JP4783249B2 - Composite metal oxide catalyst and method for producing composite metal oxide catalyst - Google Patents

Composite metal oxide catalyst and method for producing composite metal oxide catalyst Download PDF

Info

Publication number
JP4783249B2
JP4783249B2 JP2006250218A JP2006250218A JP4783249B2 JP 4783249 B2 JP4783249 B2 JP 4783249B2 JP 2006250218 A JP2006250218 A JP 2006250218A JP 2006250218 A JP2006250218 A JP 2006250218A JP 4783249 B2 JP4783249 B2 JP 4783249B2
Authority
JP
Japan
Prior art keywords
acid
metal oxide
composite metal
oxide catalyst
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006250218A
Other languages
Japanese (ja)
Other versions
JP2008068217A (en
Inventor
渉 上田
康志 小林
康弘 萬ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2006250218A priority Critical patent/JP4783249B2/en
Publication of JP2008068217A publication Critical patent/JP2008068217A/en
Application granted granted Critical
Publication of JP4783249B2 publication Critical patent/JP4783249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、複合金属酸化触媒、更に詳しくは気相接触酸化反応により不飽和アルデヒドから、不飽和酸を製造するのに適した複合金属酸化触媒の製造方法及び複合金属酸化物触媒に関する。 The present invention is a composite metal oxide catalyst, further from details gas phase catalytic oxidation reaction with an unsaturated aldehyde, a manufacturing method and a composite metal oxide catalyst of the composite metal oxide catalyst suitable for producing unsaturated acids.

アクリル酸及びメタクリル酸等の不飽和酸の製造は一般に2段酸化反応で行われている。即ち、アクリル酸またはメタクリル酸の製法を例に採ると、まず1段目反応ではBi−Mo系複合酸化物触媒を使用してプロピレンまたはイソブチレンからアクロレインまたはメタクロレインを製造し、引き続き2段目反応ではMo−V系複合酸化物触媒を使用してアクリル酸またはメタクリル酸をそれぞれ製造している。   The production of unsaturated acids such as acrylic acid and methacrylic acid is generally carried out by a two-stage oxidation reaction. That is, taking the production method of acrylic acid or methacrylic acid as an example, first, in the first stage reaction, acrolein or methacrolein is produced from propylene or isobutylene using a Bi-Mo composite oxide catalyst, and then the second stage reaction. Then, acrylic acid or methacrylic acid is produced using a Mo-V composite oxide catalyst, respectively.

これらの反応に使用する複合金属酸化物触媒としては、例えばアクロレインを気相接触酸化してアクリル酸を製造するための触媒として特許文献1には酸化モリブデンと酸化バナジウムとの重量比が2:1〜8:1の組成であり、且つシリカを担体とする触媒が記載され、該触媒を用いることで、アクロレイン転化率92%、アクリル酸収率82%(反応温度300℃)の成績を得ている。   As a composite metal oxide catalyst used in these reactions, for example, as a catalyst for producing acrylic acid by vapor-phase catalytic oxidation of acrolein, Patent Document 1 discloses that the weight ratio of molybdenum oxide to vanadium oxide is 2: 1. A catalyst having a composition of ˜8: 1 and having a silica as a carrier is described. By using the catalyst, acrolein conversion rate of 92% and acrylic acid yield of 82% (reaction temperature of 300 ° C.) were obtained. Yes.

特許文献2にはアンチモン、モリブデン、バナジウム、タングステンを必須成分とし、銅等を微量成分として含む触媒が記載され、該触媒を用いることでアクロレイン転化率99%、アクリル酸収率91%(反応温度272℃)の成績を得ている。   Patent Document 2 describes a catalyst containing antimony, molybdenum, vanadium, and tungsten as essential components, and copper or the like as a minor component. By using the catalyst, acrolein conversion is 99%, acrylic acid yield is 91% (reaction temperature) 272 ° C).

特許文献3にはモリブデン、バナジウム、銅、アンチモンを必須成分とし、X線回折(Cu−Kα線を使用)の2θ値において22.2±0.3°のピーク強度が最大である触媒が記載され、該触媒を用いることでアクロレイン転化率99.1%、アクリル酸収率98.6%(反応温度250℃)の成績が得られている。   Patent Document 3 describes a catalyst having molybdenum, vanadium, copper, and antimony as essential components and having a maximum peak intensity of 22.2 ± 0.3 ° in the 2θ value of X-ray diffraction (using Cu—Kα ray). By using this catalyst, results of acrolein conversion of 99.1% and acrylic acid yield of 98.6% (reaction temperature: 250 ° C.) were obtained.

また、最近では、プロパンから不飽和アルデヒドを経ることなくアクリル酸またはアクリロニトリルに直接酸化することのできる比較的結晶性の高い触媒が知られ、この触媒をアクロレイン酸化反応に用いた例が示されている。例えば、特許文献4にはモリブデン、バナジウム、アンチモン、及びニオブ又はタンタルを必須成分とし、X線回折(Cu−Kα線を使用)の2θ値で4つの特定のピーク(2θ=22.1°、22.3°、28.2°、36.2°)を有する結晶性の高い触媒を用いることで、アクロレイン転化率99.2%、アクリル酸収率89.4%(反応温度220℃)の反応成績が得られている。   Recently, a catalyst with relatively high crystallinity that can be directly oxidized from propane to acrylic acid or acrylonitrile without passing through an unsaturated aldehyde is known, and an example of using this catalyst in an acrolein oxidation reaction is shown. Yes. For example, Patent Document 4 includes molybdenum, vanadium, antimony, and niobium or tantalum as essential components, and four specific peaks (2θ = 22.1 °, 2θ value of 2θ value of X-ray diffraction (using Cu—Kα ray)). By using a highly crystalline catalyst having 22.3 °, 28.2 °, 36.2 °), an acrolein conversion rate of 99.2% and an acrylic acid yield of 89.4% (reaction temperature of 220 ° C.) Response results are obtained.

また、特許文献5にはモリブデン、バナジウム、テルル、及びニオブ又はタンタルを必須成分とし、且つ少なくとも2つの結晶相を有する触媒を用いることで、アクロレイン転化率99.1%、アクリル酸収率89.4%(反応温度220℃)の反応成績が得られている。 Further, Patent Document 5 uses a catalyst having molybdenum, vanadium, tellurium, niobium or tantalum as essential components and having at least two crystal phases, whereby acrolein conversion is 99.1% and acrylic acid yield is 89.000. A reaction result of 4% (reaction temperature 220 ° C.) is obtained.

また、特許文献6ではモリブデンを有する化合物及びバナジウムを有する化合物を水と混合し、得られたスラリー液を加圧下で熱処理(水熱合成)して得られた固形分を焼成することで、アクロレイン転化率98.7%、アクリル酸収率89.4%(反応温度240℃)の反応成績を持つ触媒が得られている。   Further, in Patent Document 6, a compound containing molybdenum and a compound containing vanadium are mixed with water, and the obtained slurry is heat-treated (hydrothermal synthesis) under pressure, and the solid content obtained by firing is acrolein. A catalyst having a conversion rate of 98.7% and an acrylic acid yield of 89.4% (reaction temperature 240 ° C.) has been obtained.

特公昭41−001775号公報Japanese Patent Publication No.41-001775 特開昭47−008360号公報JP 47-008360 A 特開平8−299797号公報JP-A-8-299797 特開平11−343262号公報Japanese Patent Laid-Open No. 11-343262 特開2001−137709公報JP 2001-137709 A 特開2004−275868公報JP 2004-275868 A

特許文献1では触媒構成元素が少なく調合操作が簡単だが、反応成績は満足できるものではない。特許文献2、3に記載の触媒は高収率であるが、触媒構成元素が多く調合工程が煩雑で作業性に劣る。また、4、5では特定の構造を有する触媒を用いて良好な反応成績を得ているが、必須元素にNb等の比較的高価な原料を使用しているため経済性に劣る。特許文献6では触媒構成元素が少なく、且つ良好な反応成績を得られているが更なる触媒性能の向上が望まれていた。   Patent Document 1 has few catalyst constituent elements and is easy to prepare, but the reaction results are not satisfactory. The catalysts described in Patent Documents 2 and 3 have a high yield, but have many catalyst constituent elements and a complicated preparation process, resulting in poor workability. Moreover, although the favorable reaction results are obtained using the catalyst which has a specific structure in 4, 5, since it uses comparatively expensive raw materials, such as Nb, as an essential element, it is inferior to economical efficiency. In Patent Document 6, there are few catalyst constituent elements and good reaction results are obtained, but further improvement in catalyst performance has been desired.

本発明者等は、不飽和アルデヒドから不飽和酸を製造するために使用できる触媒について種々検討した結果、モリブデン、バナジウム及び酸素の3元素のみからなる複合金属酸化物を特定の製法で製造することにより、得られる触媒の活性が高くなることを見出し、本発明を完成させた。   As a result of various studies on catalysts that can be used to produce unsaturated acids from unsaturated aldehydes, the present inventors have produced a composite metal oxide consisting of only three elements of molybdenum, vanadium and oxygen by a specific production method. Thus, the activity of the obtained catalyst was found to be high, and the present invention was completed.

すなわち、本発明は
(1)モリブデンを有する化合物及びバナジウムを有する化合物を水と混合して、得られたスラリー液のpHが1.0から6.0の範囲となるように強酸を添加し、次いで加圧下で熱処理(水熱合成)して固形分を得て、該固形分を焼成することを特徴とする複合金属酸化物触媒の製造方法、
(2)水熱合成における温度が110〜400℃、同じく圧力が該温度における飽和蒸気圧である(1)記載の複合金属酸化物触媒の製造方法、
(3)バナジウム/モリブデン比(原子比)が0.1〜0.5である(1)または(2)記載の複合金属酸化物触媒の製造方法、
(4)強酸が無機酸である(1)〜(3)のいずれか1項に記載の複合金属酸化物触媒の製造方法、
(5)強酸が硫酸又は硝酸である請求項(1)〜(4)のいずれか1項に記載の複合金属酸化物触媒の製造方法、
(6)モリブデン及びバナジウムを必須の構成元素とする複合金属酸化物からなり、その結晶型が三方晶である、不飽和アルデヒドを気相酸化して不飽和酸を得るための複合金属酸化物触媒、
に関する。
That is, the present invention is (1) mixing a compound having molybdenum and a compound having vanadium with water, and adding a strong acid so that the pH of the resulting slurry is in the range of 1.0 to 6.0, Next, a heat treatment (hydrothermal synthesis) under pressure to obtain a solid content, and firing the solid content, a method for producing a composite metal oxide catalyst,
(2) The method for producing a composite metal oxide catalyst according to (1), wherein the temperature in hydrothermal synthesis is 110 to 400 ° C., and the pressure is the saturated vapor pressure at the temperature,
(3) The method for producing a composite metal oxide catalyst according to (1) or (2), wherein the vanadium / molybdenum ratio (atomic ratio) is 0.1 to 0.5.
(4) The method for producing a composite metal oxide catalyst according to any one of (1) to (3), wherein the strong acid is an inorganic acid,
(5) The method for producing a composite metal oxide catalyst according to any one of claims (1) to (4), wherein the strong acid is sulfuric acid or nitric acid.
(6) A composite metal oxide catalyst comprising a composite metal oxide containing molybdenum and vanadium as essential constituent elements, the crystal form of which is a trigonal crystal, for obtaining an unsaturated acid by gas phase oxidation of an unsaturated aldehyde ,
About.

本発明の製造方法による触媒はモリブデンとバナジウム及び酸素のみで構成されるため従来の触媒のように高価な原料を使用する必要がない。また、本発明の製造方法は、簡便な操作で高収率、高選択率な複合金属酸化物触媒を得ることができる。   Since the catalyst according to the production method of the present invention is composed only of molybdenum, vanadium, and oxygen, it is not necessary to use an expensive raw material like a conventional catalyst. In addition, the production method of the present invention can provide a composite metal oxide catalyst with high yield and high selectivity by a simple operation.

本発明の製造方法は、モリブデン及びバナジウムを有する各化合物を水と混合してスラリー液とした後、これを強酸でpH調整した後、これを水熱合成し、得られた固形分を焼成するものである。
本発明の製造方法における出発原料化合物としては特に制限はなく、例えばモリブデンを有する化合物としてはモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、モリブデン酸ナトリウム等が、また、バナジウムを有する化合物としては酸化バナジウム、バナジン酸アンモニウム、オキソ硫酸バナジル等が挙げられる。モリブデンを有する化合物とバナジウムを有する化合物の組成比(仕込み比)は、得られる結晶に活性構造(三方晶)ができる限り特に制限はないが、バナジウム/モリブデン原子=0.1〜0.5(モル比)の範囲になる比で使用するのが好ましい。スラリー液を得る際の水の使用量は、これら原材料を溶解できるか、溶解できなくても均一なスラリー状にできる程度であれば特に制限はない。
In the production method of the present invention, each compound having molybdenum and vanadium is mixed with water to form a slurry liquid, and then the pH is adjusted with a strong acid, followed by hydrothermal synthesis, and the obtained solid content is fired. Is.
The starting material compound in the production method of the present invention is not particularly limited. For example, as the compound having molybdenum, ammonium molybdate, molybdenum trioxide, molybdic acid, sodium molybdate and the like, and as the compound having vanadium, vanadium oxide. , Ammonium vanadate, vanadyl oxosulfate and the like. The composition ratio (preparation ratio) of the compound having molybdenum and the compound having vanadium is not particularly limited as long as the resulting crystal has an active structure (trigonal crystal), but vanadium / molybdenum atoms = 0.1 to 0.5 ( It is preferably used in a ratio that falls within the range of (molar ratio). The amount of water used for obtaining the slurry liquid is not particularly limited as long as these raw materials can be dissolved or can be dissolved even if they cannot be dissolved.

次いで、スラリー液に強酸を添加、撹拌する。強酸の添加量は、スラリー液が酸性、好ましくはpHが1.0〜6.0程度になるまで添加する。強酸としては、水溶性の酸であって、そのpKaに制限はなく、スラリー液のpHがこの範囲であれば強酸と弱塩基の塩であってもよい。
使用できる強酸としては、蟻酸、酢酸、安息香酸、ベンゼンスルホン酸、プロピオン酸、乳酸等の有機酸またはその弱塩基塩、硫酸、硝酸、塩酸、臭化水素酸等の無機酸またはその弱塩基塩等が挙げられ、市販のものがそのまま使用できる、コスト的に安いことの面から無機酸が好ましく、硫酸または硝酸が特に好ましい。強酸は通常任意の濃度の水溶液として添加する。
Next, a strong acid is added to the slurry and stirred. The strong acid is added until the slurry solution is acidic, and preferably the pH is about 1.0 to 6.0. The strong acid is a water-soluble acid, its pKa is not limited, and a salt of a strong acid and a weak base may be used as long as the pH of the slurry is within this range.
Strong acids that can be used include organic acids such as formic acid, acetic acid, benzoic acid, benzenesulfonic acid, propionic acid and lactic acid or weak base salts thereof, inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and hydrobromic acid or weak base salts thereof. In view of cost reduction, commercially available products can be used as they are, inorganic acids are preferred, and sulfuric acid or nitric acid is particularly preferred. The strong acid is usually added as an aqueous solution having an arbitrary concentration.

水熱合成は、例えば上記、pH調整後のスラリー液をオートクレーブに仕込んで行う。
反応は、空気中で行うこともできるが、反応開始前にオートクレーブ内を空気の代わりにその一部あるいは全量を窒素、ヘリウム等の不活性ガスで置換して行うのが好ましい。水熱合成の反応温度は通常110〜400℃、反応時間は通常1〜100時間である。オートクレーブ内圧力は飽和蒸気圧であり、水熱合成中攪拌を行っても良い。水熱合成終了後の反応液は冷却した後、固形分をろ過、水洗、乾燥する。
Hydrothermal synthesis is performed, for example, by charging the slurry liquid after pH adjustment into an autoclave.
Although the reaction can be carried out in air, it is preferred to carry out a part or the whole of the inside of the autoclave with an inert gas such as nitrogen or helium instead of air before starting the reaction. The reaction temperature of hydrothermal synthesis is usually 110 to 400 ° C., and the reaction time is usually 1 to 100 hours. The pressure in the autoclave is a saturated vapor pressure, and stirring may be performed during hydrothermal synthesis. After cooling the reaction solution after completion of hydrothermal synthesis, the solid content is filtered, washed with water, and dried.

次に必要により前記で得られた固形分を水溶性ジカルボン酸の水溶液で処理する。水溶性ジカルボン酸の水溶液での処理は、前記で得られた固形分を水溶性ジカルボン酸の水溶液と接触させて行う。具体的には、固形分を水溶性ジカルボン酸の水溶液と混合し、次いで固形物をろ過、水洗、乾燥する。水溶性ジカルボン酸の水溶液の濃度は0.1〜1.0Mが好ましい。水溶性ジカルボン酸の水溶液は、前記好ましい濃度範囲で固形分1gに対して通常10〜50mlの範囲で使用する。混合工程は、通常10〜100℃で5〜500分かけて行う。なお、この水溶性ジカルボン酸の水溶液処理操作は、水熱合成後の固形分に対して行う代わりに、この後に行う焼成処理後の固形分に対して行ってもよい。水溶性ジカルボン酸の水溶液での処理後を施すと、固形分のうちアモルファスを構成していると考えられる成分が除去されると考えられ、より高性能の触媒が得られる。   Next, if necessary, the solid content obtained above is treated with an aqueous solution of a water-soluble dicarboxylic acid. The treatment with the aqueous solution of the water-soluble dicarboxylic acid is carried out by bringing the solid content obtained above into contact with the aqueous solution of the water-soluble dicarboxylic acid. Specifically, the solid is mixed with an aqueous solution of a water-soluble dicarboxylic acid, and then the solid is filtered, washed with water, and dried. The concentration of the aqueous solution of the water-soluble dicarboxylic acid is preferably 0.1 to 1.0M. The aqueous solution of water-soluble dicarboxylic acid is usually used in the range of 10 to 50 ml with respect to 1 g of the solid content in the preferred concentration range. A mixing process is normally performed at 10-100 degreeC over 5 to 500 minutes. In addition, you may perform this aqueous solution process operation of water-soluble dicarboxylic acid with respect to the solid content after the baking process performed after this instead of performing with respect to the solid content after hydrothermal synthesis. When a treatment with an aqueous solution of a water-soluble dicarboxylic acid is performed, it is considered that a component considered to constitute an amorphous component in the solid content is removed, and a higher performance catalyst is obtained.

水溶性ジカルボン酸としては、蓚酸、酒石酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フマル酸、フタル酸等が挙げられ、蓚酸が好ましい。なお、これら水溶性ジカルボン酸は、その水和物を使用しても本発明では何ら差し障りはない。   Examples of the water-soluble dicarboxylic acid include oxalic acid, tartaric acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, and phthalic acid, and oxalic acid is preferred. These water-soluble dicarboxylic acids are not hindered in the present invention even if their hydrates are used.

水溶性ジカルボン酸の水溶液で処理した固形分(場合によっては処理しない固形分)は、このままでも触媒として使用可能だが、本発明においては生成物に対して焼成処理を行う。焼成処理は空気もしくは窒素、ヘリウム等不活性ガス中で300℃以上、好ましくは350〜700℃で0.5〜10時間かけて行う。焼成工程は、触媒の比表面積値に関与するので、触媒の活性制御も焼成温度を適宜決定することで可能である。   The solid content treated with the aqueous solution of the water-soluble dicarboxylic acid (solid content not treated in some cases) can be used as it is, but in the present invention, the product is calcined. The baking treatment is performed at 300 ° C. or higher, preferably 350 to 700 ° C. in an inert gas such as air, nitrogen or helium for 0.5 to 10 hours. Since the calcination step is involved in the specific surface area value of the catalyst, the activity control of the catalyst can also be performed by appropriately determining the calcination temperature.

このようにして得られた複合金属酸化物は、三方晶の結晶構造を有する成分が少なくとも20〜99.99%(X線回折測定による面積比、以下同様)含む化合物であり、残りはアモルファスである。この複合金属酸化物はそのまま本発明の複合金属酸化物触媒(以下、単に触媒ということもある)とすることができるが、純度が低い場合には再度水溶性ジカルボン酸でアモルファス相の除去をして成分を高めて使用するのが好ましい。   The composite metal oxide thus obtained is a compound containing at least 20 to 99.99% of a component having a trigonal crystal structure (area ratio by X-ray diffraction measurement, the same applies hereinafter), and the rest is amorphous. is there. This composite metal oxide can be used as it is as the composite metal oxide catalyst of the present invention (hereinafter sometimes simply referred to as catalyst), but when the purity is low, the amorphous phase is removed again with water-soluble dicarboxylic acid. Therefore, it is preferable to use it with higher ingredients.

また、このようにして得られた複合金属酸化物触媒は粉砕して使用することが好ましい。本発明の触媒は固定床、流動床、移動床等のいずれの反応様式にも適用できるが、固定床の場合、好ましくはシリカ、アルミナ、シリコンカーバイド等の球状担体に粉末状の複合金属化合物を担持成型した被覆触媒または粉末状の複合金属酸化物を打錠成型等の成型機で成型した触媒が有利となる。また、流動床、移動床反応器には、耐摩耗性を向上させるためにさらにシリカ成分等を添加して調製した数十ミクロン程度の均一な触媒の使用が有利となる。   The composite metal oxide catalyst thus obtained is preferably used after being pulverized. The catalyst of the present invention can be applied to any reaction mode such as a fixed bed, a fluidized bed, and a moving bed. However, in the case of a fixed bed, a powdered composite metal compound is preferably used on a spherical support such as silica, alumina, or silicon carbide. A supported molding catalyst or a catalyst obtained by molding a powdered composite metal oxide with a molding machine such as tablet molding is advantageous. For fluidized bed and moving bed reactors, it is advantageous to use a uniform catalyst of about several tens of microns prepared by adding a silica component or the like to improve wear resistance.

本発明の好ましい触媒は一般式(1)
Moabc (1)
で表される。式中、Mo及びVはモリブデン、バナジウムを示し、a及びbはそれぞれの各元素成分量を示し、a=1.0に対してb=0.1〜0.5である。cは他の元素の酸化状態により変化する数である。
Preferred catalysts of the present invention are those of general formula (1)
Mo a V b O c (1)
It is represented by In the formula, Mo and V represent molybdenum and vanadium, a and b represent respective element component amounts, and b = 0.1 to 0.5 with respect to a = 1.0. c is a number that varies depending on the oxidation state of other elements.

本発明の触媒は、プロパン等のアルカンから対応する不飽和酸を製造する反応に使用することができるが、アクロレイン又はメタクロレイン等の不飽和アルデヒドから気相接触酸化によるアクリル酸又はメタクリル酸等の不飽和酸の製造に好ましく使用することができる。
上記、不飽和アルデヒドから不飽和酸を製造する気相接触酸化反応における原料ガス組成比は特に限定されないが、不飽和アルデヒド:酸素:水蒸気:希釈ガス(窒素、アルゴン等)=1:0.1〜10:0〜30:0〜60(容積比)で実施するのが好ましい。
気相接触酸化反応は加圧下または減圧下で実施してよいが、一般的には大気圧付近の圧力で実施するのが好ましい。反応温度は通常150〜400℃、好ましくは150〜350℃で実施される。
原料ガスの供給量は空間速度(SV)にして通常100〜100000hr−1、好ましくは400〜30000hr−1である。
The catalyst of the present invention can be used in a reaction for producing a corresponding unsaturated acid from an alkane such as propane. However, the catalyst such as acrylic acid or methacrylic acid by gas phase catalytic oxidation from an unsaturated aldehyde such as acrolein or methacrolein can be used. It can be preferably used for the production of unsaturated acids.
The raw material gas composition ratio in the gas phase catalytic oxidation reaction for producing an unsaturated acid from an unsaturated aldehyde is not particularly limited, but unsaturated aldehyde: oxygen: water vapor: diluted gas (nitrogen, argon, etc.) = 1: 0.1 It is preferable to carry out at -10: 0 to 30: 0 to 60 (volume ratio).
The gas phase catalytic oxidation reaction may be carried out under pressure or under reduced pressure, but generally it is preferably carried out at a pressure around atmospheric pressure. The reaction temperature is usually 150 to 400 ° C, preferably 150 to 350 ° C.
The supply amount of the raw material gas is usually 100~100000Hr -1 in the space velocity (SV), preferably 400~30000hr -1.

以下に実施例により本発明をより具体的に説明するが、本発明は、その趣旨を越えない限り、以下の実施例に限定されるものではない。
なお、以下の実施例におけるアクロレイン転化率、アクリル酸選択率はそれぞれ次の通り定義される。
アクロレイン転化率(モル%)=100×(供給したアクロレインのモル数−未反応アクロレインのモル数)/(供給したアクロレインのモル数)
アクリル酸選択率(モル%)=100×(生成したアクリル酸のモル数)/(供給したアクロレインのモル数)
EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
In the following examples, acrolein conversion and acrylic acid selectivity are defined as follows.
Acrolein conversion (mol%) = 100 × (number of moles of supplied acrolein−number of moles of unreacted acrolein) / (number of moles of supplied acrolein)
Acrylic acid selectivity (mol%) = 100 × (number of moles of acrylic acid produced) / (number of moles of supplied acrolein)

実施例1
蒸留水125mlにモリブデン酸アンモニウム8.83gを室温で溶解した。また、別の容器で蒸留水125mlにオキソ硫酸バナジル3.29を溶解し、その水溶液を先程のモリブデン水溶液に添加して充分に攪拌するとスラリー状に変化した。この溶液に硫酸水溶液を添加し、スラリー液のpHを2.2に調整した。このスラリー液を残渣がないように蒸留水でビーカーを洗浄しながらオートクレーブ(内容量300ml)へ移し、175℃で24時間水熱合成を行った。得られた生成物を、ろ過・水洗し40℃で一昼夜乾燥した。蒸留水150mlに蓚酸7.56gを溶解させた溶液を60℃に加熱し、得られた固形物6g添加した後、30分間攪拌し、これをろ過・水洗し、空気流通下に400℃で2時間かけて焼成を行い、仕込み比でMo1.00 V0.36(酸素は除く)である本発明の触媒(三方晶の含有割合が99.9%)を得た。
(触媒評価試験)
調製した触媒は充分に粉砕し、これに触媒粉末に対して炭化ケイ素粉末が10重量%になるように添加した後、加圧成型・粉砕により平均粒径0.56〜1.40mmの触媒顆粒とし触媒評価試験に使用した。触媒評価試験は固定床流通式反応装置を使用し、内径6mmのパイレックス(登録商標)管に上記の触媒顆粒を0.5g充填し、アクロレイン/酸素/水蒸気/窒素=5.0/7.9/27.8/70.4(ml/min.)からなる原料混合ガスを流しながら、反応温度190℃で反応試験を行った。反応生成物はガスクロマトグラフィーで分析した。反応の結果、アクロレイン転化率99.4%、アクリル酸選択率92.2%であった。
Example 1
In 125 ml of distilled water, 8.83 g of ammonium molybdate was dissolved at room temperature. In another container, vanadyl oxosulfate (3.29) was dissolved in 125 ml of distilled water, and the resulting aqueous solution was added to the previous aqueous molybdenum solution and stirred sufficiently to form a slurry. A sulfuric acid aqueous solution was added to this solution to adjust the pH of the slurry to 2.2. The slurry was transferred to an autoclave (internal volume 300 ml) while washing the beaker with distilled water so that there was no residue, and hydrothermal synthesis was performed at 175 ° C. for 24 hours. The obtained product was filtered and washed with water, and dried at 40 ° C. for a whole day and night. A solution prepared by dissolving 7.56 g of succinic acid in 150 ml of distilled water was heated to 60 ° C., 6 g of the obtained solid was added, stirred for 30 minutes, filtered, washed with water, and 2 ° C. at 400 ° C. under air flow. Calcination was performed over time to obtain a catalyst of the present invention (trigonal content of 99.9%) in a charge ratio of Mo1.00 V0.36 (excluding oxygen).
(Catalyst evaluation test)
The prepared catalyst is sufficiently pulverized and added to the catalyst powder so that the silicon carbide powder is 10% by weight, and then the catalyst granules having an average particle size of 0.56 to 1.40 mm are formed by pressure molding and pulverization. And used in the catalyst evaluation test. In the catalyst evaluation test, a fixed bed flow type reactor was used, 0.5 g of the above catalyst granules were filled in a 6 mm inner diameter Pyrex (registered trademark) tube, and acrolein / oxygen / water vapor / nitrogen = 5.0 / 7.9. The reaction test was conducted at a reaction temperature of 190 ° C. while flowing a raw material mixed gas of 27.8 / 70.4 (ml / min.). The reaction product was analyzed by gas chromatography. As a result of the reaction, the acrolein conversion was 99.4% and the acrylic acid selectivity was 92.2%.

比較例1
実施例1において、スラリー液のpH調製をせずに合成を行った以外は、実施例1と同様にして比較用の触媒を得た。得られた触媒の結晶構造は、斜方晶であった。この比較用触媒の評価試験を、反応温度を240℃にした以外は実施例1と同様に行ったところ、アクロレイン転化率98.6%、アクリル酸選択率92.5%であった。
Comparative Example 1
A catalyst for comparison was obtained in the same manner as in Example 1, except that synthesis was performed without adjusting the pH of the slurry liquid. The crystal structure of the obtained catalyst was orthorhombic. When this comparative catalyst was evaluated in the same manner as in Example 1 except that the reaction temperature was 240 ° C., the acrolein conversion was 98.6% and the acrylic acid selectivity was 92.5%.

上記の通り、本発明の触媒は、比較用の触媒に比べ、低い反応温度で高いアクロレイン転化率を示した。   As described above, the catalyst of the present invention exhibited a high acrolein conversion rate at a lower reaction temperature than the comparative catalyst.

本発明の触媒は、不飽和アルデヒドを分子状酸素含有ガスにより低温で気相接触酸化し、対応する不飽和カルボン酸を製造するために公的に使用される。製造された不飽和カルボン酸は、各種化学品の原料、汎用樹脂のモノマー、吸水性樹脂、増粘剤などとして広範な用途に使用される。   The catalyst of the present invention is publicly used for the gas-phase catalytic oxidation of unsaturated aldehydes with molecular oxygen-containing gas at low temperature to produce the corresponding unsaturated carboxylic acids. The produced unsaturated carboxylic acid is used in a wide range of applications as a raw material for various chemicals, a monomer for general-purpose resins, a water-absorbing resin, a thickener and the like.

Claims (6)

モリブデンを有する化合物及びバナジウムを有する化合物を水と混合して、得られたスラリー液のpHが1.0から6.0の範囲となるように蟻酸、酢酸、安息香酸、ベンゼンスルホン酸、プロピオン酸、乳酸から選ばれる有機酸またはその弱酸塩;硫酸、硝酸、塩酸、臭化水素酸から選ばれる無機酸またはその弱塩基塩を添加し、次いで加圧下で熱処理(水熱合成)して固形分を得て、該固形分を焼成することを特徴とする、アクロレインを気相酸化してアクリル酸を製造するための複合金属酸化物触媒の製造方法。 A compound having molybdenum and a compound having vanadium are mixed with water, and formic acid, acetic acid, benzoic acid, benzenesulfonic acid, propionic acid so that the resulting slurry has a pH in the range of 1.0 to 6.0. An organic acid selected from lactic acid or a weak acid salt thereof; an inorganic acid selected from sulfuric acid, nitric acid, hydrochloric acid or hydrobromic acid or a weak base salt thereof is added; then, heat treatment is performed under pressure (hydrothermal synthesis) to obtain a solid content. And producing the mixed metal oxide catalyst for producing acrylic acid by vapor-phase oxidation of acrolein , wherein the solid content is calcined. 水熱合成における温度が110〜400℃、同じく圧力が該温度における飽和蒸気圧である請求項1記載の複合金属酸化物触媒の製造方法。 The method for producing a composite metal oxide catalyst according to claim 1, wherein the temperature in hydrothermal synthesis is 110 to 400 ° C, and the pressure is a saturated vapor pressure at the same temperature. バナジウム/モリブデン比(原子比)が0.1〜0.5である請求項1または2記載の複合金属酸化物触媒の製造方法。 The method for producing a composite metal oxide catalyst according to claim 1 or 2, wherein the vanadium / molybdenum ratio (atomic ratio) is 0.1 to 0.5. 硫酸、硝酸、塩酸、臭化水素酸から選ばれる無機酸を使用する請求項1〜3のいずれか1項に記載の複合金属酸化物触媒の製造方法。 The method for producing a composite metal oxide catalyst according to any one of claims 1 to 3, wherein an inorganic acid selected from sulfuric acid, nitric acid, hydrochloric acid, and hydrobromic acid is used. 無機酸が硫酸又は硝酸である請求項4記載の複合金属酸化物触媒の製造方法。 The method for producing a composite metal oxide catalyst according to claim 4, wherein the inorganic acid is sulfuric acid or nitric acid. モリブデン及びバナジウムを必須の構成元素とする複合金属酸化物からなり、その結晶型が三方晶である、アクロレインを気相酸化してアクリル酸を得るための複合金属酸化物触媒。 A composite metal oxide catalyst for producing acrylic acid by vapor-phase oxidation of acrolein, which is composed of a composite metal oxide containing molybdenum and vanadium as essential constituent elements, and whose crystal type is trigonal.
JP2006250218A 2006-09-15 2006-09-15 Composite metal oxide catalyst and method for producing composite metal oxide catalyst Expired - Fee Related JP4783249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250218A JP4783249B2 (en) 2006-09-15 2006-09-15 Composite metal oxide catalyst and method for producing composite metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250218A JP4783249B2 (en) 2006-09-15 2006-09-15 Composite metal oxide catalyst and method for producing composite metal oxide catalyst

Publications (2)

Publication Number Publication Date
JP2008068217A JP2008068217A (en) 2008-03-27
JP4783249B2 true JP4783249B2 (en) 2011-09-28

Family

ID=39290283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250218A Expired - Fee Related JP4783249B2 (en) 2006-09-15 2006-09-15 Composite metal oxide catalyst and method for producing composite metal oxide catalyst

Country Status (1)

Country Link
JP (1) JP4783249B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427580B2 (en) * 2009-12-09 2014-02-26 旭化成ケミカルズ株式会社 Composite metal oxide catalyst and method for producing the same
JP5846388B2 (en) * 2010-07-09 2016-01-20 国立大学法人北海道大学 Novel glycerin dehydration catalyst and process for producing the same
DE102012207811A1 (en) * 2012-05-10 2012-07-12 Basf Se Heterogeneously catalyzed gas phase partial oxidation of (meth)acrolein to (meth)acrylic acid using a catalytically active multimetal oxide mass
JP6602401B2 (en) * 2015-06-18 2019-11-06 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク Use of molybdenum and vanadium mixed oxides as oxidation catalysts from unsaturated alcohols to unsaturated carboxylic acids.
JP7188707B2 (en) * 2018-09-18 2022-12-13 三菱ケミカル株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid and methacrylic acid ester

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316881B2 (en) * 1992-09-09 2002-08-19 住友化学工業株式会社 Method for producing catalyst for producing methacrylic acid
JP3786297B2 (en) * 1995-03-03 2006-06-14 日本化薬株式会社 Catalyst production method
JPH10330343A (en) * 1997-04-04 1998-12-15 Mitsubishi Chem Corp Production of nitrile
JPH11343262A (en) * 1998-05-28 1999-12-14 Toagosei Co Ltd Production of acrylic acid
EP1090684A1 (en) * 1999-10-01 2001-04-11 Rohm And Haas Company A catalyst useful for the gas phase oxidation of alkanes, alkenes or alcohols to unsaturated aldehydes or carboxylic acids
JP4278035B2 (en) * 2003-03-14 2009-06-10 日本化薬株式会社 Composite metal oxide catalyst
US20060183626A1 (en) * 2005-02-11 2006-08-17 Cavalcanti Fernando Antonio Pe Process for preparing catalysts and catalysts produced therefrom

Also Published As

Publication number Publication date
JP2008068217A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4758990B2 (en) Selective conversion of alkanes to unsaturated carboxylic acids.
JP4646684B2 (en) Gas phase oxidation catalyst and method for producing acrylic acid using the same
US6946422B2 (en) Preparation of mixed metal oxide catalysts for catalytic oxidation of olefins to unsaturated aldehydes
JP4317211B2 (en) Catalyst for gas phase partial oxidation reaction and method for producing the same
JPH04250854A (en) Catalytic composition for production of methacrylic acid by gas phase oxidation of methacrolein
JP2007530257A (en) Catalyst composition for selective conversion of alkane to unsaturated carboxylic acid, process for its preparation and process for its use
JP5152867B2 (en) Process for producing mixed metal oxide catalysts for producing unsaturated aldehydes from olefins
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP4783249B2 (en) Composite metal oxide catalyst and method for producing composite metal oxide catalyst
EP1350566A2 (en) Process for the preparation of unsaturated aldehydes and/or carboxylic acids by gas phase oxidation using a Mo-V based catalyst
JP2004298873A (en) Mixed metal oxide catalyst for producing unsaturated aldehyde from olefin
JP4442317B2 (en) Method for producing composite oxide catalyst
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
WO2002051542A1 (en) Alkane oxidation catalyst, process for producing the same, and process for producing oxygen-containing unsaturated compound
JPH09316023A (en) Production of (meth)acrylic acid
JP5427580B2 (en) Composite metal oxide catalyst and method for producing the same
JP5548132B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP4049363B2 (en) Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP7186295B2 (en) Catalyst for producing acrylic acid, method for producing the same, and method for producing acrylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
JPH0232017B2 (en)
JP2006130373A (en) Method for manufacturing compound metal oxide catalyst and catalyst
JP4950457B2 (en) Method for producing composite metal oxide catalyst and use of the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees