JP4783892B2 - Method for measuring position of reflector for surveying and reflector mounting tool - Google Patents

Method for measuring position of reflector for surveying and reflector mounting tool Download PDF

Info

Publication number
JP4783892B2
JP4783892B2 JP2001290571A JP2001290571A JP4783892B2 JP 4783892 B2 JP4783892 B2 JP 4783892B2 JP 2001290571 A JP2001290571 A JP 2001290571A JP 2001290571 A JP2001290571 A JP 2001290571A JP 4783892 B2 JP4783892 B2 JP 4783892B2
Authority
JP
Japan
Prior art keywords
reflector
center
reflecting mirror
pins
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001290571A
Other languages
Japanese (ja)
Other versions
JP2003097948A (en
Inventor
惠造 根本
雄樹 畑中
忠之 秋山
貞之 高橋
Original Assignee
国土交通省国土地理院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国土交通省国土地理院長 filed Critical 国土交通省国土地理院長
Priority to JP2001290571A priority Critical patent/JP4783892B2/en
Publication of JP2003097948A publication Critical patent/JP2003097948A/en
Application granted granted Critical
Publication of JP4783892B2 publication Critical patent/JP4783892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、標点(視準点)に設置される測距測角のための反射鏡(リフレクタ)の三次元位置を極めて高精度に測定することができる方法と、該反射鏡を確実に保持してその中心が測定中にずれることがなく、しかも反射鏡が観測位置と正対していなくとも反射鏡位置を極めて正確に測定することができて高精度の空間位置座標を決定することが可能となる反射鏡取付器具に関するものである。
【0002】
【従来の技術】
光波距離計兼トランシット(トータルステーション)は標点までの距離と角度をそれぞれ観測して、標点の三次元位置(三次元座標値)を求めるための測量機である。視準する標点としては、反射紙や反射鏡が用いられるが、測距する場合の入射角(θ)が狭いため、1個所の標点に視準する場合のトータルステーションの設置範囲が限られてしまう。そこで。更に広範囲に複数台のトータルステーションから同時に観測しようとする場合は、複数個の標点を組合せる必要があり、手間と費用がかかってしまう。
【0003】
また、入射角の広い球状反射鏡は、測距角度(θ)は広いものの、反射鏡の向きによって測角上の誤差が生じやすく、測角精度に多少の問題が残る。
【0004】
【発明が解決しようとする課題】
本発明は、球状反射鏡を取付ける器具を工夫することにより、トータルステーションによる標点観測をできるだけ少ない位置から測距測角とも迅速かつ高精度に測定し、反射鏡中心位置の正確な三次元位置座標値が得られるようにしたものである。
【0005】
【課題を解決するための手段】
本発明では、内側に標点としての球状反射鏡を取付ける取付器具の円形外周の該反射鏡を挟んで対称位置にその軸心が反射鏡中心に向う少なくとも1対の対ピンを装着突設しておき、観測地点が反射鏡と正対していないときには、この対ピンの両先端をそれぞれ視準することにより反射鏡の中心位置の角度を求め、球状反射鏡の形状にもよるが、入射角(θ)120°以上の広角で反射鏡中心位置(標点)の三次元座標を計測することが可能となるのである。
【0006】
即ち、第一に、本発明は内側に球状反射鏡を装着する短尺円筒形の器体本体外周の該反射鏡を挟んで対称位置にその軸心が反射鏡中心に向う少なくとも1対の対ピンを装着突設し、トータルステーションによる反射鏡中心位置の三次元位置検出に当り、測距は反射鏡を視準することにより行い、測角は上記対ピン先端をそれぞれ視準計測してその両者の中心角を求めることにより行う測量用反射鏡の位置測定方法に関するものである。
【0007】
第二に、本発明は球状反射鏡を楽に収容可能な内径を有する短尺円筒形の器体本体の内底部には上記反射鏡を構成する半球状ケースの背面を着座可能なすり鉢状上面を有する支持ブロックが固定され、該ブロックの上面には磁着性金属よりなる上記ケースを吸着する複数個の永久磁石が埋設され、上記器体本体の外周の中心を挟んで対称位置には上記反射鏡を上記支持ブロック上面に着座させたときにその軸心が該反射鏡の中心を指向する少なくとも1対の対ピンが着脱可能に突設されてなる反射鏡取付用器具に関するものである。
以下、本発明の実施形態を図により説明する。
【0008】
【発明の実施の形態】
図1〜2は本発明に係る取付器具の平面図及び側面図で、1は下端に円盤状の台座部3を備え下側にくびれ部2が形成された短尺円筒形の器体本体で、該本体1、くびれ部2、台座部3はアルミニウム又はその合金等の金属により例えばダイキャスト製法により一体に構成されている。
【0009】
器体本体1は後記する球状反射鏡16を手でつかんで楽に収容可能な内径寸法を有し、その外径は円盤状の台座部3の外径より小さい。また、該本体1の深さは反射鏡16背面を後記の如く着座させたときに該反射鏡16のケース部分19の前端部が若干外側に露出する程度の深さである。
【0010】
上記本体1と同心円の円筒状に形成されたくびれ部2の内側、即ち器体本体1の内底部には反射鏡16の支持用ブロック4が密に嵌着固定され、該ブロック4の上面はすり鉢状に凹形成されて反射鏡16の球状背面の一部を受け入れるようになっている。5はすり鉢状の上記ブロック4上面に埋設した少なくとも3個の強力な永久磁石で、該磁石5はそれぞれブロック4中心から等距離かつ互いに等間隔に設けられる。
【0011】
6はブロック4上面の中心位置と上記永久磁石5のいずれか1個との間に設けられた反射鏡押上げ用の小さなカムで、そのカム軸7の基端はブロック4上面の内側にあって、カム軸7全体はブロック4上面に凹設された直線溝内を通り、その先端は器体本体1の一側面中間部からこれと連接するくびれ部2の側面中間部にかけて開設した開口部8に臨ませ、該先端部には上記開口部8内で旋回自在の旋回レバー9の基部が固定されており、外側から開口部8内へ指を差し入れて該レバー9の旋回操作によってすり鉢状のブロック4上面より内側にあるカム6を偏心回転させて外側へ突出させることができるようにしてある。なお、図ではカム軸7の基端又は先端部にはコイルバネ10が装着されていて、レバー9を寝かせかつカム6をブロック4上面より内側に入るように賦勢してあり、レバー9をバネ10に抗して直立方向に旋回させることにより、カム6をブロック4上面上に突出させることができるように構成されている。
【0012】
11は器体本体1の外周に着脱自在に突設したプローブ状の角度観測用の少なくとも1対の対ピンで、該対ピン11は器体本体1の中心を挟んで互いに対称位置に設けられ(図ではこのピンは2対、計4本設けられている)、しかも各ピン11a〜11dの軸心は本体1内に装着する反射鏡16の中心を指向しており、換言すれば相対するピン11の一方の先端から他方の先端までの長さの中心が器体本体1の中心と合致するようになっており、対称位置どうしで一対をなす計2対のピン11a−11bと11c−11dとを結ぶ軸心どうしが互いに直交するような位置に配置されている。各ピンは同長同形状であり、その先端には小さな同大のボール(小球体)12a〜12dがそれぞれ一体に設けられている。なお、ピン11の径や長さは任意に変更することができる。
【0013】
上記各ピン11はそれぞれ支持体13にその基部を支持固定され、該支持体13の反対側には1本の脚軸14が突出形成されており、該脚軸14を器体本体1の上記した外周面の所定個所にその肉厚方向に開設した貫通孔15内に密に挿入し、更に器体本体1の円形前端面(図では上端面)からその肉厚中に向けて螺入したビス21先端を脚軸14面に圧接させることにより、脚軸14の貫通孔15からの抜け出しを防止している。
【0014】
球状の反射鏡16は、例えば半径が異なりかつ共通の中心20を持つ大小2個の半球のレンズ17、18を備え、外からの入射光は小さい方の半球レンズ18で合焦し、中心へ屈折して、大きい方の半球レンズ17の後方の中心から反射する。即ち、入射光に対しては平行で、中心に対しては対称な反射光となる。そして、この2個の半球レンズ17、18を内側に支持する背面半球状のケース19の中心点も上記大小の半球レンズの中心20と合致するようになっている。従って、反射鏡16の向きを変えても、反射光は入射光と平行である。この種の球状反射鏡としては、スイス国ライカ社のキャッツアイ型リフレクタ等が挙げられる。
【0015】
反射鏡16の半球状のケース19はスチール等の磁着性金属で製作されており、この反射鏡16を器体本体1内に装着するときには、そのケース19を手でつかんで、その半球状背面を本体1内底部のすり鉢状のブロック4上面に接触させれば、該ブロック4上面に設けられた永久磁石5に吸着されて強固に支持固定される。なお、反射鏡16の向きを変えてブロック4上面に着座させても、上記の如くその中心点20の位置は変わらない。
【0016】
また、反射鏡16を本体1内から取り出すときには、前記した如く本体1側面の開口部8から指を指し込んでレバー9を直立方向に旋回させ、カム6を回転させてブロック4上面上に突出させることにより反射鏡16のケース19を磁石5の吸着力に抗して押上げた状態で、該ケース19を手でつかんで引っ張り出すのである。
【0017】
次に、上記球状反射鏡16を本発明器具に装着した場合の反射鏡16の中心位置20の三次元位置測定方法を図5により説明する。
【0018】
まず、上記の如く球状反射鏡16を装着した器体本体1をその台座部3に開孔した孔22を利用して観測対象物にボルト固定23する。台座部3はその形状や構造を変更することにより、種々の観測対象物への取付けが可能である。
【0019】
そこで、トータルステーション24の設置場所が反射鏡16と正対する位置にある場合はともかく、そうでない場合には、測距は前面の半球レンズ18を視準することにより行い、一方測角(水平・垂直角)は器体本体1外周の対となるピン、例えば11aと11b先端のボール12a、12bをそれぞれ視準計測する。そして、この2個の先端ボール12a、12bの間の中心角度(水平・垂直角)を計算により求めれば、正確な反射鏡16の中心位置20の空間位置座標を検出することができる。
【0020】
また、他のトータルステ−ション24’から同時に観測できる場合には、同様にして測距測角を行うことにより、測定誤差をさらに一層小さくすることができる。
【0021】
【発明の効果】
本発明は以上のようにしてなり、1台のトータルステーションで1台の反射鏡を入射角120°以上の広い位置から捕らえることが可能となり、反射鏡の向きによってトータルステーションの位置を変更したり、逆に反射鏡の向きを変更したり、反射鏡の数を増やす必要がなくなるので、非常に測量作業の効率が向上し、正確な三次元位置検出を迅速に行うことが可能となる。
従って、本発明の取付け器具に反射鏡を装着して所定の観測個所に設置すれば、例えばVLBIアンテナ(カセグレン型パラボラアンテナ)の回転中心位置の測量をはじめ、空間位置決定の測量、大型構造物の所定個所の位置測量、あるいは山体変位や地殻変動の測定、移動物の三次元位置測定等を正確迅速に行うことができるのである。
【図面の簡単な説明】
【図1】本発明に係る測量用反射鏡の取付け用器具の平面図である。
【図2】同、側面図である。
【図3】本発明に係る測量用反射鏡の取付け用器具に球状反射鏡を装着した状態の斜視図である。
【図4】同、側面断面図である。
【図5】本発明による測量用反射鏡の位置測定方法を示す説明図である。
【符号の説明】
1−器体本体
2−くびれ部
3−台座部
4−反射鏡支持用ブロック
5−永久磁石
6−カム
7−カム軸
8−開口部
9−旋回レバー
10−コイルバネ
11−測角用ピン
12−ボール(小球体)
13−ピン支持体
14−脚軸
15−貫通孔
16−球状反射鏡
17−大きい半球レンズ
18−小さい半球レンズ
19−球状反射鏡ケース
20−球状反射鏡の中心点
21−止めビス
22−孔
23−ボルト
24−トータルステーション
25−反射鏡落下防止用支持具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method capable of measuring the three-dimensional position of a reflector (reflector) for distance measurement angle installed at a reference point (collimation point) with extremely high accuracy, and to reliably provide the reflector. The center of the mirror does not shift during measurement, and even if the reflector is not directly facing the observation position, the reflector position can be measured very accurately, and highly accurate spatial position coordinates can be determined. The present invention relates to a reflector mounting fixture that can be used.
[0002]
[Prior art]
The light wave distance meter / transit (total station) is a surveying instrument for observing the distance and angle to the target point and determining the three-dimensional position (three-dimensional coordinate value) of the target point. Reflective paper and reflectors are used as the target points for collimation, but since the incident angle (θ) when measuring distance is narrow, the total station installation range when collimating to one target point is limited. End up. Therefore. In addition, when simultaneously observing from a plurality of total stations over a wide area, it is necessary to combine a plurality of reference points, which takes time and cost.
[0003]
Moreover, although the spherical reflector having a wide incident angle has a wide distance measuring angle (θ), an error in angle measurement is likely to occur depending on the direction of the reflector, and some problems remain in the angle measuring accuracy.
[0004]
[Problems to be solved by the invention]
By devising an instrument for mounting a spherical reflector, the present invention measures the target point observation by the total station quickly and with high accuracy from both the distance measurement angle and the accurate three-dimensional position coordinates of the reflector center position. The value is obtained.
[0005]
[Means for Solving the Problems]
In the present invention, at least one pair of paired pins whose axial centers are directed toward the center of the reflector are mounted and provided at symmetrical positions across the reflector on the circular outer periphery of the fixture for mounting the spherical reflector as a mark on the inside. In addition, when the observation point is not directly facing the reflector, the angle of the center position of the reflector is obtained by collimating both ends of the pair of pins, and the incident angle depends on the shape of the spherical reflector. (Θ) It is possible to measure the three-dimensional coordinates of the reflector center position (target point) at a wide angle of 120 ° or more.
[0006]
That is, first, in the present invention, at least one pair of paired pins whose axial center faces the center of the reflector at a symmetrical position across the reflector on the outer periphery of a short cylindrical body body on which a spherical reflector is mounted. When the three-dimensional position of the reflector center position is detected by the total station, distance measurement is performed by collimating the reflector, and angle measurement is carried out by collimating the tip of the pair of pins. The present invention relates to a method for measuring the position of a surveying reflector performed by obtaining a central angle.
[0007]
Secondly, the present invention has a mortar-shaped top surface on which the back of the hemispherical case constituting the reflecting mirror can be seated on the inner bottom of a short cylindrical main body having an inner diameter that can easily accommodate the spherical reflecting mirror. A support block is fixed, and a plurality of permanent magnets for adsorbing the case made of a magnetized metal are embedded in the upper surface of the block, and the reflecting mirror is located at a symmetrical position across the center of the outer periphery of the main body. The present invention relates to a reflector mounting tool in which at least a pair of paired pins whose axial centers are directed to the center of the reflector when it is seated on the upper surface of the support block are detachably projected.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 are a plan view and a side view of a fixture according to the present invention, wherein 1 is a short cylindrical main body having a disc-like pedestal portion 3 at the lower end and a constricted portion 2 formed on the lower side, The main body 1, the constricted portion 2, and the pedestal portion 3 are integrally formed of a metal such as aluminum or an alloy thereof by, for example, a die casting method.
[0009]
The main body 1 has an inner diameter that can be easily accommodated by grasping a spherical reflector 16 to be described later, and its outer diameter is smaller than the outer diameter of the disk-shaped pedestal portion 3. The depth of the main body 1 is such that the front end of the case portion 19 of the reflecting mirror 16 is slightly exposed to the outside when the back surface of the reflecting mirror 16 is seated as described later.
[0010]
The support block 4 of the reflecting mirror 16 is closely fitted and fixed to the inside of the constricted portion 2 formed concentrically with the main body 1, that is, the inner bottom portion of the main body 1, and the upper surface of the block 4 is A concave portion is formed in a mortar shape so as to receive a part of the spherical back surface of the reflecting mirror 16. Reference numeral 5 denotes at least three strong permanent magnets embedded in the upper surface of the mortar-shaped block 4, and the magnets 5 are provided at equal distances from the center of the block 4 and at equal intervals.
[0011]
6 is a small cam for pushing up the reflecting mirror provided between the center position of the upper surface of the block 4 and any one of the permanent magnets 5, and the base end of the cam shaft 7 is located inside the upper surface of the block 4. The cam shaft 7 as a whole passes through a straight groove formed in the upper surface of the block 4, and the tip of the cam shaft 7 is opened from the intermediate portion of one side surface of the main body 1 to the intermediate portion of the side surface of the constricted portion 2 connected thereto. 8, a base of a swivel lever 9 that can swivel within the opening 8 is fixed to the tip, and a mortar-like shape is formed by inserting a finger into the opening 8 from outside and turning the lever 9. The cam 6 located on the inner side of the upper surface of the block 4 can be eccentrically rotated to protrude outward. In the drawing, a coil spring 10 is attached to the proximal end or the distal end portion of the cam shaft 7, and the lever 9 is laid down and the cam 6 is urged to enter the inside of the block 4 upper surface. The cam 6 can be protruded on the upper surface of the block 4 by turning in the upright direction against 10.
[0012]
Reference numeral 11 denotes at least one pair of probe-like angle observation pins detachably projecting from the outer periphery of the main body 1. The pair of pins 11 are provided symmetrically with respect to the center of the main body 1. (In the figure, there are two pairs, a total of four pins), and the axes of the pins 11a to 11d are directed to the center of the reflecting mirror 16 mounted in the main body 1, in other words, they are opposed to each other. The center of the length from one tip of the pin 11 to the other tip is coincident with the center of the body body 1, and a total of two pairs of pins 11a-11b and 11c− which are paired at symmetrical positions. The shaft centers connecting 11d are arranged at positions that are orthogonal to each other. Each pin has the same length and the same shape, and small balls of the same size (small spheres) 12a to 12d are integrally provided at the tip thereof. In addition, the diameter and length of the pin 11 can be changed arbitrarily.
[0013]
Each of the pins 11 is supported and fixed at a base portion thereof by a support body 13, and a leg shaft 14 is formed on the opposite side of the support body 13 so as to protrude from the body body 1. It was inserted into the through-hole 15 opened in the thickness direction at a predetermined location on the outer peripheral surface, and further screwed from the circular front end surface (upper end surface in the figure) of the main body 1 toward the thickness. The tip of the screw 21 is brought into pressure contact with the surface of the leg shaft 14 to prevent the leg shaft 14 from coming out of the through hole 15.
[0014]
The spherical reflector 16 includes, for example, two large and small hemispherical lenses 17 and 18 having different radii and a common center 20, and incident light from the outside is focused by the smaller hemispherical lens 18 to the center. The light is refracted and reflected from the center behind the larger hemispherical lens 17. That is, the reflected light is parallel to the incident light and symmetric with respect to the center. The center point of the rear hemispherical case 19 that supports the two hemispherical lenses 17 and 18 on the inside also coincides with the center 20 of the large and small hemispherical lenses. Therefore, even if the direction of the reflecting mirror 16 is changed, the reflected light is parallel to the incident light. Examples of this type of spherical reflector include a cat's eye type reflector manufactured by Leica, Switzerland.
[0015]
The hemispherical case 19 of the reflecting mirror 16 is made of a magnetized metal such as steel. When the reflecting mirror 16 is mounted in the main body 1, the hemispherical case 19 is grasped by hand. If the back surface is brought into contact with the upper surface of the mortar-shaped block 4 at the inner bottom of the main body 1, it is attracted to the permanent magnet 5 provided on the upper surface of the block 4 and firmly supported and fixed. Note that even if the direction of the reflecting mirror 16 is changed and seated on the upper surface of the block 4, the position of the center point 20 does not change as described above.
[0016]
Further, when the reflecting mirror 16 is taken out from the main body 1, as described above, the finger 9 is pointed through the opening 8 on the side surface of the main body 1, the lever 9 is turned in the upright direction, the cam 6 is rotated, and the upper surface of the block 4 is projected. As a result, the case 19 of the reflecting mirror 16 is pushed up against the attracting force of the magnet 5, and the case 19 is grasped by hand and pulled out.
[0017]
Next, a method for measuring the three-dimensional position of the center position 20 of the reflecting mirror 16 when the spherical reflecting mirror 16 is mounted on the instrument of the present invention will be described with reference to FIG.
[0018]
First, the main body 1 equipped with the spherical reflecting mirror 16 as described above is bolted 23 to the observation object using the hole 22 opened in the pedestal portion 3. The pedestal 3 can be attached to various observation objects by changing its shape and structure.
[0019]
Therefore, regardless of the case where the total station 24 is installed at a position facing the reflecting mirror 16, otherwise, the distance measurement is performed by collimating the front hemispherical lens 18, while the angle measurement (horizontal / vertical) is performed. Angle) is a collimated measurement of pins 12a and 12b at the tips of 11a and 11b, for example, as a pair on the outer periphery of the body body 1. If the center angle (horizontal / vertical angle) between the two tip balls 12a and 12b is obtained by calculation, the accurate spatial position coordinate of the center position 20 of the reflecting mirror 16 can be detected.
[0020]
In addition, when it is possible to observe from the other total station 24 'at the same time, the measurement error can be further reduced by performing the distance measuring angle similarly.
[0021]
【The invention's effect】
The present invention is as described above, and it is possible to catch one reflecting mirror from a wide position with an incident angle of 120 ° or more with one total station, and change the position of the total station depending on the direction of the reflecting mirror, or vice versa. Therefore, it is not necessary to change the direction of the reflecting mirrors or increase the number of reflecting mirrors, so that the efficiency of surveying work is greatly improved, and accurate three-dimensional position detection can be performed quickly.
Therefore, if the mounting fixture of the present invention is mounted with a reflecting mirror and installed at a predetermined observation location, for example, the measurement of the rotational position of the VLBI antenna (Cassegrain type parabolic antenna), the measurement of the spatial position, the large structure It is possible to accurately and quickly perform position surveying at predetermined locations, measurement of mountain body displacement and crustal deformation, three-dimensional position measurement of moving objects, and the like.
[Brief description of the drawings]
FIG. 1 is a plan view of an instrument for mounting a survey reflector according to the present invention.
FIG. 2 is a side view of the same.
FIG. 3 is a perspective view of a state in which a spherical reflector is attached to a surveying reflector mounting fixture according to the present invention.
FIG. 4 is a side sectional view of the same.
FIG. 5 is an explanatory view showing a method for measuring the position of a surveying reflector according to the present invention.
[Explanation of symbols]
1-Body body 2-Constriction part 3-Base part 4-Reflector support block 5-Permanent magnet 6-Cam 7-Cam shaft 8-Opening part 9-Turning lever 10-Coil spring 11-Angle measuring pin 12- Ball (small sphere)
13-Pin support 14-Leg shaft 15-Through hole 16-Spherical reflector 17-Large hemispherical lens 18-Small hemispherical lens 19-Spherical reflector case 20-Center point 21 of spherical reflector-Stop screw 22-Hole 23 -Bolt 24-Total station 25-Reflector fall prevention support

Claims (5)

内側に球状反射鏡を装着する短尺円筒形の器体本体外周の該反射鏡を挟んで対称位置にその軸心が反射鏡中心に向う少なくとも1対の対ピンを装着突設し、トータルステーションによる反射鏡中心位置の三次元位置検出に当り、測距は反射鏡を視準することにより行い、測角は上記対ピン先端をそれぞれ視準計測してその両者の中心角を求めることにより行うようにしたことを特徴とする測量用反射鏡の位置測定方法。Attach at least one pair of paired pins with their axis centered toward the center of the reflector at the symmetrical position across the reflector on the outer circumference of the short cylindrical body with the spherical reflector inside. When detecting the three-dimensional position of the mirror center position, the distance measurement is performed by collimating the reflector, and the angle measurement is performed by collimating each of the tip of the pair of pins to obtain the center angle of both. A method for measuring the position of a surveying reflector, characterized by that. 球状反射鏡を楽に収容可能な内径を有する短尺円筒形の器体本体の内底部には上記反射鏡を構成する半球状ケースの背面を着座可能なすり鉢状上面を有する支持ブロックが固定され、該ブロックの上面には磁着性金属よりなる上記ケースを吸着する複数個の永久磁石が埋設され、上記器体本体の外周の中心を挟んで対称位置には上記反射鏡を上記支持ブロック上面に着座させたときにその軸心が該反射鏡の中心を指向する少なくとも1対の対ピンが着脱可能に突設されてなることを特徴とする反射鏡取付用器具。A support block having a mortar-shaped upper surface on which the back of the hemispherical case constituting the reflecting mirror can be seated is fixed to the inner bottom of a short cylindrical container body having an inner diameter that can easily accommodate the spherical reflecting mirror, A plurality of permanent magnets for adsorbing the case made of magnetically adherent metal are embedded on the upper surface of the block, and the reflector is seated on the upper surface of the support block at a symmetrical position across the center of the outer periphery of the main body. A reflector mounting tool, characterized in that at least one pair of pin pins whose axial centers are directed toward the center of the reflector when detachably project. 前記対ピンは同長であり、その先端には小さなボールが一体に設けられてなる請求項2記載の反射鏡取付用器具。3. The reflector mounting tool according to claim 2, wherein the pair of pins have the same length, and a small ball is integrally provided at a tip thereof. 前記支持ブロックには器体本体側面に開設した開口部から指を差し込んで操作自在のレバーによりカム軸を回転させることによって該ブロック上面上に突出可能な反射鏡押出し用カムを備えてなる請求項2又は3記載の反射鏡取付用器具。The support block is provided with a reflecting mirror push-out cam that can project onto the upper surface of the block by inserting a finger from an opening provided on a side surface of the container body and rotating a cam shaft by a lever that can be operated. The reflector mounting tool according to 2 or 3. 器体本体の下方はくびれており、下端には同心円の円盤状の台座部が形成され、該台座部には複数のボルト挿通孔が設けられてなる請求項2、3又は4記載の反射鏡取付用器具。The reflecting mirror according to claim 2, 3 or 4, wherein the lower part of the main body is constricted, a concentric disc-shaped base is formed at the lower end, and a plurality of bolt insertion holes are provided in the base. Mounting equipment.
JP2001290571A 2001-09-25 2001-09-25 Method for measuring position of reflector for surveying and reflector mounting tool Expired - Lifetime JP4783892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290571A JP4783892B2 (en) 2001-09-25 2001-09-25 Method for measuring position of reflector for surveying and reflector mounting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290571A JP4783892B2 (en) 2001-09-25 2001-09-25 Method for measuring position of reflector for surveying and reflector mounting tool

Publications (2)

Publication Number Publication Date
JP2003097948A JP2003097948A (en) 2003-04-03
JP4783892B2 true JP4783892B2 (en) 2011-09-28

Family

ID=19112863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290571A Expired - Lifetime JP4783892B2 (en) 2001-09-25 2001-09-25 Method for measuring position of reflector for surveying and reflector mounting tool

Country Status (1)

Country Link
JP (1) JP4783892B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500521B1 (en) * 2013-08-20 2015-03-13 주식회사 유일에스티 Rotatable targets for measuring
CN108426570A (en) * 2018-04-18 2018-08-21 湖南科技大学 Measurement mark and application method for the high laser measurement of total powerstation instrument

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578407A (en) * 1980-06-20 1982-01-16 Yokokawa Kyoryo Seisakusho:Kk Reflector
DE3214998C2 (en) * 1982-04-22 1984-06-20 Fa. Carl Zeiss, 7920 Heidenheim Method for determining inaccessible measuring points with angle measuring instruments
JP2508829Y2 (en) * 1989-12-08 1996-08-28 株式会社ソキア Reflective mirror device for coordinate reading
JPH0470508A (en) * 1990-07-12 1992-03-05 Topcon Corp Three-dimensional measuring method and reference scale for three-dimensional measurement
JP4293484B2 (en) * 1999-04-22 2009-07-08 今田商事株式会社 Light reflector for surveying instrument

Also Published As

Publication number Publication date
JP2003097948A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US7110194B2 (en) Spherical retro-reflector mount negative
KR100433575B1 (en) Measuring ball reflector
US7152335B2 (en) Omnidirectional torpedo level having magnetic mounts and adjustable protractor
US7372581B2 (en) Three-dimensional coordinate measuring device
CN109938839B (en) Optical tracking tool for navigation surgery
US7293365B2 (en) Probe or stylus orientation
US20070153297A1 (en) Photogrammetric Targets
US8567966B2 (en) Universal sphere mount
US20090144999A1 (en) Interior contour measurement probe
US9772181B2 (en) Test body for determining rotation errors of a rotating apparatus
US4942671A (en) Probe head mount for a deflectable probe or the like
US20090006031A1 (en) Combination laser and photogrammetry target
EP2357455B1 (en) Spherical-form measuring apparatus
JPH0326770B2 (en)
US8672575B2 (en) Pivot joint
JP4783892B2 (en) Method for measuring position of reflector for surveying and reflector mounting tool
US6299122B1 (en) Spherically mounted retroreflector edge adapter
CN110440776A (en) A kind of three axis self-calibration compass
CN106289063A (en) The one-dimensional laser scanning testing head of single light source
RU181062U1 (en) Device for determining the coordinates of the center of the hole
US5138771A (en) Three dimensional homologous surveying instrument
US20040187330A1 (en) Level capable to measure minute inclination
CN218822157U (en) Target ball fixing device
US8548726B2 (en) Marker system for determining the diameter and axial location of a hole in an instrument
KR20150108323A (en) Method and apparatus for determining the distance of a light beam from a point on a surface of an object by means of a light sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150