JP4788578B2 - Method for producing xylooligosaccharide - Google Patents
Method for producing xylooligosaccharide Download PDFInfo
- Publication number
- JP4788578B2 JP4788578B2 JP2006324437A JP2006324437A JP4788578B2 JP 4788578 B2 JP4788578 B2 JP 4788578B2 JP 2006324437 A JP2006324437 A JP 2006324437A JP 2006324437 A JP2006324437 A JP 2006324437A JP 4788578 B2 JP4788578 B2 JP 4788578B2
- Authority
- JP
- Japan
- Prior art keywords
- pulp
- xylo
- xylanase
- xylooligosaccharide
- oligosaccharide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HEBKCHPVOIAQTA-NGQZWQHPSA-N d-xylitol Chemical compound OC[C@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-NGQZWQHPSA-N 0.000 title claims description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 49
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 claims description 75
- 238000006243 chemical reaction Methods 0.000 claims description 64
- 229920001542 oligosaccharide Polymers 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 30
- 239000001913 cellulose Substances 0.000 claims description 27
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 claims description 26
- 229920002678 cellulose Polymers 0.000 claims description 26
- 229920001221 xylan Polymers 0.000 claims description 25
- 150000004823 xylans Chemical class 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 21
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 16
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- 229920001131 Pulp (paper) Polymers 0.000 claims description 11
- 239000002994 raw material Substances 0.000 claims description 11
- 239000011121 hardwood Substances 0.000 claims description 10
- 239000002655 kraft paper Substances 0.000 claims description 8
- 239000000539 dimer Substances 0.000 claims description 7
- 239000000047 product Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 238000004061 bleaching Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000013067 intermediate product Substances 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 2
- 235000000346 sugar Nutrition 0.000 description 37
- 239000000706 filtrate Substances 0.000 description 32
- 238000011282 treatment Methods 0.000 description 31
- 238000006116 polymerization reaction Methods 0.000 description 29
- 150000002482 oligosaccharides Chemical class 0.000 description 22
- 239000012528 membrane Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 239000000126 substance Substances 0.000 description 20
- 235000010980 cellulose Nutrition 0.000 description 18
- 102000004190 Enzymes Human genes 0.000 description 17
- 108090000790 Enzymes Proteins 0.000 description 17
- 229940088598 enzyme Drugs 0.000 description 17
- 238000010411 cooking Methods 0.000 description 12
- 230000035484 reaction time Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000012141 concentrate Substances 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 230000000968 intestinal effect Effects 0.000 description 6
- 229920005610 lignin Polymers 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 210000000936 intestine Anatomy 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000193403 Clostridium Species 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000013638 trimer Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- LGQKSQQRKHFMLI-SJYYZXOBSA-N (2s,3r,4s,5r)-2-[(3r,4r,5r,6r)-4,5,6-trihydroxyoxan-3-yl]oxyoxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)CO[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)OC1 LGQKSQQRKHFMLI-SJYYZXOBSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- JCSJTDYCNQHPRJ-UHFFFAOYSA-N 20-hydroxyecdysone 2,3-acetonide Natural products OC1C(O)C(O)COC1OC1C(O)C(O)C(OC2C(C(O)C(O)OC2)O)OC1 JCSJTDYCNQHPRJ-UHFFFAOYSA-N 0.000 description 2
- LGQKSQQRKHFMLI-UHFFFAOYSA-N 4-O-beta-D-xylopyranosyl-beta-D-xylopyranose Natural products OC1C(O)C(O)COC1OC1C(O)C(O)C(O)OC1 LGQKSQQRKHFMLI-UHFFFAOYSA-N 0.000 description 2
- 241000186000 Bifidobacterium Species 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 2
- SQNRKWHRVIAKLP-UHFFFAOYSA-N D-xylobiose Natural products O=CC(O)C(O)C(CO)OC1OCC(O)C(O)C1O SQNRKWHRVIAKLP-UHFFFAOYSA-N 0.000 description 2
- 244000166124 Eucalyptus globulus Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000223259 Trichoderma Species 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002154 agricultural waste Substances 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- JCSJTDYCNQHPRJ-FDVJSPBESA-N beta-D-Xylp-(1->4)-beta-D-Xylp-(1->4)-D-Xylp Chemical compound O[C@@H]1[C@@H](O)[C@H](O)CO[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)C(O)OC2)O)OC1 JCSJTDYCNQHPRJ-FDVJSPBESA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 210000004211 gastric acid Anatomy 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 235000015099 wheat brans Nutrition 0.000 description 2
- ABKNGTPZXRUSOI-UHFFFAOYSA-N xylotriose Natural products OCC(OC1OCC(OC2OCC(O)C(O)C2O)C(O)C1O)C(O)C(O)C=O ABKNGTPZXRUSOI-UHFFFAOYSA-N 0.000 description 2
- HSINOMROUCMIEA-FGVHQWLLSA-N (2s,4r)-4-[(3r,5s,6r,7r,8s,9s,10s,13r,14s,17r)-6-ethyl-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylpentanoic acid Chemical compound C([C@@]12C)C[C@@H](O)C[C@H]1[C@@H](CC)[C@@H](O)[C@@H]1[C@@H]2CC[C@]2(C)[C@@H]([C@H](C)C[C@H](C)C(O)=O)CC[C@H]21 HSINOMROUCMIEA-FGVHQWLLSA-N 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000223651 Aureobasidium Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000186394 Eubacterium Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 241000223257 Thermomyces Species 0.000 description 1
- 241000204652 Thermotoga Species 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000112 colonic effect Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000008376 long-term health Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- OQUKIQWCVTZJAF-UHFFFAOYSA-N phenol;sulfuric acid Chemical compound OS(O)(=O)=O.OC1=CC=CC=C1 OQUKIQWCVTZJAF-UHFFFAOYSA-N 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 125000000969 xylosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)CO1)* 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
本発明は、人や動物に整腸作用などの有用な作用をもたらすキシロオリゴ糖の製造方法に関する。特に、キシラン含有セルロース材料を酵素処理してキシロオリゴ糖を製造する方法に関する。 The present invention relates to a method for producing a xylooligosaccharide that provides a useful action such as intestinal regulation to humans and animals. In particular, the present invention relates to a method for producing a xylo-oligosaccharide by enzymatic treatment of a xylan-containing cellulose material.
オリゴ糖類は腸内有用細菌の選択的な増殖促進効果を通しておなかの調子を良好に保つ機能を有し、特定保健用食品として認定された乳酸菌飲料等に利用され、チョコレートなどの菓子類にも利用されている有用な糖類である。また、ヒトの食品用途だけではなく家畜の飼料としての用途もある。さらに、医薬、サニタリー製品の分野でも、乳化剤、皮膚保湿成分としての用途がある。
一般に、特定保健用食品に用いられるオリゴ糖類は、そのほとんどが整腸作用、即ち腸内悪玉菌である大腸菌や腸内腐敗発酵菌であるクロストリジウム属やオイバクテリウム属の菌の数を減らし、相対的に腸内善玉菌といわれるビフィズス菌を増加させる作用を持っている。いろいろあるオリゴ糖類の中でも、例えば、小麦フスマやコーンコブに由来するキシロオリゴ糖は有名である。キシロオリゴ糖の作用については、他のオリゴ糖と同様に腸内善玉菌のビフィズス菌の選択的増殖を促す一方で、腸内悪玉菌である大腸菌の数を相対的に低下させると言われている。大腸菌や腸内腐敗発酵菌は、腸内で増殖しながら発ガン性物質を生産することが知られていることから、大腸菌や腸内腐敗発酵菌の数を腸内で減らすことは長期にわたる健康を考えた場合に重要である(非特許文献1参照)。
Oligosaccharides have a function to keep the stomach in good condition through the selective growth promoting effect of useful bacteria in the intestines, and are used for lactic acid bacteria beverages certified as food for specified health use, and also for confectionery such as chocolate It is a useful sugar. In addition to human food use, it is also used as livestock feed. Furthermore, in the fields of pharmaceuticals and sanitary products, they have applications as emulsifiers and skin moisturizing ingredients.
In general, most of the oligosaccharides used in foods for specified health use are intestinal-regulating, that is, reducing the number of bacteria of the genus Clostridium and Eubacterium, which are E. coli, which is an enteric bad bacteria, It has the effect of increasing the number of bifidobacteria, which are said to be relatively good intestinal bacteria. Among various oligosaccharides, for example, xylooligosaccharides derived from wheat bran and corn cob are famous. As for the action of xylo-oligosaccharides, it is said to promote the selective growth of Bifidobacterium, a good enteric fungus, as well as other oligosaccharides, while relatively reducing the number of E. coli that are enteric bad bacteria. . It is known that E. coli and intestinal rot-fermenting bacteria produce carcinogenic substances while growing in the intestine, so reducing the number of E. coli and intestinal rot-fermenting bacteria in the intestine is a long-term health. Is important (see Non-Patent Document 1).
整腸作用を期待し、経口でオリゴ糖類を摂取した場合に関しては、胃酸や消化酵素の酸加水分解に起因するオリゴ糖の重合度の低下が大きな問題である。オリゴ糖は、酸や酵素による加水分解により徐々に低分子化し、最終的には大腸菌やクロストリジウム属に属する腐敗性嫌気性菌でも資化することが可能な単糖にまで分解されることが知られている。しかし、2量体や3量体を主成分とするキシロオリゴ糖組成物は、オリゴ糖の中でも胃酸に対する抵抗性が他のオリゴ糖に比べて比較的高く(特許文献1参照)、それほど分解されずに腸内に届けられる可能性が高い。
現在は、2量体や3量体よりずっと分子量の大きな5量体程度の平均重合度を有するキシロオリゴ糖(特許文献2参照)も製造可能である。また、本発明者らは平均重合度が12量体前後である長鎖キシロオリゴ糖も提案している(特許文献3参照)。鎖長が長いキシロオリゴ糖は腸内でも単糖であるキシロースには変換されにくく、より有効な整腸作用が期待される為、重合度の大きなキシロオリゴ糖の開発が望まれている。
更に本発明者らは、酸性キシロオリゴ糖組成物及びその製造方法(特許文献4参照)に関しても提案している。
In the case of ingesting oligosaccharides orally in anticipation of intestinal regulation, a major problem is a decrease in the degree of polymerization of oligosaccharides due to acid hydrolysis of gastric acid and digestive enzymes. It is known that oligosaccharides are gradually reduced in molecular weight by hydrolysis with acids and enzymes, and finally decomposed into monosaccharides that can be assimilated by spoilage anaerobes belonging to the genus Escherichia coli and Clostridium. It has been. However, xylooligosaccharide compositions mainly composed of dimers and trimers have a relatively high resistance to gastric acid among oligosaccharides compared to other oligosaccharides (see Patent Document 1) and are not degraded so much. Likely to be delivered to the intestines.
At present, xylo-oligosaccharides having an average degree of polymerization of about a pentamer having a molecular weight much higher than that of a dimer or trimer can be produced (see Patent Document 2). In addition, the present inventors have also proposed a long-chain xylo-oligosaccharide having an average degree of polymerization of about 12-mer (see Patent Document 3). Xylooligosaccharides having a long chain length are difficult to be converted into xylose, which is a monosaccharide even in the intestine, and more effective intestinal regulation is expected. Therefore, development of xylooligosaccharides having a high degree of polymerization is desired.
Furthermore, the present inventors have also proposed an acidic xylo-oligosaccharide composition and a production method thereof (see Patent Document 4).
キシロオリゴ糖を製造する方法については、植物からキシランを抽出し、これを酵素処理する方法が代表的な方法である。
前記特許文献1では、コーンコブ、綿実殻、麦芽粕などからKOH溶液によりキシランを抽出し、ついで、トリコデルマ属由来のキシラナーゼで酵素処理することによりキシロオリゴ糖を得ている。
非特許文献2では、広葉樹あるいは針葉樹からキシランを抽出する方法として、木粉を脱リグニンした後、アルカリ抽出でキシランを得て、酵素処理によりキシロオリゴ糖を得る方法が記載されている。
A typical method for producing xylooligosaccharides is a method of extracting xylan from a plant and treating it with an enzyme.
In Patent Document 1, xylooligosaccharides are obtained by extracting xylan from corn cob, cottonseed husk, malt straw, etc. with a KOH solution and then enzymatically treating with xylanase derived from Trichoderma.
Non-Patent Document 2 describes a method for extracting xylan from broad-leaved trees or conifers by delignining wood flour, obtaining xylan by alkaline extraction, and obtaining xylooligosaccharides by enzyme treatment.
これらの方法は一旦キシランを抽出するもので、キシラン抽出残渣を処理しなければならないという問題があり、いずれの方法もキシラン抽出残渣の利用も含めた安価且つ大量生産可能なキシロオリゴ糖の製造方法を述べていない。
現在上市されているキシロオリゴ糖は、小麦フスマやコーンコブ等の草本類農産廃棄物を原料として製造されているが、キシロオリゴ糖抽出後の残繊維分等の有効利用はなされておらず、廃棄物処理の問題がある。また、酵素処理によりオリゴ糖を製造する際に、オリゴ糖の濃度が低く濃縮にエネルギーを要するという問題もある。本発明では高濃度のオリゴ糖液を得ることを課題とする。また、廃棄物量が少なく安価に大量生産可能なキシロオリゴ糖の製造方法を提供することを課題とする。 The currently marketed xylooligosaccharides are manufactured using herbaceous agricultural waste such as wheat bran and corn cob as raw materials, but the remaining fiber content after the xylooligosaccharide extraction has not been effectively used, and waste treatment There is a problem. In addition, when oligosaccharides are produced by enzymatic treatment, there is a problem that the concentration of oligosaccharides is low and energy is required for concentration. An object of the present invention is to obtain a high concentration oligosaccharide solution. It is another object of the present invention to provide a method for producing xylooligosaccharides that can be produced in large quantities at a low cost with a small amount of waste.
本発明者らは、キシラン含有セルロース材料のキシラナーゼ処理により生ずるキシロオリゴ糖に着目し、鋭意研究を重ねた結果、キシロオリゴ糖溶出液の一部を反応工程に戻すことによって高重合度且つ高濃度のキシロオリゴ糖を含む原料を回収し、同時に分離回収されるセルロース材料を再利用する方法を見出すことにより、大量且つ安価に高重合度のキシロオリゴ糖を製造する方法を開発にするに至った。 The present inventors paid attention to xylo-oligosaccharides produced by xylanase treatment of xylan-containing cellulose materials, and as a result of intensive research, by returning a part of the xylo-oligosaccharide eluate to the reaction step, a high degree of polymerization and a high concentration of xylo-oligosaccharides were obtained. By recovering the raw material containing sugar and simultaneously reusing the cellulose material separated and recovered, a method for producing a high degree of polymerization of xylooligosaccharides in large quantities and at low cost has been developed.
上記課題を解決するため、本発明は以下の(1)〜(6)の構成を採用する。
(1)キシラン含有セルロース材料を水性スラリー中でキシラナーゼ処理してキシロオリゴ糖を製造する方法において、キシラナーゼによりキシラン含有セルロース材料からキシロオリゴ糖を溶出させる反応工程、セルロース材料とキシロオリゴ糖溶出液を分離する分離工程を有し、分離されたキシロオリゴ糖溶出液の一部を反応工程に戻し、残部を濃縮し、キシロオリゴ糖を得ることを特徴とするキシロオリゴ糖の製造方法。
(2) キシラン含有セルロース材料として、セルロース系工業製品の製造工程における原料または中間製品を取り出して用い、分離工程で分離されたセルロース材料は、該セルロース系工業製品の製造工程に戻して使用されることを特徴とする、(1)に記載のキシロオリゴ糖の製造方法。
(3) キシラン含有セルロース材料が化学パルプである、(1)または(2)に記載のキシロオリゴ糖の製造方法。
(4) 化学パルプが広葉樹クラフトパルプである、(3)に記載のキシロオリゴ糖の製造方法。
(5) 化学パルプは、パルプ製造工場において漂白工程から採取し、前記分離工程で分離されたパルプを漂白工程に戻すことを特徴とする(3)または(4)に記載のキシロオリゴ糖の製造方法。
(6) 前記キシロオリゴ糖溶出液を濃縮した濃縮液を、pH2〜4、温度100〜170℃で1分〜120分加熱することによりキシロースの2量体〜15量体を含むキシロオリゴ糖混合組成物を得ることを特徴とする、(1)〜(5)のいずれかに記載のキシロオリゴ糖の製造方法。
In order to solve the above problems, the present invention employs the following configurations (1) to (6).
(1) In a method for producing xylo-oligosaccharides by treating xylan-containing cellulose material in an aqueous slurry and separating xylan-oligosaccharides from xylan-containing cellulose material by xylanase, separation for separating cellulose material and xylo-oligosaccharide eluate A method for producing a xylooligosaccharide comprising a step, wherein a part of the separated xylooligosaccharide eluate is returned to the reaction step and the remainder is concentrated to obtain a xylooligosaccharide.
(2) As the xylan-containing cellulose material, a raw material or an intermediate product in the manufacturing process of the cellulose-based industrial product is taken out and used, and the cellulose material separated in the separation process is used by returning to the manufacturing process of the cellulose-based industrial product. The method for producing a xylo-oligosaccharide according to (1), wherein
(3) The method for producing a xylooligosaccharide according to (1) or (2), wherein the xylan-containing cellulose material is a chemical pulp.
(4) The method for producing xylooligosaccharide according to (3), wherein the chemical pulp is hardwood kraft pulp.
(5) The method for producing xylooligosaccharide according to (3) or (4), wherein the chemical pulp is collected from a bleaching step in a pulp manufacturing plant, and the pulp separated in the separation step is returned to the bleaching step. .
(6) A xylooligosaccharide mixed composition containing a dimer to 15mer of xylose by heating the concentrated solution obtained by concentrating the xylooligosaccharide eluate at a pH of 2 to 4 and a temperature of 100 to 170 ° C. for 1 to 120 minutes. The method for producing a xylooligosaccharide according to any one of (1) to (5), wherein
本発明により、重合度が高いという特徴を維持しながら反応濾液中のオリゴ糖濃度を高めることができ、結果として、オリゴ糖の製造効率を上げることができる。また、製造に費やすエネルギーを低減することができる。
更に、パルプ製造工程などからキシラン含有セルロース材料を取り出して利用する方式を取れば、草本類農産廃棄物を原料とするキシロオリゴ糖製造のように、残繊維分に代表される廃棄物が発生せず、環境負荷が少なく且つ廃棄物処理コストも殆ど発生しない。
According to the present invention, it is possible to increase the oligosaccharide concentration in the reaction filtrate while maintaining the characteristic that the degree of polymerization is high, and as a result, the oligosaccharide production efficiency can be increased. In addition, energy consumed for manufacturing can be reduced.
In addition, if a xylan-containing cellulose material is taken out from the pulp manufacturing process and used, waste represented by residual fibers will not be generated unlike the production of xylooligosaccharides made from herbaceous agricultural waste. , Environmental impact is small and waste disposal cost is hardly generated.
本発明の方法によりキシロオリゴ糖組成物を得ることができる原料としては、木本性植物、非木本性植物、あるいは、それらから作られた繊維状物質、粒状物質などであり、セルロースとキシランを含有するものである。以下、本発明では、キシラン含有セルロース材料と称する。木本性植物としては、針葉樹、広葉樹のいずれでも良い。非木本性植物としては、ケナフ、麻、綿、竹、バガス、イネ等のいずれでも良い。
繊維状物質あるいは粒状物質としては、製紙用パルプ、充填材用微細木粉・微細繊維、糸などであり、それらから形成された紙のようなシートでも良い。
The raw material from which the xylo-oligosaccharide composition can be obtained by the method of the present invention is a woody plant, a non-woody plant, or a fibrous material or a granular material made from them, and contains cellulose and xylan. Is. Hereinafter, in this invention, it is called a xylan-containing cellulose material. The woody plant may be either a conifer or a hardwood. Non-woody plants may be any of kenaf, hemp, cotton, bamboo, bagasse, rice and the like.
Examples of the fibrous substance or the granular substance include pulp for papermaking, fine wood powder / fine fiber for filler, yarn, and the like, and may be a paper-like sheet formed therefrom.
本発明に使用するキシラン含有セルロース材料は、セルロースを主たる構成要素とする工業製品の原料あるいは中間製品であることが好ましい。その理由は、キシラナーゼ処理によりキシロオリゴ糖を溶解させた後のセルロース材料を、そのまま工業製品材料として使用することにより廃棄物が発生しないという利点がある。上記原料や中間製品をキシラナーゼ処理するに際しては、その全部を処理しても良いが、一部を取り出して使用しても良い。
このような条件に当てはまるのは、例えば、製紙におけるパルプ製造工程、古紙処理工程などが挙げられ、また、糸の製造工程、微細粉末セルロースの製造工程、非木本植物繊維からの容器、網、簾などの製造工程、セルロース繊維食品の製造工程などが挙げられる。中でも製紙におけるパルプ製造工程が最も適しており、以下パルプの製造工程から、パルプの一部または全部をキシラナーゼ処理し、処理後のパルプは引き続き製紙工程で使用される場合を例に説明する。
The xylan-containing cellulose material used in the present invention is preferably a raw material for industrial products or an intermediate product containing cellulose as a main component. The reason for this is that the cellulose material after the xylo-oligosaccharide is dissolved by xylanase treatment is used as an industrial product material as it is, so that there is an advantage that no waste is generated. When the above raw materials and intermediate products are treated with xylanase, all of them may be treated, or some may be taken out and used.
Applicable to such conditions are, for example, a pulp manufacturing process in papermaking, a waste paper processing process, etc., and also a thread manufacturing process, a fine powdered cellulose manufacturing process, a container from a non-woody plant fiber, a net, Examples include a manufacturing process such as candy and a manufacturing process of cellulose fiber food. In particular, a pulp manufacturing process in papermaking is most suitable. Hereinafter, a case where a pulp is partially or entirely treated with a xylanase from the pulp manufacturing process, and the treated pulp is continuously used in the papermaking process will be described as an example.
本発明に使用されるパルプは、化学パルプ、機械パルプ、脱墨パルプ等何でもよいが、広葉樹化学パルプが好ましい。化学パルプを得るための蒸解法としては、クラフト蒸解、ポリサルファイド蒸解、ソーダ蒸解、アルカリサルファイト蒸解等の公知の蒸解法を用いることができるが、パルプ品質、エネルギー効率等を考慮するとクラフト蒸解法が好適に用いられる。また更には、蒸解後の広葉樹クラフトパルプを酸素漂白したパルプがより好適に用いられる。酸素漂白されたパルプは遊離のリグニンが除去されており、キシラナーゼ処理によりキシロオリゴ糖が生成すると同時に、パルプに吸着していたリグニンとキシランの複合体が溶出し、これから更にキシロオリゴ糖が得られるためオリゴ糖収率が良くなるためである。特に広葉樹クラフトパルプを用いた場合、グルコース、アラビノースなどの構成糖がほとんどなく、キシロースがほぼ100%近いという特徴がある。 The pulp used in the present invention may be any chemical pulp, mechanical pulp, deinked pulp, etc., but hardwood chemical pulp is preferred. As the cooking method for obtaining chemical pulp, known cooking methods such as kraft cooking, polysulfide cooking, soda cooking, alkali sulfite cooking, etc. can be used, but considering the pulp quality, energy efficiency, etc., the kraft cooking method is used. Preferably used. Furthermore, pulp obtained by oxygen bleaching hardwood kraft pulp after cooking is more preferably used. Oxygen-bleached pulp has free lignin removed, and xylanase treatment produces xylo-oligosaccharides. At the same time, the lignin and xylan complex adsorbed on the pulp elutes, and further xylo-oligosaccharides are obtained from this. This is because the sugar yield is improved. In particular, when hardwood kraft pulp is used, there is a feature that almost no constituent sugars such as glucose and arabinose are present, and xylose is almost 100%.
本発明の反応工程で使用するキシラナーゼは、キシラナーゼ活性を含む酵素であればいずれも用いることができる。たとえば商品名カルタザイム(クラリアント社製)、パルプザイム(ノボノルディスク社製)、エコパルプ(ローム・エンザイム社製)、スミチーム(新日本化学工業社製)、マルチフェクトキシラナーゼ(ジェネンコア社製)、キシラナーゼコンク(アドバンスド・バイオケミカルス社製)などの市販の酵素製剤や、トリコデルマ属、テルモミセス属、オウレオバシヂウム属、ストレプトミセス属、アスペルギルス属、クロストリジウム属、バチルス属、テルモトガ属、テルモアスクス属、カルドセラム属、テルモモノスポラ属などの微生物により生産されるキシラナーゼを使用することができる。 Any xylanase can be used as the xylanase used in the reaction step of the present invention as long as the enzyme has xylanase activity. For example, the brand names Cartazyme (Clariant), Pulpzyme (Novo Nordisk), Eco Pulp (Rohm Enzyme), Sumiteam (New Nippon Chemical Industries), Multifect Xylanase (Genencor), Xylanase Conk ( Advanced Biochemicals) and other commercially available enzyme preparations, Trichoderma genus, Thermomyces genus, Aureobasidium genus, Streptomyces genus, Aspergillus genus, Clostridium genus, Bacillus genus, Thermotoga genus, Telmotus genus, Xylanases produced by microorganisms such as Thermomospora can be used.
本発明においては、キシラン含有セルロースとしてパルプ製造工程中のパルプを用いるが、工程中の全部のパルプをキシラナーゼ処理するよりも、一部のパルプを取り出して処理することが好ましい。
即ち、パルプ製造の本流とは別ルートで、キシロオリゴ糖の製造を目的として必要最小量のパルプを処理するため、蒸解や酸素晒の工程で生じる種々の不純物を事前に洗い流すことが可能となる。このことによりキシラナーゼ処理後の反応液に残留する不純物量が減少し、精製負荷を低減できる。また、パルプ製造工程の反応条件による制約を受けないため、パルプ濃度、酵素添加量、反応pH、反応温度及び反応時間等、キシロオリゴ糖の溶出に最適な条件でキシラナーゼ処理が実施できるようになる。このため、パルプのキシラナーゼ処理条件を任意に変更することが可能となる。
In the present invention, the pulp in the pulp manufacturing process is used as the xylan-containing cellulose, but it is preferable to take out and treat a part of the pulp rather than treating all the pulp in the process with xylanase.
That is, since a minimum amount of pulp is processed for the purpose of producing xylooligosaccharides in a route different from the main stream of pulp production, it is possible to wash away various impurities generated in the cooking and oxygen exposure processes in advance. As a result, the amount of impurities remaining in the reaction solution after the xylanase treatment is reduced, and the purification load can be reduced. Moreover, since there is no restriction | limiting by the reaction conditions of a pulp manufacturing process, a xylanase process can be implemented on conditions optimal for elution of a xylooligosaccharide, such as a pulp density | concentration, enzyme addition amount, reaction pH, reaction temperature, and reaction time. For this reason, it becomes possible to arbitrarily change the xylanase treatment conditions of the pulp.
また、パルプに対する必要以上のキシラナーゼ処理は、パルプ中のヘミセルロース含量を低下させ、パルプ収量を低下させるため、パルプ製造工程中のキシラナーゼ処理液を出発原料としてキシロオリゴ糖を製造する場合、原料中のオリゴ糖濃度を高くできないという問題があった。本発明では、オリゴ糖生産量に合わせた必要最小量のパルプをパルプ製造工程より取り出して原料とすることができるため、パルプの収率低下を最小限に抑えながら、より効率的にキシロオリゴ糖を製造できるようになる。 In addition, excessive xylanase treatment for pulp reduces the hemicellulose content in the pulp and lowers the yield of the pulp. Therefore, when producing xylo-oligosaccharides from the xylanase treatment liquid in the pulp production process as the starting material, There was a problem that the sugar concentration could not be increased. In the present invention, since the minimum necessary amount of pulp according to the oligosaccharide production amount can be taken out from the pulp manufacturing process and used as a raw material, the xylooligosaccharide can be more efficiently produced while minimizing the decrease in the yield of the pulp. Can be manufactured.
キシロオリゴ糖製造に使用するパルプをパルプ製造工程より抜き出す手段としては、低濃度のパルプであればポンプによるライン移送が可能であるし、高濃度のパルプであればベルトコンベア等の移送手段を用いることができるが、オリゴ糖製造に必要とする量のパルプを抜き出し移送することができれば、その手段は特に限定されない。 As a means for extracting pulp used for the production of xylo-oligosaccharides from the pulp production process, it is possible to transfer the line by a pump if it is a low concentration pulp, and use a transfer means such as a belt conveyor if it is a high concentration pulp. However, the means is not particularly limited as long as the amount of pulp required for oligosaccharide production can be extracted and transferred.
キシロオリゴ糖精製時の負荷低減を目的としてパルプを洗浄し、微細な懸濁性不純物、リグニンおよび有機酸等の溶解性不純物を除く手段としては、たとえばドラムフィルターを用いて、パルプを希釈置換洗浄することが可能であるが、パルプを洗浄することができれば、いかなる装置も利用可能である。また、pH調整剤の添加、洗浄水の温度調整等、キシラナーゼの至適反応条件に合わせた洗浄水で置換洗浄を実施することにより、パルプのキシラナーゼ処理を実施する際の反応条件を事前に整えておくこともできる。 The pulp is washed for the purpose of reducing the load when refining xylo-oligosaccharides, and as a means of removing soluble impurities such as fine suspended impurities, lignin and organic acids, the pulp is diluted and washed using, for example, a drum filter. Any device can be used, as long as the pulp can be washed. In addition, the reaction conditions for carrying out the xylanase treatment of pulp are adjusted in advance by carrying out displacement washing with washing water that matches the optimum reaction conditions for xylanase, such as addition of a pH adjuster and temperature adjustment of the washing water. You can also keep it.
パルプのキシラナーゼ処理を実施する反応装置に関しても、形状・形式共に、いかなる装置も利用可能である。中高濃度のパルプであれば、中濃度・高濃度パルプポンプあるいはスクリューフィーダー等を用いて円筒形の反応槽内へ押し込み移送し、キシラナーゼ処理に最適な滞留時間をもたせた後、オリゴ糖を含む反応液とキシラナーゼ処理後のパルプを押し出し回収すればよい。低濃度のパルプであれば、攪拌機を備えた反応槽内で攪拌しながらキシラナーゼ処理を実施し、キシロオリゴ糖の溶出に最適な平均滞留時間で反応させながら、オリゴ糖を含む反応液とキシラナーゼ処理済みのパルプを連続的に抜き出すこともできる。中・高濃度パルプをキシラナーゼ処理する場合は、スクリューミキサー等の混合機を用いて反応槽へ移送される前にパルプとキシラナーゼを均一に混和させておくのが良い。一方、低濃度パルプをキシラナーゼ処理する場合は、反応槽内にキシラナーゼを添加して、反応槽内でパルプとキシラナーゼを均一に混和することもできる。これらの反応槽は、キシラナーゼの至適反応温度を維持する為に温度調節用のジャケットや断熱材ケーシングを具備することが好ましい。 As for the reaction apparatus for carrying out xylanase treatment of pulp, any apparatus can be used in both shape and form. For medium and high-concentration pulp, use a medium- and high-concentration pulp pump or screw feeder to push into a cylindrical reaction tank and give it an optimal residence time for xylanase treatment, followed by a reaction containing oligosaccharides. What is necessary is just to extrude and collect the liquid and the xylanase-treated pulp. For low-concentration pulp, xylanase treatment is performed while stirring in a reaction vessel equipped with a stirrer, and the reaction is performed with an average residence time optimal for elution of xylo-oligosaccharides, and the reaction solution containing oligosaccharides and xylanase treatment are completed. The pulp can also be extracted continuously. When medium and high concentration pulp is treated with xylanase, the pulp and xylanase are preferably mixed uniformly before being transferred to the reaction vessel using a mixer such as a screw mixer. On the other hand, when low-concentration pulp is treated with xylanase, xylanase can be added to the reaction tank, and the pulp and xylanase can be uniformly mixed in the reaction tank. These reaction tanks are preferably equipped with a temperature-adjusting jacket and a heat insulating material casing in order to maintain the optimum reaction temperature of xylanase.
パルプのキシラナーゼ処理によりキシロオリゴ糖を溶出させる工程では、パルプに対するキシラナーゼ添加量と反応時間を変更することにより、溶出させるキシロオリゴ糖の濃度やキシロオリゴ糖の重合度を変化させることが可能となる。一般に、キシラナーゼ添加量が多いほど、また反応時間が長いほどキシロオリゴ糖濃度は高くなり、且つキシロオリゴ糖の重合度は小さくなる。単にキシラナーゼの添加量を増やしたり、反応時間を長くしたりするだけでは、高濃度のキシロオリゴ糖を含む濾液は得ることができても、高重合度のキシロオリゴ糖を得ることはできない。キシラナーゼによって分解されて溶出した高重合度キシロオリゴ糖が更に分解され、キシロースやキシロビオース、キシロトリオースのような鎖長の短いオリゴ糖にまで過分解されてしまうからである。
高濃度・高重合度のキシロオリゴ糖を安定的に得るためには、キシロオリゴ糖を含む濾液の一部を反応系に循環させるのが良い。キシロオリゴ糖を含む反応濾液の一部を反応槽入り口に戻してやることにより、キシロオリゴ糖の重合度を高いままに維持しながら、経時的に糖濃度を高めることができる。おそらくは、キシラナーゼが未反応のパルプに対して優先的に作用するため、反応槽に戻した反応濾液に含まれる高重合度キシロオリゴ糖が加分解されず、未反応のパルプから新たに溶出されたキシロオリゴ糖と合わさって濃度が高まっていくものと考えられる。
In the step of eluting xylo-oligosaccharide by xylanase treatment of pulp, it is possible to change the concentration of xylo-oligosaccharide to be eluted and the polymerization degree of xylo-oligosaccharide by changing the amount of xylanase added to the pulp and the reaction time. Generally, the greater the amount of xylanase added and the longer the reaction time, the higher the xylo-oligosaccharide concentration and the lower the degree of polymerization of the xylo-oligosaccharide. By simply increasing the amount of xylanase added or lengthening the reaction time, a filtrate containing a high concentration of xylo-oligosaccharide can be obtained, but a high-polymerization degree xylo-oligosaccharide cannot be obtained. This is because the high-polymerization xylo-oligosaccharides that have been decomposed and eluted by xylanase are further decomposed and excessively decomposed into oligosaccharides having a short chain length such as xylose, xylobiose, and xylotriose.
In order to stably obtain a high concentration and high degree of polymerization of xylooligosaccharide, it is preferable to circulate a part of the filtrate containing the xylooligosaccharide to the reaction system. By returning a part of the reaction filtrate containing xylo-oligosaccharides to the reaction tank inlet, the sugar concentration can be increased over time while maintaining the degree of polymerization of xylo-oligosaccharides at a high level. Presumably, xylanase preferentially acts on the unreacted pulp, so that the high polymerization degree xylo-oligosaccharide contained in the reaction filtrate returned to the reaction tank is not decomposed and xylo-oligo newly eluted from the unreacted pulp. Combined with sugar, the concentration is thought to increase.
反応槽内でのパルプ濃度、反応時間、キシラナーゼ添加量は任意に設定可能であるが、パルプ濃度は2%から20%、より好ましくは7%から15%が良い。パルプ濃度が低すぎるとキシロオリゴ糖濃度を高めにくく、液量が増えてしまうため、設備が大型化するという問題が生じる。一方、パルプ濃度が高すぎるとキシラナーゼとパルプの均一な混合やパルプの移送が困難になるだけではなく、糖液の回収量が減ってしまう。反応時間とキシラナーゼ添加量に関しては、用いる酵素の種類によって異なるが、たとえばキシラナーゼコンクであれば、反応時間は10分から240分、より好ましくは30分から90分がよく、酵素添加量は2〔unit/g−乾燥パルプ〕から200〔unit/g−乾燥パルプ〕、より好ましくは10〔unit/g−乾燥パルプ〕から100〔unit/g−乾燥パルプ〕がよい。反応時間が短すぎたり酵素添加量が少なすぎると糖濃度を高めることができず、反応時間が長すぎたり酵素添加量が多すぎると重合度が小さくなってしまう。 The pulp concentration in the reaction tank, the reaction time, and the amount of xylanase added can be arbitrarily set, but the pulp concentration is preferably 2% to 20%, more preferably 7% to 15%. If the pulp concentration is too low, it is difficult to increase the xylooligosaccharide concentration and the amount of liquid increases, resulting in a problem that the equipment is enlarged. On the other hand, when the pulp concentration is too high, not only uniform mixing of xylanase and pulp and transfer of the pulp become difficult, but also the amount of recovered sugar solution decreases. The reaction time and the amount of xylanase added vary depending on the type of enzyme used. For example, in the case of xylanase concentrate, the reaction time is 10 minutes to 240 minutes, more preferably 30 minutes to 90 minutes, and the amount of enzyme added is 2 [unit / g-dry pulp] to 200 [unit / g-dry pulp], more preferably 10 [unit / g-dry pulp] to 100 [unit / g-dry pulp]. If the reaction time is too short or the amount of enzyme added is too small, the sugar concentration cannot be increased. If the reaction time is too long or the amount of enzyme added is too large, the degree of polymerization will be small.
本発明により、パルプをキシラナーゼで処理した反応濾液中に生じるキシロオリゴ糖の構成比は、用いる酵素の種類や反応条件によって変わり様々であるが、例えば、キシラナーゼコンクを利用する場合、パルプ濃度10%、反応時間45分、反応温度50℃、反応pH6.0、酵素添加量50〔unit/g−乾燥パルプ〕の条件に整えてやれば、
2量体〜15量体のオリゴ糖分布を持ち、平均重合度が5量体前後であるキシロオリゴ糖を製造することができる。
According to the present invention, the composition ratio of xylo-oligosaccharides produced in the reaction filtrate obtained by treating pulp with xylanase varies depending on the type of enzyme used and the reaction conditions. For example, when xylanase concentrate is used, the pulp concentration is 10%, If the reaction time is 45 minutes, the reaction temperature is 50 ° C., the reaction pH is 6.0, and the enzyme addition amount is 50 [unit / g-dried pulp],
A xylo-oligosaccharide having a dimer to 15-mer oligosaccharide distribution and an average degree of polymerization of around 5 mer can be produced.
キシラナーゼ処理済みのパルプからキシロオリゴ糖を含むキシロオリゴ糖溶出液を分離する工程について説類する。
当該工程における分離手段は特に限定されないが、例えばスクリュープレス等の装置を使用してパルプを圧搾しても良いし、ドラムフィルター等の装置を使用してパルプを置換洗浄し、キシロオリゴ糖を含む濾液を回収してもよい。このようにして得られた、キシロオリゴ糖を含む濾液の一部は反応槽に戻され、一部はキシロオリゴ糖原料として回収されることになる。
この場合、戻す量としては、全濾液の20〜80質量%であり、好ましくは40〜60質量%である。戻す割合は、希望するキシロオリゴ糖濃度、重合度などにより変わるが、80質量%を越えて戻すことは生産効率が悪く、20質量未満ではオリゴ糖濃度が上がりにくい。同様の理由で、全体のバランスを考慮すると40〜60質量%が好ましい。
The process of separating the xylo-oligosaccharide eluate containing xylo-oligosaccharide from the xylanase-treated pulp will be described.
Separation means in the step is not particularly limited, for example, the pulp may be squeezed using a device such as a screw press, or the pulp is replaced and washed using a device such as a drum filter, and a filtrate containing xylooligosaccharides. May be recovered. A part of the filtrate containing xylo-oligosaccharide thus obtained is returned to the reaction vessel, and a part is recovered as a xylo-oligosaccharide raw material.
In this case, the amount to be returned is 20 to 80% by mass, preferably 40 to 60% by mass, based on the total filtrate. The returning ratio varies depending on the desired xylo-oligosaccharide concentration, degree of polymerization, etc., but if it exceeds 80% by mass, the production efficiency is poor, and if it is less than 20%, the oligosaccharide concentration is difficult to increase. For the same reason, considering the overall balance, 40 to 60% by mass is preferable.
パルプのキシラナーゼ反応処理濾液中に含まれるキシロオリゴ糖複合体は、例えばエバポレーションや溶媒抽出、膜濃縮などの物理的、化学的処理により濃縮する。本発明により得られる糖液を濃縮する場合、キシロビオース、キシロトリオースのような重合度の小さいキシロオリゴ糖の一部は透過し、キシロオリゴ糖複合体は膜内に残り濃縮されるような膜により濃縮する方法が工業的に有利である。その理由の1つは、相変化を伴わない膜濃縮は運転コストが安価で、溶媒などの特殊な化学物質を使用しないで済む点であり、また、キシロオリゴ糖と同時に酵素反応処理液中に含まれる種々の無機物や、グルコース、キシロース、アラビノースなどの単糖ないしは少糖類、有機酸、リグニンなどに由来する低分子の有機物の一部は、膜濃縮の際、透過水と一緒に排出され、分離除去できるからである。 The xylo-oligosaccharide complex contained in the pulp xylanase reaction-treated filtrate is concentrated by physical and chemical treatments such as evaporation, solvent extraction, and membrane concentration. When concentrating the sugar solution obtained according to the present invention, a part of xylo-oligosaccharide having a small degree of polymerization such as xylobiose and xylotriose permeates and the xylo-oligosaccharide complex remains in the membrane and is concentrated by the membrane. This method is industrially advantageous. One of the reasons is that membrane concentration without phase change is low in operating cost and does not require the use of special chemicals such as solvents, and is also included in the enzyme reaction treatment solution at the same time as xylooligosaccharides. And some of the low-molecular organic substances derived from monosaccharides or oligosaccharides such as glucose, xylose and arabinose, organic acids and lignin are discharged together with the permeated water during membrane concentration and separated. This is because it can be removed.
一般に、逆浸透膜、NF膜、限外濾過膜等の膜エレメントを運転すると、原水中に存在するコロイド性物質や微細な懸濁物質等が膜面上に付着、蓄積、濃縮され、時間の経過とともに濾過比抵抗が増大して透過流束が低下する。更には操作圧力が上昇して運転コスト増加の要因となる。このような膜エレメントの性能劣化を最小限にとどめ、長時問にわたり安定して運転することが実用上重要であるため、凝集沈殿、清澄濾過等による除濁処理が前処理として行われている。パルプのキシラナーゼ処理反応濾液中には、パルプ、懸濁物質等の微細な不溶成分が懸濁しており、膜濃縮を行う際の透過流束低下の原因となったり、膜差圧上昇による膜破損の原因となったりする。 In general, when membrane elements such as reverse osmosis membranes, NF membranes, and ultrafiltration membranes are operated, colloidal substances and fine suspended substances existing in the raw water adhere to, accumulate and concentrate on the membrane surface. The filtration specific resistance increases with the passage of time, and the permeation flux decreases. Furthermore, the operating pressure rises, causing an increase in operating costs. Since it is practically important to minimize the performance degradation of such membrane elements and operate stably over a long period of time, turbidity treatment by coagulation sedimentation, clarification filtration, etc. is performed as a pretreatment. . In the pulp xylanase treatment reaction filtrate, fine insoluble components such as pulp and suspended solids are suspended, which may cause a decrease in permeation flux during membrane concentration, and membrane damage due to an increase in membrane differential pressure. It may cause.
膜濃縮前の前処理としては、バッグフィルター、フィルタープレス、プレコートフィルター、セラミックフィルターの精密濾過処理や凝集沈殿処理、あるいはこれらを併用しても良い。精密濾過を行う場合はサブミクロンオーダーの濾過精度を持つフィルターがより好ましく、凝集沈殿処理を行う場合は、硫酸バンド、ポリ塩化アルミニウム等の無機系凝集剤や、ポリアクリルアミド系、ポリアミジン系等の高分子凝集剤あるいはキトサン等の天然高分子凝集剤を用いることができるが、パルプ、懸濁物質等の微細な不溶成分を除去することができれば、その方法は特に限定されない。 As the pretreatment before the membrane concentration, a bag filter, a filter press, a precoat filter, a ceramic filter microfiltration treatment, a coagulation sedimentation treatment, or a combination thereof may be used. A filter with submicron order filtration accuracy is more preferable when performing microfiltration. When performing coagulation and precipitation treatment, inorganic flocculants such as sulfuric acid bands and polyaluminum chloride, and polyacrylamide and polyamidine A natural polymer flocculant such as a molecular flocculant or chitosan can be used, but the method is not particularly limited as long as fine insoluble components such as pulp and suspended substances can be removed.
キシロオリゴ糖は、2量体以上のオリゴマーである。また、キシロースの分子量は150であり2量体は282であり、3量体は414、以下、キシロース残基が1つ増えるごとに分子量は132ずつ増加し、10量体は1338である。濃縮されたキシロオリゴ糖複合体はパルプのキシラナーゼ反応処理濾液中でキシロオリゴ糖が何らかの物質、おそらくはリグニン又はリグノセルロース物質、或いはヘミセルロース由来のフラン誘導体等の蒸解過程で生じた高分子物質と複合体を形成しているものと考えられる。
この膜濃縮物中に含まれる全糖は、ほぼキシロースのみからなり、膜濃縮物に酸を添加してpHを5より低く調整し、高温で加熱することによりキシロオリゴ糖を遊離させることができる。この場合の酸は、特に限定されるものでなく、いずれの酸を用いることができ、たとえば硫酸、塩酸などの鉱酸のほか、シュウ酸、酢酸などの有機酸が例示される。濃縮液の酸処理時のpHは2から4が好ましく、さらに好ましくはpHが3から3.5の範囲であるである。pHが1.5以下になるとキシロースへの加水分解が促進され、キシロオリゴ糖の回収率は低下する。またpHが5以上では150℃程度までの温度ではキシロオリゴ糖の遊離が促進されない。
キシロオリゴ糖の遊離に必要な加熱温度は、キシロオリゴ糖が遊離する温度であれば、特に限定されるものではないが、100から200℃までの温度、特に105から170℃が好ましく、さらに好ましい温度は110℃から125℃である。100℃未満の処理温度では、キシロオリゴ糖複合体からキシロオリゴ糖は遊離しない。また、170℃を越えると、単糖であるキシロースへの分解反応が促進されキシロオリゴ糖の収率が低下する。
Xylooligosaccharide is a dimer or higher oligomer. In addition, the molecular weight of xylose is 150, the dimer is 282, the trimer is 414, and the molecular weight is increased by 132 each time one xylose residue is added, and the 10-mer is 1338. The concentrated xylo-oligosaccharide complex forms a complex with the xylanase reaction-treated filtrate of the pulp with the high-molecular substance produced during the cooking process, such as lignin or lignocellulosic substances, or furan derivatives derived from hemicellulose. It is thought that.
The total sugar contained in the membrane concentrate consists almost exclusively of xylose, and the xylooligosaccharide can be liberated by adding an acid to the membrane concentrate to adjust the pH below 5 and heating at high temperature. The acid in this case is not particularly limited, and any acid can be used. Examples thereof include mineral acids such as sulfuric acid and hydrochloric acid, and organic acids such as oxalic acid and acetic acid. The pH during acid treatment of the concentrate is preferably 2 to 4, more preferably in the range of 3 to 3.5. When the pH is 1.5 or less, hydrolysis to xylose is promoted, and the recovery rate of xylooligosaccharide is lowered. When the pH is 5 or more, the release of xylo-oligosaccharides is not promoted at temperatures up to about 150 ° C.
The heating temperature necessary for releasing the xylooligosaccharide is not particularly limited as long as the xylooligosaccharide is liberated. However, the temperature is preferably from 100 to 200 ° C, particularly preferably from 105 to 170 ° C, and more preferably 110 ° C to 125 ° C. At a processing temperature of less than 100 ° C., xylo-oligosaccharide is not released from the xylo-oligosaccharide complex. Moreover, when it exceeds 170 degreeC, the decomposition reaction to the xylose which is monosaccharide will be accelerated | stimulated, and the yield of xylooligosaccharide will fall.
酸処理後のキシロオリゴ糖組成物には、まだリグニンなどの不溶物や着色物質が含まれている。不溶物は遠心分離、フィルターろ過、濾布による濾過等の処理で取り除くことができる。溶解している着色物質などの不純物を除去する方法は、特に限定されるものではなく、これまで知られた活性炭を用いる方法、アンバーライトなどの強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂を用いる方法、膜ろ過法をそれぞれ繰り返すか、又はこれらの組み合わせにより行うことができる。 The xylo-oligosaccharide composition after acid treatment still contains insoluble matters such as lignin and colored substances. Insoluble matter can be removed by processes such as centrifugation, filter filtration, and filtration with a filter cloth. The method for removing impurities such as dissolved coloring substances is not particularly limited, and a method using activated carbon known so far, a strong basic anion exchange resin such as amberlite, a weak basic anion, etc. A method using an exchange resin, a strong acid cation exchange resin, a weak acid cation exchange resin, and a membrane filtration method may be repeated or a combination thereof.
以下に、本発明を実施例により詳細に説明するが、本発明は以下の実施例に限定されるものではない。以下に示す%は、特に断らない限りすべて質量%を意味するものであり、対パルプの添加率はパルプの絶乾質量に対する質量の比率である。なお、各測定法は以下のとおりである。 EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples. Unless otherwise specified, all percentages shown below mean mass%, and the addition ratio of pulp is the ratio of mass to the absolute dry mass of pulp. In addition, each measuring method is as follows.
<測定法の概要>
(1)全糖量の定量
全糖量は検量線をD−キシロース(和光純薬工業製)を用いて作製し、フェノール硫酸法(還元糖の定量法;学会出版センター)にて定量した。
(2)還元糖量の定量
還元糖量は検量線をD−キシロース(和光純薬工業製)を用いて作製、ソモジ−ネルソン法(還元糖の定量法;学会出版センター)にて定量した。
(3)平均重合度の決定法
サンプル糖液を50℃に保ち15000rpmにて15分遠心分離し不溶物を除去し、上清液の全糖量を還元糖量(共にキシロース換算)で割って平均重合度を求めた。
(4)酵素力価の定義
酵素として用いたキシラナーゼの活性測定にはバーチウッドキシラン(シグマ社製)を用いた。酵素力価の定義はキシラナーゼがキシランを分解することで得られる還元糖の還元力をDNS法(還元糖の定量法;学会出版センター)を用いて測定し、1分間に1マイクロモルのキシロースに相当する還元力を生成させる酵素量を1ユニットとした。
<Outline of measurement method>
(1) Quantification of total sugar amount The total sugar amount was prepared using a calibration curve using D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) and quantified by the phenol-sulfuric acid method (quantitative method for reducing sugar; Academic Publishing Center).
(2) Quantification of reducing sugar amount The reducing sugar amount was prepared by using D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) as a calibration curve, and quantified by the Sommoji-Nelson method (reducing sugar quantification method; Academic Publishing Center).
(3) Determination method of average degree of polymerization The sample sugar solution is kept at 50 ° C. and centrifuged at 15000 rpm for 15 minutes to remove insoluble matter, and the total amount of sugar in the supernatant is divided by the amount of reducing sugar (both converted to xylose). The average degree of polymerization was determined.
(4) Definition of enzyme titer Birchwood xylan (manufactured by Sigma) was used for measuring the activity of xylanase used as an enzyme. Enzyme titer is defined by measuring the reducing power of reducing sugar obtained by decomposing xylan by xylanase using the DNS method (quantitative method for reducing sugar; Academic Publishing Center) to 1 micromole of xylose per minute. The amount of enzyme that generates the corresponding reducing power was defined as 1 unit.
<実施例1>
原料として、国内産広葉樹チップ20%、ユーカリ材80%からなる混合広葉樹チップをクラフト蒸解、酸素脱リグニンを行ったパルプを用いた。このパルプを洗浄、希硫酸を加えてpH5に調整した後、パルプ濃度を20%に調整した。20%パルプ50gに、キシラナーゼコンク(アドバンスド・バイオケミカルス社製)が対パルプ50〔ユニット/g〕となるように添加しておいた50℃の温水50mlを用いて希釈し、パルプの終濃度を10%とした。50℃で45分間処理した後、100メッシュの濾布で濾過して、パルプのキシラナーゼ反応濾液を得た。続いて、20%パルプ50gに、キシラナーゼが対パルプ50〔ユニット/g〕となるように添加しておいた前記キシラナーゼ反応濾液を加えて希釈し、パルプの終濃度を10%として50℃で45分間処理した後、同様にしてパルプのキシラナーゼ反応濾液を得た。前記と同様な手順を更にもう1回繰り返し、合計3回反応させたパルプの酵素処理液を得た。このようにして得られたキシラナーゼ反応濾液中に含まれるキシロオリゴ糖は、全糖濃度0.98%、平均重合度は4.8であった。
<Example 1>
As a raw material, pulp obtained by kraft cooking and oxygen delignification of mixed hardwood chips made of 20% domestic hardwood chips and 80% eucalyptus wood was used. This pulp was washed, diluted sulfuric acid was added to adjust the pH to 5, and then the pulp concentration was adjusted to 20%. Dilute to 50 g of 20% pulp using 50 ml of 50 ° C. warm water to which xylanase conk (manufactured by Advanced Biochemicals) was added so as to be 50 [unit / g] of pulp. 10%. After treating at 50 ° C. for 45 minutes, the mixture was filtered through a 100-mesh filter cloth to obtain a pulp xylanase reaction filtrate. Subsequently, the xylanase reaction filtrate, which had been added so that xylanase was 50 [units / g], was added to 50 g of 20% pulp and diluted to a final pulp concentration of 10% at 45C. After treating for a minute, a xylanase reaction filtrate of pulp was obtained in the same manner. The same procedure as described above was further repeated once to obtain a pulp enzyme treatment solution which had been reacted three times in total. The xylo-oligosaccharide contained in the thus obtained xylanase reaction filtrate had a total sugar concentration of 0.98% and an average degree of polymerization of 4.8.
<比較例1>
実施例1と同様に調整した20%パルプ50gに、キシラナーゼコンクが対パルプ50〔ユニット/g〕となるように添加しておいた50℃の温水50mlを用いて希釈し、パルプの終濃度を10%とした。50℃で135分間処理した後、100メッシュの濾布で濾過して、パルプのキシラナーゼ反応濾液を得た。このようにして得られたキシラナーゼ反応濾液中に含まれるキシロオリゴ糖は、全糖濃度0.49%、平均重合度は3.4であった。
<Comparative Example 1>
Dilute to 50 g of 20% pulp prepared in the same manner as in Example 1 with 50 ml of warm water at 50 ° C. so that the xylanase concentrate is 50 [unit / g] of pulp, and the final concentration of the pulp 10%. After 135 minutes of treatment at 50 ° C., the mixture was filtered through a 100 mesh filter cloth to obtain a xylanase reaction filtrate of pulp. The xylo-oligosaccharide contained in the thus obtained xylanase reaction filtrate had a total sugar concentration of 0.49% and an average degree of polymerization of 3.4.
<比較例2>
実施例1と同様に調整した20%パルプ50gに、キシラナーゼコンクが対パルプ150〔ユニット/g〕となるように添加しておいた50℃の温水50mlを用いて希釈し、パルプの終濃度を10%とした。50℃で135分間処理した後、100メッシュの濾布で濾過して、パルプのキシラナーゼ反応濾液を得た。このようにして得られたキシラナーゼ反応濾液中に含まれるキシロオリゴ糖は、全糖濃度0.61%、平均重合度は2.7であった。
<Comparative example 2>
Dilute to 50 g of 20% pulp prepared in the same manner as in Example 1 with 50 ml of hot water at 50 ° C. so that the xylanase concentrate was 150 [unit / g] for pulp, and the final concentration of the pulp 10%. After 135 minutes of treatment at 50 ° C., the mixture was filtered through a 100 mesh filter cloth to obtain a xylanase reaction filtrate of pulp. The xylo-oligosaccharide contained in the thus obtained xylanase reaction filtrate had a total sugar concentration of 0.61% and an average polymerization degree of 2.7.
<比較例3>
実施例1と同様に調整した20%パルプ50gに、キシラナーゼコンクが対パルプ50〔ユニット/g〕となるように添加しておいた50℃の温水50mlを用いて希釈し、パルプの終濃度を10%とした。50℃で360分間処理した後、100メッシュの濾布で濾過して、パルプのキシラナーゼ反応濾液を得た。このようにして得られたキシラナーゼ反応濾液中に含まれるキシロオリゴ糖は、全糖濃度0.68%、平均重合度は2.1であった。
実施例1と比較例1〜3との比較から明らかなように、パルプのキシラナーゼ処理において、単にキシラナーゼ添加量を増加させたり、反応時間を長くしたりするだけでは高重合度かつ高濃度のキシロオリゴ糖を含有する反応濾液を得ることはできない。反応濾液の一部を反応系に戻し、反応基質としてのパルプから新たにキシロオリゴ糖を溶出させることにより、高重合度かつ高濃度のキシロオリゴ糖を含有する反応濾液を得ることができる。高濃度の糖液を得ることは、膜濃縮やエバポレーションに代表される単位操作を実施する際、設備費を低減でき且つランニングコストを抑えることができるという点において有利である。
<Comparative Example 3>
Dilute to 50 g of 20% pulp prepared in the same manner as in Example 1 with 50 ml of warm water at 50 ° C. so that the xylanase concentrate is 50 [unit / g] of pulp, and the final concentration of the pulp 10%. After treating at 50 ° C. for 360 minutes, the mixture was filtered through a 100 mesh filter cloth to obtain a pulp xylanase reaction filtrate. The xylo-oligosaccharide contained in the thus obtained xylanase reaction filtrate had a total sugar concentration of 0.68% and an average degree of polymerization of 2.1.
As is clear from the comparison between Example 1 and Comparative Examples 1 to 3, in the xylanase treatment of the pulp, simply increasing the amount of xylanase added or increasing the reaction time increases the degree of polymerization and high concentration of xylo-oligo. A reaction filtrate containing sugar cannot be obtained. A part of the reaction filtrate is returned to the reaction system, and a new xylooligosaccharide is eluted from the pulp as the reaction substrate, whereby a reaction filtrate containing a high degree of polymerization and a high concentration of xylooligosaccharide can be obtained. Obtaining a high-concentration sugar solution is advantageous in that the equipment cost can be reduced and the running cost can be reduced when performing unit operations represented by membrane concentration and evaporation.
<実施例2>
原料として、国内産広葉樹チップ20%、ユーカリ材80%からなる混合広葉樹チップをクラフト蒸解、酸素脱リグニンを行ったパルプを用いた。60℃の高温水を用いて、パルプ濃度を1.6%に希釈し、容積10m3のタンクに受け入れた。続いて、タンクに濃硫酸を添加、攪拌してpH5.5に調整した後、ドラムフィルター(新菱製作所製:φ2000×600SUF)でパルプを脱水洗浄した。脱水後のパルプ濃度は約20%であった。この20%パルプに50℃の温水を加え、パルプ濃度を10%に希釈すると同時に、キシラナーゼコンクが対パルプ50〔ユニット/g〕となるように連続添加して、トランポスクリューで十分に混合した。混合後のパルプを中濃度ポンプ(新菱製作所製:200×RPK)で容積2m3の円筒型反応槽(φ800mm×4000mmH)に押し込み、反応時間が40分間となるように連続処理した後、反応後のパルプをスクリュープレス(新菱製作所製:250×1000SPH−EN)で約40%に脱水して、パルプのキシラナーゼ反応濾液を得た。反応開始から60分目以降は、50℃温水ではなく、キシラナーゼ反応濾液の50質量%をトランポスクリューに戻し、ドラムフィルターで脱水した20%パルプを10%に希釈してキシラナーゼ処理を連続的に行った。反応開始150分目以降には、キシラナーゼ反応濾液中の全糖濃度は0.92%に増加しており、このときのキシロオリゴ糖の平均重合度は4.7であった。このようなパルプに対するキシラナーゼ処理を24時間連続して実施することにより、反応開始150分目以降、糖濃度約0.9%の反応濾液を安定して取り出すことができ、最終的に糖濃度0.9%のキシラナーゼ反応濾液を15m3得ることができた。得られた反応濾液を、ミクロンレート1μmのバックフィルター(ISPフィルターズ製)、続いてミクロンレート0.2μmのセラミックフィルター(日本ポール製)で濾過して、清澄な反応濾液を得た。更に逆浸透膜(日東電工製:NTR−7450)で15倍に濃縮することにより、全糖濃度11%の濃縮液を1m3得ることができた。スクリュープレスで脱水したパルプを回収し、パルプ製造工程へ返送した。
<Example 2>
As a raw material, pulp obtained by kraft cooking and oxygen delignification of mixed hardwood chips made of 20% domestic hardwood chips and 80% eucalyptus wood was used. Using 60 ° C. hot water, the pulp concentration was diluted to 1.6% and received in a 10 m 3 tank. Subsequently, concentrated sulfuric acid was added to the tank and stirred to adjust the pH to 5.5, and then the pulp was dehydrated and washed with a drum filter (Shinryo Seisakusho: φ2000 × 600SUF). The pulp concentration after dehydration was about 20%. Warm water at 50 ° C. was added to the 20% pulp to dilute the pulp concentration to 10%, and at the same time, the xylanase conc was continuously added so as to be 50 [unit / g] of pulp, and thoroughly mixed with a tram screw. The mixed pulp is pushed into a cylindrical reaction tank (φ800mm × 4000mmH) with a volume of 2m 3 with a medium concentration pump (Shinryo Seisakusho: 200 x RPK), and continuously treated so that the reaction time is 40 minutes, then the reaction The subsequent pulp was dehydrated to about 40% with a screw press (manufactured by Shinryo Seisakusho: 250 × 1000 SPH-EN) to obtain a xylanase reaction filtrate of the pulp. After 60 minutes from the start of the reaction, 50% by mass of the xylanase reaction filtrate, not 50 ° C warm water, is returned to the trump screw, and 20% pulp dehydrated with a drum filter is diluted to 10% and xylanase treatment is performed continuously. It was. From 150 minutes after the start of the reaction, the total sugar concentration in the xylanase reaction filtrate increased to 0.92%, and the average degree of polymerization of the xylo-oligosaccharide at this time was 4.7. By continuously performing such xylanase treatment on the pulp for 24 hours, the reaction filtrate having a sugar concentration of about 0.9% can be stably removed after 150 minutes from the start of the reaction. 15 m 3 of 9% xylanase reaction filtrate could be obtained. The obtained reaction filtrate was filtered through a back filter (manufactured by ISP Filters) with a micron rate of 1 μm, and subsequently with a ceramic filter (manufactured by Nippon Pole) with a micron rate of 0.2 μm to obtain a clear reaction filtrate. Further, by concentrating 15 times with a reverse osmosis membrane (manufactured by Nitto Denko: NTR-7450), 1 m 3 of a concentrated solution having a total sugar concentration of 11% could be obtained. The pulp dehydrated with a screw press was collected and returned to the pulp manufacturing process.
<実施例3>
実施例2で得られた濃縮糖液1m3を、濃硫酸を用いてpH3.5に調整後、121℃で45分間酸処理した。50℃まで冷却した後、酸処理後に生成した不溶性残渣をミクロンレート0.2μmのセラミックフィルター(日本ポール製)で除去して、UF膜(クラレ製:MU−6025)で脱色後、更に活性炭(三倉化成製:PM−SX)を10kg添加して、50℃・2時間処理して、脱色処理した糖液を得た。得られた糖液を、SV1.5で強カチオン樹脂(三菱化学製:PK−218、300L)→弱アニオン樹脂(三菱化学製:WA30、300L)→強カチオン樹脂(三菱化学製:PK−218、300L)→弱アニオン樹脂(三菱化学製:WA30、300L)からなる4床4塔式でイオン交換処理して脱塩・脱色することにより、精製済みのキシロオリゴ糖溶液(糖濃度4.3%、1100L)を得た。得られたキシロオリゴ糖溶液を、スプレードライヤー(大川原化工機製:ODA−25型)で処理して、45kgのキシロオリゴ糖粉末を得た。得られたキシロオリゴ糖の平均重合度は5.1であった。
<Example 3>
The concentrated sugar solution 1m 3 obtained in Example 2 was adjusted to pH 3.5 with concentrated sulfuric acid and then acid-treated at 121 ° C. for 45 minutes. After cooling to 50 ° C., the insoluble residue produced after the acid treatment was removed with a ceramic filter (manufactured by Nippon Pole) with a micron rate of 0.2 μm, decolorized with a UF membrane (manufactured by Kuraray: MU-6025), and further activated carbon ( 10 kg of Mikura Kasei Co., Ltd. (PM-SX) was added and treated at 50 ° C. for 2 hours to obtain a decolorized sugar solution. The obtained sugar solution was subjected to SV1.5 with a strong cation resin (Mitsubishi Chemical: PK-218, 300 L) → weak anion resin (Mitsubishi Chemical: WA30, 300 L) → strong cation resin (Mitsubishi Chemical: PK-218). , 300L) → Purified xylooligosaccharide solution (sugar concentration: 4.3%) by ion-exchange treatment and desalting / decolorization using a 4-bed, 4-tower system consisting of weak anion resin (Mitsubishi Chemical: WA30, 300L) 1100 L). The obtained xylo-oligosaccharide solution was treated with a spray dryer (Okawara Kakoki: ODA-25 type) to obtain 45 kg of xylo-oligosaccharide powder. The average degree of polymerization of the obtained xylo-oligosaccharide was 5.1.
<実施例4>
実施例3で、精製済みのキシロオリゴ糖溶液を得た後、2塔目及び4塔目の弱アニオン樹脂に75mMの塩化ナトリウム水溶液をSV1.5で流して、酸性キシロオリゴ糖溶液(糖濃度2.8%、600L)を回収した。回収した酸性キシロオリゴ糖溶液を、強カチオン樹脂でpH5に調整後、糖濃度20%まで濃縮して、スプレードライヤー(大川原化工機製:ODA−25型)で処理して、15kgの酸性キシロオリゴ糖粉末を得た。得られた酸性キシロオリゴ糖の平均重合度は10.8であった。
<Example 4>
In Example 3, after obtaining a purified xylo-oligosaccharide solution, a 75 mM sodium chloride aqueous solution was allowed to flow through the weak anion resin of the second and fourth towers at SV1.5 to obtain an acidic xylo-oligosaccharide solution (sugar concentration of 2. 8%, 600 L) was recovered. The collected acidic xylo-oligosaccharide solution is adjusted to pH 5 with a strong cation resin, concentrated to a sugar concentration of 20%, treated with a spray dryer (Okawara Kakoki: ODA-25 type), and 15 kg of acidic xylo-oligosaccharide powder is obtained. Obtained. The average degree of polymerization of the obtained acidic xylo-oligosaccharide was 10.8.
本発明により、機能性食品素材や皮膚外用剤として優れた機能を持つキシロオリゴ糖及び酸性キシロオリゴ糖を、大量かつ安価に製造できる技術が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a technology capable of producing a large amount and a low cost of xylooligosaccharides and acidic xylooligosaccharides having an excellent function as a functional food material or a skin external preparation.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006324437A JP4788578B2 (en) | 2006-11-30 | 2006-11-30 | Method for producing xylooligosaccharide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006324437A JP4788578B2 (en) | 2006-11-30 | 2006-11-30 | Method for producing xylooligosaccharide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008136390A JP2008136390A (en) | 2008-06-19 |
JP4788578B2 true JP4788578B2 (en) | 2011-10-05 |
Family
ID=39598498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006324437A Active JP4788578B2 (en) | 2006-11-30 | 2006-11-30 | Method for producing xylooligosaccharide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4788578B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR075995A1 (en) * | 2009-03-31 | 2011-05-11 | Chemtex Italia S R L | A PROCESS FOR HYDROLYSIS OF BIOMASS WITH HIGH CONTENT OF SOLIDS |
JP2010284133A (en) * | 2009-06-15 | 2010-12-24 | Nippon Rensui Co Ltd | Method for producing purified sugar solution |
WO2011114914A1 (en) * | 2010-03-19 | 2011-09-22 | 本田技研工業株式会社 | Method for producing saccharified solution |
JP2012044880A (en) * | 2010-07-29 | 2012-03-08 | Sekisui Chem Co Ltd | Method for saccharifying cellulose |
CA2813968C (en) * | 2010-11-21 | 2016-04-19 | Andritz Inc. | Method and apparatus for mixing a lignocellulosic material with enzymes |
JP6077854B2 (en) * | 2012-12-27 | 2017-02-08 | 川崎重工業株式会社 | Method for recovering sugar from saccharification slurry and cleaning device for cleaning residue |
-
2006
- 2006-11-30 JP JP2006324437A patent/JP4788578B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008136390A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4675139B2 (en) | High purity xylooligosaccharide composition | |
US7812153B2 (en) | Process for manufacturing high purity xylose | |
US6942754B2 (en) | Process for producing xylooligosaccharide from lignocellulose pulp | |
JP4788578B2 (en) | Method for producing xylooligosaccharide | |
CN102660606B (en) | Bio-preparation method for production of high-purity xylo-oligosaccharide and coproduction of arabinose and xylose | |
US4181796A (en) | Process for obtaining xylan and fibrin from vegetable raw material containing xylan | |
US11407778B2 (en) | Method and an apparatus for recovering chemicals from an alkaline lignin material | |
CN1107117C (en) | Process for producing L-arabinose by acid hydrolysis method | |
CN111004827B (en) | Preparation method of xylo-oligosaccharide | |
Jacquemin et al. | Performance evaluation of a semi-industrial production process of arabinoxylans from wheat bran | |
EP1304412B1 (en) | Process for producing xylooligosaccharides | |
JP2012100546A (en) | Method for producing xylooligosaccharide and acidic xylooligosaccharide | |
CN110616237A (en) | Method for preparing xylo-oligosaccharide from steam-exploded plant fiber raw material | |
WO2015107413A1 (en) | Process for fractionation of oligosaccharides from agri-waste | |
JP3951545B2 (en) | Method for producing xylooligosaccharide | |
JP4078778B2 (en) | Xylooligosaccharide composition | |
WO2014106953A1 (en) | Device for producing sugar solution and method for producing sugar solution | |
JP4073661B2 (en) | Method for producing acidic xylooligosaccharide composition | |
CN106617115A (en) | Method for separating soluble dietary fibers from Momordica grosvenori production waste liquid | |
JP2003048901A (en) | Long-chain xylooligosaccharide composition and method for producing the same | |
CN115011651B (en) | Method for efficiently preparing sugar by reed | |
CA2979644C (en) | Method for producing sugar solution | |
CN114736249B (en) | Method for preparing functional xylo-oligosaccharide by using agricultural and forestry waste bamboo powder | |
FI20195532A1 (en) | A method and an apparatus for recovering chemicals from an alkaline lignin material | |
CN115023507A (en) | Method for producing sugar solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4788578 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |