones, notebook computers, AV equipment, electric vehicles, and the like. LiCoO 2 is mainly used as the positive electrode material of the secondary battery. However, LiCoO 2 has a problem in terms of cost and resources because it contains Co, which is a rare element, as a main component. In addition, the effective capacity is up to about half of the theoretical capacity due to the phase transition accompanying Li desorption, and there is a limitation in terms of battery capacity. Furthermore, in terms of safety, it is easy to cause an oxidation reaction with respect to the organic electrolyte, and the thermal stability is poor.

近年、携帯機器の電力需要増加、もしくはハイブリッド電気自動車などのLIB化に伴い、更にエネルギー密度が高く、安全性の高いリチウムイオン二次電池が求められている。そのため、新たな正極材料として層状構造のLiNi0.5Mn0.5が安全性と高エネルギー密度を満足する材料として提案されている(非特許文献1)。しかし、従来のLiNi0.5Mn0.5は構造不整(3a−3bサイト間のLiとNiとの入れ替わり)が顕著であり、Li主体層(3a−サイト)のNi席占有率が約10%までのものであった(非特許文献2)。構造不整はLiイオンの拡散を阻害するため、従来のLiNi0.5Mn0.5は出力特性が不十分であった。 In recent years, lithium ion secondary batteries with higher energy density and higher safety have been demanded along with an increase in power demand for portable devices or LIBs such as hybrid electric vehicles. Therefore, LiNi 0.5 Mn 0.5 O 2 having a layered structure as a new positive electrode material has been proposed as a material that satisfies safety and high energy density (Non-patent Document 1). However, in the conventional LiNi 0.5 Mn 0.5 O 2 , structural irregularities (replacement of Li and Ni between the 3a-3b sites) are remarkable, and the Ni seat occupancy of the Li main layer (3a-site) is large. It was up to about 10% (Non-Patent Document 2). Since structural irregularities inhibit the diffusion of Li ions, conventional LiNi 0.5 Mn 0.5 O 2 has insufficient output characteristics.

この為、さらにCoを加えたLi−Ni−Co−Mn複合酸化物とすることによる改良が検討されている。Co導入により、構造不整は改善され、出力が向上するものの、前述した通り、コスト、安全性に問題があった。   For this reason, the improvement by making it Li-Ni-Co-Mn complex oxide which added Co further is examined. The introduction of Co improves the structural irregularity and improves the output, but there are problems in cost and safety as described above.

LIB用の正極材料において、殊に高い出力特性を達成するためには、結晶構造に不整、欠陥がなく、なお且つ一次粒子径が小さい方が有利であり、このような構造不整を抑制することを目的として、Liイオン交換によるLiNi0.5Mn0.5の合成が検討されている(非特許文献3)。当該報告文では、低温でLiイオン交換することにより、Li主体層(3a−サイト)のNi席占有率を約4%まで低減することが報告されている。しかし、そのXRDパターンは、主相以外に、副生相として絶縁層であるNiOを含有し、これまで完全な単一相は得られていなかった。 In order to achieve particularly high output characteristics in a positive electrode material for LIB, it is advantageous that there is no crystal structure irregularity, no defect, and a smaller primary particle diameter, and this structural irregularity is suppressed. Therefore, synthesis of LiNi 0.5 Mn 0.5 O 2 by Li ion exchange has been studied (Non-patent Document 3). In the report, it is reported that the Ni seat occupancy of the Li main layer (3a-site) is reduced to about 4% by Li ion exchange at a low temperature. However, the XRD pattern contains NiO which is an insulating layer as a by-product phase in addition to the main phase, and a complete single phase has not been obtained so far.

NaNi0.5Mn0.5のLiイオン交換については、2000年にJ.R.Dahnらによっても報告されているが、やはりその結晶性は十分ではなかった(非特許文献4)。また、同報告では、NaNi0.5Mn0.5−Na0.67Ni0.33Mn0.67の固溶体組成が検討されていたが、終端組成でのみ、それぞれ、O3、P2構造と単一相が得られており、その中間組成でO3とP2構造との混合相しか得られていなかった。 Regarding the Li ion exchange of NaNi 0.5 Mn 0.5 O 2 , J. R. Although reported by Dahn et al., The crystallinity was still insufficient (Non-patent Document 4). Further, in the report, but a solid solution composition of NaNi 0.5 Mn 0.5 O 2 -Na 0.67 Ni 0.33 Mn 0.67 O 2 has been studied, only at the end composition, respectively, O3, A P2 structure and a single phase were obtained, and only a mixed phase of O3 and P2 structure was obtained with an intermediate composition.

第41回電池討論会予稿集(2000)460−461頁Proceedings of the 41st Battery Symposium (2000) 460-461 H. Kobayashi,et al.,Mater.,Chem.,13,590−595 (2003)H. Kobayashi, et al. , Mater. , Chem. , 13, 590-595 (2003) K.Kang et al., Science 311 977 (2006)K. Kang et al. , Science 311 977 (2006) J.M.Paulsen and J.R.Dahn, J.Electrochem.,Soc.,147(7)2478(2000)J. et al. M.M. Paulsen and J.M. R. Dahn, J. et al. Electrochem. , Soc. , 147 (7) 2478 (2000)

本発明の目的は、高い出力特性を有するリチウム−ニッケル−マンガン複合酸化物、およびその製造方法、並びにこれを正極活物質に用いたリチウムイオン二次電池を提供するものである。   An object of the present invention is to provide a lithium-nickel-manganese composite oxide having high output characteristics, a method for producing the same, and a lithium ion secondary battery using the same as a positive electrode active material.

本発明者等は、高いエネルギー密度、安全性を兼備したリチウム−ニッケル−マンガン複合酸化物について鋭意検討を重ねた結果、特定の組成、結晶構造のもので単一成分が得られ、また、構造不整が抑制され、なお且つ十分な電池特性を有することを見出し、本発明を完成するに至ったものである。   As a result of intensive studies on a lithium-nickel-manganese composite oxide having both high energy density and safety, the present inventors have obtained a single component having a specific composition and crystal structure, and the structure The present inventors have found that irregularity is suppressed and that the battery has sufficient battery characteristics, and have completed the present invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のリチウム−ニッケル−マンガン複合酸化物(以下「複合酸化物」という)は副生相としてのNiOを含有しない層状岩塩構造(O3構造)であり、Li/遷移金属(モル比)が0.80以上0.94以下であり、遷移金属として少なくともNiとMnを含有し、Mn/Niモル比が1.08より大きく、Li主体層におけるNi原子の占有率が0.0%以上6.0%以下であり、Na含有率が0.2wt%以下の複合酸化物である。   The lithium-nickel-manganese composite oxide (hereinafter referred to as “composite oxide”) of the present invention has a layered rock salt structure (O3 structure) that does not contain NiO as a byproduct phase, and Li / transition metal (molar ratio) is 0. 80 or more and 0.94 or less, containing at least Ni and Mn as transition metals, Mn / Ni molar ratio is larger than 1.08, and the occupation ratio of Ni atoms in the Li main layer is 0.0% or more. It is a composite oxide having a Na content of 0.2 wt% or less and 0% or less.

本発明の複合酸化物は層状岩塩構造(O3構造)であり、粉末X線回折法で同定において、メインピークが2θ(Cu−Kα)=43°付近に現れるNiOが副生相として検出されないものである。NiO副生相が出現すると、当該複合酸化物を正極活物質として使用するLi二次電池を構成すると、初期放電容量が低く、放電サイクルを繰り返すとさらに放電容量が急激に低下する。   The complex oxide of the present invention has a layered rock salt structure (O3 structure), and NiO appearing in the vicinity of 2θ (Cu-Kα) = 43 ° is not detected as a by-product phase in identification by powder X-ray diffraction method It is. When a NiO by-product phase appears, if a Li secondary battery using the composite oxide as a positive electrode active material is configured, the initial discharge capacity is low, and the discharge capacity is further rapidly reduced when the discharge cycle is repeated.

本発明の複合酸化物は、Li/遷移金属(モル比)が0.80以上0.94以下であり、当該遷移金属として、少なくともNiとMnを含有し、Mn/Niモル比が1.08より大きく、Li主体層におけるNi原子の占有率が6.0%以下であり、さらにNa含有率が0.2wt%以下である。   The composite oxide of the present invention has a Li / transition metal (molar ratio) of 0.80 or more and 0.94 or less, contains at least Ni and Mn as the transition metal, and a Mn / Ni molar ratio of 1.08. The occupancy ratio of Ni atoms in the Li main layer is 6.0% or less, and the Na content is 0.2 wt% or less.

Li/遷移金属(モル比)、Mn/Niモル比、Li主体層におけるNi原子の占有率、及びNa含有量がこの範囲から外れると、当該複合酸化物を正極活物質としてLi二次電池を構成すると、最初の放電容量が低く、放電サイクルを繰り返すとその放電容量も急激に低下するからである。   When the Li / transition metal (molar ratio), Mn / Ni molar ratio, Ni atom occupancy in the Li main layer, and the Na content are out of this range, the Li secondary battery can be produced using the composite oxide as a positive electrode active material. This is because, when configured, the initial discharge capacity is low, and when the discharge cycle is repeated, the discharge capacity rapidly decreases.

本発明の複合酸化物は六方晶で帰属した場合の格子定数a軸長が2.880≦a≦2.890Å、且つ、c軸長が14.29≦c≦14.32Åであることが好ましく、特に、14.30≦c≦14.31Åの範囲が特性上、更に好ましい。   The composite oxide of the present invention preferably has a lattice constant a-axis length of 2.880 ≦ a ≦ 2.890 Å and a c-axis length of 14.29 ≦ c ≦ 14.32 場合 when attributed as hexagonal crystals. In particular, the range of 14.30 ≦ c ≦ 14.31 is more preferable in view of characteristics.

格子定数がこの範囲を外れると、当該複合酸化物を正極活物質として使用するLi二次電池を構成すると、初期放電容量は高いが、放電サイクルを繰り返すとその放電容量も急激に低下する。   When the lattice constant is out of this range, when a Li secondary battery using the composite oxide as a positive electrode active material is configured, the initial discharge capacity is high, but when the discharge cycle is repeated, the discharge capacity is also rapidly decreased.

本発明の複合酸化物は、化学組成がLi0.88+xNi0.46+yMn0.54−y(−0.08≦x≦0.06、−0.02≦y≦0.02)の化学式で表され、空間群R−3mで表される層状岩塩構造の結晶相から成ることが特に好ましい。この様な結晶相では、単一の結晶相が得られ、前記化学組成式において、−0.02≦x≦0.02、−0.02≦y≦0.02の範囲が特性上、更に好ましい。 The composite oxide of the present invention has a chemical composition of Li 0.88 + x Ni 0.46 + y Mn 0.54-y O 2 (−0.08 ≦ x ≦ 0.06, −0.02 ≦ y ≦ 0.02). It is particularly preferable that it is composed of a crystal phase of a layered rock salt structure represented by the chemical formula of In such a crystal phase, a single crystal phase is obtained. In the chemical composition formula, the ranges of −0.02 ≦ x ≦ 0.02 and −0.02 ≦ y ≦ 0.02 preferable.

次に本発明の複合酸化物の製造法について説明する。   Next, the method for producing the composite oxide of the present invention will be described.

本発明の複合酸化物は、従来の固相反応法や、共沈、もしくはゾルゲル法により合成されたNi−Mn前駆体とLi化合物を反応させる方法によるのではなく、Ni、Mn原料とNa化合物を混合し、800℃以上1000℃以下で焼成したNa−Ni−Mn複合酸化物を得た後に、Liイオン交換することによって製造できる。   The composite oxide of the present invention is not based on a conventional solid-phase reaction method, a method of reacting a Ni-Mn precursor synthesized by coprecipitation or a sol-gel method with a Li compound, but a Ni, Mn raw material and an Na compound. And after obtaining Na—Ni—Mn composite oxide fired at 800 ° C. or higher and 1000 ° C. or lower, Li ion exchange can be performed.

用いるNi原料には特に限定はないが、例えば、水酸化ニッケル、オキシ水酸化ニッケル、酸化ニッケル、炭酸ニッケル、シュウ酸ニッケルなどが例示できる。また、Mn原料は、酸化マンガン(MnO、Mn、Mn、MnO)、オキシ水酸化マンガン、炭酸マンガン、シュウ酸マンガンなどを用いることが可能である。 The Ni raw material to be used is not particularly limited, and examples thereof include nickel hydroxide, nickel oxyhydroxide, nickel oxide, nickel carbonate, and nickel oxalate. Further, manganese oxide (MnO 2 , Mn 2 O 3 , Mn 3 O 4 , MnO), manganese oxyhydroxide, manganese carbonate, manganese oxalate, or the like can be used as the Mn raw material.

同様にNa化合物としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、塩化ナトリウム、硝酸ナトリウム、硫酸ナトリウムなどが例示できる。前記原料群の中で、コスト面から、水酸化ニッケル、二酸化マンガン、および水酸化ナトリウムの組み合わせが特に好ましい。   Similarly, examples of the Na compound include sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium chloride, sodium nitrate, sodium sulfate and the like. Among the raw material groups, a combination of nickel hydroxide, manganese dioxide, and sodium hydroxide is particularly preferable from the viewpoint of cost.

本発明の複合酸化物を得るためには、Ni、Mn原料を微細化することが特に好ましく、原料成分の平均粒子径は0.3μm以下、より好ましくは0.1μm以下である。   In order to obtain the composite oxide of the present invention, it is particularly preferable to refine the Ni and Mn raw materials, and the average particle size of the raw material components is 0.3 μm or less, more preferably 0.1 μm or less.

原料の平均粒子径が大きい場合、副生相NiOが生成し易く、充放電特性が分極傾向となり、充放電にともなう電気量の損失が大きくなる。   When the average particle diameter of the raw material is large, the by-product phase NiO is easily generated, the charge / discharge characteristics tend to be polarized, and the loss of electricity associated with charge / discharge increases.

原料の混合方法は乾式混合、湿式混合のどちらでも可能であるが、混合性の高い湿式混合法が有利である。例えば、Ni、Mn原料を水に分散させ湿式ボールミルで微細化した後、水溶性のNa化合物を添加し、混合スラリーを得る。前記スラリーをスプレードライヤーで噴霧乾燥し、均一性の高い焼成前粉体を得ることが可能である。   The raw material can be mixed by either dry mixing or wet mixing, but a wet mixing method with high mixing properties is advantageous. For example, Ni and Mn raw materials are dispersed in water and refined with a wet ball mill, and then a water-soluble Na compound is added to obtain a mixed slurry. The slurry can be spray-dried with a spray dryer to obtain a highly uniform powder before firing.

本発明の複合酸化物の前駆体であるNa−Ni−Mn複合酸化物(以下「前駆体酸化物」という)は、層状岩塩構造(O3構造)のものを用いる。   The Na—Ni—Mn composite oxide (hereinafter referred to as “precursor oxide”), which is a precursor of the composite oxide of the present invention, has a layered rock salt structure (O3 structure).

前駆体酸化物は、粉末X線回折法で同定した場合、メインピークが2θ(Cu−Kα)=43°付近に現れるNiOが副生相として検出されないものを用いることが好ましい。その結晶構造は、空間群R−3mで表される層状岩塩構造(O3構造)であり、P2構造を含有しない単一相であり、六方晶で帰属した場合、格子定数aおよびc軸長が2.870≦a≦2.890Å、14.30≦c≦14.31Åの範囲、より好適には、組成:−0.02≦x≦0.02、−0.02≦y≦0.02、格子定数:2.940≦a≦2.950Å、15.94≦c≦15.97Åの範囲である。   When the precursor oxide is identified by a powder X-ray diffraction method, it is preferable to use a precursor in which NiO appearing in the vicinity of 2θ (Cu—Kα) = 43 ° is not detected as a by-product phase. The crystal structure is a layered rock salt structure (O3 structure) represented by the space group R-3m, a single phase that does not contain the P2 structure, and when assigned as a hexagonal crystal, the lattice constants a and c-axis lengths are 2.870 ≦ a ≦ 2.890Å, 14.30 ≦ c ≦ 14.31Å, more preferably composition: −0.02 ≦ x ≦ 0.02, −0.02 ≦ y ≦ 0.02. Lattice constants: 2.940 ≦ a ≦ 2.950 Å, 15.94 ≦ c ≦ 15.97 範 囲.

前駆体酸化物の化学組成は、Na0.92+xNi0.46+yMn0.54−y(−0.08≦x≦0.06、−0.02≦y≦0.02)と表すことが可能である。また、その焼成は、含酸素雰囲気が好ましい。不活性雰囲気での焼成では、良質な前駆体酸化物が得られにくい。酸素含有雰囲気としては、経済的に空気中が最も好ましい。 The chemical composition of the precursor oxide is expressed as Na 0.92 + x Ni 0.46 + y Mn 0.54-y O 2 (−0.08 ≦ x ≦ 0.06, −0.02 ≦ y ≦ 0.02). It is possible. The firing is preferably performed in an oxygen-containing atmosphere. By firing in an inert atmosphere, it is difficult to obtain a good precursor oxide. The oxygen-containing atmosphere is most preferably in the air economically.

焼成温度は800℃以上1000℃以下の範囲が好ましく、特に900℃以上1000以下が好ましい。焼成形態は、粉末状、ペレット状などが可能である。また、同物質は吸湿性が高いため、少なくとも降温時には乾燥空気を流通させる、もしくは焼成温度から室温に急冷するなど、水分との反応を抑制することが好ましい。   The firing temperature is preferably in the range of 800 ° C. to 1000 ° C., particularly preferably 900 ° C. to 1000 ° C. The form of firing can be powder, pellets, or the like. In addition, since the substance has high hygroscopicity, it is preferable to suppress the reaction with moisture, for example, by passing dry air at least when the temperature is lowered or by rapidly cooling from the firing temperature to room temperature.

前記前駆体酸化物のLiイオン交換は、Li溶融塩、共融塩、もしくはLi塩水溶液でのイオン交換が可能である。Li溶融塩についてはLiNO(融点261℃)、LiCl(融点605℃)、共融塩については、LiNO−KNO(融点132℃)、LiCl−LiNO(融点244℃)ど共融塩組成を変化させることにより、イオン交換温度を制御することが可能である。イオン交換後、純水、エタノールなどで洗浄し、乾燥するが、乾燥温度は200℃以下が好ましい。

Li ion exchange of the precursor oxide can be performed with a Li molten salt, a eutectic salt, or a Li salt aqueous solution. LiNO 3 For Li molten salt (mp 261 ° C.), LiCl (mp 605 ° C.), for eutectic salt, LiNO 3 -KNO 3 (melting point 132 ℃), LiCl-LiNO 3 ( melting point 244 ° C.) a throat eutectic It is possible to control the ion exchange temperature by changing the salt composition. After ion exchange, it is washed with pure water, ethanol or the like and dried. The drying temperature is preferably 200 ° C. or lower.

イオン交換後の試料中のNa含有率については0.2wt%以下とし、可能な限りゼロに近くまでNaを除去することが好ましい。   The Na content in the sample after ion exchange is preferably 0.2 wt% or less, and it is preferable to remove Na as close to zero as possible.

こうして得られた本発明の複合酸化物はリチウムイオン二次電池の正極活物質として用いられる。   The composite oxide of the present invention thus obtained is used as a positive electrode active material for a lithium ion secondary battery.

本発明のLi二次電池に用いる負極活物質としては、金属リチウム並びにリチウムイオンまたはリチウムイオンを吸蔵放出可能な物質を用いることができる。例えば、金属リチウム、リチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金および電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が例示され、電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が安全性および電池の特性の面から特に好適である。   As the negative electrode active material used in the Li secondary battery of the present invention, metallic lithium and lithium ions or materials capable of occluding and releasing lithium ions can be used. Examples include lithium metal, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, and carbon materials that can electrochemically insert and desorb lithium ions. A carbon material that can be desorbed is particularly preferable in terms of safety and battery characteristics.

また、本発明のリチウムイオン二次電池で用いる電解質としても特に制限はなく、例えば、カーボネート類、スルホラン類、ラクトン類、エーテル顆等の有機溶媒中にリチウム塩を溶解したものや、リチウムイオン導電性の固体電解質を用いることができる。   The electrolyte used in the lithium ion secondary battery of the present invention is not particularly limited. For example, a lithium salt dissolved in an organic solvent such as carbonates, sulfolanes, lactones, ether condyles, or lithium ion conductive A solid electrolyte can be used.

また、本発明のリチウムイオン二次電池で用いるセパレーターとしては、特に制限はないが、例えば、ポリエチレンまたポリプロピレン製の微細多孔膜等を用いることができる。   Moreover, there is no restriction | limiting in particular as a separator used with the lithium ion secondary battery of this invention, For example, the microporous film etc. made from polyethylene or a polypropylene can be used.

本発明の複合酸化物を正極活物質に用いることにより、高い出力特性を有するLiイオン二次電池用を提供することが可能である。   By using the composite oxide of the present invention for the positive electrode active material, it is possible to provide a lithium ion secondary battery having high output characteristics.

次に、本発明を具体的な実施例で説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated with a specific Example, this invention is not limited to these Examples.

実施例1
水酸化ニッケルと、電解二酸化マンガンを600℃×12時間焼成した二三酸化マンガンとをNi:Mnモル比が0.46:0.54となるように秤量し、純水に固形分率20wt%になるように分散させ、湿式ボールミル(粉砕メディア:ZrOボール、0.5mmΦ)でNi、Mn原料の粒子径が0.1μm以下になるまで粉砕した。なお、前記粒子径はSEM、またはTEM像から無作為に20個の粒子を抽出し、平均粒子径を求めた。粉砕後のスラリーをろ過分離した後、150℃で乾燥した。次に適量の水酸化ナトリウム水溶液と混合しNa/遷移金属モル比を0.93とした。これを150℃で乾燥させた後、当該混合物を空気中900℃で24時間焼成した後、Cu金属板上で室温まで急冷した。
Example 1
Nickel hydroxide and manganese trioxide obtained by firing electrolytic manganese dioxide at 600 ° C. for 12 hours were weighed so that the molar ratio of Ni: Mn was 0.46: 0.54, and the solid content was 20 wt% in pure water. And were pulverized with a wet ball mill (grinding media: ZrO 2 balls, 0.5 mmΦ) until the particle diameters of the Ni and Mn raw materials were 0.1 μm or less. In addition, the said particle diameter extracted 20 particles at random from SEM or a TEM image, and calculated | required the average particle diameter. The pulverized slurry was separated by filtration and dried at 150 ° C. Next, it was mixed with an appropriate amount of aqueous sodium hydroxide solution to make the Na / transition metal molar ratio 0.93. After drying this at 150 ° C., the mixture was fired in air at 900 ° C. for 24 hours, and then rapidly cooled to room temperature on a Cu metal plate.

得られた前駆体酸化物について粉末X線回折測定を行った。図1に示す通り、XRDパターンはO3構造の層状岩塩構造を示した。さらに、Rietan―2000により構造を精密化した結果、a=2.9470Å、c=15.941Åとなった。   Powder X-ray diffraction measurement was performed on the obtained precursor oxide. As shown in FIG. 1, the XRD pattern showed a layered rock salt structure with an O3 structure. Further, as a result of refinement of the structure by Rietan-2000, a = 2.9470 mm and c = 15.941 mm.

次に、当該前駆体酸化物をLiイオン交換を行った。イオン交換温度を275℃として、液状に溶融した硝酸リチウムに前記前駆体酸化物粉末を投入し、10時間保持した。イオン交換後、冷却した固形物を純水に溶解させ、ろ過分離後150℃で乾燥した。このイオン交換+ろ過分離から成る工程を3回繰り返し、最終的に得られた複合酸化物の粉末を10gにつき1Lのエタノールでカラム洗浄、150℃で1時間乾燥した。   Next, Li ion exchange was performed on the precursor oxide. The precursor oxide powder was added to lithium nitrate melted in a liquid state at an ion exchange temperature of 275 ° C. and held for 10 hours. After ion exchange, the cooled solid was dissolved in pure water, filtered and separated, and dried at 150 ° C. This process consisting of ion exchange and filtration separation was repeated three times, and the finally obtained composite oxide powder was subjected to column washing with 1 L of ethanol per 10 g and dried at 150 ° C. for 1 hour.

ICP法による化学分析の結果、複合酸化物の組成は、Li/(Ni+Mn)(モル比)=0.88、Mn/Ni(モル比)=1.17であった。また、Na含有率は0.1wt%、化学組成は、Li0.88Ni0.46Mn0.54であった。 As a result of chemical analysis by ICP method, the composition of the composite oxide was Li / (Ni + Mn) (molar ratio) = 0.88 and Mn / Ni (molar ratio) = 1.17. Further, Na content 0.1 wt%, the chemical composition was Li 0.88 Ni 0.46 Mn 0.54 O 2 .

得られた複合酸化物のX線回折図を図2に示す。得られた複合酸化物は層状岩塩構造(O3構造)であり、メインピークが2θ(Cu−Kα)=43°付近に現れるNiOが副生相として検出されなかった。   An X-ray diffraction pattern of the obtained composite oxide is shown in FIG. The obtained composite oxide has a layered rock salt structure (O3 structure), and NiO that has a main peak near 2θ (Cu-Kα) = 43 ° was not detected as a byproduct phase.

当該XRDパターンをRietveld法により構造の精密化解析を行ったところ、空間群R−3mで表される層状岩塩構造の結晶相から成り、図3に示すとおり、六方晶で帰属した場合のa軸長が2.8873Å、c軸長が14.306Å、Li主体層におけるNi席占有率5.0%であった。(Rwp 11.05%、Rp7.17%、Re9.44%)したがって、計算上の組成式は[Li0.830.12Ni0.053a[Ni0.41Mn0.54Li0.053b[O6c(□: 空格子)と表せた。 When the XRD pattern was refined and analyzed by the Rietveld method, it was composed of the crystal phase of the layered rock salt structure represented by the space group R-3m, and as shown in FIG. The length was 2.8873 mm, the c-axis length was 14.306 mm, and the Ni seat occupation ratio in the Li main layer was 5.0%. (Rwp 11.05%, Rp 7.17%, Re 9.44%) Therefore, the calculated composition formula is [Li 0.830.12 Ni 0.05 ] 3a [Ni 0.41 Mn 0.54 Li 0.05 ] 3b [O 2 ] 6c (□: vacancy).

次に得られた複合酸化物の正極材料としての電池特性試験を行った。   Next, the battery characteristic test as a positive electrode material of the obtained composite oxide was performed.

複合酸化物と導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB−2)とを重量比で4:1の割合で混合し、1ton/cmの圧力でメッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し電池用正極を作製した。得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、およびエチレンカーボネートとジエチルカーボネートとの混合溶媒に六フッ化リン酸リチウムを1mol/dmの濃度で溶解した電解液を用いて電池を構成した。当該電池を用いて定電流で電池電圧が4.5Vから2.5Vの間室温下で充放電させた。16mA/gで充電し、16、64、400及び800mA/gで放電した場合の放電容量(mAh/g)はぞれぞれQ16=208、Q64=194、Q400=182、Q800=160mAh/gであった。 A mixture of a composite oxide, a conductive agent polytetrafluoroethylene and acetylene black (trade name: TAB-2) was mixed at a weight ratio of 4: 1, and meshed at a pressure of 1 ton / cm 2 (manufactured by SUS316). ) After being molded into a pellet shape, it was dried under reduced pressure at 150 ° C. to produce a positive electrode for a battery. Electrolysis in which lithium hexafluorophosphate was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / dm 3 in the obtained positive electrode for a battery, a negative electrode comprising a metal lithium foil (thickness 0.2 mm), and A battery was constructed using the liquid. Using the battery, the battery voltage was charged and discharged at a constant current between 4.5 V and 2.5 V at room temperature. The discharge capacities (mAh / g) when charging at 16 mA / g and discharging at 16 , 64 , 400 , and 800 mA / g are Q 16 = 208, Q 64 = 194, Q 400 = 182, and Q 800, respectively. = 160 mAh / g.

16mA/gでの充放電曲線(初回サイクル)を図4に、同電池で電流密度64mA/g、作動電圧2.5−4.5Vで充放電サイクルを30回繰り返した結果を図5に示した。   FIG. 4 shows the charge / discharge curve (initial cycle) at 16 mA / g, and FIG. 5 shows the results of repeating the charge / discharge cycle 30 times with the battery at a current density of 64 mA / g and an operating voltage of 2.5-4.5 V. It was.

実施例2
水酸化ニッケルと、電解二酸化マンガンとをMn/Niモル比が1.27となるように秤量し、純水に固形分率20wt%になるように分散させ、湿式ボールミル(粉砕メディア:ZrOボール、0.5mmΦ)でNi、Mn原料の粒子径が0.3μm以下になるまで粉砕した。次に、粉砕後のスラリーをろ過分離した後、150℃で乾燥し、適量の炭酸ナトリウムと混合しNa/遷移金属モル比を0.92とし、さらに150℃で乾燥させた後、当該混合物を空気中900℃で24時間焼成し、乾燥空気を流入し、室温まで100℃/時間で冷却した。
Example 2
Nickel hydroxide and electrolytic manganese dioxide are weighed so that the Mn / Ni molar ratio is 1.27, dispersed in pure water so that the solid content is 20 wt%, and wet ball mill (grinding media: ZrO 2 balls) , 0.5 mmΦ) until the particle size of the Ni and Mn raw materials is 0.3 μm or less. Next, the pulverized slurry is separated by filtration, dried at 150 ° C., mixed with an appropriate amount of sodium carbonate to obtain a Na / transition metal molar ratio of 0.92, and further dried at 150 ° C. It baked at 900 degreeC in the air for 24 hours, flowed in dry air, and cooled to room temperature at 100 degreeC / hour.

得られた前駆体酸化物の粉末X線回折測定におけるXRDパターンは、O3構造の層状岩塩構造を示した。さらに、Rietan―2000により構造を精密化した結果、a=2.9434Å、c=15.942Åとなった。   The XRD pattern in the powder X-ray diffraction measurement of the obtained precursor oxide showed a layered rock salt structure having an O3 structure. Further, as a result of refinement of the structure by Rietan-2000, a = 2.9434 mm and c = 15.942 mm.

次に、前記前駆体酸化物のLiイオン交換を行った。イオン交換温度を275℃として、液状に溶融した硝酸リチウムに前記前駆体酸化物を投入し、10時間保持した。イオン交換後、冷却した固形物を純水に溶解させ、ろ過分離、純水でカラム洗浄し、150℃で乾燥した。このイオン交換+ろ過分離から成る工程を3回繰り返し、最終的に得られた複合酸化物を10gにつき1Lの純水でカラム洗浄、150℃で1時間乾燥した。   Next, Li ion exchange of the precursor oxide was performed. The precursor oxide was added to lithium nitrate melted in a liquid state at an ion exchange temperature of 275 ° C. and held for 10 hours. After the ion exchange, the cooled solid was dissolved in pure water, separated by filtration, washed with a column with pure water, and dried at 150 ° C. This process consisting of ion exchange and filtration separation was repeated three times, and the finally obtained composite oxide was washed with 1 L of pure water per 10 g of column and dried at 150 ° C. for 1 hour.

ICP法による化学分析の結果、その組成は、Li/(Ni+Mn)(モル比)=0.81、Mn/Ni(モル比)=1.27、Na含有率は0.2wt%、化学組成は、Li0.84Ni0.45Mn0.55であった。 As a result of chemical analysis by the ICP method, the composition is Li / (Ni + Mn) (molar ratio) = 0.81, Mn / Ni (molar ratio) = 1.27, the Na content is 0.2 wt%, and the chemical composition is Li 0.84 Ni 0.45 Mn 0.55 O 2 .

次に、得られた複合酸化物のX線回折図を測定したところ、層状岩塩構造(O3構造)であり、メインピークが2θ(Cu−Kα)=43°付近に現れるNiOが副生相として検出されなかった。   Next, when the X-ray diffraction pattern of the obtained composite oxide was measured, it was a layered rock salt structure (O3 structure), and NiO appearing in the vicinity of 2θ (Cu-Kα) = 43 ° as a byproduct phase. Not detected.

XRDパターンをRietveld法により構造の精密化解析を行った結果、空間群R−3mで表される層状岩塩構造の結晶相から成り、図6に示す通り、六方晶で帰属した場合のa軸長が2.8860Å、c軸長が14.315Å、Li主体層におけるNi席占有率2.5%となった。(Rwp 12.37%、Rp8.59%、Re8.39%)したがって、計算上、組成式は[Li0.810.16Ni0.033a[Ni0.42Mn0.55Li0.033b[O6c(□: 空格子)と表せた。 As a result of the refinement analysis of the structure of the XRD pattern by the Rietveld method, the a-axis length in the case of belonging to a hexagonal crystal as shown in FIG. 2.8860 mm, c-axis length was 14.315 mm, and the Ni seat occupancy ratio in the Li main layer was 2.5%. (Rwp 12.37%, Rp 8.59%, Re 8.39%) Therefore, in the calculation, the composition formula is [Li 0.810.16 Ni 0.03 ] 3a [Ni 0.42 Mn 0.55 Li 0.03 ] 3b [O 2 ] 6c (□: vacancy).

次に実施例1と同様な電池特性試験を行った結果、Q16=201、Q64=183、Q400=165、Q800=149となった。16mA/gでの充放電曲線(初回サイクル)を図7に示した。 Next, the same battery characteristic test as in Example 1 was performed. As a result, Q 16 = 201, Q 64 = 183, Q 400 = 165, and Q 800 = 149. A charge / discharge curve (initial cycle) at 16 mA / g is shown in FIG.

実施例3
水酸化ニッケルと、電解二酸化マンガンを用い、湿式ボールミルにより粉砕したNi,Mn原料の平均粒子径を0.6μmとした以外は、実施例1と同様に試料を合成した。
Example 3
A sample was synthesized in the same manner as in Example 1 except that nickel hydroxide and electrolytic manganese dioxide were used, and the average particle diameter of Ni and Mn raw materials pulverized by a wet ball mill was 0.6 μm.

得られたナトリウム−ニッケル−マンガン複合酸化物について粉末X線回折測定を行った。XRDパターンはO3構造の層状岩塩構造を示した。次に、Liイオン交換後の試料のXRDパターンをRietveld法により解析し、構造の精密化を行った。図8に示す通り、a=2.8921Å、c=14.346Å、Li主体層におけるNi席占有率4.3%となった。(Rwp 12.53%、Rp8.29%、Re8.25%)したがって、計算上、組成式は[Li0.760.20Ni0.043a[Ni0.42Mn0.54Li0.043b[O6c(□: 空格子)と表せた。また、ICP法による化学分析の結果、その組成は、Li/(Ni+Mn)(モル比)=0.80、Mn/Niモル比=1.17であった。また、Na含有率は0.1wt%であった。 The obtained sodium-nickel-manganese composite oxide was subjected to powder X-ray diffraction measurement. The XRD pattern showed a layered rock salt structure with an O3 structure. Next, the XRD pattern of the sample after Li ion exchange was analyzed by the Rietveld method, and the structure was refined. As shown in FIG. 8, a = 2.8922 mm, c = 14.346 mm, and the Ni seat occupation ratio in the Li main layer was 4.3%. (Rwp 12.53%, Rp 8.29%, Re 8.25%) Therefore, in the calculation, the composition formula is [Li 0.760.20 Ni 0.04 ] 3a [Ni 0.42 Mn 0.54 Li 0.04 ] 3b [O 2 ] 6c (□: vacancy). As a result of chemical analysis by ICP method, the composition was Li / (Ni + Mn) (molar ratio) = 0.80 and Mn / Ni molar ratio = 1.17. Moreover, Na content rate was 0.1 wt%.

次に実施例1と同様な電池特性試験を行った。その結果、Q16=204、Q64=149、Q400=133、Q800=118となった。併せて、16mA/gでの充電曲線(初回サイクル)を図9に示すが、実施例1および実施例2の充放電曲線(図4、図7)と比べ分極が大きく、充放電にともなう電気量の損失が比較的大きいが、Li二次電池用正極活物質として使用可能であった。 Next, the same battery characteristic test as in Example 1 was performed. As a result, Q 16 = 204, Q 64 = 149, Q 400 = 133, and Q 800 = 118. In addition, the charge curve (initial cycle) at 16 mA / g is shown in FIG. 9, and the polarization is larger than the charge / discharge curves of Examples 1 and 2 (FIGS. 4 and 7), and the electricity associated with charge / discharge Although the amount loss was relatively large, it could be used as a positive electrode active material for a Li secondary battery.

比較例1
水酸化ニッケルと、電解二酸化マンガンを600℃×12時間焼成した二三酸化マンガンとをMn/Niモル比が1.00、Na/(Ni+Mn)モル比が1.00となるように秤量した以外は実施例1と同様に試料を合成した。
Comparative Example 1
Except for weighing nickel hydroxide and manganese trioxide obtained by firing electrolytic manganese dioxide at 600 ° C. for 12 hours so that the Mn / Ni molar ratio is 1.00 and the Na / (Ni + Mn) molar ratio is 1.00. Was synthesized in the same manner as in Example 1.

得られた前駆体酸化物について粉末X線回折測定を行った。図10および図11に示す通り、XRDパターンはO3構造の層状岩塩構造が主相であるが、副生相NiOのピークが出現した。Liイオン交換後の複合酸化物のXRDパターンにもNiO相が現われた。ICP法による化学分析の結果、複合酸化物の組成は、Li/(Ni+Mn)(モル比)=0.78、Mn/Ni(モル比)=1.00であった。また、Na含有率は0.2wt%であった。   Powder X-ray diffraction measurement was performed on the obtained precursor oxide. As shown in FIGS. 10 and 11, the XRD pattern has a layered rock salt structure having an O3 structure as a main phase, but a peak of byproduct NiO has appeared. A NiO phase also appeared in the XRD pattern of the composite oxide after Li ion exchange. As a result of chemical analysis by the ICP method, the composition of the composite oxide was Li / (Ni + Mn) (molar ratio) = 0.78 and Mn / Ni (molar ratio) = 1.00. Moreover, Na content rate was 0.2 wt%.

次に実施例1と同様な電池特性試験を行った。その結果、Q16=168、Q64=150、Q400=132、Q800=109となった。 Next, the same battery characteristic test as in Example 1 was performed. As a result, Q 16 = 168, Q 64 = 150, Q 400 = 132, and Q 800 = 109.

比較例2
水酸化ニッケルと、電解二酸化マンガンを600℃×12hrs焼成した二三酸化マンガンとをMn/Niモル比が1.50、Na/(Ni+Mn)モル比が0.80となるように秤量した以外は実施例1と同様に試料を合成した。
Comparative Example 2
Except for weighing nickel hydroxide and manganese trioxide obtained by firing electrolytic manganese dioxide at 600 ° C. for 12 hours so that the Mn / Ni molar ratio is 1.50 and the Na / (Ni + Mn) molar ratio is 0.80. A sample was synthesized in the same manner as in Example 1.

得られた前駆体酸化物について粉末X線回折測定を行った。図10および図11に示す通り、XRDパターンはO3構造の層状岩塩構造が主相であるが、O3構造とは積層順序の異なるP2構造由来のピークが出現した。Liイオン交換後の試料のXRDパターンも、O3構造の層状岩塩構造の単一相ではなく、混合相であった。ICP法による化学分析の結果、複合酸化物の組成は、Li/(Ni+Mn)(モル比)=0.75、Mn/Ni(モル比)=1.50、Na含有率は0.2wt%であった。   Powder X-ray diffraction measurement was performed on the obtained precursor oxide. As shown in FIGS. 10 and 11, the XRD pattern has a layered rock salt structure with an O3 structure as a main phase, but a peak derived from a P2 structure having a different stacking order from the O3 structure has appeared. The XRD pattern of the sample after Li ion exchange was not a single phase of a layered rock salt structure having an O3 structure, but a mixed phase. As a result of the chemical analysis by the ICP method, the composition of the composite oxide is Li / (Ni + Mn) (molar ratio) = 0.75, Mn / Ni (molar ratio) = 1.50, and the Na content is 0.2 wt%. there were.

実施例1と同様な電池特性試験を行った結果、Q16=131、Q64=109、Q400=79、Q800=54となった。 As a result of conducting a battery characteristic test similar to that in Example 1, Q 16 = 131, Q 64 = 109, Q 400 = 79, and Q 800 = 54.

比較例3
イオン交換+ろ過分離から成る工程を2回とした以外は、実施例1と同様に試料を合成した。
Comparative Example 3
A sample was synthesized in the same manner as in Example 1 except that the process consisting of ion exchange and filtration separation was performed twice.

得られた前駆体酸化物について粉末X線回折測定を行ったところ、XRDパターンはO3構造の層状岩塩構造を示した。次に、Liイオン交換後の試料のXRDパターンをRietveld法により構造の精密化解析を行った。図12に示す通り、a=2.8878Å、c=14.303Å、Li主体層におけるNi席占有率5.0%となった。(Rwp 12.78%、Rp8.85%、Re9.50%)したがって、計算上、組成式は[Li0.810.14Ni0.053a[Ni0.41Mn0.55Li0.053b[O6c(□: 空格子)と表せた。また、ICP法による化学分析の結果、複合酸化物の組成は、Li/(Ni+Mn)(モル比)=0.86、Mn/Niモル比=1.17であった。また、Na含有率は1.6wt%であった。 When the obtained precursor oxide was subjected to powder X-ray diffraction measurement, the XRD pattern showed a layered rock salt structure having an O3 structure. Next, the structure of the XRD pattern of the sample after Li ion exchange was refined by the Rietveld method. As shown in FIG. 12, a = 2.8878 mm, c = 14.33 mm, and the Ni seat occupation ratio in the Li main layer was 5.0%. (Rwp 12.78%, Rp 8.85%, Re 9.50%) Therefore, in the calculation, the composition formula is [Li 0.810.14 Ni 0.05 ] 3a [Ni 0.41 Mn 0.55 Li 0.05 ] 3b [O 2 ] 6c (□: vacancy). As a result of chemical analysis by ICP method, the composition of the composite oxide was Li / (Ni + Mn) (molar ratio) = 0.86 and Mn / Ni molar ratio = 1.17. Moreover, Na content rate was 1.6 wt%.

実施例1と同様の電池系で、電流密度64mA/g、作動電圧2.5−4.5Vで充放電サイクルを30回繰り返し、その結果を図13に示した。実施例1の充放電サイクル特性(図5)に比べ、その特性は著しく低く、Na残存に伴い、サイクル特性が低下した。   In the same battery system as in Example 1, the charge / discharge cycle was repeated 30 times at a current density of 64 mA / g and an operating voltage of 2.5-4.5 V. The results are shown in FIG. Compared with the charge / discharge cycle characteristics of Example 1 (FIG. 5), the characteristics were remarkably low, and the cycle characteristics decreased as Na remained.

比較例4
適量の水酸化リチウム一水和物と湿式ボールミルにより平均粒子径0.1μm以下まで粉砕した水酸化ニッケル、電解二酸化マンガンとを乳鉢を用いて乾式混合した。得られた粉末を大気中900℃で12時間焼成した。
Comparative Example 4
An appropriate amount of lithium hydroxide monohydrate, nickel hydroxide ground to an average particle size of 0.1 μm or less by a wet ball mill, and electrolytic manganese dioxide were dry mixed using a mortar. The obtained powder was fired at 900 ° C. for 12 hours in the air.

ICP法による化学分析の結果、複合酸化物の組成は、Li/(Ni+Mn)(モル比)=0.92、Mn/Niモル比=1.17であった。得られた焼成物のXRDパターンを図14に示した。層状岩塩構造の発達を示す10.8および11.0回折ピークが分離しておらず、また、10.4回折ピークもブロードであり、10.1、00.6、10.2回折ピークも帰属不可能であった。したがって、得られた結晶相は、混合相であった。   As a result of chemical analysis by ICP method, the composition of the composite oxide was Li / (Ni + Mn) (molar ratio) = 0.92, and Mn / Ni molar ratio = 1.17. The XRD pattern of the obtained fired product is shown in FIG. The 10.8 and 11.0 diffraction peaks indicating the development of the layered rock salt structure are not separated, the 10.4 diffraction peak is also broad, and the 10.1, 00.6, and 10.2 diffraction peaks are also assigned. It was impossible. Therefore, the obtained crystal phase was a mixed phase.

放電特性を図16に示す。   The discharge characteristics are shown in FIG.

比較例5
イオン交換にLiCl−KCl共融塩(モル比、41:59)を用い、温度を365℃とした以外は実施例1と同様に試料を合成した。
Comparative Example 5
A sample was synthesized in the same manner as in Example 1 except that LiCl—KCl eutectic salt (molar ratio, 41:59) was used for ion exchange and the temperature was 365 ° C.

図15に示す通り、XRDパターンはO3構造の層状岩塩構造であり、六方晶で帰属した場合のa軸長が2.8856Å、c軸長が14.312Åであったが、Li主体層におけるNi席占有率8.4%となった。(Rwp 15.19%、Rp 10.35%、Re 8.62%)したがって、計算上、組成式は[Li0.840.08Ni0.083a[Ni0.38Mn0.54Li0.083b[O6c(□: 空格子)と表せた。 As shown in FIG. 15, the XRD pattern is a layered rock salt structure with an O3 structure, and when assigned as hexagonal crystals, the a-axis length was 2.8856 mm and the c-axis length was 14.312 mm. The seat occupancy rate was 8.4%. (Rwp 15.19%, Rp 10.35%, Re 8.62%) Therefore, in the calculation, the composition formula is [Li 0.840.08 Ni 0.08 ] 3a [Ni 0.38 Mn 0. 54 Li 0.08 ] 3b [O 2 ] 6c (□: vacancy).

さらにLiイオン交換後の複合酸化物のXRDパターンにもNiO相が現われた。ICP法による化学分析の結果、複合酸化物の組成は、Li/(Ni+Mn)(モル比)=0.92、Mn/Ni(モル比)=1.17、Na含有率は0.1wt%であった。   Furthermore, a NiO phase also appeared in the XRD pattern of the composite oxide after Li ion exchange. As a result of the chemical analysis by the ICP method, the composition of the composite oxide was Li / (Ni + Mn) (molar ratio) = 0.92, Mn / Ni (molar ratio) = 1.17, and the Na content was 0.1 wt%. there were.

実施例1と同様な電池特性試験を行った結果、Q16=185、Q64=166、Q400=135、Q800=99となった。 As a result of conducting a battery characteristic test similar to that of Example 1, Q 16 = 185, Q 64 = 166, Q 400 = 135, and Q 800 = 99.

以下の表1に、実施例1〜3及び比較例1〜4における結果を纏めて示す。   Table 1 below collectively shows the results in Examples 1 to 3 and Comparative Examples 1 to 4.

Figure 0004788579
Figure 0004788579

実施例1で得られた前駆体酸化物(ナトリウム−ニッケル−マンガン複合酸化物)の粉末X線回折図(Rietveld解析によるパターンフィッティング結果)である。2 is a powder X-ray diffraction pattern (pattern fitting result by Rietveld analysis) of the precursor oxide (sodium-nickel-manganese composite oxide) obtained in Example 1. FIG. 実施例1で得られた複合酸化物(リチウム−ナトリウム−ニッケル−マンガン複合酸化物)の粉末X線回折図である。2 is a powder X-ray diffraction pattern of the composite oxide (lithium-sodium-nickel-manganese composite oxide) obtained in Example 1. FIG. 実施例1で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の粉末X線回折図(Rietveld解析によるパターンフィッティング結果)である。2 is a powder X-ray diffraction pattern (pattern fitting result by Rietveld analysis) of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Example 1. FIG. 実施例1で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の充放電曲線である。(初回サイクル時)2 is a charge / discharge curve of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Example 1. FIG. (At the first cycle) 実施例1で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の充放電サイクル特性である。2 is a charge / discharge cycle characteristic of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Example 1. FIG. 実施例2で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の粉末X線回折図(Rietveld解析によるパターンフィッティング結果)である。3 is a powder X-ray diffraction pattern (pattern fitting result by Rietveld analysis) of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Example 2. FIG. 実施例2で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の充放電曲線である。(初回サイクル時)2 is a charge / discharge curve of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Example 2. FIG. (At the first cycle) 実施例3で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の粉末X線回折図(Rietveld解析によるパターンフィッティング結果)である。4 is a powder X-ray diffraction pattern (pattern fitting result by Rietveld analysis) of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Example 3. FIG. 実施例3で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の充放電曲線である。(初回サイクル時)3 is a charge / discharge curve of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Example 3. FIG. (At the first cycle) 比較例1、2で得られた前駆体酸化物(ナトリウム−ニッケル−マンガン複合酸化物)の粉末X線回折図である。4 is a powder X-ray diffraction pattern of the precursor oxide (sodium-nickel-manganese composite oxide) obtained in Comparative Examples 1 and 2. FIG. 比較例1、2で得られた前駆体酸化物(ナトリウム−ニッケル−マンガン複合酸化物)の粉末X線回折図である。4 is a powder X-ray diffraction pattern of the precursor oxide (sodium-nickel-manganese composite oxide) obtained in Comparative Examples 1 and 2. FIG. 比較例3で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の粉末X線回折図(Rietveld解析によるパターンフィッティング結果)である。FIG. 6 is a powder X-ray diffraction pattern (pattern fitting result by Rietveld analysis) of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Comparative Example 3. 比較例3で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の充放電サイクル特性である。4 is a charge / discharge cycle characteristic of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Comparative Example 3. 比較例4で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の粉末X線回折図である。6 is a powder X-ray diffraction pattern of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Comparative Example 4. FIG. 比較例5で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の粉末X線回折図(Rietveld解析によるパターンフィッティング結果)である。6 is a powder X-ray diffraction pattern (pattern fitting result by Rietveld analysis) of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Comparative Example 5. FIG. 実施例1、2、およ比較例1、2、3、5で得られた複合酸化物(リチウム−ニッケル−マンガン複合酸化物)の放電容量の電流密度依存性である。It is the current density dependence of the discharge capacity of the composite oxide (lithium-nickel-manganese composite oxide) obtained in Examples 1 and 2 and Comparative Examples 1, 2, 3, and 5.

Claims (7)

副生相としてのNiOを含有しない層状岩塩構造(O3構造)であり、Li/遷移金属(モル比)が0.80以上0.94以下であり、遷移金属として少なくともNiとMnを含有し、Mn/Niモル比が1.08より大きく、Li主体層におけるNi原子の占有率が0.0%以上6.0%以下であり、Na含有率が0.2wt%以下であるリチウム−ニッケル−マンガン複合酸化物。 It is a layered rock salt structure (O3 structure) that does not contain NiO as a by-product phase, Li / transition metal (molar ratio) is 0.80 or more and 0.94 or less, and contains at least Ni and Mn as transition metals, Lithium-nickel- having a Mn / Ni molar ratio of greater than 1.08, a Ni atom occupancy in the Li main layer of 0.0% to 6.0%, and a Na content of 0.2 wt% or less Manganese composite oxide. 六方晶で帰属した場合の格子定数a軸長が2.880≦a≦2.890Åであり、且つ、c軸長が14.29≦c≦14.32Åである請求項1のリチウム−ニッケル−マンガン複合酸化物。 The lithium-nickel- of claim 1, wherein the lattice constant a-axis length in the case of hexagonal crystal is 2.880 ≦ a ≦ 2.890 and the c-axis length is 14.29 ≦ c ≦ 14.32 Manganese composite oxide. 化学組成がLi0.88+xNi0.46+yMn0.54−y(−0.08≦x≦0.06、−0.02≦y≦0.02)の化学式で表され、空間群R−3mで表される層状岩塩構造の結晶相から成る請求項1〜2に記載のリチウム−ニッケル−マンガン複合酸化物。 The chemical composition is represented by the chemical formula of Li 0.88 + x Ni 0.46 + y Mn 0.54-y O 2 (−0.08 ≦ x ≦ 0.06, −0.02 ≦ y ≦ 0.02), and the space group 3. The lithium-nickel-manganese composite oxide according to claim 1, comprising a crystal phase having a layered rock salt structure represented by R-3m. 800℃以上1000℃以下で焼成したNa−Ni−Mn複合酸化物をLiイオン交換することによる請求項1〜3に記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。 The method for producing a lithium-nickel-manganese composite oxide according to claim 1, wherein the Na—Ni—Mn composite oxide calcined at 800 ° C. or more and 1000 ° C. or less is subjected to Li ion exchange. 粒子径0.3μm以下に微細化されたNi、Mn原料とNa化合物を混合し、800℃以上1000℃以下で空気中焼成した後に、Liイオン交換することによって合成される請求項4に記載のリチウム−ニッケル−マンガン−複合酸化物の製造方法。 The Ni, Mn raw material and Na compound which were refined | miniaturized to the particle diameter of 0.3 micrometer or less are mixed, and after baking in air at 800 degreeC or more and 1000 degrees C or less, it synthesize | combines by performing Li ion exchange. A method for producing a lithium-nickel-manganese-composite oxide. 請求項1〜3記載のリチウム−ニッケル−マンガン複合酸化物からなるリチウムイオン二次電池用正極活物質。 A positive electrode active material for a lithium ion secondary battery comprising the lithium-nickel-manganese composite oxide according to claim 1. 請求項6記載のリチウムイオン二次電池用正極活物質を用いてなるリチウムイオン二次電池。 The lithium ion secondary battery formed using the positive electrode active material for lithium ion secondary batteries of Claim 6.
JP2006324906A 2006-11-30 2006-11-30 Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof Expired - Fee Related JP4788579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324906A JP4788579B2 (en) 2006-11-30 2006-11-30 Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324906A JP4788579B2 (en) 2006-11-30 2006-11-30 Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2008137837A JP2008137837A (en) 2008-06-19
JP4788579B2 true JP4788579B2 (en) 2011-10-05

Family

ID=39599708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324906A Expired - Fee Related JP4788579B2 (en) 2006-11-30 2006-11-30 Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4788579B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559731B1 (en) * 2012-11-20 2015-10-13 주식회사 엘지화학 Method For Manufacturing Lithium Composite Transition Metal Using Ion-exchange Reaction and Cathode Active Material Having Improved Lithium Ion Diffusion

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316656B1 (en) * 2008-07-25 2009-08-19 三井金属鉱業株式会社 Lithium transition metal oxide with layer structure
WO2014181455A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Positive electrode active material for non-aqueous secondary cell, positive electrode for non-aqueous secondary cell using same, non-aqueous secondary cell, and method for manufacturing same
JP6508892B2 (en) * 2013-09-30 2019-05-08 パナソニック株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6271588B2 (en) * 2013-12-26 2018-01-31 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6395051B2 (en) * 2014-09-18 2018-09-26 本田技研工業株式会社 Lithium composite oxide, method for producing lithium composite oxide, positive electrode active material for lithium secondary battery, and lithium secondary battery
KR20180027261A (en) 2016-09-06 2018-03-14 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
DE202017007645U1 (en) * 2016-10-12 2023-12-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particles
GB201805884D0 (en) * 2018-04-09 2018-05-23 Faradion Ltd O3/P2 Mixed phase sodium-containing doped layered oxide materials
EP3960708A4 (en) 2019-04-26 2022-06-29 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN112838206B (en) * 2020-12-31 2022-06-03 福建师范大学 Layered oxide cathode material with excellent air stability and method for improving air stability by adjusting sodium content
CN115863610B (en) * 2023-01-05 2024-01-30 厦门海辰储能科技股份有限公司 Positive electrode material, positive electrode plate, electrode assembly, energy storage device and electric equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064655B2 (en) * 1992-02-07 2000-07-12 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3707744B2 (en) * 1995-05-19 2005-10-19 日本化学工業株式会社 Method for producing lithium composite oxide
JPH09298061A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
GB0117235D0 (en) * 2001-07-14 2001-09-05 Univ St Andrews Improvements in or relating to electrochemical cells
JP4259847B2 (en) * 2001-10-25 2009-04-30 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP2004323331A (en) * 2003-04-28 2004-11-18 Tosoh Corp Lithium-nickel-manganese compound oxide, its manufacturing method and its application
JP3961513B2 (en) * 2004-07-09 2007-08-22 日本電信電話株式会社 Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material
JP5259078B2 (en) * 2006-11-22 2013-08-07 パナソニック株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559731B1 (en) * 2012-11-20 2015-10-13 주식회사 엘지화학 Method For Manufacturing Lithium Composite Transition Metal Using Ion-exchange Reaction and Cathode Active Material Having Improved Lithium Ion Diffusion

Also Published As

Publication number Publication date
JP2008137837A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4788579B2 (en) Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof
US9525173B2 (en) Method for manufacturing over-lithiated layered lithium metal composite oxide
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP5817143B2 (en) Positive electrode active material precursor particle powder, positive electrode active material particle powder, and non-aqueous electrolyte secondary battery
JP6589339B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5803539B2 (en) Method for producing lithium-containing composite oxide powder
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US20160218362A1 (en) Positive Electrode Material for Lithium-Ion Cell
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
WO2016190251A1 (en) Cathode material and lithium secondary battery using same as cathode
JP2005097087A (en) New lithium-nickel-manganese multiple oxide and its manufacturing method
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP6830120B2 (en) Lithium sodium composite oxide, positive electrode active material for secondary batteries and secondary batteries
KR20140111045A (en) Manganese spinel-type lithium transition metal oxide
JP2011105565A (en) Lithium manganate compound replaced by different metal and application thereof
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2021160970A (en) Spinel lithium manganate and method for producing the same and applications thereof
JP2016190782A (en) Manganese oxide and method for producing the same, and lithium secondary battery using the same
JP2016175825A (en) Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2022097885A (en) Method for producing positive electrode active material
JP5482755B2 (en) Novel lithium manganese composite oxide, method for producing the same, and use thereof
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell
JP2017174558A (en) Lithium composite oxide, method for manufacturing the same, positive electrode active material for secondary battery, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees