JP4784900B2 - Discharge device - Google Patents

Discharge device Download PDF

Info

Publication number
JP4784900B2
JP4784900B2 JP2009118013A JP2009118013A JP4784900B2 JP 4784900 B2 JP4784900 B2 JP 4784900B2 JP 2009118013 A JP2009118013 A JP 2009118013A JP 2009118013 A JP2009118013 A JP 2009118013A JP 4784900 B2 JP4784900 B2 JP 4784900B2
Authority
JP
Japan
Prior art keywords
photocatalyst
ground electrode
discharge
photocatalyst carrier
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009118013A
Other languages
Japanese (ja)
Other versions
JP2010247139A (en
Inventor
和彦 神谷
浩作 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tornex Inc
Original Assignee
Tornex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tornex Inc filed Critical Tornex Inc
Priority to JP2009118013A priority Critical patent/JP4784900B2/en
Publication of JP2010247139A publication Critical patent/JP2010247139A/en
Application granted granted Critical
Publication of JP4784900B2 publication Critical patent/JP4784900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Description

本発明は、光触媒担持体と接地電極との間に電圧を印加し、光触媒担持体に立設した複数の針状電極と接地電極との間に、安定してストリーマ放電若しくはコロナ放電を発生させ、これらの放電を良好に利用し得るようにした放電装置に関する。  In the present invention, a voltage is applied between the photocatalyst carrier and the ground electrode, and streamer discharge or corona discharge is stably generated between the plurality of needle-like electrodes standing on the photocatalyst carrier and the ground electrode. The present invention relates to a discharge device that can make good use of these discharges.

光触媒を利用し、臭気や有害ガス、細菌やウイルス、有機物ないし無機物由来の塵などを酸化還元して、より安全性を高める技術は、多く実用化されている。これらは、いずれも光触媒に光触媒作用誘起光、例えば、360〜400nmの紫外線を照射した際に生ずる、光触媒作用である酸化力や還元力を利用するものである。したがって、上記の光触媒作用誘起光を照射するための光触媒作用誘起光照射器、例えば、紫外線照射光源たる熱陰極光ランプが必要となる(例えば、特許文献1、2参照)。  Many techniques for improving safety by using a photocatalyst to oxidize and reduce odors and harmful gases, bacteria and viruses, dusts derived from organic or inorganic substances, have been put into practical use. All of these utilize the photocatalytic action-induced light, for example, the oxidizing power or reducing power, which is a photocatalytic action, which is generated when ultraviolet light having a wavelength of 360 to 400 nm is irradiated. Therefore, a photocatalysis-inducing light irradiator for irradiating the above-mentioned photocatalysis-inducing light, for example, a hot cathode light lamp as an ultraviolet irradiation light source is required (for example, see Patent Documents 1 and 2).

この熱陰極光ランプは、光触媒に陰の部分を減らし紫外線を効率よく照射する必要性により、光触媒からある程度の距離を取る必要があり、装置全体として大きくならざるを得ない。この距離を縮めるには、熱陰極光ランプの設置数を増やす必要があり、これらは消費電力や装置コストの増大につながる。さらに、使用の継続により、熱陰極光ランプの表面が汚れ、紫外線照射量が徐々に逓減するから、汚れ除去の作業が必要となる。また、熱陰極光ランプは、その寿命が4,000から5,000時間と比較的短く、交換にコストがかかることになり、長寿命の冷陰極蛍光ランプ(20,000時間)を使用したとしても、汚れ除去の問題がより多く発生する。  This hot-cathode lamp needs to have a certain distance from the photocatalyst due to the necessity of reducing the shaded portion of the photocatalyst and efficiently irradiating ultraviolet rays, and the entire apparatus must be enlarged. In order to reduce this distance, it is necessary to increase the number of hot cathode light lamps installed, which leads to an increase in power consumption and device cost. Furthermore, with the continued use, the surface of the hot cathode light lamp becomes dirty, and the amount of UV irradiation gradually decreases, so that the work for removing the dirt is necessary. Moreover, the hot cathode light lamp has a relatively short life of 4,000 to 5,000 hours and is expensive to replace, and a long-life cold cathode fluorescent lamp (20,000 hours) is used. However, more dirt removal problems occur.

このような状況から、熱陰極光ランプや冷陰極蛍光ランプを使用しない技術があり、これは、図11に示すように、筒体50内に収納した光触媒担持体51を高電圧端子52、53の間に配置し、電源54からこれら高電圧端子52、53に電流を供給して光触媒担持体51部位に放電光を発生させ、この放電光により光触媒作用である酸化力や還元力を生じさせるものである(例えば、特許文献3参照)。  Under such circumstances, there is a technique that does not use a hot cathode light lamp or a cold cathode fluorescent lamp. This is because, as shown in FIG. 11, a photocatalyst carrier 51 housed in a cylindrical body 50 is connected to high-voltage terminals 52, 53. Between the power supply 54 and the high voltage terminals 52 and 53 to supply current to the photocatalyst carrier 51 to generate discharge light, and the discharge light generates an oxidizing power and a reducing power that are photocatalytic actions. (For example, refer to Patent Document 3).

さらに、図12に示すように、針状電極55と光触媒56を塗布した板状電極57とを対峙させ、直流電源58の負極に針状電極55をつなぎ、正極に板状電極57をつないで、直流高電圧を印加して400nm以下の紫外線を発生させ、この紫外線により光触媒作用である酸化力や還元力を生じさせるものもある(例えば、特許文献4参照)。  Further, as shown in FIG. 12, the needle electrode 55 and the plate electrode 57 coated with the photocatalyst 56 are opposed to each other, the needle electrode 55 is connected to the negative electrode of the DC power supply 58, and the plate electrode 57 is connected to the positive electrode. In some cases, a DC high voltage is applied to generate an ultraviolet ray having a wavelength of 400 nm or less, and the ultraviolet ray generates an oxidizing power or a reducing power that is a photocatalytic action (see, for example, Patent Document 4).

特開2006−280428号公報  JP 2006-280428 A 特開平11−114443号公報  Japanese Patent Laid-Open No. 11-114443 特開2000−140624号公報  JP 2000-140624 A 特開2006−122220号公報  JP 2006-122220 A

既に述べたように、上記特許文献1または2は、紫外線照射光源たる熱陰極光ランプや冷陰極蛍光ランプが必要となり、それにより、装置の大型化、汚れ除去の必要性、交換によるコスト高などの課題が生ずる。  As already described, the above-mentioned Patent Document 1 or 2 requires a hot cathode light lamp or a cold cathode fluorescent lamp as an ultraviolet irradiation light source, thereby increasing the size of the apparatus, the necessity of removing dirt, the high cost due to replacement, and the like. The problem arises.

特許文献3は、紫外線照射光源たる各種ランプを必要としない点で優れているが、高電圧端子52、53の間に生じる沿面放電光、コロナ放電光、アーク放電光を利用するものであるため、使用による時々刻々変化する条件下では、火花放電などの短絡を防ぎつつ、安定した放電を維持することが困難である。  Patent Document 3 is excellent in that it does not require various lamps that are ultraviolet irradiation light sources, but uses creeping discharge light, corona discharge light, and arc discharge light generated between the high-voltage terminals 52 and 53. It is difficult to maintain a stable discharge while preventing a short circuit such as a spark discharge under conditions that change every moment due to use.

また、特許文献4も、特許文献3と同様に、使用による時々刻々変化する条件下では、火花放電を防ぎつつ安定した放電を維持することが困難である。  Also, in Patent Document 4, similarly to Patent Document 3, it is difficult to maintain a stable discharge while preventing spark discharge under conditions that change from use to use.

そこで、本発明は、上記事情に鑑みてなされたもので、各種ランプを使用しないで、使用による時々刻々変化する条件下であっても、火花放電などの短絡を防ぎつつ、安定したストリーマ放電若しくはコロナ放電を維持することが出来る放電装置を提供することを課題とする。  Therefore, the present invention has been made in view of the above circumstances, and without using various lamps, even under conditions that change from moment to moment due to use, while preventing short circuit such as spark discharge, stable streamer discharge or It is an object of the present invention to provide a discharge device capable of maintaining corona discharge.

本発明は、上記課題を達成するために提案されたものであって、下記の構成からなることを特徴とするものである。
すなわち、請求項1記載の発明は、導電性を有する担持体に光触媒を担持させ、且つその抵抗値を1〜100MΩの範囲の高抵抗とした光触媒担持体と、該光触媒担持体に互いに等間隔に立設した複数の針状電極と、該複数の針状電極の先端部から0.1〜30mm離れた位置に前記光触媒担持体と平行に設置した接地電極とからなり、前記光触媒担持体と前記接地電極との間に電源により正あるいは負の3〜30KVの電圧を印加し、前記複数の針状電極と前記接地電極との間にストリーマ放電若しくはコロナ放電を発生させることを特徴とする放電装置である。
The present invention has been proposed in order to achieve the above-mentioned problems, and is characterized by having the following configuration.
That is, according to the first aspect of the present invention, a photocatalyst is supported on a conductive support, and the photocatalyst support having a high resistance in the range of 1 to 100 MΩ, and the photocatalyst support are equidistant from each other. A plurality of needle-like electrodes standing on the ground, and a ground electrode placed in parallel with the photocatalyst carrier at a position 0.1 to 30 mm away from the tips of the needle-like electrodes, and the photocatalyst carrier, Discharge characterized in that a positive or negative voltage of 3 to 30 KV is applied to the ground electrode by a power source to generate streamer discharge or corona discharge between the plurality of needle-like electrodes and the ground electrode. Device.

また、請求項2記載の発明は、導電性を有する担持体に光触媒を担持させ、且つその抵抗値を1〜100MΩの範囲の高抵抗とした光触媒担持体と、該光触媒担持体に少なくとも2本以上の柱状電極を所定距離を有して立設しこれら柱状電極を接続する線径0.3mm以下の線電極と、該線電極から0.1〜30mm離れた位置に前記光触媒担持体と平行に設置した接地電極とからなり、前記光触媒担持体と前記接地電極との間に電源により正あるいは負の3〜30KVの電圧を印加し、前記線電極と前記接地電極との間にストリーマ放電若しくはコロナ放電を発生させることを特徴とする放電装置である。The invention according to claim 2 is a photocatalyst carrier in which a photocatalyst is carried on a conductive carrier and has a high resistance in the range of 1 to 100 MΩ, and at least two of the photocatalyst carrier. The above-mentioned columnar electrodes are erected with a predetermined distance, a line electrode having a diameter of 0.3 mm or less connecting these columnar electrodes, and parallel to the photocatalyst carrier at a position 0.1 to 30 mm away from the line electrode A positive or negative voltage of 3 to 30 KV is applied between the photocatalyst carrier and the ground electrode by a power source, and streamer discharge or between the line electrode and the ground electrode. A discharge device that generates corona discharge.

また、請求項3記載の発明は、前記光触媒担持体が、流体を流通させる平面ないし立体構造である放電装置である。  The invention according to claim 3 is the discharge device in which the photocatalyst carrier has a flat or three-dimensional structure through which a fluid flows.

また、請求項4記載の発明は、前記接地電極が、流体を流通させる平面ないし立体構造である放電装置である。  According to a fourth aspect of the present invention, there is provided a discharge device in which the ground electrode has a flat or three-dimensional structure through which a fluid flows.

上記第1の課題解決手段による作用は次の通りである。すなわち、光触媒担持体と接地電極との間に電源により正若しくは負の3〜30KVの電圧を印加すると、光触媒担持体に互いに等間隔に立設している複数の針状電極と接地電極との閧を隔てている、0.1〜30mm間にストリーマ放電若しくはコロナ放電が発生するが、光触媒担持体自体が1〜100MΩの範囲の高抵抗値を有しているから、火花放電を起こすことなくストリーマ放電若しくはコロナ放電を継続する。The operation of the first problem solving means is as follows. That is, when a positive or negative voltage of 3 to 30 KV is applied between the photocatalyst carrier and the ground electrode by a power source, the plurality of needle-like electrodes and the ground electrode standing on the photocatalyst carrier at equal intervals from each other Although streamer discharge or corona discharge occurs between 0.1 and 30 mm separating the ridges, the photocatalyst carrier itself has a high resistance value in the range of 1 to 100 MΩ, so that no spark discharge occurs. Continue streamer discharge or corona discharge.

また、第2の課題解決手段による作用は、光触媒担持体と接地電極との間に電源により正若しくは負の3〜10KVの電圧を印加すると、光触媒担持体に立設している2本以上の柱状電極に接続している線電極と接地電極との間を隔てている、0.1〜30mm間にストリーマ放電若しくはコロナ放電が発生するが、光触媒担持体自体が1〜100MΩの範囲の高抵抗値を有しているから、火花放電を起こすことなくストリーマ放電若しくはコロナ放電を継続する。Further, the second problem solving means is that when a positive or negative voltage of 3 to 10 KV is applied between the photocatalyst carrier and the ground electrode by a power source, two or more standing on the photocatalyst carrier are provided. Streamer discharge or corona discharge occurs between 0.1 and 30 mm separating the line electrode connected to the columnar electrode and the ground electrode, but the photocatalyst carrier itself has a high resistance in the range of 1 to 100 MΩ. Since it has a value, streamer discharge or corona discharge is continued without causing spark discharge.

また、第3の課題解決手段による作用は、流体が光触媒担持体内を流通するため、その光触媒担持体の単位容積当たりの流体が接触する表面が増え、それに伴いより多くの流体が光触媒に接触すると共に流体の流通抵抗が減る。  The third problem solving means is that the fluid circulates in the photocatalyst carrier, so that the surface per unit volume of the photocatalyst carrier is in contact with the fluid, and more fluid comes into contact with the photocatalyst. At the same time, fluid flow resistance is reduced.

また、第4の課題解決手段による作用は、流体が接地電極内を流通するため、その接地電極における流体の流通抵抗が減ると共に、その接地電極の放電面が増える。  In addition, since the fluid flows through the ground electrode, the fourth problem-solving means reduces the flow resistance of the fluid in the ground electrode and increases the discharge surface of the ground electrode.

以上詳述したように、本発明によれば、以下のような効果がある。
請求項1記載の発明は、使用により時々刻々変化する条件下にあっても、火花放電を起こすことなくストリーマ放電若しくはコロナ放電を安定して継続出来るため、各種ランプを使用しないでも、ストリーマ放電若しくはコロナ放電により光触媒を安定して活性化出来、さらに他のストリーマ放電若しくはコロナ放電による活性化機能も安定して得る効果がある。
As described above in detail, the present invention has the following effects.
The invention according to claim 1 is capable of stably continuing streamer discharge or corona discharge without causing spark discharge even under conditions that change from moment to moment by use. There is an effect that the photocatalyst can be stably activated by corona discharge, and the activation function by other streamer discharge or corona discharge can be stably obtained.

また、請求項2記載の発明は、2本以上の柱状電極間を接続した線電極によっても、上記の請求項1記載の発明と同様の効果を得ることが出来る。  Further, the invention described in claim 2 can obtain the same effect as that of the invention described in claim 1 above also by a line electrode connecting two or more columnar electrodes.

また、請求項3記載の発明は、上記効果に加えて、光触媒による効果をより高めることが出来る。  The invention according to claim 3 can further enhance the effect of the photocatalyst in addition to the above effect.

また、請求項4記載の発明は、上記効果に加えて、ストリーマ放電若しくはコロナ放電がなお一層容易となり、光触媒の活性化をより高めることが出来る。  In addition to the above effects, the invention described in claim 4 can further facilitate streamer discharge or corona discharge, and can further increase the activation of the photocatalyst.

本発明の実施の形態を示す放電装置の断面図である(実施例1)。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing of the discharge device which shows embodiment of this invention (Example 1). 図1の放電装置の光触媒担持体に複数の針状電極を立設した状態の平面図である(実施例1)。FIG. 2 is a plan view of a state in which a plurality of needle-like electrodes are erected on the photocatalyst carrier of the discharge device of FIG. 1 (Example 1). 光触媒担持体に複数の針状電極を立設した状態の断面図である(実施例1)。It is sectional drawing of the state which stood the several acicular electrode in the photocatalyst carrier (Example 1). 図3の担持体の説明図である(実施例1)。(Example 1) which is explanatory drawing of the support body of FIG. 図1の放電装置の接地電極の平面図である(実施例1)。(Example 1) which is a top view of the ground electrode of the discharge device of FIG. 本発明の実施の形態を示す放電装置の実証試験での能力比較のためのCO2濃度と時間との特性図である(実施例1)。It is a characteristic view of CO2 density | concentration and time for the capability comparison in the verification test of the discharge device which shows embodiment of this invention (Example 1). 本発明の他の実施の形態を示す放電装置の図1と同状の断面図である(実施例2)。It is sectional drawing similar to FIG. 1 of the discharge device which shows other embodiment of this invention (Example 2). 図7の放電装置の平面図である(実施例2)。(Example 2) which is a top view of the discharge device of FIG. 本発明の他の実施の形態を示す放電装置の図1と同状の断面図である(実施例3)。It is sectional drawing similar to FIG. 1 of the discharge device which shows other embodiment of this invention (Example 3). 図9の放電装置の平面図である(実施例3)。(Example 3) which is a top view of the discharge device of FIG. 従来例の装置を示す構成図である。It is a block diagram which shows the apparatus of a prior art example. 従来例の装置を示す構成図である。It is a block diagram which shows the apparatus of a prior art example.

図面において、放電装置1は、導電性を有する担持体2に光触媒3を担持させ、且つその抵抗値を1〜100MΩの範囲の高抵抗とした光触媒担持体4と、この光触媒担持体4に互いに等間隔に立設した複数の針状電極5と、これら複数の針状電極5の先端部5aから0.1〜30mm離れた位置に光触媒担持体4と平行に設置した接地電極6とからなり、光触媒担持体4と接地電極6との間に電源7により正若しくは負の3〜30KV(以下、単に「±3〜±30KV」という)の電圧を印加し、上記複数の針状電極5と接地電極6との間にストリーマ放電若しくはコロナ放電(以下、単に「ストリーマ放電等」という)を発生させるものである。そして、光触媒担持体4、複数の針状電極5及び接地電極6は、筒体8内に収納され、空気などの流体が矢線A、B方向にいずれも流通自在である。In the drawing, a discharge device 1 includes a photocatalyst 3 supported on a conductive support 2 and a high resistance in the range of 1 to 100 MΩ, and a photocatalyst support 4 with each other. It comprises a plurality of needle-like electrodes 5 erected at equal intervals, and a ground electrode 6 placed in parallel with the photocatalyst carrier 4 at a position 0.1 to 30 mm away from the tips 5a of the plurality of needle-like electrodes 5. A positive or negative voltage of 3 to 30 KV (hereinafter simply referred to as “± 3 to ± 30 KV”) is applied between the photocatalyst carrier 4 and the ground electrode 6 by the power source 7, and the plurality of needle-like electrodes 5 A streamer discharge or corona discharge (hereinafter simply referred to as “streamer discharge etc.”) is generated between the ground electrode 6 and the ground electrode 6. The photocatalyst carrier 4, the plurality of needle-like electrodes 5 and the ground electrode 6 are accommodated in the cylinder 8, and fluid such as air can flow freely in the directions of arrows A and B.

前記光触媒担持体4の担持体2は、板状であり且つセラミック製のハニカム構造体10であるから、空気などの流体が流通自在であって、このハニカム構造体10の表面11に、粒径が1μmから50μmの範囲にある表層形成用セラミック粒子12を焼結して凸凹面13を新たに形成している。したがって、このハニカム構造体10の表面11には、良好な凹凸面13が形成されて、充分な表面積を有することになって、後に詳述する光触媒作用誘起光が光触媒担持体4に充分に達して、高効率の光触媒作用を実現できる。  Since the carrier 2 of the photocatalyst carrier 4 is a plate-like and ceramic honeycomb structure 10, a fluid such as air can flow freely, and a particle size is formed on the surface 11 of the honeycomb structure 10. Is formed by sintering the surface layer forming ceramic particles 12 in the range of 1 μm to 50 μm. Therefore, a favorable uneven surface 13 is formed on the surface 11 of the honeycomb structure 10 and has a sufficient surface area, so that photocatalytic action inducing light described later reaches the photocatalyst carrier 4 sufficiently. Thus, highly efficient photocatalytic action can be realized.

なお、担持体2は、上記のハニカム構造体10に限定されず、三次元網目構造多孔質状、格子状、パンチング状などでも良く、流体が流通自在で且つ充分な表面積が確保出来るものであればどのようなものでも良い。また、その材質もセラミック製に限定されず、樹脂や紙でも採用可能である。  The carrier 2 is not limited to the honeycomb structure 10 described above, and may be a three-dimensional network structure porous shape, lattice shape, punching shape, etc., as long as fluid can flow freely and a sufficient surface area can be secured. Anything is acceptable. Further, the material is not limited to ceramic, and resin or paper can be used.

また、前記担持体2は導電性が付与されているが、この導電性は、セラミック製のハニカム構造体10の表面11に新たに形成された凸凹面13に、活性炭14が塗布されることで、実現される。さらに、この活性炭14の上に光触媒3が塗布されることにより担持される。そして、光触媒担持体4は、全体として、その抵抗値が高抵抗であるが、この高抵抗は抵抗値1〜100MΩの範囲であることで実現される。さらに、この光触媒担持体4のより好ましい抵抗値は3〜30MΩの範囲であり、より一層好ましい抵抗値は5〜20MΩである。In addition, the carrier 2 is provided with conductivity. This conductivity is obtained by applying activated carbon 14 to the uneven surface 13 newly formed on the surface 11 of the ceramic honeycomb structure 10. Realized. Further, the photocatalyst 3 is applied on the activated carbon 14 to be supported. The photocatalyst carrier 4, as a whole, its the resistance value Ru high resistance der, high resistance is realized by a range of resistance values 1~100Emuomega. Furthermore, the more preferable resistance value of the photocatalyst carrier 4 is in the range of 3 to 30 MΩ, and the more preferable resistance value is 5 to 20 MΩ.

この光触媒3は、アナターゼ型の酸化チタン(TiO)の微粉末が主に使用されるが、特に限定されず、光触媒作用のあるものであればよい。そして、この光触媒3である酸化チタンは、これが主成分とされつつも、バインダーとしてSiOが約20%含有され、上記したハニカム構造体10の凸凹面13に焼き付けられて担持される。したがって、焼き付けられた酸化チタンは、凸凹面13のアンカー効果により脱落しづらく、光触媒3たる酸化チタンの脱落による性能低下と発塵とを防ぐことが出来て、その性能が向上し且つ維持できると共に、再生可能となる。この光触媒3には、酸化チタン以外にSiOが約20%含有しているため、その表面が弱酸性となり、アンモニアガスなどの塩基性ガスが存在している場合、その吸着、分解を促進させることが出来る。The photocatalyst 3 is mainly anatase-type titanium oxide (TiO 2 ) fine powder, but is not particularly limited as long as it has a photocatalytic action. The titanium oxide as the photocatalyst 3 contains about 20% of SiO 2 as a binder while being the main component, and is baked and supported on the uneven surface 13 of the honeycomb structure 10 described above. Therefore, the baked titanium oxide is hard to fall off due to the anchor effect of the uneven surface 13, and it is possible to prevent the performance deterioration and dust generation due to the dropping of the titanium oxide as the photocatalyst 3, and the performance can be improved and maintained. Can be played. Since this photocatalyst 3 contains about 20% of SiO 2 in addition to titanium oxide, its surface becomes weakly acidic, and when a basic gas such as ammonia gas is present, its adsorption and decomposition are promoted. I can do it.

前記針状電極5は、既述のとおり、板状の光触媒担持体4上に互いに等間隔に複数立設される。これは、図2、3に示すように、正四角形の格子状のプラスチック製枠体20に針状電極5を貫設し、その状態のプラスチック製枠体20を、光触媒担持体4上に設置することで実現している。なお、プラスチック製枠体20は、格子状であるから当然空気などの流体が流通自在である。また、針状電極5の材質は、金属であれば特に限定がないが、ステンレススチールやタングステンが優れている。  As described above, a plurality of the needle-like electrodes 5 are erected on the plate-like photocatalyst carrier 4 at equal intervals. As shown in FIGS. 2 and 3, the needle-like electrode 5 is penetrated through a regular rectangular grid-like plastic frame body 20, and the plastic frame body 20 in this state is placed on the photocatalyst carrier 4. It is realized by doing. Since the plastic frame body 20 has a lattice shape, naturally, a fluid such as air can flow freely. The material of the needle electrode 5 is not particularly limited as long as it is a metal, but stainless steel and tungsten are excellent.

前記接地電極6は、アルミニウムなどの金属板に小孔21を開けてあり、空気などの流体が流通自在である。そして、この接地電極6は、複数の針状電極5の先端部5aから0.1〜30mm離れた位置に、前記光触媒担持体4と平行に設置される。ストリーマ放電等の利用面からは、接地電極6と針状電極5との距離は近ければ近いほど良いが、火花放電などの短絡の危険性があり0.1mm以上離れているのが望ましく、また、30mmよりも離れると、短絡の危険性は無くなるが、ストリーマ放電等の利用価値が低下し、その上装置も大きくなる。したがって、接地電極6と針状電極5との距離は、より好ましくは0.5〜10mmの範囲であり、より一層好ましくは1〜5mmの範囲である。なお、この接地電極6は、上記のものに限定されず、ハニカム状、格子状など流体が流通自在のものであれば使用できる。  The ground electrode 6 is formed with a small hole 21 in a metal plate such as aluminum so that a fluid such as air can flow freely. And this ground electrode 6 is installed in parallel with the said photocatalyst carrier 4 in the position 0.1-30 mm away from the front-end | tip part 5a of the some acicular electrode 5. FIG. From the viewpoint of use such as streamer discharge, the closer the ground electrode 6 and the needle-like electrode 5 are, the better. However, there is a risk of short circuit such as spark discharge, and it is desirable that the distance is 0.1 mm or more. If the distance is more than 30 mm, there is no danger of a short circuit, but the utility value of streamer discharge or the like is reduced, and the apparatus becomes larger. Therefore, the distance between the ground electrode 6 and the needle electrode 5 is more preferably in the range of 0.5 to 10 mm, and still more preferably in the range of 1 to 5 mm. The ground electrode 6 is not limited to the above-described one, and any grounded electrode such as a honeycomb or a lattice can be used.

前記電源7は、光触媒担持体4及び接地電極6に電気的に接続し、光触媒担持体4と接地電極6との間に±3〜±30KVの範囲の電圧を印加するためのものであり、この電圧の印加によって、針状電極5と接地電極6との間にストリーマ放電等を発生させる。この電源7は、3〜30KVの直流電源、±3〜±30KVの交流電源、+3〜+30KV若しくは−3〜−30KVのパルス電源、±3〜±30KVの矩形波電源などである。そして、電源7の電圧は、ストリーマ放電等の利用面からは高ければ高いほど良いが、火花放電などの短絡の危険性が高くなり±30KV以下が望ましく、逆に、±3KVに満たない電圧では、短絡の危険性が無くなるが、ストリーマ放電等の利用価値が低下する。したがって、電源7の電圧は、より好ましくは±3〜±10KVの範囲であり、より一層好ましくは±5〜±8.5KVの範囲である。  The power source 7 is electrically connected to the photocatalyst carrier 4 and the ground electrode 6 and applies a voltage in the range of ± 3 to ± 30 KV between the photocatalyst carrier 4 and the ground electrode 6. By applying this voltage, streamer discharge or the like is generated between the needle-like electrode 5 and the ground electrode 6. The power source 7 is a DC power source of 3 to 30 KV, an AC power source of ± 3 to ± 30 KV, a pulse power source of +3 to +30 KV or −3 to −30 KV, a rectangular wave power source of ± 3 to ± 30 KV, and the like. The voltage of the power supply 7 is preferably as high as possible from the viewpoint of streamer discharge or the like. However, the risk of short circuit such as spark discharge is high, and it is preferably ± 30 KV or less, and conversely at a voltage less than ± 3 KV. The risk of short circuit is eliminated, but the utility value such as streamer discharge is reduced. Therefore, the voltage of the power supply 7 is more preferably in the range of ± 3 to ± 10 KV, and still more preferably in the range of ± 5 to ± 8.5 KV.

次に、上記構成になる放電装置1の使用状況を説明する。
電源7をオンして、光触媒担持体4と接地電極6との間に±3〜±30KVの範囲の電圧を印加すると、光触媒担持体4に立設した複数の針状電極5と、これらから0.1〜30mm離れている接地電極6との間にストリーマ放電等が生ずる。このストリーマ放電等に伴い紫外線などの光触媒作用誘起光を発し、さらに、オゾン、イオン、高速電子などの活性種が生じる。紫外線などの光触媒作用誘起光は、光触媒3を活性化し、その表面に付着した物質を酸化還元して、より安全性を高めている。一方、オゾン、イオン、高速電子などの活性種も、複数の針状電極5と接地電極6との間を滞留ないし通過する空気中に含まれる物質を酸化還元して、より安全性を高めると共に、光触媒3の活性化にも寄与する。一方、電圧変化や複数の針状電極5及び接地電極6に付着した物質などにより、火花放電などの短絡する可能性が生じるが、光触媒担持体4自体が1〜100MΩの高抵抗値を有するため、火花放電を未然に防ぐことになって、安定したストリーマ放電等を継続し、光触媒3の活性化をし続けると共に、他の活性種を生じ続けることになる。
Next, the use situation of the discharge device 1 having the above configuration will be described.
When the power source 7 is turned on and a voltage in the range of ± 3 to ± 30 KV is applied between the photocatalyst carrier 4 and the ground electrode 6, a plurality of needle-like electrodes 5 standing on the photocatalyst carrier 4, Streamer discharge or the like occurs between the ground electrode 6 separated by 0.1 to 30 mm. Along with this streamer discharge or the like, photocatalytic induction light such as ultraviolet rays is emitted, and active species such as ozone, ions, and fast electrons are generated. Photocatalytic action-induced light such as ultraviolet rays activates the photocatalyst 3 and oxidizes and reduces substances adhering to the surface, thereby improving safety. On the other hand, active species such as ozone, ions, and high-speed electrons also improve the safety by oxidizing and reducing substances contained in the air that stays or passes between the plurality of needle-like electrodes 5 and the ground electrode 6. It also contributes to the activation of the photocatalyst 3. On the other hand, there is a possibility of a short circuit such as spark discharge due to a change in voltage or a substance attached to the plurality of needle-like electrodes 5 and the ground electrode 6, but the photocatalyst carrier 4 itself has a high resistance value of 1 to 100 MΩ. In this case, spark discharge is prevented in advance, so that stable streamer discharge or the like is continued, the photocatalyst 3 is continuously activated, and other active species are continuously generated.

以下に、本発明の効果を実験例にて実証する。
〈実験例1〉
ハニカム状の担持体の表面に活性炭の粉末を塗布し、さらに、その上に光触媒の粉末を塗布して、厚み10mmで100mmの正方形の光触媒担持体を調製する。この光触媒担持体の上面に10mmずつ離して、縦横に8本ずつ合計64本の針状電極を立設し、同じように、光触媒担持体の下面にも64本の針状電極を立設して、これら上面及び下面の針状電極から3mm離して接地電極を光触媒担持体に対し平行に設置し、さらに光触媒担持体と接地電極とに電源を電気的に接続して、放電装置とする。この放電装置を8Lのアクリル製密閉容器内に収納し、さらに0.3mLのアセトアルデヒドを封入する。放電装置の電源により±0.5mAの電流を1Hzの矩形波にて印加電圧7.2KVで出力する。そして、経過時間ごとのCO2の増加量を測定すると共に、火花放電の有無を目視観察した。
Below, the effect of this invention is demonstrated by an experiment example.
<Experimental example 1>
Activated carbon powder is coated on the surface of the honeycomb-shaped carrier, and further, photocatalyst powder is coated thereon to prepare a square photocatalyst carrier having a thickness of 10 mm and 100 mm. A total of 64 needle-like electrodes are erected vertically and horizontally by 10 mm apart on the upper surface of the photocatalyst carrier, and similarly, 64 needle-like electrodes are erected on the lower surface of the photocatalyst carrier. Then, a ground electrode is placed in parallel with the photocatalyst carrier at a distance of 3 mm from the upper and lower needle electrodes, and a power source is electrically connected to the photocatalyst carrier and the ground electrode to form a discharge device. This discharge device is accommodated in an 8 L acrylic sealed container, and 0.3 mL of acetaldehyde is further sealed. A current of ± 0.5 mA is output as a rectangular wave of 1 Hz at an applied voltage of 7.2 KV from the power supply of the discharge device. And while measuring the increase amount of CO2 for every elapsed time, the presence or absence of spark discharge was visually observed.

〈比較例1〉
実験例1と同様に調製した光触媒担持体にUVP社製の紫外線ランプ(UVR−21、消費電力4W)を5mm離して設置して、これを実験例1と同様に8Lのアクリル製密閉容器内に収納し、さらに0.3mLのアセトアルデヒドを封入し、経過時間ごとのCO2の増加量を測定した。上記の結果を図6に示す。
<Comparative example 1>
An ultraviolet lamp (UVR-21, power consumption 4 W) manufactured by UVP was placed 5 mm apart on the photocatalyst carrier prepared in the same manner as in Experimental Example 1, and this was placed in an 8 L acrylic sealed container as in Experimental Example 1. And 0.3 mL of acetaldehyde was further sealed, and the amount of increase in CO2 was measured for each elapsed time. The results are shown in FIG.

本発明による実験例1は、図6から明らかなように、その消費電力は比較例1と同じであるのに、CO2の増加量、すなわち、アセトアルデヒドの酸化量が多い。このことは紫外線ランプが無くても良く、しかも、消費電力が約40%少なくて済むことになる。さらに、実験例1の実験時間内では火花放電が発生しなかった。  As is apparent from FIG. 6, the experimental example 1 according to the present invention has the same amount of power consumption as that of the comparative example 1, but the amount of increase in CO2, that is, the amount of oxidation of acetaldehyde is large. This eliminates the need for an ultraviolet lamp and consumes about 40% less power. Further, no spark discharge occurred within the experimental time of Experimental Example 1.

図7、8は本発明の他の実施形態を示すものであり、この放電装置1Aと図1ないし6の放電装置1との相違点は、接地電極6aがアルミニウムなどの金属のフラットバーであり、この接地電極6aが針状電極5の間に位置して光触媒担持体4とほぼ垂直に設置されている点である。その他の構成、作用は、図1ないし6の放電装置1とほぼ同様なので、図面に符号を付して詳細な説明を省略する。  7 and 8 show another embodiment of the present invention. The difference between the discharge device 1A and the discharge device 1 of FIGS. 1 to 6 is that the ground electrode 6a is a flat bar made of metal such as aluminum. The ground electrode 6 a is located between the needle-like electrodes 5 and is set substantially perpendicular to the photocatalyst carrier 4. Since other configurations and operations are substantially the same as those of the discharge device 1 shown in FIGS. 1 to 6, reference numerals are assigned to the drawings and detailed description thereof is omitted.

図9、10は本発明の他の実施形態を示すものであり、この放電装置1Bと図1ないし6の放電装置1との相違点は、複数の針状電極5に代えて、光触媒担持体4に少なくとも2本以上の柱状電極22を所定距離を有して立設し、これら柱状電極22を接続する線径0.3mm以下の線電極5Aを設けた点である。その他の構成、作用は、図1ないし6の放電装置1とほぼ同様なので、図面に符号を付して詳細な説明を省略する。  9 and 10 show another embodiment of the present invention. The difference between the discharge device 1B and the discharge device 1 shown in FIGS. 1 to 6 is that a photocatalyst carrier is used instead of the plurality of needle-like electrodes 5. 4 is that at least two columnar electrodes 22 are erected with a predetermined distance, and a line electrode 5A having a wire diameter of 0.3 mm or less is provided to connect the columnar electrodes 22. Since other configurations and operations are substantially the same as those of the discharge device 1 shown in FIGS. 1 to 6, reference numerals are assigned to the drawings and detailed description thereof is omitted.

以上、本発明の実施例1、2、3を説明したが、具体的な構成はこれらに限定されず、本発明の要旨を逸脱しない範囲での変更・追加、各請求項における他の組み合わせにかかるものも、適宜可能であることが理解されるべきである。  As described above, the first, second, and third embodiments of the present invention have been described, but the specific configuration is not limited thereto, and modifications and additions within a range that does not depart from the gist of the present invention, other combinations in each claim It should be understood that such may be possible as appropriate.

本発明の放電装置は、各種ランプを使用しないで、使用による時々刻々変化する条件下であっても、火花放電などの短絡を防ぎつつ安定したストリーマ放電等を維持して、このストリーマ放電等に伴う紫外線などの光触媒作用誘起光により光触媒を活性化し、さらにオゾン、イオン、高速電子などの活性種を生じさせて物質を酸化還元し、より安全性を高めたい場合に、利用可能性が極めて高くなる。  The discharge device of the present invention maintains a stable streamer discharge while preventing short-circuiting such as spark discharge even under conditions that change from moment to moment without using various lamps. The photocatalytic action induced light such as ultraviolet rays is activated, and active species such as ozone, ions, and fast electrons are generated to oxidize and reduce substances. Become.

1、1A、1B 放電装置
2 担持体
3、56 光触媒
4、51 光触媒担持体
5、55 針状電極
5A 線電極
5a 先端部
6、6a 接地電極
7、54 電源
8、50 筒体
10 ハニカム構造体
11 表面
12 表層形成用セラミック粒子
13 凸凹面
14 活性炭
20 プラスチック製枠体
21 小孔
22 柱状電極
52、53 高電圧端子
57 板状電極
DESCRIPTION OF SYMBOLS 1, 1A, 1B Discharge device 2 Carrier 3,56 Photocatalyst 4,51 Photocatalyst carrier 5,55 Needle-like electrode 5A Wire electrode 5a Tip part 6, 6a Ground electrode 7, 54 Power source 8, 50 Tubular body 10 Honeycomb structure DESCRIPTION OF SYMBOLS 11 Surface 12 Ceramic particle for surface layer formation 13 Uneven surface 14 Activated carbon 20 Plastic frame 21 Small hole 22 Columnar electrode 52, 53 High voltage terminal 57 Plate electrode

Claims (4)

導電性を有する担持体に光触媒を担持させ、且つその抵抗値を1〜100MΩの範囲の高抵抗とした光触媒担持体と、該光触媒担持体に互いに等間隔に立設した複数の針状電極と、該複数の針状電極の先端部から0.1〜30mm離れた位置に前記光触媒担持体と平行に設置した接地電極とからなり、前記光触媒担持体と前記接地電極との間に電源により正あるいは負の3〜30KVの電圧を印加し、前記複数の針状電極と前記接地電極との間にストリーマ放電若しくはコロナ放電を発生させることを特徴とする放電装置。A photocatalyst carrier on which a photocatalyst is carried on a conductive carrier and having a high resistance in the range of 1 to 100 MΩ, and a plurality of needle-like electrodes erected at equal intervals on the photocatalyst carrier; A ground electrode installed in parallel with the photocatalyst carrier at a position 0.1 to 30 mm away from the tips of the plurality of needle-like electrodes, and is positively connected between the photocatalyst carrier and the ground electrode by a power source. Alternatively, a negative voltage of 3 to 30 KV is applied to generate a streamer discharge or a corona discharge between the plurality of needle electrodes and the ground electrode. 導電性を有する担持体に光触媒を担持させ、且つその抵抗値を1〜100MΩの範囲の高抵抗とした光触媒担持体と、該光触媒担持体に少なくとも2本以上の柱状電極を所定距離を有して立設しこれら柱状電極を接続する線径0.3mm以下の線電極と、該線電極から0.1〜30mm離れた位置に前記光触媒担持体と平行に設置した接地電極とからなり、前記光触媒担持体と前記接地電極との間に電源により正あるいは負の3〜30KVの電圧を印加し、前記線電極と前記接地電極との間にストリーマ放電若しくはコロナ放電を発生させることを特徴とする放電装置。A photocatalyst supported on a conductive support and having a high resistance in the range of 1 to 100 MΩ, and at least two columnar electrodes on the photocatalyst support have a predetermined distance. A line electrode having a diameter of 0.3 mm or less for standing and connecting these columnar electrodes, and a ground electrode installed in parallel with the photocatalyst carrier at a position 0.1 to 30 mm away from the line electrode, A positive or negative voltage of 3 to 30 KV is applied between a photocatalyst carrier and the ground electrode by a power source to generate streamer discharge or corona discharge between the line electrode and the ground electrode. Discharge device. 前記光触媒担持体は、流体を流通させる平面ないし立体構造である請求項1または2記載の放電装置。  The discharge device according to claim 1 or 2, wherein the photocatalyst carrier has a flat or three-dimensional structure through which a fluid flows. 前記接地電極は、流体を流通させる平面ないし立体構造である請求項1、2または3記載の放電装置。  The discharge device according to claim 1, wherein the ground electrode has a planar or three-dimensional structure that allows fluid to flow therethrough.
JP2009118013A 2009-04-17 2009-04-17 Discharge device Active JP4784900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118013A JP4784900B2 (en) 2009-04-17 2009-04-17 Discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118013A JP4784900B2 (en) 2009-04-17 2009-04-17 Discharge device

Publications (2)

Publication Number Publication Date
JP2010247139A JP2010247139A (en) 2010-11-04
JP4784900B2 true JP4784900B2 (en) 2011-10-05

Family

ID=43310104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118013A Active JP4784900B2 (en) 2009-04-17 2009-04-17 Discharge device

Country Status (1)

Country Link
JP (1) JP4784900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269522B1 (en) 2011-04-19 2013-05-31 윤기호 Apparatus for destructing ozone and method for destructing ozone using thereof
CN102935326A (en) * 2012-11-10 2013-02-20 大连理工大学 Array-type narrow-gap coaxial streamer discharge reactor for gaseous pollutant pretreatment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128658A (en) * 1997-10-29 1999-05-18 Toshiba Corp Exhaust gas treating device
JP4362901B2 (en) * 1999-08-23 2009-11-11 日新電機株式会社 Discharge gas treatment equipment
JP2001062287A (en) * 1999-08-31 2001-03-13 Toshiba Corp Hazardous material treating device
JP2001293070A (en) * 2000-04-12 2001-10-23 Natl Inst Of Advanced Industrial Science & Technology Meti Deodorizing and sterilizing device

Also Published As

Publication number Publication date
JP2010247139A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP6315482B2 (en) Dielectric barrier discharge type plasma generating electrode structure having conductor protrusion on electrode
US6187271B1 (en) Electrostatic precipitator
US7270698B2 (en) Discharge device and air purifier
JP2009202137A (en) Air treatment apparatus
CN102958264B (en) Plasma generation device and method based on back corona creeping-surface breakdown of catalyst as well as application thereof
US10792611B2 (en) Air purification device and process
JP2005328904A (en) Ion generator, and air conditioner using it
JP4784900B2 (en) Discharge device
JP5344167B2 (en) Control device used for discharge device
CN108043182B (en) Discharge basic unit adopting multi-dielectric barrier, reactor and waste gas treatment method
KR101174345B1 (en) Apparatus for generating atmospheric pressure plasma
CN1830573A (en) Air purification device
CN107684977A (en) A kind of electrodecontamination structure and include its air cleaning unit
JP7295945B2 (en) new plasma air purifier
JP2014107202A (en) Ion generator, and electric apparatus
JP2004113704A (en) Deodorizing element
JP2000300650A (en) Photocatalyst type air purifying device
CN105079851B (en) Manufacturing method of planar array type gold needle negative oxygen ion particle flow emitter
JP5103241B2 (en) Underwater plasma sterilization method and underwater plasma sterilization apparatus
JP2006055512A (en) Air cleaner
JP2006043550A (en) Air cleaner
JP3822403B2 (en) Electric dust collector
JP2007196199A (en) Discharge device, air cleaning apparatus and air-flow generating device equipped with the discharge device
JP2020161465A5 (en)
JP3709449B1 (en) Gas processing equipment

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

R150 Certificate of patent or registration of utility model

Ref document number: 4784900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250