JP4785363B2 - Phosphor particles, phosphor particle dispersion, and illumination device and display device including the same - Google Patents

Phosphor particles, phosphor particle dispersion, and illumination device and display device including the same Download PDF

Info

Publication number
JP4785363B2
JP4785363B2 JP2004268203A JP2004268203A JP4785363B2 JP 4785363 B2 JP4785363 B2 JP 4785363B2 JP 2004268203 A JP2004268203 A JP 2004268203A JP 2004268203 A JP2004268203 A JP 2004268203A JP 4785363 B2 JP4785363 B2 JP 4785363B2
Authority
JP
Japan
Prior art keywords
phosphor
particles
phosphor particles
energy
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004268203A
Other languages
Japanese (ja)
Other versions
JP2006083260A (en
Inventor
達也 森岡
肇 齊藤
元隆 種谷
茂夫 藤田
静雄 藤田
養一 川上
充 船戸
雅史 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004268203A priority Critical patent/JP4785363B2/en
Publication of JP2006083260A publication Critical patent/JP2006083260A/en
Application granted granted Critical
Publication of JP4785363B2 publication Critical patent/JP4785363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光素子からの励起光を受けて発光する蛍光体粒子、蛍光体粒子分散体ならびにこれらを含む照明装置および表示装置に関する。   The present invention relates to a phosphor particle that emits light upon receiving excitation light from a light-emitting element, a phosphor particle dispersion, and an illumination device and a display device including these.

半導体中の量子効果によって形成される基底準位間のバンドギャップエネルギーによる蛍光を発する蛍光体を用いた照明装置および表示装置が提案されている(たとえば、特許文献1参照)。   An illumination device and a display device using a phosphor that emits fluorescence due to band gap energy between ground levels formed by quantum effects in a semiconductor have been proposed (for example, see Patent Document 1).

上記照明装置または表示装置は、具体的には、窒化物系III−V族化合物半導体を用いた発光素子と、励起子ボーア半径の2倍以下の粒径を有するコア粒子(核粒子)とシェル層(外層)の2層構造を有する蛍光体とを含む照明装置または表示装置である。   Specifically, the lighting device or the display device includes a light-emitting element using a nitride III-V compound semiconductor, a core particle (nuclear particle) having a particle size equal to or smaller than an exciton Bohr radius, and a shell. It is an illuminating device or a display device including a phosphor having a two-layer structure of layers (outer layers).

さらに、詳しくは、窒化物系III−V族化合物半導体を用いた発光素子としては、サファイア基板上に形成されたGaxIn1-xN(0≦x≦1)/GayIn1-yN(0≦y≦1)の対で構成される量子井戸構造の活性層を有するものが用いられている。そして、コア粒子とシェル層の2層構造を有する蛍光体としてはCdSe(コア粒子)/ZnS(シェル層)構造からなり、CdSeの粒径を変化させることによって生じる量子効果による基底準位の変化を利用して蛍光の波長(色)の制御を行うものが示されている。 Further, particularly, as a light emitting device using nitride III-V compound semiconductor, which is formed on a sapphire substrate Ga x In 1-x N ( 0 ≦ x ≦ 1) / Ga y In 1-y An active layer having a quantum well structure composed of N (0 ≦ y ≦ 1) pairs is used. The phosphor having a two-layer structure of a core particle and a shell layer has a CdSe (core particle) / ZnS (shell layer) structure, and changes in the ground level due to quantum effects caused by changing the particle size of CdSe. A device for controlling the wavelength (color) of fluorescence using the above is shown.

しかし、上記蛍光体は、励起光の吸収効率が必ずしも高くなく、この蛍光体と発光素子とを組み合わせた照明装置または表示装置においては、十分な輝度を得ることができない。また、上記蛍光体は、演色性が乏しい問題があった。
特開平11−340516号公報
However, the phosphor does not necessarily have high absorption efficiency of excitation light, and a sufficient luminance cannot be obtained in an illumination device or a display device in which the phosphor and a light emitting element are combined. Further, the phosphor has a problem of poor color rendering.
JP 11-340516 A

上記状況を鑑みて、本発明は、励起光の吸収効率が高く輝度の高い蛍光体粒子および演色性に優れた蛍光体粒子分散体ならびにこれらを含む照明装置および表示装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide phosphor particles having high excitation light absorption efficiency and high luminance, phosphor particle dispersions excellent in color rendering, and illumination devices and display devices including these. To do.

本発明は、励起エネルギーEeを有する励起光を受けて蛍光を発する蛍光体粒子であって、In x1 Ga y1 Al 1-x1-y1 N(0<x1、0≦y1、x1+y1≦1)からなりバンドギャップエネルギーE1を有する半導体コア粒子と、半導体コア粒子を被覆するIn x2 Ga y2 Al 1-x2-y2 N(0<x2、0<y2、x2+y2≦1)からなりバンドギャップエネルギーE2を有する半導体シェル層を含み、半導体コア粒子のE1と半導体シェル層のE2と励起光のEeとの関係がE1<E2≦Eeであり、半導体シェル層で半導体コア粒子を被覆することにより半導体コア粒子中にE1とE2との間のエネルギーを有する離散的なエネルギー準位が形成され、エネルギー準位における基底準位間のエネルギーEに基づく蛍光を発する蛍光体粒子である。 The present invention is a phosphor particle that emits fluorescence in response to excitation light having an excitation energy E e , from In x1 Ga y1 Al 1-x1-y1 N (0 <x1, 0 ≦ y1, x1 + y1 ≦ 1). and semiconductor core particles having a band gap energy E 1 becomes, In x2 Ga y2 Al 1- x2-y2 N (0 <x2,0 <y2, x2 + y2 ≦ 1) made from the band gap energy E 2 that covers the semiconductor core particles includes a semiconductor shell layer having a relationship between E 2 of E 1 and the semiconductor shell layer of the semiconductor core particles E e of the excitation light is E 1 <E 2 ≦ E e, a semiconductor core particles in the semiconductor shell layer A discrete energy level having energy between E 1 and E 2 is formed in the semiconductor core particle by coating, and the phosphor particles emit fluorescence based on the energy E between the ground levels in the energy level Is

本発明にかかる蛍光体粒子において、上記基底準位間のエネルギーを1.85eV〜2.06eV、2.29eV〜2.48eVまたは2.58eV〜3.02eVのいずれかの範囲とすることができる。また、本発明にかかる蛍光体粒子は、半導体レーザまたは発光ダイオードからなる発光素子からの励起光を受けて発光することができる。 In the phosphor particles according to the present invention, the energy between the ground levels can be set in a range of 1.85 eV to 2.06 eV, 2.29 eV to 2.48 eV, or 2.58 eV to 3.02 eV. . Also, the phosphor particles according to the present invention can emit receiving excitation light from the light-emitting device comprising a semiconductor laser or a light emitting diode.

本発明は、上記蛍光体粒子を2以上含む蛍光体粒子分散体であって、基底準位が異なる2以上の蛍光体粒子を含み、すべての蛍光体粒子の半導体シェル層のバンドギャップエネルギーE2が、すべての蛍光体粒子の半導体コア粒子中に形成される基底準位間のエネルギーEよりも大きいことを特徴とする蛍光体粒子分散体である。さらに、本発明にかかる蛍光体粒子分散体は、2以上の蛍光体粒子が媒体中に分散されているものとすることができる。 The present invention is a phosphor particle dispersion containing two or more of the above phosphor particles, including two or more phosphor particles having different ground levels, and the band gap energy E 2 of the semiconductor shell layer of all the phosphor particles. Is a phosphor particle dispersion characterized by being larger than the energy E between the ground levels formed in the semiconductor core particles of all phosphor particles. Furthermore, the phosphor particle dispersion according to the present invention may have two or more phosphor particles dispersed in a medium.

本発明は、上記の蛍光体粒子または蛍光体粒子分散体と、発光素子とを含む照明装置である。   This invention is an illuminating device containing said fluorescent substance particle or fluorescent substance particle dispersion, and a light emitting element.

本発明は、上記の蛍光体粒子または蛍光体粒子分散体と、発光素子と、蛍光体粒子または蛍光体粒子分散体から発する蛍光および発光素子から発する励起光の少なくとも1つの光の光強度を変調する光強度変調手段を含む表示装置である。   The present invention modulates the light intensity of at least one of the phosphor particles or phosphor particle dispersion described above, a light emitting device, fluorescence emitted from the phosphor particles or phosphor particle dispersion and excitation light emitted from the light emitting device. The display device includes a light intensity modulating means.

上記のように、本発明によれば、励起光の吸収効率が高く輝度の高い蛍光体および演色性に優れた蛍光体粒子分散体ならびにこれらを含む照明装置および表示装置を提供することができる。   As described above, according to the present invention, it is possible to provide a phosphor with high excitation light absorption efficiency and high luminance, a phosphor particle dispersion excellent in color rendering, and an illumination device and a display device including these.

(実施形態1)
本発明の実施形態1による蛍光体粒子は、図1を参照して、励起エネルギーEeを有する励起光11を受けて蛍光13を発する蛍光体粒子100であって、バンドギャップエネルギーE1(伝導帯101cと価電子帯101vとの間のバンドギャップエネルギー)を有する半導体コア粒子101と、半導体コア粒子を被覆するバンドギャップエネルギーE2(伝導帯102cと価電子帯102vとの間のバンドギャップエネルギー)を有する半導体シェル層102とを含み、半導体コア粒子のE1と半導体シェル層のE2と励起光のEeとの関係がE1<E2≦Eeであり、半導体シェル層102で半導体コア粒子101を被覆することにより半導体コア粒子101中にE1とE2との間のエネルギーを有する離散的なエネルギー準位が形成され、エネルギー準位における基底準位111c,111v間のエネルギーEに基づく蛍光13を発する蛍光体粒子である。
(Embodiment 1)
Phosphor particles according to the first embodiment of the present invention, with reference to FIG. 1, the phosphor particles 100 that emit fluorescence 13 receives the excitation light 11 with excitation energy E e, the band gap energy E 1 (conductivity Semiconductor core particle 101 having a band gap energy between band 101c and valence band 101v) and band gap energy E 2 covering the semiconductor core particle (band gap energy between conduction band 102c and valence band 102v) ) and a semiconductor shell layer 102 having the relationship between E 2 of E 1 and the semiconductor shell layer of the semiconductor core particles E e of the excitation light is E 1 <E 2 ≦ E e, the semiconductor shell layer 102 discrete energy levels having an energy between E 1 and E 2 into the semiconductor core particle 101 is formed by coating the semiconductor core particles 101 Ground level 111c in energy levels, a phosphor particle emits fluorescence 13 based on the energy E between 111v.

本実施形態の蛍光体粒子が、励起光の吸収効率が高く輝度が高くなる理由を、従来の蛍光体粒子と対比させて、具体的に説明する。   The reason why the phosphor particles of the present embodiment have high excitation light absorption efficiency and high luminance will be specifically described in comparison with conventional phosphor particles.

従来の蛍光体粒子は、たとえば、図2を参照して、半導体コア粒子201として1.7eV程度のバンドギャップエネルギーE1を有する直径6〜10nm程度のCdSeコア粒子と、半導体コア粒子201を被覆する半導体シェル層202として3.80eVのバンドギャップエネルギーE2を有するZnSシェル層とからなり、Inx3Ga1-x3N(0≦x3≦1)発光素子が発した励起エネルギーEeが2.88eV(波長430nm)の励起光11を受けて、蛍光13を発する蛍光体粒子である。なお、励起光の一部は、蛍光体粒子表面によって散乱され散乱光12として反射される。 For example, referring to FIG. 2, conventional phosphor particles are coated with CdSe core particles having a band gap energy E 1 of about 1.7 eV and a diameter of about 6 to 10 nm as semiconductor core particles 201, and semiconductor core particles 201. The semiconductor shell layer 202 to be formed is a ZnS shell layer having a band gap energy E 2 of 3.80 eV, and the excitation energy E e emitted from the In x3 Ga 1-x3 N (0 ≦ x3 ≦ 1) light emitting element is 2. The phosphor particles emit fluorescence 13 in response to the excitation light 11 of 88 eV (wavelength 430 nm). A part of the excitation light is scattered by the phosphor particle surface and reflected as scattered light 12.

この従来の蛍光体粒子において、ZnSシェル層でCdSeコア粒子を被覆することによってCdSeコア粒子中に形成された基底準位211c,211v間のエネルギーEはたとえば1.9eV(650nm)であり、波長が650nmの蛍光13を発する。なお、図2(b)において、C.Bは伝導帯、V.Bは価電子帯、白丸は電子14、黒丸は正孔15を示す。   In this conventional phosphor particle, the energy E between the ground levels 211c and 211v formed in the CdSe core particle by covering the CdSe core particle with the ZnS shell layer is, for example, 1.9 eV (650 nm), and the wavelength Emits fluorescence 13 at 650 nm. In FIG. 2B, C.I. B is the conduction band; B represents a valence band, white circles represent electrons 14, and black circles represent holes 15.

上記のように、従来の蛍光体粒子においては、EeとE2とEとの関係はE<Ee<E2となり、このようなバンド構造においては、CdSeコア粒子内に形成されるエネルギー準位、すなわち励起エネルギーEeを有する励起光11を吸収できるエネルギー状態密度は離散的にしか存在せず、このエネルギー準位から少しでも外れると励起光の吸収効率が低下し輝度が低下する。なお、Inx3Ga1-x3N発光素子(0≦x3≦1)において、InおよびGaの組成をどのように変化させても、その励起エネルギーEeは3.38eV以下となり、上記と同様にEe<E2となってしまう。 As described above, in the conventional phosphor particles, the relationship between E e , E 2 and E is E <E e <E 2 , and in such a band structure, the energy formed in the CdSe core particles The energy state density capable of absorbing the excitation light 11 having the level, that is, the excitation energy E e exists only discretely, and if it deviates even a little from this energy level, the absorption efficiency of the excitation light is lowered and the luminance is lowered. In the In x3 Ga 1-x3 N light emitting device (0 ≦ x3 ≦ 1), the excitation energy E e is 3.38 eV or less regardless of how the composition of In and Ga is changed. E e <E 2

これに対し、本実施形態の蛍光体粒子は、たとえば、図1を参照して、半導体コア粒子101として2.00eV(波長620nm)のバンドギャップエネルギーE1を有するInNコア粒子と、半導体コア粒子101を被覆する半導体シェル層102として2.80eV(波長442nm)のバンドギャップエネルギーE2を有するInx2Ga1-x2Nシェル層(0<x2<1)とからなり、Inx3Ga1-x3N発光素子(0≦x3≦1)が発した励起エネルギーEeが2.88eV(430nm)の励起光11を受けて蛍光13を発する蛍光体粒子である。なお、励起光の一部は、蛍光体粒子表面によって散乱され散乱光12として反射される。 In contrast, the phosphor particles according to the present embodiment include, for example, an InN core particle having a band gap energy E 1 of 2.00 eV (wavelength 620 nm) as a semiconductor core particle 101 and a semiconductor core particle with reference to FIG. The semiconductor shell layer 102 covering 101 includes an In x2 Ga 1-x2 N shell layer (0 <x2 <1) having a band gap energy E 2 of 2.80 eV (wavelength 442 nm), and In x3 Ga 1-x3 The phosphor particles emit fluorescence 13 upon receiving excitation light 11 having an excitation energy E e of 2.88 eV (430 nm) emitted from an N light emitting element (0 ≦ x3 ≦ 1). A part of the excitation light is scattered by the phosphor particle surface and reflected as scattered light 12.

この本実施形態の蛍光体粒子において、Inx2Ga1-x2Nシェル層(0<x2<1)でInNコア粒子を被覆することによって、InNコア粒子中に形成された基底準位111c,111v間のエネルギーEは、たとえば2.58eV(波長480nm)となり、波長480nmの蛍光13を発する。 In the phosphor particles of this embodiment, the InN core particles are covered with an In x2 Ga 1-x2 N shell layer (0 <x2 <1), whereby ground levels 111c and 111v formed in the InN core particles are formed. The energy E between them is, for example, 2.58 eV (wavelength 480 nm), and emits fluorescence 13 having a wavelength of 480 nm.

上記のように、半導体シェル層であるInx2Ga1-x2Nシェル層(0<x2<1)のE2が励起光のEe以下になるように、Inx2Ga1-x2Nシェル層の元素組成比x2を設定することにより、励起光の大部分を半導体シェル層で吸収することができる。これにより、励起光を吸収し得る体積(半導体シェル層の体積)を増大することができ、蛍光体粒子の輝度が高くなる。 As described above, In x2 Ga 1-x2 N shell layer is a semiconductor shell layers as (0 <x2 <1) E 2 is less than or equal to E e of the excitation light, In x2 Ga 1-x2 N shell layer By setting the elemental composition ratio x2, most of the excitation light can be absorbed by the semiconductor shell layer. Thereby, the volume (volume of a semiconductor shell layer) which can absorb excitation light can be increased, and the brightness | luminance of fluorescent substance particle becomes high.

本実施形態は、半導体コア粒子内に形成された基底準位間のエネルギーEが2.58eV(波長480nm)である青色の蛍光を発する蛍光体粒子の例であるが、半導体コア粒子の粒径ならびに半導体コア粒子または半導体シェル層の構成元素または元素組成比などを調整することにより、上記基底準位間のエネルギーが、1.85eV〜2.06eV(波長670nm〜600nm)の赤色の蛍光を発する蛍光体粒子、2.29eV〜2.48eV(波長540nm〜500nm)の緑色の蛍光を発する蛍光体粒子、2.58eV〜3.02eV(波長480nm〜410nm)の青色の蛍光を発する蛍光体粒子を得ることができる。   The present embodiment is an example of phosphor particles that emit blue fluorescence whose energy E between ground levels formed in the semiconductor core particles is 2.58 eV (wavelength 480 nm). In addition, by adjusting the constituent element or element composition ratio of the semiconductor core particle or the semiconductor shell layer, the energy between the ground levels emits red fluorescence having a wavelength of 1.85 eV to 2.06 eV (wavelength 670 nm to 600 nm). Phosphor particles, phosphor particles emitting green fluorescence of 2.29 eV to 2.48 eV (wavelength 540 nm to 500 nm), phosphor particles emitting blue fluorescence of 2.58 eV to 3.02 eV (wavelength 480 nm to 410 nm) Obtainable.

本実施形態においては、半導体コア粒子としてInNからなるInNコア粒子を挙げたが、半導体コア粒子を構成する半導体としては、Inx1Gay1Al1-x1-y1N(0<x1、0≦y1、x1+y1≦1)、Cdz11Zn1-z11Se(0<z11≦1)またはCdz12Zn1-z12S(0<z12≦1)なども好ましく用いられる。 In the present embodiment, InN core particles made of InN are used as the semiconductor core particles. However, as the semiconductor constituting the semiconductor core particles, In x1 Ga y1 Al 1-x1-y1 N (0 < x1, 0 ≦ y1) X1 + y1≤1 ), Cdz11Zn1 -z11Se (0 <z11≤1), Cdz12Zn1 -z12S (0 <z12≤1), etc. are also preferably used.

本実施形態においては、半導体シェル層としてInx2Ga1-x2Nシェル層(0<x2<1)を挙げたが、Inx2Gay2Al1-x2-y2N(0<x2、0<y2、x2+y2≦1)またはCdy21Zn1-y21Se(0≦y21<1)なども好ましく用いられる。 In the present embodiment, an In x2 Ga 1-x2 N shell layer (0 <x2 <1) is used as the semiconductor shell layer, but In x2 Ga y2 Al 1-x2-y2 N (0 < x2, 0 <y2 X2 + y2 ≦ 1) or Cd y21 Zn 1-y21 Se (0 ≦ y21 <1) is also preferably used.

ここで、半導体コア粒子および半導体シェル層の元素組成比x1、y1、z11、z12、x2、y2、z21は、半導体コア粒子のE1と半導体シェル層のE2と励起光のEeとの関係がE1<E2≦EeとなるE1およびE2が得られるように設定する。また、半導体コア粒子の粒径は、半導体コア粒子のE1と半導体シェル層のE2とにより、所望のEが得られるように設定する。 Here, the elemental composition ratio of the semiconductor core particles and semiconductor shell layers x1, y1, z11, z12, x2, y2, z21 is the E 2 of E 1 and the semiconductor shell layer of the semiconductor core particles E e of the excitation light E 1 and E 2 are set so that the relationship E 1 <E 2 ≦ E e is obtained. The particle size of the semiconductor core particles, by the E 2 of E 1 and the semiconductor shell layer of the semiconductor core particles are set as desired E is obtained.

本実施形態において用いられる発光素子は、特に制限はないが、半導体レーザまたは発光ダイオードが、安定したエネルギー(波長)を有する励起光が得られる点から、好ましい。   The light emitting element used in the present embodiment is not particularly limited, but a semiconductor laser or a light emitting diode is preferable from the point that excitation light having stable energy (wavelength) can be obtained.

また、本実施形態の蛍光体粒子の製造方法には特に制限はないが、生成物質の構成元素を含む複数の出発物質を媒体に分散させ、これを反応させて目的の生成物質を得る化学合成法は簡便な手法であり低コストである点から好ましい。化学合成法には、ゾルゲル法(コロイド法)、逆ミセル法、分子プレカーサ法、水熱合成法、フラックス法などが含まれる。   The method for producing the phosphor particles of the present embodiment is not particularly limited, but a chemical synthesis in which a plurality of starting materials containing the constituent elements of the product substance are dispersed in a medium and reacted to obtain a target product substance. The method is preferable because it is a simple method and low cost. Chemical synthesis methods include sol-gel method (colloid method), reverse micelle method, molecular precursor method, hydrothermal synthesis method, flux method and the like.

(実施形態2)
本発明の実施形態2による蛍光体粒子分散体は、上記蛍光体粒子を2以上含む蛍光体粒子分散体であって、この蛍光体粒子分散体は、基底準位が異なる2以上の蛍光体粒子を含み、すべての蛍光体粒子の半導体シェル層のバンドギャップエネルギーE2が、すべての蛍光体粒子の半導体コア粒子中に形成される基底準位間のエネルギーEよりも大きい蛍光体粒子分散体である。
(Embodiment 2)
A phosphor particle dispersion according to Embodiment 2 of the present invention is a phosphor particle dispersion including two or more of the phosphor particles, and the phosphor particle dispersion includes two or more phosphor particles having different ground levels. A phosphor particle dispersion in which the band gap energy E 2 of the semiconductor shell layer of all phosphor particles is larger than the energy E between the ground levels formed in the semiconductor core particles of all phosphor particles. is there.

さらに、具体的には、図3を参照して、図3(a)に示すような、基底準位が異なる2以上の蛍光体粒子が媒体3100である透明なエポキシ樹脂中に分散された蛍光体粒子分散体3000であって、すべての蛍光体粒子の半導体シェル層のバンドギャップエネルギーE2が、すべての蛍光体粒子の半導体コア粒子中に形成される基底準位間のエネルギーEよりも大きい蛍光体粒子分散体について説明する。 More specifically, referring to FIG. 3, fluorescence in which two or more phosphor particles having different ground levels are dispersed in a transparent epoxy resin as medium 3100 as shown in FIG. In the body particle dispersion 3000, the band gap energy E 2 of the semiconductor shell layer of all the phosphor particles is larger than the energy E between the ground levels formed in the semiconductor core particles of all the phosphor particles. The phosphor particle dispersion will be described.

蛍光体粒子は、基底準位間のエネルギーEの違いによって、異なる色の蛍光を発するため、たとえば、青色の蛍光を発する青色の蛍光体粒子、緑色の蛍光を発する緑色の蛍光体粒子および/または赤色の蛍光を発する赤色の蛍光体粒子を所定の割合で媒体に分散させることにより、蛍光色の色度を調整することができる。   Since the phosphor particles emit fluorescence of different colors depending on the difference in energy E between the ground levels, for example, blue phosphor particles that emit blue fluorescence, green phosphor particles that emit green fluorescence, and / or The chromaticity of the fluorescent color can be adjusted by dispersing red phosphor particles emitting red fluorescence in the medium at a predetermined ratio.

たとえば、図3および図4を参照して、蛍光体粒子分散体3000における青色の蛍光体粒子100と赤色の蛍光体粒子300との相互作用について説明する。   For example, with reference to FIG. 3 and FIG. 4, the interaction between the blue phosphor particles 100 and the red phosphor particles 300 in the phosphor particle dispersion 3000 will be described.

青色の蛍光体粒子100は、半導体コア粒子101として2.00eV(波長620nm)のバンドギャップエネルギーE1Bを有するInNコア粒子と、半導体コア粒子101を被覆する半導体シェル層102として2.82eV(波長440nm)のバンドギャップエネルギーE2Bを有するInx21Ga1-x21Nシェル層(0<x21<1)とからなり、Inx3Ga1-x3N発光素子(0≦x3≦1)が発した励起エネルギーEeが2.88eV(430nm)の励起光11を受けて蛍光13を発する蛍光体粒子である。本実施形態における青色の蛍光体粒子において、Inx21Ga1-x21Nシェル層(0<x21<1)でInNコア粒子を被覆することによってInNコア粒子中に形成された基底準位111c,111v間のエネルギーEBは2.58eV(波長480nm)となり、波長480nmの青色の蛍光13を発する。 The blue phosphor particle 100 has an InN core particle having a band gap energy E 1B of 2.00 eV (wavelength 620 nm) as the semiconductor core particle 101 and 2.82 eV (wavelength as the semiconductor shell layer 102 covering the semiconductor core particle 101). 440 nm) of In x21 Ga 1-x21 N shell layer (0 <x21 <1) having a band gap energy E 2B and excited by an In x3 Ga 1-x3 N light emitting device (0 ≦ x3 ≦ 1) The phosphor particles emit fluorescence 13 upon receiving excitation light 11 having energy E e of 2.88 eV (430 nm). In the blue phosphor particles in the present embodiment, the ground levels 111c and 111v formed in the InN core particles by covering the InN core particles with an In x21 Ga 1 -x21 N shell layer (0 <x21 <1). energy E B between emits 2.58 eV (wavelength 480 nm), and the fluorescence 13 of the blue wavelength 480 nm.

また、赤色の蛍光体粒子300は、半導体コア粒子301として2.00eV(波長620nm)のバンドギャップエネルギーE1Rを有するInNコア粒子と、半導体コア粒子301を被覆する半導体シェル層302として2.76eV(波長450nm)のバンドギャップエネルギーE2Rを有するInx22Ga1-x22Nシェル層(0<x22<1)とからなり、Inx3Ga1-x3N発光素子(0≦x3≦1)が発した励起エネルギーEeが2.88eV(430nm)の励起光11を受けて蛍光13を発する蛍光体粒子である。本実施形態における赤色の蛍光体粒子において、Inx22Ga1-x22Nシェル層(0<x22<1)でInNコア粒子を被覆することによってInNコア粒子中に形成された基底準位311c,311v間のエネルギーERは2.03eV(波長610nm)となり、波長610nmの赤色の蛍光13を発する。 The red phosphor particles 300 have InN core particles having a band gap energy E 1R of 2.00 eV (wavelength 620 nm) as the semiconductor core particles 301 and 2.76 eV as the semiconductor shell layer 302 covering the semiconductor core particles 301. It consists of an In x22 Ga 1 -x22 N shell layer (0 <x22 <1) having a band gap energy E 2R (wavelength 450 nm), and an In x3 Ga 1-x3 N light emitting device (0 ≦ x3 ≦ 1) is emitted. The phosphor particles emit fluorescence 13 upon receiving excitation light 11 having an excitation energy E e of 2.88 eV (430 nm). In the red phosphor particles in the present embodiment, ground levels 311c and 311v formed in the InN core particles by covering the InN core particles with an In x22 Ga 1-x22 N shell layer (0 <x22 <1). energy between E R emits 2.03EV (wavelength 610 nm), and the fluorescence 13 of the red wavelength 610 nm.

すなわち、励起エネルギー2.88eV(波長430nm)を有する励起光が上記蛍光体粒子分散体に照射されると、この励起光が青色の蛍光体粒子100および赤色の蛍光体粒子300のそれぞれに吸収されて、それぞれ、波長480nmの青色の蛍光および610nmの赤色の蛍光を発する。   That is, when excitation light having excitation energy of 2.88 eV (wavelength 430 nm) is irradiated onto the phosphor particle dispersion, the excitation light is absorbed by each of the blue phosphor particles 100 and the red phosphor particles 300. And emits blue fluorescence having a wavelength of 480 nm and red fluorescence having a wavelength of 610 nm, respectively.

上記のように、青色の蛍光体粒子および赤色の蛍光体粒子において、いずれの蛍光体粒子の半導体シェル層のE2B、E2Rを、いずれの蛍光体粒子の半導体コア粒子に形成される基底準位間のエネルギーEB、ERよりも大きくすることによって、青色の蛍光体粒子からの青色の蛍光が赤色の蛍光体粒子に再吸収されることを抑制することができ、青色および赤色のそれぞれの色度を良好に保つことができる。 As described above, in the blue phosphor particles and the red phosphor particles, the E 2B and E 2R of the semiconductor shell layer of any phosphor particle are used as the base level formed on the semiconductor core particle of any phosphor particle. By making the interstitial energy E B or E R larger than the blue fluorescent particles, it is possible to suppress the blue fluorescent particles from being reabsorbed by the red fluorescent particles. Can maintain good chromaticity.

上記では青色の蛍光体粒子と赤色の蛍光体粒子との関係について説明したが、青色の蛍光体粒子と緑色の蛍光体粒子との関係および緑色の蛍光体粒子と赤色の蛍光体粒子との関係についても同様である。   In the above description, the relationship between the blue phosphor particles and the red phosphor particles is described. However, the relationship between the blue phosphor particles and the green phosphor particles and the relationship between the green phosphor particles and the red phosphor particles. The same applies to.

すなわち、基底準位が異なる2以上の上記蛍光体粒子を含む蛍光体粒子分散体において、すべての蛍光体粒子の半導体シェル層のバンドギャップエネルギーE2が、すべての蛍光体粒子の半導体コア粒子中に形成される基底準位間のエネルギーEよりも大きくなるように蛍光体粒子を設計することにより、各蛍光体粒子の蛍光の色度が良好で、演色性に優れた蛍光体粒子分散体が得られる。 That is, in the phosphor particle dispersion including two or more phosphor particles having different ground levels, the band gap energy E 2 of the semiconductor shell layer of all phosphor particles is in the semiconductor core particles of all phosphor particles. By designing the phosphor particles so as to be larger than the energy E between the ground levels formed in the phosphor particles, a phosphor particle dispersion having excellent chromaticity of fluorescence of each phosphor particle and excellent color rendering properties can be obtained. can get.

ところで、上記のように複数の蛍光体粒子を分散させた場合の蛍光の光学特性について、以下に説明する。   By the way, the optical characteristics of fluorescence when a plurality of phosphor particles are dispersed as described above will be described below.

図3(b)には、青色の蛍光体粒子100および赤色の蛍光体粒子300に、それぞれ励起光11が照射され、半導体コア粒子の粒径に応じた基底準位間のエネルギーに基づく蛍光13,33と、励起光13が蛍光体粒子表面によって散乱された散乱光12,32が発生する様子も示されている。   In FIG. 3B, the blue phosphor particles 100 and the red phosphor particles 300 are respectively irradiated with the excitation light 11, and the fluorescence 13 based on the energy between the ground levels according to the particle size of the semiconductor core particles. 33 and the scattered light 12 and 32 in which the excitation light 13 is scattered by the phosphor particle surface are also shown.

このような蛍光体粒子における励起光または他の蛍光体粒子から放射された蛍光に対する蛍光体粒子の散乱状態は、散乱角θ方向の強度をI(θ)とすると
I(θ)=|Σ(2ν+1)/ν(ν+1){aνΠν(cosθ)+bντν(cosθ)}|2
ν=1、∞
で表される。ここでaν、bνは複素振幅を表す係数で、粒子の屈折率およびサイズ因子(粒子サイズ)の関数である。また、Πν、τνは散乱角のみの関数で、ルジャンドルの多項式およびその導関数である。
The scattering state of the phosphor particles with respect to the excitation light in such phosphor particles or the fluorescence emitted from other phosphor particles is expressed as follows: I (θ) = | Σ ( 2ν + 1) / ν (ν + 1) {a ν Π ν (cosθ) + b ν τ ν (cosθ)} | 2
ν = 1, ∞
It is represented by Here, a ν and b ν are coefficients representing complex amplitudes, which are functions of the refractive index of the particles and the size factor (particle size). Further, ν ν and τ ν are functions of only the scattering angle, and are a Legendre polynomial and its derivatives.

このため、各色を発色する蛍光体粒子の粒径がそれぞれ異なる場合には、励起光や他の蛍光体粒子から放射される蛍光の散乱状態が蛍光体粒子の種類毎に異なってしまう。   For this reason, when the particle diameters of the phosphor particles that develop each color are different, the scattering state of the fluorescence emitted from the excitation light and other phosphor particles is different for each type of phosphor particles.

このとき、蛍光の散乱状態を調整するため、図5で示されるように、蛍光体粒子100,300において半導体シェル層102,302の厚さのみによって調整しようとすると、励起光を吸収する半導体シェル層102、302の体積が異なってしまい、励起光に対する吸収係数がそれぞれの蛍光体粒子で異なるという問題が生じる。   At this time, in order to adjust the scattering state of the fluorescence, as shown in FIG. 5, if the phosphor particles 100 and 300 are adjusted only by the thickness of the semiconductor shell layers 102 and 302, the semiconductor shell that absorbs excitation light is used. The volumes of the layers 102 and 302 are different, which causes a problem that the absorption coefficient for the excitation light is different for each phosphor particle.

この問題をするために、半導体コア粒子に形成される基底準位間のエネルギーEの大きさを調節するためには、半導体シェル層102、302の厚さだけでなく、半導体コア粒子および/または半導体シェル層の構成元素種、組成比の調整が行われる。すなわち、本実施形態においては、蛍光体粒子分散体に含まれるすべての蛍光体粒子の半導体シェル層のバンドギャップエネルギーE2を、すべての蛍光体粒子の半導体コア粒子中に形成される基底準位間のエネルギーEより大きくなるように、半導体コア粒子および/または半導体シェル層の構成元素種および/または組成比を調節する。 In order to adjust the magnitude of the energy E between the ground levels formed in the semiconductor core particle in order to solve this problem, not only the thickness of the semiconductor shell layers 102 and 302 but also the semiconductor core particle and / or The constituent element species and composition ratio of the semiconductor shell layer are adjusted. That is, in the present embodiment, the band gap energy E 2 of the semiconductor shell layers of all the phosphor particles contained in the phosphor particle dispersion is changed to the ground level formed in the semiconductor core particles of all the phosphor particles. The constituent element species and / or composition ratio of the semiconductor core particles and / or the semiconductor shell layer are adjusted so as to be larger than the energy E between them.

(実施形態3)
本発明の実施形態3による照明装置は、図6を参照して、励起エネルギーが2.88eV(波長430nm)の励起光を発するInx4Ga1-x4N発光ダイオード(0≦x4≦1)のチップ(図示せず)が実装されているリードフレーム601の上部に、2以上の青色の蛍光体粒子、緑色の蛍光体粒子および赤色の蛍光体粒子を媒体としての透明エポキシ樹脂に分散させた蛍光体粒子分散体602が形成された照明装置600である。ここで、上記蛍光体粒子分散体602中に含まれるすべての蛍光体粒子の半導体シェル層のバンドギャップエネルギーE2を、すべての蛍光体粒子の半導体コア粒子中に形成される基底準位間のエネルギーEより大きくなるように、すべての蛍光体粒子が設計されているため、各蛍光体粒子の蛍光の混色によって、演色性に優れた白色照明装置となる。なお、上記点状の照明装置をアレイ状に並べることにより面状の照明装置とすることもできる。
(Embodiment 3)
The illumination device according to Embodiment 3 of the present invention is an In x4 Ga 1-x4 N light emitting diode (0 ≦ x4 ≦ 1) that emits excitation light having an excitation energy of 2.88 eV (wavelength 430 nm) with reference to FIG. Fluorescence in which two or more blue phosphor particles, green phosphor particles, and red phosphor particles are dispersed in a transparent epoxy resin as a medium on top of a lead frame 601 on which a chip (not shown) is mounted. It is the illuminating device 600 in which the body particle dispersion 602 was formed. Here, the band gap energy E 2 of the semiconductor shell layers of all the phosphor particles contained in the phosphor particle dispersion 602 is determined between the ground levels formed in the semiconductor core particles of all the phosphor particles. Since all the phosphor particles are designed so as to be larger than the energy E, a white illumination device having excellent color rendering properties is obtained by the color mixture of the fluorescence of each phosphor particle. In addition, it can also be set as a planar illuminating device by arranging the said point-shaped illuminating device in an array form.

(実施形態4)
本発明の実施形態4による照明装置は、図7を参照して、図7(a)に示すように、励起エネルギーが2.88eV(波長430nm)の励起光を発振するInx5Ga1-x5N半導体レーザ(0≦x5≦1)のチップ(図示せず)が実装されたステム701が、樹脂707を介して導光体708に光学的に結合されている照明装置700である。
(Embodiment 4)
Lighting device according to a fourth embodiment of the present invention, with reference to FIG. 7, as shown in FIG. 7 (a), In x5 Ga 1-x5 excitation energy oscillates excitation light of 2.88 eV (wavelength 430 nm) A stem 701 on which a chip (not shown) of an N semiconductor laser (0 ≦ x5 ≦ 1) is mounted is an illumination device 700 that is optically coupled to a light guide 708 via a resin 707.

ここで、図7(a)および図7(b)を参照して、上記導光体708は、アクリルからなるコア702がこのコアより屈折率の低いフッ素系樹脂からなるクラッド704によって被覆された構造を有する。また、この導光体708の片方の端面にはInx5Ga1-x5N半導体レーザが、他方の端面には導光体内を伝播する励起光を反射するたとえば酸化シリコンからなる反射膜706が形成されている。さらに、上記コア702の一部にはTiO2粒子よりなる散乱体703が設けられており、半導体レーザよりこの導光体708に入射した励起光はこの散乱体703によって周りに拡散される。なお、TiO2粒子からなる上記散乱体を用いる構成に換えて、コア702とクラッド704の界面に凹凸部を設け(図示せず)、この凹凸部を有する界面における乱反射を用いるような構成としてもよい。さらに、上記導光体708の外周に、2以上の青色の蛍光体粒子、緑色の蛍光体粒子および赤色の蛍光体粒子を媒体としての透明エポキシ樹脂に分散させた蛍光体粒子分散体705を形成して本照明装置700の蛍光体層709とする。 Here, referring to FIG. 7A and FIG. 7B, in the light guide 708, a core 702 made of acrylic is covered with a clad 704 made of a fluororesin having a refractive index lower than that of the core. It has a structure. Further, an In x5 Ga 1 -x5 N semiconductor laser is formed on one end face of the light guide 708, and a reflection film 706 made of, for example, silicon oxide that reflects excitation light propagating through the light guide is formed on the other end face. Has been. Further, a scatterer 703 made of TiO 2 particles is provided on a part of the core 702, and excitation light incident on the light guide 708 from the semiconductor laser is diffused around by the scatterer 703. Instead of using the scatterer made of TiO 2 particles, an uneven portion (not shown) is provided at the interface between the core 702 and the clad 704, and irregular reflection at the interface having the uneven portion may be used. Good. Further, a phosphor particle dispersion 705 in which two or more blue phosphor particles, green phosphor particles, and red phosphor particles are dispersed in a transparent epoxy resin as a medium is formed on the outer periphery of the light guide 708. Thus, the phosphor layer 709 of the lighting device 700 is obtained.

以上の構成により、演色性に優れた線状の白色蛍光710を発する照明装置が得られる。また、蛍光体粒子分散体中の青色の蛍光体粒子、緑色の蛍光体粒子および/または赤色の蛍光体粒子の混合比を適宜変えることによって白色以外の所望とされる色度を有する照明装置を実現できる。   With the above configuration, an illuminating device that emits linear white fluorescent light 710 excellent in color rendering is obtained. An illumination device having a desired chromaticity other than white by appropriately changing the mixing ratio of the blue phosphor particles, the green phosphor particles, and / or the red phosphor particles in the phosphor particle dispersion. realizable.

なお、実施形態3または実施形態4に示す点状または線状の照明装置は、一般家庭における照明装置や、更には液晶のバックライトや液晶プロジェクターの光源としての照明に用いることもできる。   Note that the dotted or linear illumination device shown in Embodiment 3 or Embodiment 4 can also be used for illumination as a lighting device in a general home, and further as a liquid crystal backlight or a light source of a liquid crystal projector.

(実施形態5)
本発明の実施形態5による表示装置は、図8を参照して、Inx5Ga1-x5N半導体レーザ(0≦x5≦1)のチップ(図示せず)が実装されたステム701が導光体811に光学的に結合され、この導光体811が別の導光体801に光学的に結合され、導光体801の上面部には光強度を変調するための光変調素子802を介してそれぞれの色の蛍光体粒子または蛍光粒子分散体を含む素子(具体的には、青色蛍光体粒子含有樹脂803、緑色蛍光体粒子含有樹脂804、赤色蛍光体粒子含有樹脂805)が形成された表示装置800である。
(Embodiment 5)
In the display device according to the fifth embodiment of the present invention, referring to FIG. 8, a stem 701 on which a chip (not shown) of an In x5 Ga 1-x5 N semiconductor laser (0 ≦ x5 ≦ 1) is mounted is guided. The light guide body 811 is optically coupled to another light guide body 801, and an upper surface portion of the light guide body 801 is provided with a light modulation element 802 for modulating light intensity. Thus, an element (specifically, a blue phosphor particle-containing resin 803, a green phosphor particle-containing resin 804, and a red phosphor particle-containing resin 805) including phosphor particles or phosphor particle dispersions of respective colors is formed. This is a display device 800.

ここで、導光体811は、アクリルからなるコア702がこのコアより屈折率の低いフッ素系樹脂からなるクラッド704によって被覆され、このクラッド704は開口部811aを有する金属Al膜からなる反射膜812によって被覆された構造を有する。このコア702の一部にはTiO2粒子からなる散乱体703が形成されている。さらに、この導光体811の一方の端面には、Inx5Ga1-x5N半導体レーザを実装するステム701が配置され、他方の端面には、このInx5Ga1-x5N半導体レーザの光を反射するたとえば酸化シリコンからなる反射膜706が形成されている。かかる構成により、点状光源である半導体レーザから放射される励起光が線状光源に変換される。 Here, in the light guide 811, a core 702 made of acrylic is covered with a clad 704 made of a fluorine-based resin having a refractive index lower than that of the core, and the clad 704 is a reflective film 812 made of a metal Al film having an opening 811 a. It has a structure covered with. A scatterer 703 made of TiO 2 particles is formed on a part of the core 702. Further, the one end surface of the light guide 811, In x5 Ga 1-x5 N stem 701 for mounting the semiconductor laser is disposed on the other end face, the light of the In x5 Ga 1-x5 N semiconductor laser A reflective film 706 made of, for example, silicon oxide is formed. With this configuration, excitation light emitted from a semiconductor laser that is a point light source is converted into a linear light source.

そして、この導光体811は別の導光体801に光学的に結合されており、この導光体811の開口部811aから放射される線状の励起光がこの導光体801に入射される。さらに、この導光体801の下面(裏面)側には金属Al膜からなる反射膜806が形成されており、線状の励起光はこの導光体801中を伝播しつつ、線状の励起光の一部が反射膜806によって上面方向に放射される。かかる構成により、線状の光源が面状の光源に変換される。   The light guide 811 is optically coupled to another light guide 801, and linear excitation light radiated from the opening 811 a of the light guide 811 is incident on the light guide 801. The Further, a reflective film 806 made of a metal Al film is formed on the lower surface (rear surface) side of the light guide 801, and linear excitation light propagates through the light guide 801 and is linearly excited. A part of the light is emitted in the upper surface direction by the reflective film 806. With this configuration, a linear light source is converted into a planar light source.

この導光体801の上面には、光変調素子802として放射された励起光の光強度を制御するよう偏光板に挟まれたアクティブマトリクス駆動型TFT(薄膜トランジスタ)を含む液晶光変調素子が設けられており、この液晶光変調素子によって光強度が変調される。   On the upper surface of the light guide 801, a liquid crystal light modulation element including an active matrix driving type TFT (thin film transistor) sandwiched between polarizing plates so as to control the light intensity of the excitation light emitted as the light modulation element 802 is provided. The light intensity is modulated by the liquid crystal light modulation element.

光変調素子802の上面には、光変調素子上の各画素に対応して、媒体である透明エポキシ樹脂中に各色の蛍光体粒子が分散した蛍光体粒子含有素子(青色蛍光体粒子含有樹脂803、緑色蛍光体粒子含有樹脂804、赤色蛍光体粒子含有樹脂805)が配置されている。このため、光強度が変調された励起光が上記の青色蛍光体粒子含有樹脂803、緑色蛍光体粒子含有樹脂804および赤色蛍光体粒子含有樹脂805に照射されることにより、所望の画像を表示することができる。このようにして、演色性に優れた表示装置が得られる。なお、蛍光体から放射された蛍光の光強度を制御する手段としては、蛍光体より放射される蛍光を光電界吸収効果で吸収するような手段を用いることもできる。   On the upper surface of the light modulation element 802, a phosphor particle-containing element (blue phosphor particle-containing resin 803) in which phosphor particles of each color are dispersed in a transparent epoxy resin, which is a medium, corresponding to each pixel on the light modulation element. , Green phosphor particle-containing resin 804, red phosphor particle-containing resin 805). Therefore, a desired image is displayed by irradiating the blue phosphor particle-containing resin 803, the green phosphor particle-containing resin 804, and the red phosphor particle-containing resin 805 with the excitation light whose light intensity is modulated. be able to. In this way, a display device excellent in color rendering is obtained. In addition, as a means for controlling the light intensity of the fluorescence emitted from the phosphor, a means for absorbing the fluorescence emitted from the phosphor by the optical electric field absorption effect can be used.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

上記のように、本発明は、励起光の吸収効率が高く輝度の高い蛍光体粒子および演色性に優れた蛍光体粒子分散体ならびにこれらを含む照明装置および表示装置に広く利用することができる。   As described above, the present invention can be widely used for phosphor particles with high excitation light absorption efficiency and high luminance, phosphor particle dispersions excellent in color rendering, and illumination devices and display devices including these.

(a)は本発明の実施形態1による蛍光体粒子の断面模式図である。(b)は本発明の実施形態1による蛍光体粒子のバンド構造図である。(A) is a cross-sectional schematic diagram of the phosphor particles according to Embodiment 1 of the present invention. FIG. 2B is a band structure diagram of phosphor particles according to Embodiment 1 of the present invention. (a)は従来の蛍光体粒子の断面模式図である。(b)は従来の蛍光体粒子のバンド構造図である。(A) is a cross-sectional schematic diagram of conventional phosphor particles. (B) is the band structure figure of the conventional fluorescent substance particle. (a)は本発明の実施形態2による蛍光体粒子分散体の立体透視模式図である。(b)は本発明の実施形態2による蛍光体粒子分散体中における2つの蛍光体粒子の拡大断面模式図である。(A) is a three-dimensional perspective schematic diagram of the phosphor particle dispersion according to Embodiment 2 of the present invention. (B) is an expanded cross-sectional schematic diagram of two fluorescent substance particles in the fluorescent substance particle dispersion by Embodiment 2 of this invention. 本発明の実施形態2による蛍光体粒子分散体中における2つの蛍光体粒子のバンド構造図である。It is a band structure figure of two fluorescent substance particles in the fluorescent substance particle dispersion by Embodiment 2 of the present invention. 蛍光体粒子分散体中における2つの蛍光体粒子について、半導体シェル層の厚さの調節を説明する断面模式図である。It is a cross-sectional schematic diagram explaining adjustment of the thickness of a semiconductor shell layer about two fluorescent substance particles in a fluorescent substance particle dispersion. 本発明の実施形態3による照明装置の立体模式図である。It is a three-dimensional schematic diagram of the illuminating device by Embodiment 3 of this invention. (a)は本発明の実施形態4による照明装置の立体模式図である。(b)本発明の実施形態4による照明装置のVII方向からの断面模式図である。(A) is a three-dimensional schematic diagram of the illuminating device by Embodiment 4 of this invention. (B) It is a cross-sectional schematic diagram from the VII direction of the illuminating device by Embodiment 4 of this invention. (a)本発明の実施形態5による表示装置の立体模式図である。(b)本発明の実施形態5による表示装置に用いられる導光体のVIII方向からの断面模色図である。(A) It is a three-dimensional schematic diagram of the display apparatus by Embodiment 5 of this invention. (B) It is a cross-sectional schematic diagram from the VIII direction of the light guide used for the display apparatus by Embodiment 5 of this invention.

符号の説明Explanation of symbols

11 励起光、12,22,32 散乱光、13,23,33 蛍光、14 電子、15 正孔、100,200,300 蛍光体粒子、101,201,301 半導体コア粒子、101c,102c,201c,202c,301c,302c 伝導帯、101v,102v,201v,202v,301v,302v 価電子帯、102,202,302 半導体シェル層、111c,111v,211c,211v,311c,311v 基底準位、600,700 照明装置、602,705,3000 蛍光体粒子分散体、701 ステム、702 コア、703 散乱体、704 クラッド、706,806,812 反射膜、707 樹脂、708,801,811 導光体、709 蛍光体層、710 白色蛍光、800 表示装置、802 光変調素子、803 青色蛍光体粒子含有樹脂、804 緑色蛍光体粒子含有樹脂、805 赤色蛍光体粒子含有樹脂、811a 開口部、3100 媒体。   11 excitation light, 12, 22, 32 scattered light, 13, 23, 33 fluorescence, 14 electrons, 15 holes, 100, 200, 300 phosphor particles, 101, 201, 301 semiconductor core particles, 101c, 102c, 201c, 202c, 301c, 302c conduction band, 101v, 102v, 201v, 202v, 301v, 302v valence band, 102, 202, 302 semiconductor shell layer, 111c, 111v, 211c, 211v, 311c, 311v ground level, 600, 700 Illumination device, 602, 705, 3000 phosphor particle dispersion, 701 stem, 702 core, 703 scatterer, 704 clad, 706, 806, 812 reflective film, 707 resin, 708, 801, 811 light guide, 709 phosphor Layer, 710 white fluorescence, 800 display, 80 2 Light modulation element, 803 Blue phosphor particle-containing resin, 804 Green phosphor particle-containing resin, 805 Red phosphor particle-containing resin, 811a opening, 3100 medium.

Claims (7)

励起エネルギーEeを有する励起光を受けて蛍光を発する蛍光体粒子であって、
In x1 Ga y1 Al 1-x1-y1 N(0<x1、0≦y1、x1+y1≦1)からなりバンドギャップエネルギーE1を有する半導体コア粒子と、前記半導体コア粒子を被覆するIn x2 Ga y2 Al 1-x2-y2 N(0<x2、0<y2、x2+y2≦1)からなりバンドギャップエネルギーE2を有する半導体シェル層を含み、
前記半導体コア粒子のE1と、前記半導体シェル層のE2と、前記励起光のEeとの関係が、E1<E2≦Eeであり、
前記半導体シェル層で前記半導体コア粒子を被覆することにより前記半導体コア粒子中にE1とE2との間のエネルギーを有する離散的なエネルギー準位が形成され、前記エネルギー準位における基底準位間のエネルギーEに基づく蛍光を発する蛍光体粒子。
Phosphor particles that emit fluorescence in response to excitation light having excitation energy E e ,
In x1 Ga y1 Al 1-x1-y1 N (0 <x1, 0 ≦ y1, x1 + y1 ≦ 1), semiconductor core particles having band gap energy E 1, and In x2 Ga y2 Al covering the semiconductor core particles Comprising a semiconductor shell layer composed of 1-x2-y2 N (0 <x2, 0 <y2, x2 + y2 ≦ 1) and having a band gap energy E 2 ;
The relationship between E 1 of the semiconductor core particles, E 2 of the semiconductor shell layer, and E e of the excitation light is E 1 <E 2 ≦ E e ,
By covering the semiconductor core particle with the semiconductor shell layer, a discrete energy level having energy between E 1 and E 2 is formed in the semiconductor core particle, and a ground level in the energy level is formed. Phosphor particles emitting fluorescence based on the energy E between them.
前記基底準位間のエネルギーが、1.85eV〜2.06eV、2.29eV〜2.48eVまたは2.58eV〜3.02eVのいずれかの範囲にある請求項1に記載の蛍光体粒子。   The phosphor particles according to claim 1, wherein the energy between the ground levels is in a range of 1.85 eV to 2.06 eV, 2.29 eV to 2.48 eV, or 2.58 eV to 3.02 eV. 半導体レーザまたは発光ダイオードからなる発光素子からの励起光を受けて発光する請求項1または請求項2に記載の蛍光体粒子。 The phosphor particles according to claim 1 , wherein the phosphor particles emit light upon receiving excitation light from a light emitting element comprising a semiconductor laser or a light emitting diode. 請求項1〜請求項のいずれかに記載の蛍光体粒子を2以上含む蛍光体粒子分散体であって、
前記基底準位が異なる2以上の前記蛍光体粒子を含み、すべての前記蛍光体粒子の半導体シェル層のバンドギャップエネルギーE2が、すべての前記蛍光体粒子の半導体コア粒子中に形成される基底準位間のエネルギーEよりも大きいことを特徴とする蛍光体粒子分散体。
A phosphor particle dispersion comprising two or more phosphor particles according to any one of claims 1 to 3 ,
The base includes two or more phosphor particles having different ground levels, and the band gap energy E 2 of the semiconductor shell layer of all the phosphor particles is formed in the semiconductor core particles of all the phosphor particles. A phosphor particle dispersion characterized by being larger than energy E between levels.
前記2以上の蛍光体粒子が媒体中に分散されている請求項に記載の蛍光体粒子分散体。 The phosphor particle dispersion according to claim 4 , wherein the two or more phosphor particles are dispersed in a medium. 請求項1〜請求項のいずれかに記載の蛍光体粒子または蛍光体粒子分散体と、発光素子とを含む照明装置。 Lighting device comprising a phosphor particles or phosphor particle dispersion according, and a light emitting element in any of claims 1 to 5. 請求項1〜請求項のいずれかに記載の蛍光体粒子または蛍光体粒子分散体と、発光素子と、前記蛍光体粒子または前記蛍光体粒子分散体から発する蛍光および発光素子から発する励起光の少なくとも1つの光の光強度を変調する光強度変調手段を含む表示装置。 The phosphor particles or phosphor particle dispersion according to any one of claims 1 to 5 , a light emitting element, fluorescence emitted from the phosphor particles or phosphor particle dispersion, and excitation light emitted from the light emitting element. A display device comprising light intensity modulation means for modulating the light intensity of at least one light.
JP2004268203A 2004-09-15 2004-09-15 Phosphor particles, phosphor particle dispersion, and illumination device and display device including the same Expired - Fee Related JP4785363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268203A JP4785363B2 (en) 2004-09-15 2004-09-15 Phosphor particles, phosphor particle dispersion, and illumination device and display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268203A JP4785363B2 (en) 2004-09-15 2004-09-15 Phosphor particles, phosphor particle dispersion, and illumination device and display device including the same

Publications (2)

Publication Number Publication Date
JP2006083260A JP2006083260A (en) 2006-03-30
JP4785363B2 true JP4785363B2 (en) 2011-10-05

Family

ID=36162035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268203A Expired - Fee Related JP4785363B2 (en) 2004-09-15 2004-09-15 Phosphor particles, phosphor particle dispersion, and illumination device and display device including the same

Country Status (1)

Country Link
JP (1) JP4785363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730812B1 (en) 2016-03-30 2017-04-27 충남대학교산학협력단 Aluminum ion doped zinc oxide luminous material and method for continuous synthesis the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822919B2 (en) * 2006-04-26 2011-11-24 シャープ株式会社 Light emitting device and vehicle headlamp
KR101290251B1 (en) * 2006-08-21 2013-07-30 삼성전자주식회사 Composite light emitting material and light emitting device comprising the same
JP4318710B2 (en) * 2006-10-12 2009-08-26 シャープ株式会社 Nanocrystalline phosphor, coated nanocrystalline phosphor, and method for producing coated nanocrystalline phosphor
KR20100127264A (en) * 2008-03-07 2010-12-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Lighting system with removable light extracting member
JP2011040486A (en) * 2009-08-07 2011-02-24 Sharp Corp Light emitting device and image display apparatus
JP6781559B2 (en) * 2015-10-19 2020-11-04 シャープ株式会社 Lighting equipment, display equipment and TV receivers
CA3135673A1 (en) * 2019-04-16 2020-10-22 Infinite Arthroscopy, Inc. Limited Light source converter
JP2021172713A (en) * 2020-04-22 2021-11-01 スタンレー電気株式会社 Group III nitride semiconductor nanoparticles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501091B1 (en) * 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
FR2838241B1 (en) * 2002-04-09 2004-06-25 Commissariat Energie Atomique LUMINESCENT MATERIALS CONSISTING OF HEART / SHELL STRUCTURE NANOCRYSTALS AND PROCESS FOR THEIR PREPARATION
JP2004107572A (en) * 2002-09-20 2004-04-08 Sharp Corp Fluorescent material, and lighting device and display device containing the same
JP2004225038A (en) * 2002-11-25 2004-08-12 Kenji Yamamoto Light emitting element
KR100657891B1 (en) * 2003-07-19 2006-12-14 삼성전자주식회사 Semiconductor nanocrystal and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730812B1 (en) 2016-03-30 2017-04-27 충남대학교산학협력단 Aluminum ion doped zinc oxide luminous material and method for continuous synthesis the same

Also Published As

Publication number Publication date
JP2006083260A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP6243376B2 (en) Display device
TWI631395B (en) Optical member, display device having the same and method of fabricating the same
US8269237B2 (en) Light-emitting device, and illumination apparatus and display apparatus using the light-emitting device
KR101660163B1 (en) Light conversion member, backlight unit and display device comprising the same
TWI588548B (en) Display device
JP2018509647A (en) Photoluminescence color display
JP2006291064A (en) Phosphor film, device of illumination and displaying device having the same
KR101305696B1 (en) Display device and optical member
JP2012022028A (en) Liquid crystal display
JP2013536460A (en) Display device
WO2012137583A1 (en) Optical element, color wheel, illumination device, and projection display device
JP2020520048A (en) Light conversion film for backlight module, backlight module and display device
KR20120107794A (en) Light conversion member and display device having the same
US11349038B2 (en) Quantum dot complex and display apparatus including the same
KR102009824B1 (en) Light source device and display device
JP4785363B2 (en) Phosphor particles, phosphor particle dispersion, and illumination device and display device including the same
KR101870446B1 (en) Optical member and display device having the same
KR20120127077A (en) Color converting device and method for manufacturing the same
KR20200071651A (en) Back light unit and diplay including the same
JP2004342405A (en) Linear light emitting body, and illuminating device and display device including the same
JP2007004099A (en) Surface light source device and color liquid crystal display device assembly
WO2019161596A1 (en) Optical diaphragm, backlight module and display device
KR102185701B1 (en) Optical film for mini led or micro led backlight unit
CN110426890B (en) Liquid crystal display panel and liquid crystal display device
JP2004161841A (en) Phosphor and lighting system and display device containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4785363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees