JP4786424B2 - Fluid pressure circuit for wind power generation - Google Patents

Fluid pressure circuit for wind power generation Download PDF

Info

Publication number
JP4786424B2
JP4786424B2 JP2006158694A JP2006158694A JP4786424B2 JP 4786424 B2 JP4786424 B2 JP 4786424B2 JP 2006158694 A JP2006158694 A JP 2006158694A JP 2006158694 A JP2006158694 A JP 2006158694A JP 4786424 B2 JP4786424 B2 JP 4786424B2
Authority
JP
Japan
Prior art keywords
fluid pressure
wind power
power generation
fluid
pressure pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006158694A
Other languages
Japanese (ja)
Other versions
JP2007327397A (en
Inventor
良二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Rexroth Corp
Original Assignee
Bosch Rexroth Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Rexroth Corp filed Critical Bosch Rexroth Corp
Priority to JP2006158694A priority Critical patent/JP4786424B2/en
Publication of JP2007327397A publication Critical patent/JP2007327397A/en
Application granted granted Critical
Publication of JP4786424B2 publication Critical patent/JP4786424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Wind Motors (AREA)

Description

本発明は、油圧等の流体圧を使用した風力発電のための回路に関するものである。   The present invention relates to a circuit for wind power generation using fluid pressure such as hydraulic pressure.

従来、風力により駆動される流体圧ポンプと、前記流体圧ポンプからの流体を電気に変換するための流体圧ポンプとを管路により接続した風力発電用流体圧回路がある(例えば、特許文献1参照)。
このような風力発電用流体圧回路は、発電機とともにナセルといわれる構築物の上部に設けたケース内に設置し、発電した電気だけを地上側から取り出すことができるように構成されていたが、ナセルを建築物の上部に配置すると該建築物の強度を相当高める必要があった。
このため、図2に示すように流体圧ポンプaを建築物の上部のナセルb内に設置して、流体圧モータc及び発電機d等は地上側に配置し、流体圧ポンプaと流体圧モータcとを配管を介して接続することにより、ナセルbにかかる負荷の軽減を図るようにしている。
しかしながら、従来の構成では、不使用時に風力発電用流体圧回路内の上部側、即ち、流体圧ポンプ側の管路内の流体が抜け落ちてしまい、次に風力発電を開始しようとしても管路内に流体を満たすために非常に時間がかかっていた。
Conventionally, there is a fluid pressure circuit for wind power generation in which a fluid pressure pump driven by wind power and a fluid pressure pump for converting fluid from the fluid pressure pump into electricity are connected by a pipe line (for example, Patent Document 1). reference).
Such a fluid pressure circuit for wind power generation was installed in a case provided at the top of a structure called a nacelle together with a generator, and was configured so that only the generated electricity could be taken out from the ground side. When it is arranged at the upper part of the building, it is necessary to considerably increase the strength of the building.
Therefore, as shown in FIG. 2, the fluid pressure pump a is installed in the nacelle b at the top of the building, the fluid pressure motor c and the generator d are arranged on the ground side, and the fluid pressure pump a and the fluid pressure are arranged. The load applied to the nacelle b is reduced by connecting the motor c via a pipe.
However, in the conventional configuration, when not in use, the fluid in the upper side of the fluid pressure circuit for wind power generation, that is, the fluid in the conduit on the fluid pressure pump side drops out, and the next time the wind power generation is started, It took a very long time to fill the fluid.

特開2004−239178号公報JP 2004-239178 A

そこで、本発明は、流体圧モータよりも上方に設けられた流体圧ポンプ側の管路に任意に流体を保持できるようにして、風力発電開始までの立ち上がり時間の短い風力発電用流体圧回路を提供することを目的とする。   Accordingly, the present invention provides a fluid pressure circuit for wind power generation that has a short rise time until the start of wind power generation so that the fluid can be arbitrarily held in a conduit on the fluid pressure pump side provided above the fluid pressure motor. The purpose is to provide.

そこで、本発明者等は鋭意検討の結果、下記の通り解決手段を見いだした。
即ち、本発明の発電用流体圧回路は、請求項1に記載の通り、風力により駆動される流体圧ポンプと、前記流体圧ポンプよりも下方に設けられた流体圧モータとを管路により接続することにより構成した風力発電用流体圧回路であって、前記管路の前記流体圧モータの流入側及び流出側にそれぞれロジック弁を設けることにより、前記ロジック弁よりも前記流体圧ポンプ側の前記管路内の流体を前記管路内に保持できるように構成したことを特徴とする。
また、請求項2に記載の本発明は、請求項1に記載の風力発電用流体圧回路において、前記各ロジック弁と前記流体圧ポンプとを接続する各管路間の流体圧の何れか高い流体圧を、前記各ロジック弁と前記流体圧ポンプとを接続する各管路間に設けたコントロールラインに設けたチェック弁により選択し、前記高い流体圧により前記各ロジック弁を付勢することを特徴とする。
また、請求項3に記載の本発明は、請求項2に記載の風力発電用流体圧回路において、前記チェック弁により選択された高い流体圧は、電磁弁又はポペット式電磁弁を介して、前記各ロジック弁を制御するようにしたことを特徴とする。
Therefore, as a result of intensive studies, the present inventors have found a solution as follows.
In other words, the power generation fluid pressure circuit according to the present invention connects a fluid pressure pump driven by wind power and a fluid pressure motor provided below the fluid pressure pump through a conduit. A fluid pressure circuit for wind power generation configured by providing a logic valve on each of an inflow side and an outflow side of the fluid pressure motor in the pipe line, whereby the fluid pressure pump side of the logic valve It is characterized in that the fluid in the pipeline can be held in the pipeline.
Moreover, the present invention according to claim 2 is the fluid pressure circuit for wind power generation according to claim 1, which is higher in fluid pressure between the pipes connecting the logic valves and the fluid pressure pump. Fluid pressure is selected by a check valve provided in a control line provided between pipes connecting the logic valves and the fluid pressure pump, and the logic valves are energized by the high fluid pressure. Features.
Further, the present invention according to claim 3 is the fluid pressure circuit for wind power generation according to claim 2, wherein the high fluid pressure selected by the check valve is supplied via the electromagnetic valve or the poppet type electromagnetic valve. Each logic valve is controlled.

本発明によれば、流体圧モータよりも上方に設けられた流体圧ポンプ側の管路内の流体を任意に管路内に保持することが可能となる。従って、例えば、不使用時に管路内の流体が下方のドレインに抜け落ちることがないため、発電開始までの立ち上がりに優れた風力発電用流体圧回路とすることができる。
また、ロジック弁には、流体圧ポンプの吸入側と流体圧モータとの間の管路内の流体圧又は流体圧ポンプの吐出側と流体圧モータとの間の管路内の流体圧の何れか高い方を選択して、各ロジック弁を付勢することにより、上記管路内への流体の保持を確実なものとすることができる。
また、前記高い方の圧力を電磁弁又はポペット式電磁弁を介して各ロジック弁を付勢することにより、同時に各ロジック弁の制御が可能となる。
According to the present invention, it is possible to arbitrarily hold the fluid in the conduit on the fluid pressure pump side provided above the fluid pressure motor in the conduit. Therefore, for example, when the fluid is not used, the fluid in the pipeline does not fall out to the lower drain, so that it is possible to provide a wind power generation fluid pressure circuit that is excellent in rising up to the start of power generation.
The logic valve includes either the fluid pressure in the conduit between the suction side of the fluid pressure pump and the fluid pressure motor or the fluid pressure in the conduit between the discharge side of the fluid pressure pump and the fluid pressure motor. By selecting the higher one and energizing each logic valve, the fluid can be reliably held in the pipe line.
Further, by energizing each logic valve with the higher pressure via a solenoid valve or a poppet type solenoid valve, it becomes possible to control each logic valve at the same time.

次に、本発明の一実施の形態について図1を参照して説明する。
図示される風力発電用流体圧回路は、風車1の駆動軸2に減速機3を介して接続された流体圧ポンプ4と流体圧ポンプ4から送られた流体により駆動される流体圧モータ5とを管路により接続することにより基本的に構成される。流体圧モータ5には、流体圧モータ5の駆動エネルギーを電気エネルギーに変換するための発電機6が接続される。尚、流体圧モータ5は構築物下部(地上側)に配置され、流体圧ポンプ4は構築物上部のナセル10内に配置される。
また、上記流体圧回路において、流体圧ポンプ4の吸入側には、所定の流体圧を加えることができるようにチャージポンプ9がチェック弁15を備えた管路16を介して接続される。また、前記管路16はチェック弁15のチャージポンプ9側において管路17に分岐され、圧力制御弁14を介してタンク8に接続される。
Next, an embodiment of the present invention will be described with reference to FIG.
The illustrated fluid pressure circuit for wind power generation includes a fluid pressure pump 4 connected to a drive shaft 2 of a wind turbine 1 via a speed reducer 3, a fluid pressure motor 5 driven by fluid sent from the fluid pressure pump 4, and Is basically constructed by connecting the two by a pipe line. The fluid pressure motor 5 is connected to a generator 6 for converting driving energy of the fluid pressure motor 5 into electric energy. In addition, the fluid pressure motor 5 is arrange | positioned in the structure lower part (ground side), and the fluid pressure pump 4 is arrange | positioned in the nacelle 10 of the structure upper part.
In the fluid pressure circuit, a charge pump 9 is connected to the suction side of the fluid pressure pump 4 via a conduit 16 having a check valve 15 so that a predetermined fluid pressure can be applied. The pipe 16 is branched to a pipe 17 on the charge pump 9 side of the check valve 15 and connected to the tank 8 via the pressure control valve 14.

流体圧ポンプ4は風力を駆動源として作動して流体を圧送できるものであれば特に制限はなく、図示した例では、可変容量式アキシャルピストンポンプを使用している。尚、流体圧ポンプ4は、管路12を介してタンク8にも接続されており、この管路11は漏れた流体等をタンク8に戻すために使用される。   The fluid pressure pump 4 is not particularly limited as long as it can operate by using wind power as a driving source to pump the fluid, and in the illustrated example, a variable displacement axial piston pump is used. The fluid pressure pump 4 is also connected to the tank 8 via a pipe line 12, and the pipe line 11 is used for returning a leaked fluid or the like to the tank 8.

流体圧モータ5は流体圧を駆動源として作動して発電機6の軸を回転させることができるものであれば特に制限はなく、図示した例では、可変容量式のアキシャルピストンモータを使用している。尚、流体圧モータ5も、流体圧ポンプ4と同様に管路11を介してタンク8に接続される。   The fluid pressure motor 5 is not particularly limited as long as it can operate using the fluid pressure as a drive source to rotate the shaft of the generator 6. In the illustrated example, a variable capacity axial piston motor is used. Yes. The fluid pressure motor 5 is also connected to the tank 8 via the pipe line 11 as with the fluid pressure pump 4.

また、チャージポンプ9は本回路に必要な流体を上方の流体圧ポンプ4の吸入側に供給できるものであれば特に制限はなく、図示した例では、電気で駆動する固定容量式のポンプを使用している。その容量は、流体圧ポンプ4の最大容量の15〜20%程度とすることが好ましい。尚、チャージポンプ9は、管路12を介してタンク8へと接続され、漏れた流体等をタンク8に戻るようにしている。   The charge pump 9 is not particularly limited as long as it can supply the fluid necessary for this circuit to the suction side of the upper fluid pressure pump 4. In the illustrated example, a fixed capacity pump driven by electricity is used. is doing. The capacity is preferably about 15 to 20% of the maximum capacity of the fluid pressure pump 4. The charge pump 9 is connected to the tank 8 through the pipe 12 so that the leaked fluid and the like are returned to the tank 8.

本発明において管路7a,7bの流体圧モータ5側の吸入側及び吐出側のそれぞれロジック弁13a,13bを設けている。各ロジック弁13a,13bは閉じた際に、管路7a,7bのロジック弁13a,13bよりも上側(流体圧ポンプ4側)に流体を保持できるように構成される。これにより、回路作動停止時等にロジック弁13a,13bを閉じることにより流体圧ポンプ4側の管路に流体を保持することができ、再始動する際に管路に流体を行き渡らせるための時間を短縮することができる。   In the present invention, logic valves 13a and 13b on the suction side and the discharge side on the fluid pressure motor 5 side of the conduits 7a and 7b are provided, respectively. When the logic valves 13a and 13b are closed, the fluid is held above the logic valves 13a and 13b (the fluid pressure pump 4 side) of the pipes 7a and 7b. Accordingly, the fluid can be held in the pipeline on the fluid pressure pump 4 side by closing the logic valves 13a and 13b when the circuit operation is stopped, and the time for spreading the fluid to the pipeline when restarting. Can be shortened.

前記ロジック弁13a,13b自体は公知であり、流体圧モータ5の流出側を閉じる方向に弁体20aを付勢するためのスプリングを備えたスプリング室21aと、このスプリング室21aの作用方向と、反対方向に作用する対向室22aとから構成される。
スプリング室21a,21bには、電磁弁又はポペット式電磁弁の切換弁23を図示された左側(ロジック弁13a,13bを閉じる位置)に切り換えた際に、ロジック弁13aと流体圧ポンプ4とを接続する管路7’a、或いは、ロジック弁13bと流体圧ポンプ4とを接続する管路7’bの何れか高い方の圧力が導入される。図示されるものでは、管路7’aと管路7’bとの間に設けられたコントロールライン24において、チェック弁25a,25bにより高圧側の選択を行うようにしている。これにより、管路7’a及び管路7’bの何れか高い方の圧力によりロジック弁13a,13bを閉じることができ、管路7’a及び管路7’b内における流体の保持が確実となる。
尚、上記切換弁14を右側に切り換えれば、ロジック弁13a,13bが開き、流体圧ポンプ4と流体圧モータ5との間で閉回路を構成し、風力発電をすることができる。
The logic valves 13a and 13b are known per se, and a spring chamber 21a having a spring for urging the valve body 20a in a direction to close the outflow side of the fluid pressure motor 5, and a direction of action of the spring chamber 21a, It is composed of a counter chamber 22a acting in the opposite direction.
In the spring chambers 21a and 21b, when the switching valve 23 of the electromagnetic valve or the poppet type electromagnetic valve is switched to the illustrated left side (position where the logic valves 13a and 13b are closed), the logic valve 13a and the fluid pressure pump 4 are connected. The higher pressure of the pipe 7'a to be connected or the pipe 7'b to connect the logic valve 13b and the fluid pressure pump 4 is introduced. In the illustrated example, in the control line 24 provided between the pipe line 7'a and the pipe line 7'b, the high pressure side is selected by the check valves 25a and 25b. As a result, the logic valves 13a and 13b can be closed by the higher pressure of the pipe line 7′a and the pipe line 7′b, and the fluid is retained in the pipe line 7′a and the pipe line 7′b. It will be certain.
If the switching valve 14 is switched to the right side, the logic valves 13a and 13b are opened, and a closed circuit is formed between the fluid pressure pump 4 and the fluid pressure motor 5 to generate wind power.

本発明の一実施の形態の風力発電用流体圧回路の説明図Explanatory drawing of the fluid pressure circuit for wind power generation of one embodiment of this invention 従来の風力発電用流体圧回路の説明図Explanatory drawing of conventional fluid pressure circuit for wind power generation

符号の説明Explanation of symbols

a 流体圧ポンプ
b ナセル
c 流体圧モータ
d 発電機
1 風車
2 駆動軸
3 減速機
4 流体圧ポンプ
5 流体圧モータ
6 発電機
7a,7b 流体圧モータと流体圧ポンプとを接続する管路
7'a 流体圧ポンプ4とロジック弁13aとを接続する管路
7'b 流体圧ポンプ4とロジック弁13bとを接続する管路
12,16,17,18 管路
8 タンク
9 チャージポンプ
10 ナセル
14 圧力制御弁
13a,13b ロジック弁
15 チェック弁
23 切換弁
a fluid pressure pump b nacelle c fluid pressure motor d generator 1 windmill 2 drive shaft 3 speed reducer 4 fluid pressure pump 5 fluid pressure motor 6 generator 7a, 7b a pipe line 7 'connecting the fluid pressure motor and the fluid pressure pump 7' a Pipe line connecting fluid pressure pump 4 and logic valve 13a 7'b Pipe line connecting fluid pressure pump 4 and logic valve 13b 12, 16, 17, 18 Pipe line 8 Tank 9 Charge pump 10 Nacelle 14 Pressure Control valve 13a, 13b Logic valve 15 Check valve 23 Switching valve

Claims (3)

風力により駆動される流体圧ポンプと、前記流体圧ポンプよりも下方に設けられた流体圧モータとを管路により接続することにより構成した風力発電用流体圧回路であって、前記管路の前記流体圧モータの流入側及び流出側にそれぞれロジック弁を設けることにより、前記ロジック弁よりも前記流体圧ポンプ側の前記管路内の流体を前記管路内に保持できるように構成したことを特徴とする風力発電用流体圧回路。   A fluid pressure circuit for wind power generation configured by connecting a fluid pressure pump driven by wind power and a fluid pressure motor provided below the fluid pressure pump through a conduit, By providing a logic valve on each of the inflow side and the outflow side of the fluid pressure motor, the fluid in the conduit on the fluid pressure pump side than the logic valve can be held in the conduit. A fluid pressure circuit for wind power generation. 前記各ロジック弁と前記流体圧ポンプとを接続する各管路間の流体圧の何れか高い流体圧を、前記各ロジック弁と前記流体圧ポンプとを接続する各管路間に設けたコントロールラインに設けたチェック弁により選択し、前記高い流体圧により前記各ロジック弁を付勢することを特徴とする請求項1に記載の風力発電用流体圧回路。   A control line in which a fluid pressure higher than the fluid pressure between the pipes connecting the logic valves and the fluid pressure pump is provided between the pipes connecting the logic valves and the fluid pressure pump. 2. The fluid pressure circuit for wind power generation according to claim 1, wherein the logic valve is selected by a check valve provided on the first power source and the logic valves are energized by the high fluid pressure. 前記チェック弁により選択された高い流体圧は、電磁弁又はポペット式電磁弁を介して、前記各ロジック弁を制御するようにしたことを特徴とする請求項2に記載の風力発電用流体圧回路。   The fluid pressure circuit for wind power generation according to claim 2, wherein the high fluid pressure selected by the check valve controls each of the logic valves via a solenoid valve or a poppet solenoid valve. .
JP2006158694A 2006-06-07 2006-06-07 Fluid pressure circuit for wind power generation Expired - Fee Related JP4786424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158694A JP4786424B2 (en) 2006-06-07 2006-06-07 Fluid pressure circuit for wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158694A JP4786424B2 (en) 2006-06-07 2006-06-07 Fluid pressure circuit for wind power generation

Publications (2)

Publication Number Publication Date
JP2007327397A JP2007327397A (en) 2007-12-20
JP4786424B2 true JP4786424B2 (en) 2011-10-05

Family

ID=38928023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158694A Expired - Fee Related JP4786424B2 (en) 2006-06-07 2006-06-07 Fluid pressure circuit for wind power generation

Country Status (1)

Country Link
JP (1) JP4786424B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294813B2 (en) * 2014-11-17 2018-03-14 三菱重工業株式会社 Hydraulic transmission, wind power generator, and hydraulic transmission operating method
CN105927471A (en) * 2016-04-20 2016-09-07 燕山大学 Low-wind-speed start control system and low-wind-speed start control method for hydraulic wind turbine generator system
JP2018112083A (en) * 2017-01-10 2018-07-19 Kyb株式会社 Fluid pressure device and wind power generator
JP2018112082A (en) * 2017-01-10 2018-07-19 Kyb株式会社 Wind power generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941681A (en) * 1982-08-31 1984-03-07 Shimadzu Corp Apparatus utilizing wind force
JPS5941682A (en) * 1982-08-31 1984-03-07 Shimadzu Corp Apparatus utilizing wind force
JPS5941680A (en) * 1982-08-31 1984-03-07 Shimadzu Corp Apparatus utilizing wind force
JPS61212674A (en) * 1985-03-19 1986-09-20 Matsushita Seiko Co Ltd Power transmitting apparatus of windmill
JPH11287178A (en) * 1998-03-31 1999-10-19 Kayaba Ind Co Ltd Generating set
JPH11280637A (en) * 1998-03-31 1999-10-15 Kayaba Ind Co Ltd Generator
JPH11287179A (en) * 1998-03-31 1999-10-19 Kayaba Ind Co Ltd Generating set
JP4680019B2 (en) * 2005-09-22 2011-05-11 ボッシュ・レックスロス株式会社 Power generation circuit

Also Published As

Publication number Publication date
JP2007327397A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
KR101339230B1 (en) Hydraulic control system for transmission
JP4786424B2 (en) Fluid pressure circuit for wind power generation
US20100270801A1 (en) Electricity storage and recovery system
RU2008130362A (en) HYDROSTATIC DRIVE
JP2008045575A (en) Hydraulic drive mechanism for hydraulic shovel
CN102733442A (en) Gyration energy recycling system of hydraulic excavator
JP5807227B2 (en) Energy recovery apparatus and energy recovery method
JP2019210934A (en) Motor vehicle pump arrangement
US20180128369A1 (en) Hydrostatic drive
CN103938672A (en) Closed type rotary circuit control system
CN103148064B (en) Hydraulic energy regeneration unit
JP2012140959A5 (en)
JP2013050019A (en) Self-weight descent mechanism and self-weight descent method for gate using hydraulic piston motor as driving source
CO6270275A2 (en) ENERGY GENERATOR DEVICE THAT CONVERSES THE RECTILINE MOVEMENT OF A FLUID IN A ROTATING MOVEMENT
JP2007162458A (en) Energy regeneration system for work machine
KR101283028B1 (en) Hydraulic control system of automatic transmission for hybrid vehicle
CN103620210B (en) Pump/turbine system
JP4680019B2 (en) Power generation circuit
JP2010261539A (en) Hybrid construction machine
CN102003432B (en) Electro-hydraulic actuator
CN111535986B (en) Control system of wave energy converter
JP6294813B2 (en) Hydraulic transmission, wind power generator, and hydraulic transmission operating method
JP4543019B2 (en) Pile driver
CN104197080A (en) Hydraulic control system for quick opening and closing of valve
JP2014156891A (en) Hydraulic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees