JP4787429B2 - Control device for crushing mixer for soil improvement equipment - Google Patents

Control device for crushing mixer for soil improvement equipment Download PDF

Info

Publication number
JP4787429B2
JP4787429B2 JP2001217837A JP2001217837A JP4787429B2 JP 4787429 B2 JP4787429 B2 JP 4787429B2 JP 2001217837 A JP2001217837 A JP 2001217837A JP 2001217837 A JP2001217837 A JP 2001217837A JP 4787429 B2 JP4787429 B2 JP 4787429B2
Authority
JP
Japan
Prior art keywords
soil
crushing
overload
raw
mixing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001217837A
Other languages
Japanese (ja)
Other versions
JP2003024818A (en
Inventor
安洋 鴨志田
泰弘 吉田
勝博 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2001217837A priority Critical patent/JP4787429B2/en
Publication of JP2003024818A publication Critical patent/JP2003024818A/en
Application granted granted Critical
Publication of JP4787429B2 publication Critical patent/JP4787429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、土質改良装置用破砕混合機の制御装置に関する。
【0002】
【従来の技術】
従来の土質改良装置としては、例えば特開平9−195266号公報に記載されたものが知られている。同公報によると、図3に示すように、自走式土質改良装置1は、クローラ式の下部走行体2上に載置した車体3の前後方向一端側に原料土(被改良土)を貯溜する第1ホッパ5を備え、該第1ホッパ5の原料土排出口には掻き出しロータ5aが回転自在に設けられている。第1ホッパ5の下方には、第1ホッパ5から排出された原料土を所定速度で搬送供給するベルトコンベア等の原料土供給装置8を備えている。また、第1ホッパ5よりも車体中央側には改良材を貯溜する第2ホッパ6が搭載されており、第2ホッパ6の下部に設けた排出口6aから改良材が排出されて原料土供給装置8で搬送される原料土の上に所定量ずつ添加されるようになっている。さらに、車体3の略中央上部で、原料土供給装置8の下流側には、解砕機7が搭載されている。そして、解砕機7の下方にベルトコンベア等の排出装置9が載置され、この排出装置9で解砕機7により破砕混合された改良土が製品として外部に排出されるようになっている。
【0003】
解砕機7内には、ソイルカッタ7aと回転打撃子7bとが回転自在に設けられている。ソイルカッタ7aは解砕機7の原料土投入口に設けられ、回転軸部から放射状に備えた複数の回転カッタを回転させて、原料土供給装置8から供給された原料土を破砕すると共に、原料土と改良材とを混合する。ソイルカッタ7aは、解砕機7本体に揺動自在に取り付けられたアーム4の先端部に取り付けられている。また、回転打撃子7bはソイルカッタ7aよりも下流側、即ち解砕機7の内部に設けられ、ソイルカッタ7aで一次破砕混合されたものをさらに細かく2次破砕混合している。尚、図では回転打撃子7bを複数設けた例を示している。
【0004】
【発明が解決しようとする課題】
上記従来の土質改良装置においては、破砕混合機(ソイルカッタ7a等)に大きな石等が詰まって過負荷状態が発生する場合がある。この過負荷状態は、例えば、ソイルカッタ7aの駆動油圧モータの負荷圧が所定値以上となったことにより検出される。過負荷状態が発生した場合には、この過負荷状態のままで破砕混合機7a及び原料土供給装置8を正転させて作業を続行し、それでも過負荷状態が一定時間以上継続したときに過負荷異常と判断して、破砕混合機7a及び原料土供給装置8を停止するようにしている。このとき、過負荷状態中に破砕混合機7aによって破砕されずに上記所定時間以内に破砕混合機7aを通過してしまうような大きさの石が改良土に混入する場合がある。しかも、原料土の種類によって原料土供給装置8の供給速度を変更することがあり、この供給速度によって上記所定時間以内に破砕混合機7aを通過する石の大きさが変化することになる。ところが、製品としての改良土はその使用目的(地盤改良や路盤材等)によってそれに混入する石の最大の大きさが規定されているから、原料土供給装置8の供給速度が変化しても混入する石の大きさを用途に応じた規定値以下に制限する必要がある。
【0005】
このため、例えば、原料土供給装置8の供給速度が最高速のときに通過する石の大きさが最大となるように、前記所定時間を設定しておくと、上記供給速度が低速になったときには小さい石しか通過できなくなって、その用途での規格値以内の大きさの石が通過できずに過負荷異常と判断されて頻繁に作業停止を余儀なくされることがある。また反対に、原料土供給装置8の供給速度が最低速のときに通過する石の大きさが最大となるように、前記所定時間を設定しておくと、改良作業の能率を上げるために上記供給速度を高速にしたときには、規定値以上の大きさの石が混入する可能性があるので、原料土の混入石の大きさを予め規定値以下に限定する工程が必要となり、作業性が低下する。以上の結果、原料土の種類や用途に応じて、破砕混合機7aの過負荷による適切な異常停止処理ができず、作業能率が低下するという問題が生じている。
【0006】
本発明は、上記の問題点に着目してなされたものであり、破砕混合機での石等の詰まりによる過負荷異常停止の頻度を少なくして能率的な土質改良作業ができる土質改良装置用破砕混合機の制御装置を提供することを目的としている。
【0007】
【課題を解決するための手段、作用及び効果】
上記の目的を達成するために、第1発明は、土質改良装置用破砕混合機の制御装置において、原料土を供給する原料土供給装置と、この原料土供給装置から供給された原料土を破砕し混合する回転式破砕混合機と、回転式破砕混合機を駆動する第1の回転アクチュエータと、前記原料土供給装置を駆動する第2の回転アクチュエータと、第1又は第2の回転アクチュエータの負荷を検出する負荷センサと、負荷センサの検出した負荷が所定値以上のとき過負荷状態と判断する過負荷判定手段と、前記破砕混合機を通過可能な石の最大許容長さを設定する設定手段と、原料土供給装置による供給速度を表す原料土供給速度と前記設定手段により予め設定された回転式破砕混合機を通過可能な石の最大許容長さとに基づいて過負荷許容時間を演算する演算手段と、前記過負荷判定手段の判断した過負荷状態の継続時間が前記演算手段の演算した過負荷許容時間を超えたときに過負荷異常と判断して第1の回転アクチュエータ及び第2の回転アクチュエータの少なくともいずれか一方に過負荷時制御を行う制御手段とを備え、前記演算手段は、前記設定手段で設定した石最大許容長さと前記原料土供給装置の供給速度とに基づいて前記過負荷許容時間を演算する構成としている。
【0008】
第1発明によると、原料土供給装置の供給速度と、破砕混合機を通過可能な石の所定の最大長さとに基づいて、上記原料土供給速度に応じた過負荷許容時間を演算し、破砕混合機の負荷が所定値以上となった過負荷状態の継続時間がこの演算した過負荷許容時間を越えたときに過負荷異常と判断する。このため、過負荷異常となるまでは、原料土供給装置及び破砕混合機が正転で駆動され、石等が破砕混合機を通過する可能性が高まるので、過負荷異常の発生頻度を低減して能率的な土質改良作業ができる。しかも、このときに通過できる石の最大長さは過負荷許容時間によって決まり、この通過可能な石の最大長さが所定長さ以下となるように、上記過負荷許容時間は原料土供給装置の供給速度に応じて求められるので、通過可能な石の大きさを正確に管理でき、用途に適合した改良土の生産性が向上する。
また、破砕混合機を通過可能な石の最大長さを、被改良土(原料土)の種類(軟岩と硬岩との種別)や改良土の使用目的(地盤改良と路盤材との種別等)等に応じて設定することができるので、被改良土に適合した過負荷判断及び過負荷異常処理ができ、常に能率的な土質改良作業ができる。
【0009】
第2発明は、第1発明において、前記制御手段は、過負荷異常と判断したとき、破砕混合機を逆転させる構成としている。
【0010】
また第3発明は、第1発明において、前記制御手段は、過負荷異常と判断したとき、原料土供給装置を逆転させる構成としている。
【0011】
第2又は第3発明によると、過負荷異常と判断したときに破砕混合機又は原料土供給装置を逆転させるので、破砕混合機で詰まった石等を一旦後方へはね退けて過負荷を解除し、原料土の状態を変えることができる。これにより、過負荷状態を解除できる可能性が高くなる。
【0012】
第4発明は、第2又は第3発明において、前記制御手段は、破砕混合機又は原料土供給装置の逆転を所定時間行った後に、正転に戻すようにしている。
【0013】
第4発明によると、破砕混合機又は原料土供給装置の逆転の後に再度正転させることにより、過負荷状態を解除して自動的に通常の原料土搬送状態に戻すことができるので、過負荷停止による作業の中断を避けて能率的な土質改良作業ができる。
【0014】
第5発明は、第4発明において、前記制御手段は、破砕混合機又は原料土供給装置を正転に戻しても過負荷状態と判断したときに、破砕混合機及び原料土供給装置の少なくともいずれか一方を停止させるようにしている。
【0015】
第5発明によると、上記のような過負荷状態解除のための逆転を行っても、その後の正転で過負荷が解除されない場合に初めて過負荷異常停止として破砕混合機及び原料土供給装置の少なくともいずれか一方を停止させるので、過負荷解除による作業続行の可能性を高めて作業中断の頻度を低減できる。このため、能率的な土質改良作業ができる。
【0018】
【発明の実施の形態】
以下に、本発明の実施形態について、図面を参照して説明する。尚、ここでは、本発明の適用機として図3に示した自走式土質改良装置の例で説明する。
【0019】
まず、図1に示す制御構成ブロック図により、本発明の土質改良装置用破砕混合機の制御装置の構成を説明する。
回転カッタを有するソイルカッタ等の破砕混合機7aは、油圧モータや電動サーボモータ等の回転アクチュエータ13で回転駆動され、この回転アクチュエータ13は駆動手段12により駆動される。回転アクチュエータ13が油圧モータである場合には、駆動手段12はソレノイド作動式切換弁で構成され、制御器10から入力した指令電流に基づいて油圧モータの回転方向及び回転速度即ち破砕混合機7aの回転を制御する。また回転アクチュエータ13が電動サーボモータである場合には、駆動手段12はサーボアンプで構成され、制御器10から入力した速度指令信号と回転アクチュエータ13の回転センサ(図示せず)からの速度フィードバック信号との偏差値に基づいてこの偏差値が小さくなるように電動サーボモータの電流(つまり駆動トルク)を制御して回転方向及び回転速度即ち破砕混合機7aの回転を制御する。
【0020】
負荷センサ14は破砕混合機7a又は原料土供給装置8の負荷を検出するものであり、図示では回転アクチュエータ13又は19の駆動トルクの大きさを検出する例で示している。即ち、油圧駆動の場合、油圧モータの負荷圧を圧力センサで検出し、電動モータ駆動の場合、駆動手段12(サーボアンプ)のモータ電流値を電流センサで検出する。検出した負荷(圧力値又はモータ電流値)を、制御器10に出力する。
【0021】
コンベアやフィーダ等からなる原料土供給装置8は、上記破砕混合機7aと同様に、油圧モータや電動サーボモータ等の回転アクチュエータ19で駆動され、この回転アクチュエータ19は駆動手段18により駆動される。回転アクチュエータ19の油圧モータ又は電動サーボモータの種別によって、駆動手段18は上記同様にソレノイド作動式切換弁又はサーボアンプで構成され、制御器10から入力した指令電流又は速度指令信号に基づいて該モータの回転方向及び回転速度即ち原料土供給装置8の回転を制御する。
【0022】
原料土速度センサ15は原料土供給装置8の供給速度を検出するものであり、コンベア等の回転速度を検出する回転ピックアップセンサ、パルス発生器、パルスエンコーダ及びタコジェネ等の回転センサ、又は原料土と車体との相対速度をレーザ等で非接触に検出する速度センサなどで構成できる。検出した供給速度は、制御器10に入力される。又は、原料土供給装置8の供給速度はセンサにて検出しなくても、予め指令する指令値を上記供給速度として演算手段に入力するようにしてもよい。
【0023】
設定手段16は、制御器10の各種制御データや、原料土供給装置8の供給速度及び破砕混合機7aの回転速度等の作業条件を設定するためのものであり、例えばテンキーと書込スイッチとデータ確認用表示器とのデータ設定器、及びダイアル式設定器等を有している。設定可能な制御データとしては、例えば破砕混合機7aの過負荷状態で通過可能な石の最大長さ、原料土の硬質又は軟質の区別、種類コード、改良土の用途コードなどがある。これらの設定データは制御器10に入力され、記憶される。
【0024】
制御器10はマイクロコンピュータや高速数値演算プロセッサ等の高速演算装置を主体に構成されており、タイマ11と所定容量のメモリと入出力ポートとを有している。また制御器10は、機能構成として過負荷判定手段10aと、演算手段10bと、制御手段10cとを有している。
過負荷判定手段10aは、前記負荷センサ14から検出負荷信号を所定の入力ポートを介して入力し、この検出した負荷に基づき過負荷状態か判断する。また、演算手段10bは、原料土速度センサ15又は設定手段16から原料土供給速度Vの検出信号又は設定データを所定の入力ポートを介して入力し、そして設定手段16から破砕混合機7aを通過可能な石の最大許容長さLデータを入力し、これら原料土供給速度V及び最大許容長さLに基づき、後述するような所定の演算処理を行って過負荷判定時間T0を演算する。そして制御手段10cは、前記過負荷判定手段10aが過負荷状態と判断している経過時間をタイマ11で計測し、この経過時間が前記演算手段10bで求めた過負荷判定時間T0以上となったかのチェック結果に基づいて、後述の如く回転アクチュエータ13,19の回転指令を求め、これを所定の出力ポートを介してそれぞれ駆動手段12,18に出力して回転アクチュエータ13,19を制御する。また、上記チェック結果で過負荷状態と判断したときには、これをオペレータに報知するために警告手段17に警告指令を出力する。
【0025】
警告手段17は、上記警告指令に基づいて警告を発するものであり、例えば警報ブザーや、パトライト、ランプ表示器、メッセージ表示器、グラフィック表示器等のモニタ表示器により構成される。
【0026】
次に、図2に示す制御フローチャートにより、本発明に係る制御器10の制御処理手順を説明する。尚ここでは、破砕混合機7aを油圧駆動する場合、即ち回転アクチュエータ13が油圧モータで、負荷センサ14が圧力センサである場合を例に説明する。
【0027】
まず、ステップS1で、破砕混合機速度を原料土に応じた所定速度に設定する。次に、過負荷判定手段10aにより、ステップS2で、負荷センサ14により破砕混合機7aの負荷P0を検出し、ステップS3でこの負荷P0が過負荷設定負荷Pm(例えば16MPa)以上であるかをチェックし、過負荷設定負荷Pmよりも小さいときにはステップS2に戻って過負荷設定負荷Pm以上となるまで以上の処理を繰り返す。ステップS3で、過負荷設定負荷Pm以上のときには過負荷状態と判断し(過負荷判定手段10a)、ステップS4で制御手段10cは過負荷タイマTの計時をスタートさせる。次に、演算手段10bは、ステップS5で、原料土速度センサ15により原料土供給装置8の供給速度Vを検出した後、ステップS6で、この供給速度Vに応じた過負荷判定時間T0を演算する。但し、演算に用いる供給速度Vの値は、予め原料土供給装置8の供給速度を設定することにより決まる供給速度でも良い。ここで、過負荷判定時間T0は、設定手段16により予め設定された、通過可能な石の最大許容長さをLとすると、数式「T0=L/V」で求められる。尚、数式は、実験的に求めた実機上での値に近似的になるように上記計算値を補正する、即ち実機でのスリップなどを考慮した係数αを用いた数式「T0=(L/V)×α」又は「T0=(L/V)+α」等により求めてもよい。
【0028】
そして、制御手段10cは、ステップS7で、この時のタイマ値TMが上記求められた過負荷判定時間T0以上かをチェックし、過負荷判定時間T0よりも小さいときには、ステップS8で過負荷判定手段10aは再び負荷P0を検出した後、ステップS9で負荷P0が過負荷設定負荷Pm以上かをチェックする。過負荷設定負荷Pm以上(過負荷状態)のときには、制御手段10cはステップS5へ戻ってタイマ値TMが前記過負荷判定時間T0以上になるまで上記処理を繰り返して待つ。また、上記ステップS9で、タイマ値TMが前記過負荷判定時間T0以上になる前に負荷P0が過負荷設定負荷Pmよりも小さくなったときには、ステップS10で過負荷タイマTをストップしクリアした後、ステップS2に戻る。
【0029】
前記ステップS7でタイマ値TMが上記求めた過負荷判定時間T0以上となったときには、制御手段10cは過負荷異常発生と判断し、ステップS11で原料土供給装置8及び破砕混合機7aの少なくともいずれか一方を所定時間だけ逆転させる。そして、次にステップS12で逆転させた原料土供給装置8又は破砕混合機7aを再び正転させる。この後、過負荷判定手段10aはステップS13で負荷P0を検出し、ステップS14で負荷P0が過負荷設定負荷Pm以上かをチェックする。そして、過負荷設定負荷Pm以上のときには、制御手段10cはステップS15で再度過負荷発生と判断して過負荷異常処理(例えば、原料土供給装置8及び破砕混合機7a、又はいずれか一方を停止させる)を行う。またステップS14で、負荷P0が過負荷設定負荷Pmよりも小さいときには、前記ステップS10に戻る。
【0030】
以上の構成により、次の作用、効果が得られる。
破砕混合機7aの負荷が所定の許容値(過負荷設定負荷Pm)以上になったとき、直ちに過負荷の発生と判断せずに、この過負荷状態が所定の過負荷判定時間T0以上継続したかによって過負荷と判断している。このため、一時的な大きな負荷変動を誤って過負荷発生と判断することがなく、過負荷時の異常処理による原料土供給量の変動の頻度を低減できる。尚、上記過負荷状態では、その負荷反力で破砕混合機7aが図3に示すようなアーム4により上方に逃げる構造になったおり、このため過負荷状態が所定時間継続可能である。
このとき、上記過負荷判定時間T0以内に破砕混合機7aの回転カッタ間を通過可能な石の最大長さが略一定になるように、この過負荷判定時間T0は、実際の原料土供給速度Vと、設定された通過可能な石の最大許容長さLとに基づいて求められる。これにより、供給速度Vが変化しても、石が破砕混合機7aを通過できる許容時間T0が適切に設定されるので、改良土内に混入する石の最大許容長さを略一定に制限し管理できる。
【0031】
そして、過負荷異常発生と判断したときには破砕混合機7a又は原料土供給装置8を所定時間逆転させるので、この逆転動作により破砕混合機7aに詰まっていた石が後方に除去され、原料土の状態が変わり、過負荷状態が解除され易くなる。
この後、逆転した破砕混合機7a又は原料土供給装置8を正転に戻すことにより、自動的に通常の原料土搬送状態に戻すことができるので、過負荷停止での作業の中断の回数を少なくして能率的な土質改良作業ができる。
このとき、逆転した破砕混合機7a又は原料土供給装置8を正転しても過負荷異常が解除されない場合に、初めて本当の過負荷と判断して破砕混合機7a及び原料土供給装置8の少なくともいずれか一方を停止させるようにしたので、作業中断の頻度を低減でき、能率的な土質改良作業ができる。
【0032】
さらに、前記破砕混合機7aを通過可能な石の最大許容長さLを設定手段16により設定、変更可能としたので、原料土の種類(軟岩と硬岩との種別)や改良土の使用目的(地盤改良と路盤材との種別等)等に応じて最大許容長さLを設定することができる。例えば、原料土が軟岩の場合には大きくても、破砕混合機7aの原料土搬送方向下流側に位置する回転打撃子7bで破砕されたり、解砕機7内での落下により崩れたりし易いので、多少大きい(長い)ものも通過できるように最大許容長さLを設定してもよい。一方、硬岩の場合には破砕され難いので、最大許容長さLを小さく設定する方が好ましい。また、地盤改良時にはある程度大きな石が混入していても問題ないが、路盤材に用いられる場合には厳密に規定値以下の大きさでなければならない。このように、原料土の種類及び改良土の用途に応じて、改良土に混入する石の最大許容長さLを最適に設定でき、よって適切な過負荷判断ができるので、常に能率的な土質改良作業ができる。
【0033】
尚、上記説明した実施形態では、破砕混合機7aの負荷検出をその油圧駆動源(油圧モータ)の負荷圧に基づいて行っている例で示したが、本発明はこれに限定せず、電動モータ等の場合は駆動電流に基づいて行ってもよい。
また、実施形態では、過負荷状態のときに負荷反力を逃がす為の構造を、破砕混合機7aを支承するアーム4を上下方向に揺動自在に設けた構成で実現しているが、これに限定されず、例えば破砕混合機7aをコンベアの端部よりも中央寄りの位置の上方に取り付けて、過負荷状態で該コンベアが下方に撓んで逃げるような構成であっても構わない。
【0034】
以上説明したように、本発明によると、過負荷状態が所定の過負荷許容時間以上継続したときに初めて過負荷異常と判断するので、過負荷異常による作業中断の頻度を低減できる。また、この過負荷許容時間が原料土供給速度に応じて求められるので、原料土供給速度が変化しても、破砕混合機を通過して改良土に混入する石の最大値を常に略一定に、かつ所定規格値以下に管理でき、改良土の品質が非常に良い。さらに、破砕混合機を通過する石の最大許容長さを設定手段により任意に設定可能としたので、原料土の種類や改良土の用途に応じて前記通過可能な石の最大許容長さを設定でき、適切に過負荷判定ができる。
また、過負荷異常と判断したときに、原料土供給装置及び破砕混合機の少なくともいずれか一方を逆転し、その後正転に戻すようにしたため、過負荷状態が自動的に解除される可能性を高くできるので、能率的な土質改良作業ができる。
【0035】
尚、上記では破砕混合機と原料土供給装置との組み合わせ例で説明したが、本発明はこれに限定されるものでなく、例えば原料土を貯溜する第1ホッパの出口部に備えた掻き出しロータと該第1ホッパの下方に設けた原料土供給装置との関係等の如く回転体とコンベアとの組み合わせにも適用できる。
【図面の簡単な説明】
【図1】本発明の実施形態の制御構成ブロック図である。
【図2】本発明の実施形態の制御フローチャートである。
【図3】土質改良装置の側面図である。
【符号の説明】
1…土質改良装置、5…第1ホッパ、5a…掻き出しロータ、6…第2ホッパ、7…解砕機、7a…破砕混合機(ソイルカッタ)、7b…回転打撃子、8…原料土供給装置、10…制御器、10a…過負荷判定手段、10b…演算手段、10c…制御手段、11…タイマ、12…駆動手段、13…回転アクチュエータ、14…負荷センサ、15…原料土速度センサ、16…設定手段、17…警告手段、18…駆動手段、19…回転アクチュエータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a crushing and mixing machine for a soil improvement device.
[0002]
[Prior art]
As a conventional soil improvement device, for example, a device described in JP-A-9-195266 is known. According to the publication, as shown in FIG. 3, the self-propelled soil improvement device 1 stores raw soil (improved soil) on one end in the front-rear direction of the vehicle body 3 placed on a crawler-type lower traveling body 2. The first hopper 5 is provided, and a scraping rotor 5 a is rotatably provided at a raw material soil discharge port of the first hopper 5. Below the first hopper 5, there is provided a material soil supply device 8 such as a belt conveyor that conveys material soil discharged from the first hopper 5 at a predetermined speed. In addition, a second hopper 6 for storing an improved material is mounted on the vehicle body center side of the first hopper 5, and the improved material is discharged from a discharge port 6 a provided at a lower portion of the second hopper 6 to supply raw soil. A predetermined amount is added to the raw material soil conveyed by the device 8. Furthermore, a crusher 7 is mounted on the downstream side of the raw soil material supply device 8 at the substantially upper center of the vehicle body 3. A discharge device 9 such as a belt conveyor is placed below the crusher 7, and the improved soil crushed and mixed by the crusher 7 by the discharge device 9 is discharged to the outside as a product.
[0003]
In the crusher 7, a soil cutter 7a and a rotary striker 7b are rotatably provided. The soil cutter 7a is provided at the raw soil inlet of the crusher 7, rotates a plurality of rotary cutters provided radially from the rotating shaft portion, crushes the raw soil supplied from the raw soil supply device 8, and And improver. The soil cutter 7a is attached to the tip of the arm 4 that is swingably attached to the main body of the crusher 7. Further, the rotary impactor 7b is provided on the downstream side of the soil cutter 7a, that is, inside the crusher 7, and is further subjected to secondary crushing and mixing that is primary crushed and mixed by the soil cutter 7a. In the figure, an example in which a plurality of rotary impactors 7b are provided is shown.
[0004]
[Problems to be solved by the invention]
In the conventional soil improvement device, a crushing and mixing machine (such as the soil cutter 7a) may be clogged with large stones and the like, and an overload state may occur. This overload state is detected, for example, when the load pressure of the drive hydraulic motor of the soil cutter 7a becomes a predetermined value or more. When an overload condition occurs, the crushing and mixing machine 7a and the raw soil material supply device 8 are rotated in the normal state while the overload condition is maintained, and the operation is continued. It is determined that the load is abnormal, and the crushing and mixing machine 7a and the raw soil supply device 8 are stopped. At this time, there is a case where stones having such a size as to pass through the crushing and mixing machine 7a within the predetermined time without being crushed by the crushing and mixing machine 7a during the overload state may be mixed in the improved soil. In addition, the supply speed of the raw soil supply device 8 may be changed depending on the type of raw soil, and the size of the stone passing through the crushing mixer 7a changes within the predetermined time depending on the supply speed. However, since the maximum size of the stone mixed in the improved soil as a product is regulated by the purpose of use (ground improvement, roadbed material, etc.), it is mixed even if the supply speed of the raw soil supply device 8 changes. It is necessary to limit the size of stones to be less than the specified value according to the application.
[0005]
For this reason, for example, when the predetermined time is set so that the size of the stone passing therethrough becomes the maximum when the supply speed of the raw material supply apparatus 8 is the highest speed, the supply speed becomes low. Sometimes only small stones can pass through, and stones with a size within the standard value for that application cannot pass, so it is judged that there is an overload abnormality and work is often stopped. On the other hand, if the predetermined time is set so that the size of the stone that passes when the supply speed of the raw material supply apparatus 8 is the lowest speed is set, the above-described operation is performed in order to increase the efficiency of the improvement work. When the supply speed is increased, stones larger than the specified value may be mixed, so a process to limit the size of the mixed soil in the raw soil to a specified value or less in advance is required, and workability is reduced. To do. As a result of the above, depending on the type and application of the raw soil, there is a problem in that an appropriate abnormal stop process due to an overload of the crushing and mixing machine 7a cannot be performed, resulting in a reduction in work efficiency.
[0006]
The present invention has been made paying attention to the above-mentioned problems, and is for a soil improvement device that can efficiently perform soil improvement work by reducing the frequency of overload abnormal stop due to clogging of stones and the like in a crushing and mixing machine. It aims at providing the control apparatus of a crushing mixer.
[0007]
[Means, actions and effects for solving the problems]
In order to achieve the above object, according to a first aspect of the present invention, there is provided a control device for a crushing mixer for a soil quality improvement device, wherein a raw material soil supply device for supplying raw material soil and a raw material soil supplied from the raw material soil supply device are crushed. A rotary crushing and mixing machine that mixes and mixes, a first rotary actuator that drives the rotary crushing and mixing machine, a second rotary actuator that drives the raw soil material supply device, and a load of the first or second rotary actuator A load sensor that detects the load, an overload determination unit that determines an overload state when the load detected by the load sensor is equal to or greater than a predetermined value, and a setting unit that sets a maximum allowable length of the stone that can pass through the crushing mixer If, previously set by the raw soil material supplying speed and the setting means for representing a feed rate by the raw soil material feeder, Starring overload permissible time based on the maximum allowable length of the stone can pass through a rotary crushing mixer And when the duration of the overload state determined by the overload determination unit exceeds the overload allowable time calculated by the calculation unit, it is determined that there is an overload abnormality and the first rotary actuator and the second Control means for performing overload control on at least one of the rotary actuators, and the computing means is based on the stone maximum allowable length set by the setting means and the supply speed of the raw soil supply device The overload allowable time is calculated .
[0008]
According to the first invention, based on the supply speed of the raw material soil supply device and the predetermined maximum length of the stone that can pass through the crushing and mixing machine, the overload allowable time corresponding to the raw material soil supply speed is calculated and crushed. When the duration of the overload state in which the load of the mixer exceeds a predetermined value exceeds the calculated overload allowable time, it is determined that an overload abnormality has occurred. For this reason, until the overload abnormality occurs, the raw soil supply device and the crushing and mixing machine are driven in the normal direction, and the possibility that stones and the like pass through the crushing and mixing machine is increased, so the occurrence frequency of the overload abnormality is reduced. And efficient soil quality improvement work. Moreover, the maximum length of stones that can be passed at this time is determined by the allowable overload time, and the allowable overload time is set so that the maximum length of the stone that can pass is equal to or less than a predetermined length. Since it is calculated according to the supply speed, the size of the stone that can be passed can be accurately controlled, and the productivity of improved soil suitable for the application is improved.
In addition, the maximum length of stone that can pass through the crushing and mixing machine, the type of soil to be improved (raw soil) (type of soft rock and hard rock) and the purpose of use of improved soil (type of ground improvement and roadbed material, etc.) ) Etc., it is possible to perform overload judgment and overload abnormality processing suitable for the soil to be improved, and to always perform efficient soil quality improvement work.
[0009]
According to a second invention, in the first invention, the control means reversely rotates the crushing mixer when it is determined that the overload is abnormal.
[0010]
In addition, according to a third aspect, in the first aspect, the control means reversely rotates the raw soil material supply device when it is determined that the overload is abnormal.
[0011]
According to the second or third invention, when the overload abnormality is judged, the crushing mixer or the raw soil supply device is reversed. And change the state of the raw soil. This increases the possibility that the overload state can be canceled.
[0012]
According to a fourth invention, in the second or third invention, the control means performs reverse rotation of the crushing mixer or the raw soil material supply device for a predetermined time and then returns to normal rotation.
[0013]
According to the fourth aspect of the present invention, the overload state can be released and automatically returned to the normal raw material soil transport state by rotating again forward after the reverse rotation of the crushing mixer or the raw material soil supply device. Efficient soil quality improvement work can be done avoiding interruption of work due to stoppage.
[0014]
According to a fifth invention, in the fourth invention, when the control means determines that the crushing mixer or the raw soil supply device is overloaded even if the normal rotation is returned to the normal state, at least one of the crushing mixer and the raw soil supply device Either one is stopped.
[0015]
According to 5th invention, even if it performs reverse rotation for the overload state cancellation | release as mentioned above, when an overload is not cancelled | released by the normal rotation after that, it will be an overload abnormal stop for the first time as an overload abnormal stop. Since at least one of them is stopped, it is possible to increase the possibility of continuing the work by releasing the overload and reduce the frequency of work interruption. For this reason, efficient soil quality improvement work is possible.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. Here, the self-propelled soil improvement device shown in FIG. 3 will be described as an application machine of the present invention.
[0019]
First, the configuration of the control device of the crushing mixer for the soil improvement device of the present invention will be described with reference to the control configuration block diagram shown in FIG.
The crushing and mixing machine 7 a such as a soil cutter having a rotary cutter is rotationally driven by a rotary actuator 13 such as a hydraulic motor or an electric servo motor, and the rotary actuator 13 is driven by a driving means 12. When the rotary actuator 13 is a hydraulic motor, the drive means 12 is composed of a solenoid operated switching valve, and based on the command current input from the controller 10, the rotation direction and rotation speed of the hydraulic motor, that is, the crushing mixer 7a. Control the rotation. When the rotary actuator 13 is an electric servo motor, the drive means 12 is composed of a servo amplifier, and a speed command signal input from the controller 10 and a speed feedback signal from a rotation sensor (not shown) of the rotary actuator 13. Based on the deviation value, the current (that is, the driving torque) of the electric servo motor is controlled so that the deviation value becomes small, and the rotation direction and rotation speed, that is, the rotation of the crushing mixer 7a is controlled.
[0020]
The load sensor 14 detects the load of the crushing and mixing machine 7a or the raw soil material supply device 8, and in the drawing, the load sensor 14 shows an example of detecting the magnitude of the driving torque of the rotary actuator 13 or 19. That is, in the case of hydraulic driving, the load pressure of the hydraulic motor is detected by a pressure sensor, and in the case of electric motor driving, the motor current value of the driving means 12 (servo amplifier) is detected by a current sensor. The detected load (pressure value or motor current value) is output to the controller 10.
[0021]
Similarly to the crushing and mixing machine 7 a, the raw material soil supply device 8 including a conveyor and a feeder is driven by a rotary actuator 19 such as a hydraulic motor or an electric servo motor, and the rotary actuator 19 is driven by a driving means 18. Depending on the type of the hydraulic motor or the electric servo motor of the rotary actuator 19, the driving means 18 is composed of a solenoid operated switching valve or a servo amplifier as described above, and the motor 18 is based on the command current or speed command signal input from the controller 10. Rotation direction and rotation speed, that is, rotation of the material soil supply device 8 is controlled.
[0022]
The raw material soil speed sensor 15 detects the supply speed of the raw material soil supply device 8, and includes a rotary pickup sensor for detecting the rotational speed of a conveyor and the like, a rotation generator such as a pulse generator, a pulse encoder and a tachometer, or a raw material soil. It can be constituted by a speed sensor that detects the relative speed with the vehicle body in a non-contact manner with a laser or the like. The detected supply speed is input to the controller 10. Alternatively, the command value to be commanded in advance may be input to the calculation means as the supply speed without detecting the supply speed of the raw material supply apparatus 8 by a sensor.
[0023]
The setting means 16 is for setting various control data of the controller 10, work conditions such as the supply speed of the raw soil material supply device 8 and the rotation speed of the crushing and mixing machine 7a. It has a data setting unit with a data confirmation display, a dial type setting unit, and the like. The control data that can be set includes, for example, the maximum length of stone that can be passed in the overload state of the crushing and mixing machine 7a, the distinction between hard and soft material soil, the type code, and the use code of improved soil. These setting data are input to the controller 10 and stored.
[0024]
The controller 10 is mainly composed of a high-speed arithmetic device such as a microcomputer or a high-speed numerical arithmetic processor, and has a timer 11, a memory of a predetermined capacity, and an input / output port. The controller 10 includes an overload determination unit 10a, a calculation unit 10b, and a control unit 10c as functional configurations.
The overload determination unit 10a receives a detected load signal from the load sensor 14 via a predetermined input port, and determines whether or not an overload condition is present based on the detected load. Further, the calculation means 10b inputs a detection signal or setting data of the raw soil supply speed V from the raw soil speed sensor 15 or the setting means 16 via a predetermined input port, and passes through the crushing mixer 7a from the setting means 16 The maximum allowable length L data of possible stones is input, and based on these raw soil supply speed V and maximum allowable length L, a predetermined calculation process as described later is performed to calculate the overload determination time T0. Then, the control means 10c measures the elapsed time that the overload determination means 10a determines to be in an overload state with the timer 11, and whether this elapsed time is equal to or longer than the overload determination time T0 obtained by the calculation means 10b. Based on the check result, rotation commands for the rotary actuators 13 and 19 are obtained as will be described later, and the rotation commands are output to the drive means 12 and 18 via predetermined output ports to control the rotary actuators 13 and 19, respectively. Further, when it is determined from the check result that the vehicle is overloaded, a warning command is output to the warning means 17 to notify the operator of this.
[0025]
The warning means 17 issues a warning based on the warning command, and is constituted by a monitor display such as an alarm buzzer, a patrol light, a lamp display, a message display, or a graphic display.
[0026]
Next, a control processing procedure of the controller 10 according to the present invention will be described with reference to a control flowchart shown in FIG. Here, a case where the crushing and mixing machine 7a is hydraulically driven, that is, a case where the rotary actuator 13 is a hydraulic motor and the load sensor 14 is a pressure sensor will be described as an example.
[0027]
First, in step S1, the crushing mixer speed is set to a predetermined speed corresponding to the raw soil. Next, the load P14 of the crushing mixer 7a is detected by the load sensor 14 in step S2 by the overload determination means 10a, and whether or not the load P0 is equal to or higher than the overload set load Pm (for example, 16 MPa) in step S3. If the load is smaller than the overload set load Pm, the process returns to step S2 and the above processing is repeated until the load becomes equal to or greater than the overload set load Pm. In step S3, when the load is equal to or higher than the overload set load Pm, it is determined that the load is overloaded (overload determination means 10a), and the control means 10c starts counting the overload timer T in step S4. Next, the calculation means 10b calculates the overload determination time T0 according to the supply speed V in step S6 after detecting the supply speed V of the raw soil supply apparatus 8 by the raw material speed sensor 15 in step S5. To do. However, the value of the supply speed V used for the calculation may be a supply speed determined by setting the supply speed of the raw soil material supply device 8 in advance. Here, the overload determination time T0 is calculated by the equation “T0 = L / V”, where L is the maximum allowable length of the stone that can be passed, which is preset by the setting unit 16. It should be noted that the above formula is corrected so that it is approximate to the experimentally obtained value on the actual machine, that is, the formula “T0 = (L / V) × α ”or“ T0 = (L / V) + α ”may be used.
[0028]
Then, in step S7, the control means 10c checks whether the timer value TM at this time is equal to or longer than the calculated overload determination time T0. If the timer value TM is smaller than the overload determination time T0, the overload determination means is determined in step S8. After detecting the load P0 again, 10a checks whether the load P0 is equal to or higher than the overload set load Pm in step S9. When the load is equal to or greater than the overload set load Pm (overload state), the control means 10c returns to step S5 and waits repeatedly until the timer value TM becomes equal to or greater than the overload determination time T0. If the load P0 becomes smaller than the overload setting load Pm before the timer value TM becomes equal to or greater than the overload determination time T0 in step S9, the overload timer T is stopped and cleared in step S10. Return to step S2.
[0029]
When the timer value TM becomes equal to or longer than the calculated overload determination time T0 in step S7, the control means 10c determines that an overload abnormality has occurred, and in step S11, at least one of the raw soil supply device 8 and the crushing mixer 7a. One of them is reversed for a predetermined time. Then, the raw soil material supply device 8 or the crushing / mixing device 7a reversed in step S12 is rotated forward again. Thereafter, the overload determination unit 10a detects the load P0 in step S13, and checks in step S14 whether the load P0 is greater than or equal to the overload set load Pm. And when it is more than overload setting load Pm, control means 10c judges that overload occurs again at Step S15, and stops overload abnormal processing (for example, raw material supply device 8 and crushing mixer 7a, or one of them is stopped. Do). In step S14, when the load P0 is smaller than the overload set load Pm, the process returns to step S10.
[0030]
With the above configuration, the following actions and effects can be obtained.
When the load of the crushing / mixing machine 7a exceeds a predetermined allowable value (overload set load Pm), this overload state continues for a predetermined overload determination time T0 without immediately determining that an overload has occurred. It is judged that it is overloaded. For this reason, it is possible to reduce the frequency of fluctuations in the supply amount of the raw material soil due to abnormal processing at the time of overload without erroneously determining that a temporary large load fluctuation is an overload. In the overload state, the crushing mixer 7a escapes upward by the arm 4 as shown in FIG. 3 due to the reaction force of the load, so that the overload state can be continued for a predetermined time.
At this time, the overload determination time T0 is the actual raw soil supply speed so that the maximum length of stones that can pass between the rotary cutters of the crushing mixer 7a within the overload determination time T0 is substantially constant. It is calculated based on V and the set maximum allowable length L of the stone that can be passed. Thereby, even if the supply speed V changes, the allowable time T0 during which the stone can pass through the crushing and mixing machine 7a is appropriately set. Therefore, the maximum allowable length of the stone mixed in the improved soil is limited to a substantially constant value. Can manage.
[0031]
When it is determined that an overload abnormality has occurred, the crushing and mixing machine 7a or the raw soil material supply device 8 is reversed for a predetermined time. Changes and the overload state is easily released.
After this, by returning the reversed crushing and mixing machine 7a or the raw soil material supply device 8 to the normal rotation, it can be automatically returned to the normal raw material soil conveyance state. Efficient soil quality improvement work can be done with less.
At this time, if the overload abnormality is not canceled even if the reverse crushing mixer 7a or the raw soil material supply device 8 is rotated forward, it is determined that the overload abnormality is a real overload for the first time. Since at least one of them is stopped, the frequency of work interruption can be reduced, and an efficient soil improvement work can be performed.
[0032]
Furthermore, since the maximum allowable length L of the stone that can pass through the crushing and mixing machine 7a can be set and changed by the setting means 16, the type of raw soil (type of soft rock and hard rock) and the purpose of use of improved soil The maximum allowable length L can be set according to (such as the type of ground improvement and roadbed material). For example, when the raw soil is soft rock, even if it is large, it is likely to be crushed by the rotary impactor 7b located on the downstream side in the raw soil conveying direction of the crushing and mixing machine 7a, or to be broken by falling in the crusher 7. Alternatively, the maximum allowable length L may be set so that a somewhat large (long) thing can pass through. On the other hand, in the case of hard rocks, since it is difficult to be crushed, it is preferable to set the maximum allowable length L small. In addition, there is no problem even if some large stones are mixed in the ground improvement, but when it is used for roadbed materials, it must be strictly less than the specified value. As described above, the maximum allowable length L of the stone mixed in the improved soil can be optimally set according to the type of the raw soil and the use of the improved soil, so that an appropriate overload judgment can be made, so that the soil quality is always efficient. Improvement work is possible.
[0033]
In the above-described embodiment, the load detection of the crushing and mixing machine 7a is shown based on the load pressure of the hydraulic drive source (hydraulic motor). However, the present invention is not limited to this, In the case of a motor or the like, it may be performed based on the drive current.
Further, in the embodiment, the structure for releasing the load reaction force in the overload state is realized by the configuration in which the arm 4 for supporting the crushing mixer 7a is provided so as to be swingable in the vertical direction. For example, the crushing and mixing machine 7a may be attached above the position closer to the center than the end of the conveyor, and the conveyor may be bent downward and escape in an overloaded state.
[0034]
As described above, according to the present invention, since an overload abnormality is determined only when an overload state continues for a predetermined overload allowable time or more, the frequency of work interruption due to an overload abnormality can be reduced. In addition, since the allowable overload time is determined according to the raw soil supply speed, the maximum value of the stone mixed in the improved soil through the crushing mixer is always kept constant even if the raw soil supply speed changes. The quality of the improved soil is very good. Furthermore, since the maximum allowable length of stones that pass through the crushing and mixing machine can be set arbitrarily by the setting means, the maximum allowable length of stones that can be passed is set according to the type of raw soil and the purpose of the improved soil And overload can be determined appropriately.
In addition, when it is determined that there is an overload abnormality, at least one of the raw soil supply device and the crushing and mixing machine is reversed and then returned to the normal rotation, so there is a possibility that the overload state is automatically released. Because it can be high, efficient soil improvement work can be done.
[0035]
In addition, although the above demonstrated in the example of the combination of a crushing mixer and a raw material soil supply apparatus, this invention is not limited to this, For example, the scraping rotor with which the exit part of the 1st hopper which stores raw material soil was equipped It can be applied to a combination of a rotating body and a conveyor, such as a relationship between the first and second hoppers and a raw soil supply device provided below the first hopper.
[Brief description of the drawings]
FIG. 1 is a control configuration block diagram of an embodiment of the present invention.
FIG. 2 is a control flowchart of the embodiment of the present invention.
FIG. 3 is a side view of the soil improvement device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Soil improvement apparatus, 5 ... 1st hopper, 5a ... Scraping rotor, 6 ... 2nd hopper, 7 ... Crushing machine, 7a ... Crushing mixer (soil cutter), 7b ... Rotary striker, 8 ... Raw material soil supply apparatus, DESCRIPTION OF SYMBOLS 10 ... Controller, 10a ... Overload determination means, 10b ... Calculation means, 10c ... Control means, 11 ... Timer, 12 ... Drive means, 13 ... Rotary actuator, 14 ... Load sensor, 15 ... Raw material soil speed sensor, 16 ... Setting means, 17 ... warning means, 18 ... driving means, 19 ... rotary actuator.

Claims (5)

土質改良装置用破砕混合機の制御装置において、
原料土を供給する原料土供給装置(8)と、
この原料土供給装置(8)から供給された原料土を破砕し混合する回転式破砕混合機(7a)と、
回転式破砕混合機(7a)を駆動する第1の回転アクチュエータ(13)と、
前記原料土供給装置(8)を駆動する第2の回転アクチュエータ(19)と、
第1又は第2の回転アクチュエータ(13,19)の負荷を検出する負荷センサ(14)と、
負荷センサ(14)の検出した負荷が所定値以上のとき過負荷状態と判断する過負荷判定手段(10a)と、
前記破砕混合機(7a)を通過可能な石の最大許容長さを設定する設定手段(16)と、
原料土供給装置(8)による供給速度を表す原料土供給速度と前記設定手段(16)により予め設定された回転式破砕混合機(7a)を通過可能な石の最大許容長さとに基づいて過負荷許容時間を演算する演算手段(10b)と、
前記過負荷判定手段(10a)の判断した過負荷状態の継続時間が前記演算手段(10b)の演算した過負荷許容時間を超えたときに過負荷異常と判断して第1の回転アクチュエータ(13)及び第2の回転アクチュエータ(19)の少なくともいずれか一方に過負荷時制御を行う制御手段(10c)とを備え
前記演算手段(10b)は、前記設定手段(16)で設定した石最大許容長さと前記原料土供給装置(8)の供給速度とに基づいて前記過負荷許容時間を演算する
ことを特徴とする土質改良装置用破砕混合機の制御装置。
In the control device of the crushing and mixing machine for soil improvement equipment,
A material soil supply device (8) for supplying material soil;
A rotary crushing mixer (7a) for crushing and mixing the raw soil supplied from the raw soil supply device (8);
A first rotary actuator (13) for driving the rotary crushing and mixing machine (7a);
A second rotary actuator (19) for driving the raw soil supply device (8);
A load sensor (14) for detecting a load of the first or second rotary actuator (13, 19);
Overload determination means (10a) for determining an overload state when the load detected by the load sensor (14) is a predetermined value or more;
Setting means (16) for setting the maximum allowable length of stone that can pass through the crushing and mixing machine (7a);
Based on the raw soil supply speed representing the supply speed by the raw soil supply apparatus (8) and the maximum allowable length of stones that can be passed through the rotary crushing mixer (7a) set in advance by the setting means (16). A calculation means (10b) for calculating an allowable overload time;
When the duration of the overload state determined by the overload determination means (10a) exceeds the overload allowable time calculated by the calculation means (10b), it is determined that there is an overload abnormality and the first rotary actuator (13 ) And at least one of the second rotary actuator (19) includes a control means (10c) for performing overload control ,
The calculation means (10b) calculates the allowable overload time based on the maximum allowable stone length set by the setting means (16) and the supply speed of the raw soil material supply device (8). Control device for crushing mixer for soil improvement equipment.
請求項1記載の土質改良装置用破砕混合機の制御装置において、
前記制御手段(10c)は、過負荷異常と判断したとき、破砕混合機(7a)を逆転させる
ことを特徴とする土質改良装置用破砕混合機の制御装置。
In the control device of the crushing and mixing machine for the soil improvement device according to claim 1,
The said control means (10c) reverses a crushing mixer (7a), when it judges that it is an overload abnormality. The control apparatus of the crushing mixer for soil improvement apparatuses characterized by the above-mentioned.
請求項1記載の土質改良装置用破砕混合機の制御装置において、
前記制御手段(10c)は、過負荷異常と判断したとき、原料土供給装置(8)を逆転させる
ことを特徴とする土質改良装置用破砕混合機の制御装置。
In the control device of the crushing and mixing machine for the soil improvement device according to claim 1,
The control means (10c) reverses the raw soil supply device (8) when it is determined that the overload is abnormal.
請求項2又は3記載の土質改良装置用破砕混合機の制御装置において、
前記制御手段(10c)は、破砕混合機(7a)又は原料土供給装置(8)の逆転を所定時間行った後に、正転に戻すようにした
ことを特徴とする土質改良装置用破砕混合機の制御装置。
In the control apparatus of the crushing and mixing machine for the soil improvement device according to claim 2 or 3,
The said control means (10c) is made to return to normal rotation after performing reverse rotation of the crushing mixer (7a) or raw material soil supply apparatus (8) for a predetermined time, The crushing mixer for soil improvement apparatuses characterized by the above-mentioned Control device.
請求項4記載の土質改良装置用破砕混合機の制御装置において、
前記制御手段(10c)は、破砕混合機(7a)又は原料土供給装置(8)を正転に戻しても過負荷状態と判断したときに、破砕混合機(7a)及び原料土供給装置(8)の少なくともいずれか一方を停止させるようにした
ことを特徴とする土質改良装置用破砕混合機の制御装置。
In the control device of the crushing and mixing machine for the soil improvement device according to claim 4,
When the control means (10c) determines that the crushing mixer (7a) or the raw soil supply device (8) is overloaded even if the normal rotation is returned to the normal rotation, the crushing mixer (7a) and the raw soil supply device ( 8) A control device for a crushing and mixing device for a soil improvement device, wherein at least one of them is stopped.
JP2001217837A 2001-07-18 2001-07-18 Control device for crushing mixer for soil improvement equipment Expired - Fee Related JP4787429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217837A JP4787429B2 (en) 2001-07-18 2001-07-18 Control device for crushing mixer for soil improvement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217837A JP4787429B2 (en) 2001-07-18 2001-07-18 Control device for crushing mixer for soil improvement equipment

Publications (2)

Publication Number Publication Date
JP2003024818A JP2003024818A (en) 2003-01-28
JP4787429B2 true JP4787429B2 (en) 2011-10-05

Family

ID=19052101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217837A Expired - Fee Related JP4787429B2 (en) 2001-07-18 2001-07-18 Control device for crushing mixer for soil improvement equipment

Country Status (1)

Country Link
JP (1) JP4787429B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861721B (en) * 2014-03-31 2016-01-20 泰山医学院 The intelligent control system that hydraulic pressure cycle is broken
JP6927257B2 (en) * 2019-08-29 2021-08-25 椿本メイフラン株式会社 Transport device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242565B2 (en) * 1996-01-12 2001-12-25 株式会社小松製作所 Crushing and mixing method of soil and its device
JPH11226446A (en) * 1998-02-12 1999-08-24 Hitachi Constr Mach Co Ltd Feeder controller for crusher
JP2000033285A (en) * 1998-07-21 2000-02-02 Yutani Heavy Ind Ltd Crusher of crushing machine
JP4448622B2 (en) * 2001-03-15 2010-04-14 株式会社小松製作所 Soil rotor rotation control device for soil improvement equipment

Also Published As

Publication number Publication date
JP2003024818A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
JP4113421B2 (en) Crushing treatment system
JP4775690B2 (en) Method and apparatus for controlling a sorting machine
JP4787429B2 (en) Control device for crushing mixer for soil improvement equipment
JP2004344810A (en) Wood crusher and controlling method therefor
JP4637748B2 (en) Travel control device for self-propelled recycling machine
JP3561696B2 (en) Roll crusher and its operation method
JP4632900B2 (en) Crusher control device
JP2012096192A (en) Jaw crusher
JP2000024539A (en) Self propelled type wood crushing machine
WO1995005243A1 (en) Crawler type crusher
JP4448622B2 (en) Soil rotor rotation control device for soil improvement equipment
JP2012081369A (en) Crusher
JP2003038980A (en) Controller for crushing mixer for soil improving equipment
EP3589413B1 (en) A control method of a treatment plant of elements to be recycled or disposed and a treatment plant of elements to be recycled or disposed
JP2005270847A (en) Crusher and system for crushing material to be crushed
JP4261901B2 (en) Crushing monitoring system
JP2009119376A (en) Drive controlling method for crushing machine
JPH0623287A (en) Jaw crusher
JP2000033285A (en) Crusher of crushing machine
JP2933505B2 (en) Operating method of mobile crushing equipment
JPH08155326A (en) Crushing device
JP2004202383A (en) Crushing system and crushing apparatus
JP4135078B2 (en) Crushing machine
JP2002346407A (en) Roll crusher and self-propelled roll crusher
JP2007144275A (en) Controller for crusher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4787429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees