JP4782465B2 - Peltier unit, medical device including Peltier unit, and heart-lung machine - Google Patents

Peltier unit, medical device including Peltier unit, and heart-lung machine Download PDF

Info

Publication number
JP4782465B2
JP4782465B2 JP2005117952A JP2005117952A JP4782465B2 JP 4782465 B2 JP4782465 B2 JP 4782465B2 JP 2005117952 A JP2005117952 A JP 2005117952A JP 2005117952 A JP2005117952 A JP 2005117952A JP 4782465 B2 JP4782465 B2 JP 4782465B2
Authority
JP
Japan
Prior art keywords
heat
chamber
length direction
peltier
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005117952A
Other languages
Japanese (ja)
Other versions
JP2006296452A (en
Inventor
康裕 福井
一郎 多賀
昭夫 舟久保
益之 羽田
嘉純 松本
俊康 柚場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasumi Laboratories Inc
Original Assignee
Kawasumi Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasumi Laboratories Inc filed Critical Kawasumi Laboratories Inc
Priority to JP2005117952A priority Critical patent/JP4782465B2/en
Publication of JP2006296452A publication Critical patent/JP2006296452A/en
Application granted granted Critical
Publication of JP4782465B2 publication Critical patent/JP4782465B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • External Artificial Organs (AREA)

Description

本発明は、ペルチエユニット及びペルチエユニットを含む医療機器並びに構成部品の少なくとも一部にペルチエ素子を装着することにより、当該構成部品を熱交換部と兼用する、または、極めて熱交換効率の良い小型熱交換チャンバーにペルチエ素子を装着することを特徴とする人工心肺装置に関するものである。
本発明によれば、人工心肺装置における熱交換器関連設備を大幅に小型化でき、血液のプライミングボリュームを低減できる。また冷媒として循環水を使用しないため、医療従事者の負担の軽減、患者の負担の軽減、衛生面における安全性の向上等を図る事が可能であるため、医療分野における用途において極めて有効な発明である。
The present invention provides a Peltier unit, a medical device including the Peltier unit, and a Peltier element attached to at least a part of the component, so that the component can also be used as a heat exchanger or a small heat having extremely high heat exchange efficiency. The present invention relates to a heart-lung machine characterized by mounting a Peltier element in an exchange chamber.
ADVANTAGE OF THE INVENTION According to this invention, the heat exchanger related equipment in an artificial heart-lung machine can be reduced in size significantly, and the blood priming volume can be reduced. In addition, since circulating water is not used as a refrigerant, it is possible to reduce the burden on the medical staff, reduce the burden on the patient, improve the safety in terms of hygiene, etc. It is.

近年生体内各種臓器の代用、補助として様々な人工臓器が開発、臨床応用されている。現在、熱交換器と称されている装置(本願明細書に記載された熱交換部に相当するもので、体外循環中の血液の温度を調節する装置である)を利用し、血液温を調節することにより、体温を上下させることが可能となる。現在の人工心肺装置(人工肺)は、そのほとんどすべてが熱交換器を内蔵している。
血液の温度を下げることにより低体温にした場合shiveringや筋肉のふるえが無ければ全身の代謝を抑制し、組織の酸素消費量を低下させることで、非拍動流の定常流循環による非生理的環境を改善することが可能である。
In recent years, various artificial organs have been developed and clinically applied as substitutes and supplements for various organs in vivo. Currently, a device called a heat exchanger (corresponding to the heat exchanging part described in the present specification, which adjusts the temperature of blood during extracorporeal circulation) is used to adjust the blood temperature. By doing so, it becomes possible to raise and lower body temperature. Almost all current artificial heart-lung machines (artificial lungs) contain a heat exchanger.
When the body temperature is lowered by lowering the temperature of the blood, if there is no shivering or muscle tremor, the metabolism of the whole body is suppressed, and the oxygen consumption of the tissue is reduced. It is possible to improve the environment.

現在、体外循環心臓手術においては低体温を利用することが多い。体外循環心臓手術における低体温法として、体外循環回路内の熱交換器を用いて血液の温度を下げる方法が主流である。低体温はmild(33〜32℃)、moderate(32〜28℃)、intermediate(28〜20℃)、deep(20℃以下)に分類される。   Currently, extracorporeal circulation cardiac surgery often uses hypothermia. As a hypothermia method in extracorporeal circulation heart surgery, a method of lowering the blood temperature using a heat exchanger in the extracorporeal circuit is the mainstream. Hypothermia is classified into mild (33-32 ° C.), moderate (32-28 ° C.), intermediate (28-20 ° C.), and deep (20 ° C. or lower).

従来の熱交換器の材質の多くはステンレス製またはアルミ製である。現在、臨床で使用されている熱交換器は人工心肺装置(人工肺)の形状により異なるが、多管式型、またはベローズ管式型(ラセンコイル型)に製作され、血液が通過する面を抗血栓性に表面加工してある。多管式型の場合、管の内腔を血液が通り、外側を熱交換水が還流する型と管の内腔を熱交換水が通り、外側を血液が通る型のものがある。ベローズ管式型のものでは、一般的には、内腔を熱交換水が還流し、外側を血液が通る。人工肺の膜とは別に直列に配置されるが、最近では膜の中に組み込まれるものもある。   Many of the materials of the conventional heat exchanger are made of stainless steel or aluminum. Currently, heat exchangers used in clinical practice vary depending on the shape of the heart-lung machine (artificial lung), but they are manufactured as a multi-tube type or bellows tube type (helical coil type) to resist the surface through which blood passes. Thrombological surface treatment. In the case of the multi-tube type, there are a type in which blood passes through the lumen of the tube and heat exchange water flows back outside, and a type in which heat exchange water passes through the lumen of the tube and blood passes outside. In the bellows tube type, heat exchange water generally circulates through the lumen and blood passes outside. Although they are placed in series separately from the membrane of the oxygenator, some are recently incorporated into the membrane.

以上のような熱交換器は共通の問題点として、熱交換の為に高流量の熱交換水(温水または冷水)を循環させるため、熱交換器へ熱交換水を循環させるためのポンプ、および熱交換水を溜めるための恒温層が必要となり、大きなスペースが必要となる点が挙げられる。また、水を用いて熱交換を行うため不衛生である。さらに、熱交換器内の熱交換水が循環する部位は内圧が高く、破損の恐れもある。そのため、現在の医療現場では装置の小型化が可能であり、衛生的な熱交換器が求められている。
このような熱交換媒体として水を使用する熱交換方法では(A)小型化かつ(B)衛生的な熱交換器という課題は達成できないと考えられる。また、熱交換のために新たな熱交換チャンバーを設けるとその熱交換チャンバーの熱交換効率が高くない限り(C)プライミングボリュームの増加による患者への負担がない装置という課題が達成されない。
The heat exchangers as described above have a common problem: a high-flow heat exchange water (hot water or cold water) is circulated for heat exchange, a pump for circulating the heat exchange water to the heat exchanger, and A constant temperature layer for storing heat exchange water is required, and a large space is required. Moreover, since heat exchange is performed using water, it is unsanitary. Furthermore, the portion where the heat exchange water in the heat exchanger circulates has a high internal pressure and may be damaged. Therefore, in the current medical field, it is possible to reduce the size of the apparatus, and a sanitary heat exchanger is required.
It is considered that such a heat exchange method using water as a heat exchange medium cannot achieve the problem of (A) downsizing and (B) a sanitary heat exchanger. Also, if a new heat exchange chamber is provided for heat exchange, the problem of (C) an apparatus that does not burden the patient due to an increase in the priming volume cannot be achieved unless the heat exchange efficiency of the heat exchange chamber is high.

これら需要に応えるための技術について、いくつかの技術が提案されている。
例えば、特許文献1には加温冷却自在型CHDF(持続的血液濾過透析)装置に関する技術が開示されている。これは、ろ過フィルタの血液流入口に脱血ラインが接続され血液流出口に返血ラインが接続されると共に、ろ過フィルタの透析液流入口に透析液ラインが接続され透析液流出口に除水ラインが接続されたCHDF装置において、返血ラインと透析液ラインのいずれか一方に、ペルチエ素子への供給電圧の極性切替制御によって返血ラインの血液を加温もしくは冷却し得る加温冷却器を配置した発明である。しかしながら、この発明は、血液の加温と冷却を反復するCHDFを対象とした発明であり、人工心肺装置へ転用するには大掛かりであって実質実用に到っていない。
Several techniques have been proposed for meeting these demands.
For example, Patent Document 1 discloses a technique related to a heating and cooling type CHDF (continuous blood filtration dialysis) apparatus. This is because a blood removal line is connected to the blood inlet of the filtration filter and a blood return line is connected to the blood outlet, and a dialysate line is connected to the dialysate inlet of the filter and water is removed to the dialysate outlet. In the CHDF device to which the line is connected, a heating cooler that can heat or cool the blood in the blood return line by controlling the polarity switching of the supply voltage to the Peltier element is provided in either the blood return line or the dialysate line. It is the arranged invention. However, the present invention is an invention for CHDF that repeats heating and cooling of blood, and is too large to be diverted to a heart-lung machine, and has not been practically used.

さらに特許文献2には、医療用液体の熱交換用容器及び温度調節装置に関する技術が開示されている。これは、医療用液体を流入させる入口部、前記液体を流通させる空間を内部に有する金属製シェルからなる本体部、及び本体部の内部を通過した液体を流出させる出口部を有し、シェルの内側方向には畝状に突出する1又はそれ以上の流路案内壁を有しており、本体部の内部には流路案内壁によって液体の流れを導く液体流路が形成されており、液体流路の全体としての長さが金属製シェルの最も長い辺の長さよりも長く設定されている熱交換用容器を提供するものである。本技術は熱交換の方法として、ペルチエ素子の使用などについても言及しているが、別途シェルを設ける必要があるため、血液のプライミングボリュームが増加し、患者の負担という面では充分に目的を達成できていない。このプライミングボリューム増加の原因は金属性シェルの構造に起因する熱交換効率の悪さにある。循環液の流路に別途熱交換用のチャンバーを設置するのであれば、熱交換効率が高くない限りプライミングボリュームの増加が避けられない。特許文献2記載の金属シェルは、それ自体が熱伝導体といえるが、このような畝構造ではチャンバーのプライミングボリュームに対する、流体と熱伝導体との接触面積を多くとる事が難しい。さらに決定的なのは、このような畝構造のチャンバー内を流れる液体は層流であり、同じ液層が常に熱伝導体と接触しているため、全体としての熱交換効率は低いと考えられる。上記のごとくであるから、従来提案されている人工心肺装置における理想的な熱交換器は、現実的にはほとんど実施されてはいない状況にある。   Furthermore, Patent Document 2 discloses a technique relating to a heat exchange container for a medical liquid and a temperature control device. This has an inlet part for flowing medical liquid, a main body part made of a metal shell having a space for circulating the liquid inside, and an outlet part for letting out the liquid that has passed through the inside of the main body part. One or more channel guide walls projecting in a bowl shape are provided in the inner direction, and a liquid channel for guiding a liquid flow is formed in the main body portion by the channel guide wall. The present invention provides a heat exchange container in which the overall length of the flow path is set longer than the length of the longest side of the metal shell. This technology also mentions the use of Peltier elements as a heat exchange method, but since a separate shell is required, the blood priming volume increases, and the objective is fully achieved in terms of patient burden. Not done. The cause of this increase in priming volume is the poor heat exchange efficiency due to the structure of the metallic shell. If a separate chamber for heat exchange is installed in the circulating fluid flow path, an increase in priming volume is inevitable unless the heat exchange efficiency is high. The metal shell described in Patent Document 2 itself can be said to be a heat conductor, but with such a saddle structure, it is difficult to increase the contact area between the fluid and the heat conductor with respect to the priming volume of the chamber. What is more decisive is that the liquid flowing in the chamber having such a saddle structure is a laminar flow, and the same liquid layer is always in contact with the heat conductor, so that the overall heat exchange efficiency is considered to be low. Since it is as mentioned above, the ideal heat exchanger in the conventionally proposed heart-lung machine is in the state where it is practically hardly implemented.

特開2000−93449号公報(特許請求の範囲)JP 2000-93449 A (Claims) 特開2001−231853号公報(特許請求の範囲)JP-A-2001-231853 (Claims)

本発明が解決しようとする問題点は、(A)熱交換器へ熱交換水を循環させるためのポンプ、熱交換水を溜めるための恒温層が必要となり、大きなスペースが必要となる点、(B)また水を用いて熱交換を行うため不衛生である。(C)さらに、熱交換器内の熱交換水が循環する部位は内圧が高く、破損の恐れがある点である。   The problem to be solved by the present invention is that (A) a pump for circulating the heat exchange water to the heat exchanger, a constant temperature layer for storing the heat exchange water are required, and a large space is required, B) It is unsanitary because heat is exchanged using water. (C) Furthermore, the portion where the heat exchange water in the heat exchanger circulates has a high internal pressure, which may cause damage.

本発明の目的は、従来技術の上記のごとき問題に鑑み、従来の人工心肺装置と比較して(A)小型化かつ(B)衛生的な熱交換器で、(C)プライミングボリュームの増加による患者への負担がない、医療機器(人工心肺装置、人工肺)並びにこれらの構成部品兼熱交換部材を提供することである。
以上の結果より、本発明者らはペルチエ素子(熱電半導体素子)を用いて温度制御部分に電気的な制御を適用することで装置の小型化かつ衛生的な熱交換器を実現する事が可能であり、ペルチエ素子を人工心肺装置の構成部品に装着し、当該構成部品を熱交換部と兼用する、または、極めて熱交換効率の良い小型熱交換チャンバーにペルチエ素子を装着することで、プライミングボリュームの増加を防ぐ事が可能であることを見いだし、本発明を完成した。すなわち、本発明によれば、以下のようにペルチエ素子を用いたペルチエユニット及びペルチエユニットを含む医療機器並びに人工心肺装置が提供される。
[1]本発明は、熱交換部(2´)はチャンバー(2C)を有し、
当該チャンバー(2C)は、長さ方向と、当該長さ方向に略垂直に交わる側部方向とを有し、
前記チャンバー(2C)は、前記長さ方向の第一端部側に流体入口(7)を形成し、前記長さ方向の第二端部側に流体出口(8)を形成し、前記チャンバー(2C)は、前記側部方向に天面部(2CU)と底面部(2CB)とを有し、
当該チャンバー(2C)は、前記長さ方向の第一端部側は、前記流体入口(7)側に向けて先細りの漏斗状に形成し、
前記長さ方向の第二端部側は、前記流体出口(8)側に向けて先細りの漏斗状に形成し、
前記チャンバー(2C)の天面部(2CU)または底面部(2CB)に、ペルチエ素子(PD)を装着し、
前記チャンバー(2C)内に、複数の熱伝導部材(9)を配置し、
当該熱伝導部材(9)は、長さ方向と、当該長さ方向に略垂直に交わる側部方向とを有し、
当該熱伝導部材(9)は、前記長さ方向の第一端部側に上部(9U)、前記長さ方向の第二端部側に下部(9B)とを有し、
当該熱伝導部材(9)の上部(9U)または下部(9B)は、前記チャンバー(2C)の天面部(2CU)または底面部(2CB)より外部に露出するように配置し、
当該熱伝導部材(9)は、前記チャンバー(2C)の長さ方向の第一端部側から第二端部側に見て、複数列配置し、かつ当該隣接する列同士で重ならないように交互に配置し、
当該熱伝導部材(9)の上部(9U)または下部(9B)は前記ペルチエ素子(PD)と直接接触し、
流体が前記チャンバー(2C)の流体入口(7)から前記チャンバー(2C)内に導入される際に、当該流体が、前記熱伝導部材(9)の側部壁面に衝突し、当該熱伝導部材(9)間の隙間を経て、前記流体出口(8)より流出するように形成した、ペルチエユニット(1´)を提供する。
[2]本発明は、[1]に記載のペルチエユニット(1´)を構成部材の一部に含む医療機器を提供する。
[3]本発明は、少なくとも人工肺(20)、貯血槽(30)、血液ポンプ(40)、血液フィルタ(50)、回路(60)のいずれか一つと、ペルチエユニット要素(1)を有し、
当該ペルチエユニット要素(1)は、熱交換部(2)を有し、当該熱交換部(2)の少なくとも天面部または底面部に、熱伝導体(3)、ペルチエ素子(PD)を順次積層し、当該ペルチエ素子(PD)に放熱部材(5)を装着し、
前記ペルチエ素子(PD)の放熱面と前記放熱部材(5)との間に断熱材(4)を配置し、
前記少なくとも人工肺(20)、貯血槽(30)、血液ポンプ(40)、血液フィルタ(50)、回路(60)のいずれか一つが、前記ペルチエユニット要素(1)の熱交換部(2)を、前記ペルチエ素子(PD)を除いて、[1]に記載の前記ペルチエユニット(1´)の熱交換部(2´)に置換したものであり、
当該熱交換部(2´)の熱伝導部材(9)の上部(9U)または下部(9B)と前記ペルチエ素子(PD)との間に、前記熱伝導体(3)を配置したものである人工心肺装置(10)を提供する。
In view of the above problems of the prior art, the object of the present invention is (A) a smaller and (B) sanitary heat exchanger compared with a conventional cardiopulmonary apparatus, and (C) by increasing the priming volume. It is to provide a medical device (artificial heart-lung machine, artificial lung) and a component / heat exchange member thereof without burden on the patient.
From the above results, the present inventors can realize a downsized and sanitary heat exchanger by applying electrical control to the temperature control part using a Peltier element (thermoelectric semiconductor element). The priming volume can be obtained by mounting the Peltier element on a component of the cardiopulmonary device and using the component as a heat exchanger, or by mounting the Peltier element in a small heat exchange chamber with extremely high heat exchange efficiency. The inventors have found that it is possible to prevent the increase in the number, and thus completed the present invention. That is, according to the present invention, a Peltier unit using a Peltier element, a medical device including the Peltier unit, and an oxygenator are provided as follows.
[1] In the present invention, the heat exchange part (2 ′) has a chamber (2C),
The chamber (2C) has a length direction and a side direction that intersects the length direction substantially perpendicularly,
The chamber (2C) has a fluid inlet (7) formed on the first end side in the length direction, a fluid outlet (8) formed on the second end side in the length direction, and the chamber (2C). 2C) has a top surface portion (2CU) and a bottom surface portion (2CB) in the side direction,
In the chamber (2C), the first end portion in the length direction is formed into a tapered funnel shape toward the fluid inlet (7) side,
The second end side in the length direction is formed in a funnel shape tapered toward the fluid outlet (8) side,
A Peltier element (PD) is mounted on the top surface (2CU) or the bottom surface (2CB) of the chamber (2C),
A plurality of heat conducting members (9) are disposed in the chamber (2C),
The heat conducting member (9) has a length direction and a side direction that intersects the length direction substantially perpendicularly,
The heat conducting member (9) has an upper part (9U) on the first end side in the length direction and a lower part (9B) on the second end side in the length direction,
The upper part (9U) or the lower part (9B) of the heat conducting member (9) is disposed so as to be exposed to the outside from the top surface part (2CU) or the bottom surface part (2CB) of the chamber (2C),
The heat conducting member (9) is arranged in a plurality of rows so as not to overlap each other when seen from the first end portion side in the length direction of the chamber (2C) to the second end portion side. Alternately
The upper part (9U) or lower part (9B) of the heat conducting member (9) is in direct contact with the Peltier element (PD),
When the fluid is introduced into the chamber (2C) from the fluid inlet (7) of the chamber (2C), the fluid collides with the side wall surface of the heat conducting member (9), and the heat conducting member (9) Provided is a Peltier unit (1 ') formed so as to flow out from the fluid outlet (8) through a gap between them.
[2] The present invention provides a medical device including the Peltier unit (1 ′) according to [1] as a part of constituent members .
[3] The present invention includes at least one of an artificial lung (20), a blood reservoir (30), a blood pump (40), a blood filter (50), a circuit (60), and a Peltier unit element (1). And
The Peltier unit element (1) has a heat exchanging part (2), and a heat conductor (3) and a Peltier element (PD) are sequentially laminated on at least the top or bottom part of the heat exchanging part (2). The heat dissipation member (5) is attached to the Peltier element (PD),
A heat insulating material (4) is disposed between the heat dissipation surface of the Peltier element (PD) and the heat dissipation member (5),
Any one of the artificial lung (20), the blood reservoir (30), the blood pump (40), the blood filter (50), and the circuit (60) is a heat exchange part (2) of the Peltier unit element (1). Is replaced with the heat exchange part (2 ′) of the Peltier unit (1 ′) described in [1] except for the Peltier element (PD),
The heat conductor (3) is arranged between the upper part (9U) or the lower part (9B) of the heat conduction member (9) of the heat exchange part (2 ′) and the Peltier element (PD). An oxygenator (10) is provided.

本発明によれば、ペルチエ素子を用いたペルチエユニットを使用することで、従来技術においては、熱交換媒体として水を使用していたために生じていた、(A)関連設備が嵩張る、(B)不衛生である等の問題が改善され、さらには(C)プライミングボリュームの増加に起因する患者への負担が発生しない。(D)人工心肺装置の用途では、術中はもっぱら冷却装置として使用されるが、術後、電流の向きを変えて、低温面(吸熱面)を加熱面に変えれば、必要に応じて、血液の加熱装置としても使用できる。等の効果が得られる。   According to the present invention, by using a Peltier unit using a Peltier element, (A) related equipment, which is generated because water is used as a heat exchange medium in the prior art, (B) Problems such as unsanitary conditions are improved, and (C) a burden on the patient due to an increase in priming volume does not occur. (D) In the use of the cardiopulmonary apparatus, it is used exclusively as a cooling device during the operation. However, after the operation, if the direction of the current is changed and the low temperature surface (endothermic surface) is changed to the heating surface, blood can be used as necessary. It can also be used as a heating device. Etc. are obtained.

以下、本発明を詳細に説明する。
(ペルチエ素子PD)
本発明において、ペルチエ素子PDとしては、図1に例示するように、従来公知で汎用されているものがいずれも好適に使用される。ペルチエ素子PDとは機能的に電子冷凍素子と呼ばれるが、発明者の名にちなんでペルチエ(Peitier)素子とも呼ばれることが多い。
n型とp型の半導体(熱電素子HDともいう)を銅などの金属電極MPで接合した素子であり、電流の向きによって片方の接合面が低温(以下吸熱面ともいう)に、他方の接合面が高温(以下放熱面ともいう)になる。ペルチエ素子PDの特徴は以下のとおりである。(A)冷媒のための配管やコンプレッサがなく、構造も単純で、小型軽量である。(B)機械的な運動がなく、振動、騒音、摩擦がない。(C)直流電源のみが必要であり、電流の大きさを変えれば熱交換能力を連続的に変えることができ、操作が簡単である。(D)電流の向きを変えて、低温面(吸熱面)を加熱面に変えれば、加熱装置となる。(E)保守が簡単である:保守・検査・整備が容易である。
Hereinafter, the present invention will be described in detail.
(Peltier element PD)
In the present invention, as the Peltier element PD, as shown in FIG. 1, any conventionally known and widely used elements are preferably used. The Peltier element PD is functionally called an electronic refrigeration element, but is often called a Peitier element after the inventor's name.
An element in which an n-type semiconductor and a p-type semiconductor (also referred to as a thermoelectric element HD) are joined by a metal electrode MP such as copper. The surface becomes high temperature (hereinafter also referred to as heat dissipation surface). The characteristics of the Peltier element PD are as follows. (A) There is no piping or compressor for the refrigerant, the structure is simple, and it is small and lightweight. (B) No mechanical movement, no vibration, noise and friction. (C) Only a DC power supply is necessary, and if the magnitude of the current is changed, the heat exchange capacity can be continuously changed, and the operation is simple. (D) If the direction of the current is changed and the low temperature surface (endothermic surface) is changed to the heating surface, a heating device is obtained. (E) Maintenance is simple: Maintenance, inspection, and maintenance are easy.

(使用条件)
本発明においてペルチエ素子PDのサイズ、形態、駆動電圧、駆動電流、投入電力等は、目的とする温度、処理血液流量、周囲温度などによって任意に調節することができる。言い換えれば、これら使用条件を変更する事で、従来の熱交換器と比較してより高精度に血液温度を調節可能である。
(terms of use)
In the present invention, the size, form, drive voltage, drive current, input power and the like of the Peltier element PD can be arbitrarily adjusted according to the target temperature, the blood flow to be processed, the ambient temperature, and the like. In other words, by changing these use conditions, the blood temperature can be adjusted with higher accuracy than in a conventional heat exchanger.

(ペルチエユニット要素1)
図2は、本発明のペルチエユニット要素1の一例を示す概念図である。
ペルチエユニット要素1は、熱交換部2の少なくとも一部に、ペルチエ素子PDを装着し、当該ペルチエ素子PDに放熱部材5を装着するか、あるいは熱交換部2の少なくとも一部、または複数部に、熱伝導体3、ペルチエ素子PD、断熱材4を順次積層し、当該断熱材4に放熱部材5を装着している。
前記放熱部材5は、ペルチエ素子PDによって液温を冷却する場合はペルチエ素子PDの高温面の熱を吸熱できる部材、液温を加温する場合はペルチエ素子PDの低温面を加温できる部材により形成されている。
ペルチエ素子PDの放熱面は50℃以上に温度が上がるため、図2に例示するように放熱部材5を用いてペルチエ素子PDの放熱面から熱を奪い、これを冷やすことでペルチエ素子PDの破壊を防止するのが実用的である。図2の例示では、放熱部材5としてヒートシンク5を使用している。ヒートシンク5は、空冷式で中が空洞となっている。さらにDCファン6より一方向から他方向に送風することにより、ヒートシンク5内に溜まった熱を放出し、ヒートシンク5の吸熱能力を高めることができるのでより効果的である。なお、放熱部材5の一例として空冷式を記載しているが、水冷式を使用しても全く問題はない。
また、通常ペルチエ素子PDはフラットなプレートであるが、医療機器(人工心肺装置10、これらの構成部品)の一部外壁(フラットな面のみではなく、湾曲面もある)を介して熱交換を行うためには、ペルチエ素子PDと医療機器(人工心肺装置10、これらの構成部品)の熱交換部2の少なくとも一部に密着させる必要がある。
このため、ペルチエ素子PDと熱交換部2の間には、当該熱交換部2の外壁に沿う(フィットする)形状で、熱伝導体3(例えば銅板のような熱伝導度が高い材料)を介するのが良い。
さらにペルチエ素子PDの放熱面と放熱部材5の間に断熱材4を配置することにより、熱交換効果を高めることができる。
(Peltier unit element 1)
FIG. 2 is a conceptual diagram showing an example of the Peltier unit element 1 of the present invention.
In the Peltier unit element 1, a Peltier element PD is attached to at least a part of the heat exchange part 2, and the heat dissipation member 5 is attached to the Peltier element PD, or at least a part of the heat exchange part 2 or a plurality of parts. The heat conductor 3, the Peltier element PD, and the heat insulating material 4 are sequentially laminated, and the heat radiating member 5 is attached to the heat insulating material 4.
When the liquid temperature is cooled by the Peltier element PD, the heat dissipating member 5 is a member that can absorb the heat of the high temperature surface of the Peltier element PD, and when the liquid temperature is warmed, it is a member that can heat the low temperature surface of the Peltier element PD. Is formed.
Since the temperature of the heat dissipation surface of the Peltier element PD rises to 50 ° C. or more, as shown in FIG. 2, the heat dissipation member 5 is used to remove heat from the heat dissipation surface of the Peltier element PD and cool it to destroy the Peltier element PD. It is practical to prevent this. In the illustration of FIG. 2, the heat sink 5 is used as the heat radiating member 5. The heat sink 5 is air-cooled and has a hollow inside. Further, since the DC fan 6 blows air from one direction to the other direction, the heat accumulated in the heat sink 5 can be released and the heat absorption capability of the heat sink 5 can be enhanced, which is more effective. In addition, although the air cooling type is described as an example of the heat radiating member 5, there is no problem even if the water cooling type is used.
In addition, although the Peltier element PD is usually a flat plate, heat exchange is performed via a part of the outer wall (not only a flat surface but also a curved surface) of a medical device (the heart-lung machine 10, these components). In order to do this, it is necessary to closely contact at least a part of the heat exchange part 2 of the Peltier element PD and the medical device (the heart-lung machine 10, these components).
For this reason, between the Peltier element PD and the heat exchange part 2, the heat conductor 3 (for example, material with high heat conductivity like a copper plate) is formed in the shape which fits the outer wall of the said heat exchange part 2 (it fits). It is good to go through.
Furthermore, the heat exchange effect can be enhanced by disposing the heat insulating material 4 between the heat radiation surface of the Peltier element PD and the heat radiation member 5.

(人工心肺装置)
本発明における人工心肺装置(人工肺)とは、体外循環によって血液のガス交換を行う装置全般を意味する。例えば、通常の膜型人工心肺に加えて、ECMO(Extra Corporeal Membrane Oxygenation;体外膜型酸素供給)、PCPS(Percutaneous
Cardio Pulmonary Support :経皮的心肺補助)等が挙げられるが、これらに限定されない。
(Artificial cardiopulmonary device)
The artificial heart-lung machine (artificial lung) in the present invention means all devices that exchange blood gas by extracorporeal circulation. For example, in addition to normal membrane oxygenator, ECMO (Extra Corporeal Membrane Oxygenation), PCPS (Percutaneous
Cardio Pulmonary Support: percutaneous cardiopulmonary support) and the like.

(人工心肺装置10並びに人工心肺装置の構成部品と熱交換部の一体化)
図3は代表的な人工心肺装置10の一例を示す概略図、図4は熱交換部(貯血槽部位)にペルチエ素子を装着した人工心肺の一例を示す概略図、図5は熱交換部(血液ポンプ部位)にペルチエ素子を装着した人工心肺の一例を示す概略図、図6は熱交換部(人工肺部位)にペルチエ素子を装着した人工心肺の一例を示す概略図、図7は熱交換部(異物除去フィルタ部位)にペルチエ素子を装着した人工心肺の一例を示す概略図、図8は熱交換部(回路、チューブ)の外面にペルチエ素子を装着した人工心肺の一例を示す概略図である。
本発明の人工心肺装置10の特徴は、図4から図8に例示するように、熱交換部2が、人工肺20、貯血槽30、血液ポンプ40、血液フィルタ50、回路(チューブ)60のいずれかであり、当該熱交換部2の少なくとも一部の外壁に、熱伝導体3、ペルチエ素子PD、断熱材4を順次積層し、当該断熱材4に放熱部材5を装着した人工心肺装置10を例示している。
これらのように、人工心肺装置10の一部または複数の構成部材に、ペルチエ素子PDを装着し、熱交換部2と兼用することにより、従来のように、熱交換用のチャンバーを別途設ける必要がなくなり、人工心肺装置10全体のプライミングボリュームを低減することができる。
図4から図8の形態(貯血槽30外壁を覆う形態、血液ポンプ40外壁を覆う形態、人工肺20外壁を覆う形態、異物除去フィルター50外壁を覆う形態、人工心肺回路60の外面を覆う形態)はあくまでも例示であり、これらに限定されない。人工心肺装置10の内部を循環する血液に対して、人工心肺装置の構成部品の外壁を介してペルチエ素子による熱交換が実施できる形状であれば何でも良い。
(Integration of the oxygenator 10 and the components of the oxygenator and the heat exchanger)
FIG. 3 is a schematic diagram showing an example of a typical heart-lung machine 10, FIG. 4 is a schematic diagram showing an example of a heart-lung machine in which a Peltier element is attached to a heat exchange part (blood reservoir site), and FIG. FIG. 6 is a schematic diagram showing an example of a heart-lung machine with a Peltier element attached to a heat exchange part (artificial lung part), and FIG. FIG. 8 is a schematic view showing an example of a heart-lung machine in which a Peltier element is attached to the exchange part (foreign matter removal filter part), and FIG. It is.
As shown in FIGS. 4 to 8, the features of the oxygenator 10 of the present invention are that the heat exchange unit 2 includes an oxygenator 20, a blood reservoir 30, a blood pump 40, a blood filter 50, and a circuit (tube) 60. The oxygenator 10 is one in which the heat conductor 3, the Peltier element PD, and the heat insulating material 4 are sequentially laminated on at least a part of the outer wall of the heat exchanging unit 2, and the heat radiating member 5 is attached to the heat insulating material 4. Is illustrated.
As described above, by attaching the Peltier element PD to a part or a plurality of constituent members of the oxygenator 10 and also serving as the heat exchange unit 2, it is necessary to separately provide a heat exchange chamber as in the past. And the priming volume of the entire heart-lung machine 10 can be reduced.
4 to 8 (form covering the outer wall of the blood reservoir 30, form covering the blood pump 40, form covering the outer wall of the artificial lung 20, form covering the outer wall of the foreign substance removal filter 50, form covering the outer surface of the cardiopulmonary circuit 60 ) Is merely an example, and is not limited thereto. Any shape can be used as long as heat can be exchanged with the Peltier element through the outer wall of the components of the heart-lung machine for blood circulating inside the heart-lung machine 10.

ペルチエユニット要素1を含むペルチエユニット1´
図13は、図2のペルチエユニット要素1を含むペルチエユニット1´(熱交換部2´のチャンバー2C)の実施例を示す概略図ある。
熱交換部2´のチャンバー2Cの少なくとも一面(底面又は天面)に、ペルチエユニット要素1を装着し、前記チャンバー2C内に複数の熱伝導部材9を配置している。
当該熱伝導部材9は、チャンバー2Cの底面部2CBまたは天面部2CUを貫通するように立設し、当該熱伝導部材9の上部9U(底部9B)は前記ペルチエユニット要素1と接触している。
以下、さらに詳述する。
熱交換部2´のチャンバー2Cは、長さ方向と、当該長さ方向に略垂直に交わる側部方向とを有する。
チャンバー2Cは、長さ方向の第一端部側に流体入口7を形成し、長さ方向の第二端部側に流体出口8を形成している。
チャンバー2Cは、側部方向に天面部2CUと底面部2CBとを有する。
チャンバー2Cは、長さ方向の第一端部側は、流体入口7側に向けて先細りの漏斗状に形成している。
長さ方向の第二端部側は、流体出口8側に向けて先細りの漏斗状に形成している。
チャンバー2Cの天面部2CUまたは底面部2CBに、ペルチエ素子PDを装着し、チャンバー2C内に、複数の熱伝導部材9を配置している。
熱伝導部材9は、長さ方向と、長さ方向に略垂直に交わる側部方向とを有する。
熱伝導部材9は、長さ方向の第一端部側に上部9U、長さ方向の第二端部側に下部9Bを有する。
熱伝導部材9の上部9Uまたは下部9Bは、チャンバー2Cの天面部2CUまたは底面部2CBより外部に露出するように配置している。
熱伝導部材9は、チャンバー2Cの長さ方向の第一端部側から第二端部側に見て、複数列配置し、かつ当該隣接する列同士で重ならないように交互に配置している。
熱伝導部材9の上部9Uまたは下部9Bはペルチエ素子PDと直接接触し、
流体がチャンバー2Cの流体入口7からチャンバー2C内に導入される際に、当該流体が、前記熱伝導部材9の側部壁面に衝突し、当該熱伝導部材9間の隙間を経て、流体出口8より流出するように形成している。
さらに詳述すれば、流体は、前記熱伝導部材9に接触を繰りかえして、攪拌されながら流体出口8より流出する。
チャンバー2Cの底面部2CBまたは天面部2CUにペルチエユニット要素1を取り付けることにより、チャンバー2C内部を流れる流体の温度を極めて効率よく変化させることが可能である。このような構造をとることで、チャンバー2Cのプライミングボリュームが小さいにもかかわらず、流体と熱伝導部材9との接触面積を多くとることが可能である。
さらに詳述すれば、図13に例示するように、複数の熱伝導部材9を、前記のように交互に配列することにより、流体は、前記熱伝導部材9に何度も接触を繰りかえして、何度も攪拌されながら流体出口8より流出する。このように、熱伝導部材9と接触する流体の液層が常に異なるという特徴をもつので、そのため、全体としての熱交換効率が極めて高くなる。
熱伝導部材9の材質は、鉄、アルミニウム、銅、金、銀、ステンレス等が挙げられるが、特に限定されない。
熱伝導部材9の少なくとも一方の端部はチャンバー2C外部に露出しており、その端部(上部9U又は下部9B)と直接的にペルチエユニット要素1を接続することで、熱交換を行う。チャンバー2Cと熱伝導部材9の接続(接触)部は気密性が保たれており、チャンバー2C内は無菌状態を維持したまま熱交換可能である。
熱伝導部材9の形態は、図13に例示するように細長い円注状が好ましいが(このため熱伝導部材9は「熱伝導芯」ともいう)の太さ、形状、本数等は限定されるものではなく、目的に沿ったものを選択する事ができる。
要するに、チャンバー2Cの底面部2CBまたは天面部2CUを貫通するように立設し、当該熱伝導部材9の上部9U9B)が、前記ペルチエユニット要素1と接触しているものであれば、本発明の目的は達成できる
( Peltier unit 1 'including Peltier unit element 1 )
Figure 13 is a schematic diagram illustrating an embodiment of a Peltier unit 1 'comprises a Peltier unit element 1 of FIG. 2 (a chamber 2C of the heat exchange section 2').
At least one surface of the chamber 2C of the heat exchange unit 2 'to the (bottom or top), fitted with a Peltier unit elements 1 are arranged a plurality of heat conductive member 9 in the chamber 2C.
The heat conducting member 9 is erected so as to penetrate the bottom surface portion 2CB or the top surface portion 2CU of the chamber 2C, and the upper portion 9U (bottom portion 9B ) of the heat conducting member 9 is in contact with the Peltier unit element 1. .
The details will be described below.
The chamber 2C of the heat exchange unit 2 ′ has a length direction and a side direction that intersects the length direction substantially perpendicularly.
The chamber 2C forms a fluid inlet 7 on the first end side in the length direction and forms a fluid outlet 8 on the second end side in the length direction.
The chamber 2C has a top surface portion 2CU and a bottom surface portion 2CB in the side portion direction.
In the chamber 2C, the first end portion side in the length direction is formed in a tapered funnel shape toward the fluid inlet 7 side.
The second end side in the length direction is formed in a funnel shape that tapers toward the fluid outlet 8 side.
A Peltier element PD is mounted on the top surface portion 2CU or the bottom surface portion 2CB of the chamber 2C, and a plurality of heat conducting members 9 are disposed in the chamber 2C.
The heat conducting member 9 has a length direction and a side direction that intersects the length direction substantially perpendicularly.
The heat conducting member 9 has an upper portion 9U on the first end portion side in the length direction and a lower portion 9B on the second end portion side in the length direction.
The upper portion 9U or the lower portion 9B of the heat conducting member 9 is disposed so as to be exposed to the outside from the top surface portion 2CU or the bottom surface portion 2CB of the chamber 2C.
The heat conducting members 9 are arranged in a plurality of rows and alternately arranged so as not to overlap each other when viewed from the first end portion side in the length direction of the chamber 2C to the second end portion side. .
The upper part 9U or the lower part 9B of the heat conducting member 9 is in direct contact with the Peltier element PD,
When the fluid is introduced into the chamber 2C from the fluid inlet 7 of the chamber 2C, the fluid collides with the side wall surface of the heat conducting member 9, passes through the gap between the heat conducting members 9, and then the fluid outlet 8 It is formed to flow more.
More specifically, the fluid repeats contact with the heat conducting member 9 and flows out from the fluid outlet 8 while being stirred.
By attaching the Peltier unit element 1 to the bottom surface portion 2CB or the top surface portion 2CU of the chamber 2C, the temperature of the fluid flowing inside the chamber 2C can be changed very efficiently. By adopting such a structure, it is possible to increase the contact area between the fluid and the heat conducting member 9 even though the priming volume of the chamber 2C is small.
In more detail, as illustrated in FIG. 13, a plurality of heat conducting member 9, by alternately arranged as described above, the fluid is repeatedly contact many times to the heat conducting member 9, It flows out from the fluid outlet 8 while being stirred many times. As described above, since the liquid layers of the fluid contacting the heat conducting member 9 are always different, the heat exchange efficiency as a whole becomes extremely high.
Examples of the material of the heat conductive member 9 include iron, aluminum, copper, gold, silver, and stainless steel, but are not particularly limited.
At least one end of the heat conducting member 9 is exposed to the outside of the chamber 2C, and heat exchange is performed by directly connecting the Peltier unit element 1 to the end (upper 9U or lower 9B ). The connection (contact) portion between the chamber 2C and the heat conducting member 9 is kept airtight, and heat can be exchanged while maintaining the aseptic condition in the chamber 2C.
The shape of the heat conducting member 9 is preferably a long and thin circular shape as illustrated in FIG. 13 (thus, the heat conducting member 9 is also referred to as “heat conducting core”), and the thickness, shape, number, etc. are limited. You can select the one that suits your purpose.
In short, as long as the upright so as to pass through the bottom portion 2CB or top surface portion 2CU chamber 2C, the upper portion of the heat conduction member 9 9U (lower portion 9B) is in contact with the Peltier unit element 1 The object of the present invention can be achieved.

以下、実施例により本発明を説明する。ただし、これらは単なる実施の態様の一例であり、本発明の技術的範囲がこれらによりなんら限定的に解釈されるものではない。   Hereinafter, the present invention will be described by way of examples. However, these are merely examples of embodiments, and the technical scope of the present invention is not construed as being limited thereto.

〔実施例1〕
(1)本実施例では、恒温槽、ローラーポンプ、貯血槽30兼熱交換部材を、臨床で使用される代表的な人工心肺回路(川澄化学工業株式会社製)で接続した簡易回路を使用した。その他、電源、デジタルマルチメータ、熱電対を使用した。
2枚のペルチエ素子PDの吸熱面を、熱伝導体3(銅板)を介して人工心肺装置10の貯血槽30底部に密着させ、貯血槽30底部外壁を通じて熱交換を行った。人血液を模して、循環する水は恒温槽を用いて37℃一定に調整した。本実験回路は閉回路循環法を用いて水をローラーポンプにて流量Q=1〜5L/minで熱交換部2(貯血槽30)に2分間循環し、水温を下げ、貯血槽30からの流出部の水温を熱電対で測定し、デジタルマルチメータを用いて10秒ごとに読み取った。また、ペルチエ素子PDに流す電流も1A−5Aまで変化させた。
[Example 1]
(1) In this example, a simple circuit in which a thermostatic chamber, a roller pump, a blood reservoir 30 and a heat exchange member are connected by a typical artificial cardiopulmonary circuit (manufactured by Kawasumi Chemical Industry Co., Ltd.) used in clinical use was used. . In addition, a power supply, digital multimeter, and thermocouple were used.
The heat absorbing surfaces of the two Peltier elements PD were brought into close contact with the bottom of the blood reservoir 30 of the oxygenator 10 via the heat conductor 3 (copper plate), and heat exchange was performed through the outer wall of the bottom of the blood reservoir 30. Simulating human blood, the circulating water was adjusted to a constant temperature of 37 ° C. using a thermostatic bath. This experimental circuit uses a closed circuit circulation method to circulate water with a roller pump at a flow rate Q = 1 to 5 L / min for 2 minutes to the heat exchange unit 2 (blood reservoir 30), lower the water temperature, The water temperature of the outflow part was measured with a thermocouple and read every 10 seconds using a digital multimeter. Further, the current flowing through the Peltier element PD was also changed to 1A-5A.

(2)流量1L/min時の温度変化を図9、流量3L/min時の温度変化を図10、流量4L/min時の温度変化を図11、流量5L/min時の温度変化を図12に示した。 (2) Temperature change at a flow rate of 1 L / min is shown in FIG. 9, temperature change at a flow rate of 3 L / min in FIG. 10, temperature change at a flow rate of 4 L / min in FIG. 11, and temperature change at a flow rate of 5 L / min in FIG. It was shown to.

図9から図12より、以下のことが云える。まず、2Aもしくは3A以下の電流を流した時、40秒程度経過すると水温が一定に保たれた。しかし、それ以上の電流を流した時、徐々に水温が下がらなくなった。また、さらに長時間実験を行った場合、水温が上昇していくことが示唆された。これらの原因はペルチエ素子PDの放熱面を効率良く冷却することが出来なかったためであると思われる。それにより、4A以上では冷却の用途に使用することができなかった。よってこの結果はペルチエ素子用の冷却部材5(ヒートシンク)の熱抵抗値が影響していると考えられ、これ以上の電流を流す場合、ペルチエ素子用の冷却部材5(ヒートシンク)の熱抵抗値を減少させる必要がある。なお、水温をさらに低下させるには熱交換部2の表面積を増加させるなどの改良により、可能である。また、流量が上昇するにつれて水温があまり変化しなかった。この原因は熱交換部2と水が接している時間が短くなったため水温の変化量が少なくなった。   From FIG. 9 to FIG. 12, the following can be said. First, when a current of 2 A or 3 A or less was passed, the water temperature was kept constant after about 40 seconds. However, when a current higher than that was applied, the water temperature gradually decreased. Moreover, it was suggested that when the experiment was conducted for a longer time, the water temperature increased. These causes seem to be because the heat dissipation surface of the Peltier element PD could not be efficiently cooled. As a result, at 4A or more, it could not be used for cooling purposes. Therefore, it is considered that this result is influenced by the thermal resistance value of the cooling member 5 (heat sink) for the Peltier element. When a current higher than this is applied, the thermal resistance value of the cooling member 5 (heat sink) for the Peltier element is It needs to be reduced. Note that the water temperature can be further lowered by improvements such as increasing the surface area of the heat exchanging section 2. Also, the water temperature did not change much as the flow rate increased. This is because the amount of change in water temperature is reduced because the time in which the heat exchanging unit 2 is in contact with water is shortened.

〔実施例2〕
(1)2枚のペルチエ素子の吸熱面を、熱伝導体3(銅板)を介して人工心肺装置10の人工心肺回路部60に密着させ、人工心肺回路60外壁を通じて熱交換を行った。〔実施例1〕と同様の簡易回路を作製し、貯血槽直前の人工心肺回路部60を被う形態でペルチエ素子ユニットPDを密着させた。ペルチエ素子PDと人工心肺回路60の間に介在する熱伝導体3(銅板)は、ペルチエ素子PDの吸熱面と接する面はフラットで、人工心肺回路60と接する面は回路(チューブ)外壁に沿って密着しやすいように半円筒状に切削した。閉回路循環法を用いて水をローラーポンプにて流量Q=1〜5L/minで熱交換部(貯血槽直前の人工心肺回路60)に2分間循環し、水温を下げ、貯血槽からの流出部の水温を熱電対で測定し、デジタルマルチメータを用いて10秒ごとに読み取った。また、ペルチエ素子PDに流す電流も1A−5Aまで変化させた。
[Example 2]
(1) The heat absorbing surfaces of the two Peltier elements were brought into close contact with the heart-lung machine circuit part 60 of the heart-lung machine 10 through the heat conductor 3 (copper plate), and heat exchange was performed through the outer wall of the heart-lung machine circuit 60. A simple circuit similar to that of [Example 1] was produced, and the Peltier element unit PD was brought into close contact with the artificial cardiopulmonary circuit unit 60 immediately before the blood reservoir. The heat conductor 3 (copper plate) interposed between the Peltier element PD and the heart-lung machine circuit 60 has a flat surface in contact with the heat absorption surface of the Peltier element PD, and the surface in contact with the heart-lung machine circuit 60 extends along the outer wall of the circuit (tube). And was cut into a semi-cylindrical shape so as to be easily adhered. Using a closed circuit circulation method, water is circulated with a roller pump at a flow rate Q = 1 to 5 L / min for 2 minutes to the heat exchange section (artificial cardiopulmonary circuit 60 immediately before the blood reservoir), the water temperature is lowered, and the blood is discharged from the blood reservoir. The water temperature of the part was measured with a thermocouple and read every 10 seconds using a digital multimeter. Further, the current flowing through the Peltier element PD was also changed to 1A-5A.

(2)以上の評価の結果、2分後における水温を表1に示す。
(2) As a result of the above evaluation, the water temperature after 2 minutes is shown in Table 1.

表1のとおり、実施例1と同様の傾向が見られたが、熱交換効率は実施例1より若干低下した。この原因は、ペルチエ素子PDと循環水の間に介する物[貯血槽30(材料:ポリカーボネート)と回路部60(材料:ポリ塩化ビニル)]の違い及びそれら材料の厚さの違いに起因する。ペルチエ素子と循環水の間に介する物は、熱伝導度が高いほど、厚さが薄いほど熱交換効率が高くなると考えられる。   As shown in Table 1, the same tendency as in Example 1 was observed, but the heat exchange efficiency was slightly lower than in Example 1. This cause is caused by a difference between the Peltier element PD and the circulating water [blood reservoir 30 (material: polycarbonate) and circuit unit 60 (material: polyvinyl chloride)] and a difference in thickness of these materials. The thing interposed between a Peltier element and circulating water is considered that heat exchange efficiency becomes high, so that heat conductivity is high and thickness is thin.

〔実施例3〕
(1)8枚のペルチエ素子PDの吸熱面を、熱伝導体3(銅板)を介して人工心肺装置10の貯血槽30底部に密着させ、貯血槽30底部外壁を通じて熱交換を行った。〔実施例1〕と同様の簡易回路を作製し、〔実施例1〕と同様に、閉回路循環法を用いて水をローラーポンプにて流量Q=1〜5L/minで熱交換部(貯血槽)に2分間循環し、水温を下げ、貯血槽からの流出部の水温を熱電対で測定し、デジタルマルチメータを用いて10秒ごとに読み取った。また、ペルチエ素子PDに流す電流も1A−5Aまで変化させた。
Example 3
(1) The heat absorbing surfaces of the eight Peltier elements PD were brought into close contact with the bottom of the blood reservoir 30 of the oxygenator 10 through the heat conductor 3 (copper plate), and heat exchange was performed through the outer wall of the bottom of the blood reservoir 30. A simple circuit similar to that of [Example 1] was prepared. Similarly to [Example 1], water was supplied by a roller pump using a closed circuit circulation method at a flow rate Q = 1 to 5 L / min. The temperature of the water outflow from the blood reservoir was measured with a thermocouple and read every 10 seconds using a digital multimeter. Further, the current flowing through the Peltier element PD was also changed to 1A-5A.

(2)以上の評価の結果、2分後における水温を表2に示す。
(2) As a result of the above evaluation, the water temperature after 2 minutes is shown in Table 2.

表2のとおり、実施例1と同様の傾向が見られたが、熱交換効率は実施例1より向上した。この原因は、ペルチエ素子PDが循環水と接する表面積の違い(2枚と8枚)に起因する。熱交換部の表面積をさらに増加させることにより、さらなる熱交換効率の向上が可能になると考えられる。
〔実施例4〕
(1)本実施例では、恒温槽、ローラーポンプ、図13の(熱交換部2の)チャンバー2Cを、臨床で使用される代表的な人工心肺回路(川澄化学工業株式会社製)で接続した簡易回路を使用した。その他、電源、デジタルマルチメータ、熱電対を使用した。
試験条件:
循環流体として血液の代わりに純水を用い、人血液を模して、循環する水は恒温槽を用いて37℃一定に調整した。ペルチエ素子PDは2枚使用し、供給電圧は26V、ペルチエ素子1枚あたりの入力電流は6A、吸熱量は45Wとした。閉回路循環法を用いて水をローラーポンプにて流量Q=0.3〜5L/minで熱交換部2に2分間循環し、水温を下げ、熱交換部2からの流出部の水温を熱電対で測定し、デジタルマルチメータを用いて読み取った。
熱交換部2(図13)の設置:
2枚のペルチエ素子PDの吸熱面を、熱伝導体3(銅板)を介してチャンバー2Cの底部に密着させ、チャンバー2C底部外壁より露出した熱伝導芯9を通じて熱交換を行った。ペルチエ素子PDの発熱面の下部には冷却部材5(ヒートシンク)を設置した。
熱交換部2(図13)の設計:
チャンバー2Cは、サイズ;幅140mm×80mm×20mmを使用し、熱伝導芯9はアルミニウム製で、図13の通り円柱状のものを使用した。熱伝導芯9は、図13に示すとおり、各熱伝導芯9が交互に並ぶように規則的に配列した。
熱伝導芯9の太さと熱交換効率の相関を見るため、熱伝導芯9と循環流体との接触面積を約6000mm2に統一し、熱伝導芯9の径を3mmと5mmの2種類に対して評価した。なお熱伝導芯9と熱伝導芯9の間隔は2mmであった。
結果:
表3および表4のとおり、図13の熱交換部2を使用することで、ペルチエ素子PD2枚においても高い熱交換効率(流速0.3(l/min)のとき、37℃から31.0ないし28.5(℃)まで、温度が低下している)を発揮することが確認された。熱伝導芯9の径が5mmの方が熱交換効率が高い結果であるが、これは熱伝導芯9が熱伝導体(銅板)3を介してペルチエ素子PDとの接触する面積が大きいことに起因すると考えられる。またそれぞれのチャンバー2Cのプライミングボリュームは、熱伝導芯9の径が3mmの場合、約178ml、熱伝導芯9の径が5mmの場合、約155mlと極めて少量であった。
本結果より、熱伝導芯9の径、充填率を変更することで、目的に沿ったプライミングボリュームおよび熱交換効率を発揮し得る熱交換部2を提供することが可能である。
As shown in Table 2, the same tendency as in Example 1 was observed, but the heat exchange efficiency was improved from that in Example 1. This is due to the difference in surface area (2 and 8) where the Peltier element PD is in contact with the circulating water. It is considered that the heat exchange efficiency can be further improved by further increasing the surface area of the heat exchange part.
Example 4
(1) In this example, a thermostatic bath, a roller pump, and the chamber 2C (of the heat exchange unit 2) in FIG. 13 were connected by a typical cardiopulmonary circuit (made by Kawasumi Chemical Co., Ltd.) used in clinical practice. A simple circuit was used. In addition, a power supply, digital multimeter, and thermocouple were used.
Test conditions:
Pure water was used instead of blood as a circulating fluid, and the circulating water was adjusted to a constant temperature of 37 ° C. using a thermostatic chamber, imitating human blood. Two Peltier elements PD were used, the supply voltage was 26 V, the input current per Peltier element was 6 A, and the heat absorption amount was 45 W. Using a closed circuit circulation method, water is circulated with a roller pump at a flow rate Q = 0.3 to 5 L / min for 2 minutes in the heat exchanging unit 2, the water temperature is lowered, and the water temperature at the outflow portion from the heat exchanging unit 2 is thermoelectric Measured in pairs and read using a digital multimeter.
Installation of heat exchanger 2 (FIG. 13):
The heat absorbing surfaces of the two Peltier elements PD were brought into close contact with the bottom of the chamber 2C via the heat conductor 3 (copper plate), and heat exchange was performed through the heat conducting core 9 exposed from the outer wall of the bottom of the chamber 2C. A cooling member 5 (heat sink) was installed below the heat generating surface of the Peltier element PD.
Design of heat exchanger 2 (FIG. 13):
The chamber 2C had a size of 140 mm × 80 mm × 20 mm in width, the heat conducting core 9 was made of aluminum, and a cylindrical one was used as shown in FIG. As shown in FIG. 13, the heat conductive cores 9 were regularly arranged so that the heat conductive cores 9 were alternately arranged.
To see the correlation between the thickness and the heat exchange efficiency of the heat conduction core 9, unified contact area between the thermally conductive core 9 and the circulating fluid to about 6000 mm 2, with respect to two types of 3mm and 5mm the diameter of the heat conductive core 9 And evaluated. In addition, the space | interval of the heat conductive core 9 and the heat conductive core 9 was 2 mm.
result:
As shown in Table 3 and Table 4, by using the heat exchanging unit 2 in FIG. 13, even in the case of two Peltier elements PD, high heat exchange efficiency (from 37 ° C. to 31.0 at a flow rate of 0.3 (l / min)) It was confirmed that the temperature was lowered to 28.5 (° C.). The heat conduction core 9 having a diameter of 5 mm is a result of higher heat exchange efficiency. This is because the heat conduction core 9 has a larger area in contact with the Peltier element PD via the heat conductor (copper plate) 3. It is thought to be caused. Further, the priming volume of each chamber 2C was very small, about 178 ml when the diameter of the heat conducting core 9 was 3 mm, and about 155 ml when the diameter of the heat conducting core 9 was 5 mm.
From this result, it is possible to provide the heat exchange part 2 which can exhibit the priming volume and heat exchange efficiency according to the objective by changing the diameter and filling rate of the heat conductive core 9.

本発明は、ペルチエ素子PD(熱電半導体素子)を用いて温度制御部分に電気的な制御を適用することで、装置の小型化かつ衛生的な熱交換器を実現し、具体的には本熱交換装置を人工心肺装置の構成部品と一体化して兼熱交換部2とする、あるいは熱交換効率の高い熱交換部2取り付けることで、プライミングボリュームを減少させた結果、従来の人工心肺装置と比較して(A)小型化かつ(B)衛生的な熱交換器で、(C)プライミングボリュームの増加による患者への負担がない、熱交換器一体型人工心肺装置を供するものであり、産業上の利用可能性はきわめて大きい。   The present invention realizes a miniaturized and sanitary heat exchanger by applying electrical control to the temperature control portion using a Peltier element PD (thermoelectric semiconductor element), specifically, the main heat. As a result of reducing the priming volume by integrating the exchange device with the components of the heart-lung machine as the heat exchange part 2 or by attaching the heat exchange part 2 with high heat exchange efficiency, compared with the conventional heart-lung machine (A) a miniaturized and (B) sanitary heat exchanger, and (C) a heat exchanger integrated heart-lung machine that does not burden the patient due to an increase in priming volume. The availability of is enormous.

本発明に使用するペルチエ素子の概念図Conceptual diagram of Peltier element used in the present invention 本発明のペルチエユニットの一例を示す概念図The conceptual diagram which shows an example of the Peltier unit of this invention 代表的な人工心肺の一例を示す概略図Schematic showing an example of a typical heart-lung machine 熱交換部(貯血槽部位)にペルチエ素子を装着した人工心肺の一例を示す概略図Schematic showing an example of an oxygenator with a Peltier element attached to the heat exchanger (blood reservoir site) 熱交換部(血液ポンプ部位)にペルチエ素子を装着した人工心肺の一例を示す概略図Schematic showing an example of a heart-lung machine with a Peltier element attached to the heat exchange part (blood pump site) 熱交換部(人工肺部位)にペルチエ素子を装着した人工心肺の一例を示す概略図Schematic showing an example of a heart-lung machine with a Peltier element attached to the heat exchanger (artificial lung region) 熱交換部(異物除去フィルタ部位)にペルチエ素子を」装着した人工心肺の一例を示す概略図Schematic showing an example of a heart-lung machine with a Peltier element attached to the heat exchange part (foreign matter removal filter part) 熱交換部(回路、チューブ)の外面にペルチエ素子を装着した人工心肺の一例を示す概略図Schematic showing an example of a heart-lung machine with a Peltier element attached to the outer surface of the heat exchange part (circuit, tube) 循環水の温度変化を示すグラフGraph showing temperature change of circulating water 循環水の温度変化を示すグラフGraph showing temperature change of circulating water 循環水の温度変化を示すグラフGraph showing temperature change of circulating water 循環水の温度変化を示すグラフGraph showing temperature change of circulating water 熱交換部のチャンバーの実施例を示す概略図Schematic showing an embodiment of the chamber of the heat exchange section

符号の説明Explanation of symbols

PD ペルチエ素子
MP 金属電極
HD 熱電素子
1 ベルチェユニット要素
1´ ベルチェユニット
2 熱交換部
2´ 熱交換部
2C (熱交換部)チャンバー
2CU 天面部
2CB 底面部
3 熱伝導体(銅板)
4 断熱材
5 放熱部材(ヒートシンク)
6 DCファン
7 流体入口
8 流体出口
9 熱伝導部材
9U 上部
9B 下部
10 医療機器(人工心肺装置)
20 人工肺
30 貯血槽
40 血液ポンプ
50 血液フィルタ
60 人工心肺回路(チューブ)
PD Peltier element MP Metal electrode HD Thermoelectric element 1 Veltier unit element
1 'Peltier unit 2 heat exchange unit
2'heat exchange section 2C (heat exchange section) chamber
2CU top surface
2CB bottom 3 heat conductor (copper plate)
4 Thermal insulation material 5 Heat dissipation member (heat sink)
6 DC fan 7 Fluid inlet 8 Fluid outlet 9 Heat conduction member
9U top
9B lower part 10 Medical equipment (artificial heart-lung machine)
20 Artificial lung 30 Blood reservoir 40 Blood pump 50 Blood filter 60 Artificial cardiopulmonary circuit (tube)

Claims (3)

熱交換部(2´)はチャンバー(2C)を有し、The heat exchange part (2 ′) has a chamber (2C),
当該チャンバー(2C)は、長さ方向と、当該長さ方向に略垂直に交わる側部方向とを有し、The chamber (2C) has a length direction and a side direction that intersects the length direction substantially perpendicularly,
前記チャンバー(2C)は、前記長さ方向の第一端部側に流体入口(7)を形成し、前記長さ方向の第二端部側に流体出口(8)を形成し、前記チャンバー(2C)は、前記側部方向に天面部(2CU)と底面部(2CB)とを有し、The chamber (2C) has a fluid inlet (7) formed on the first end side in the length direction, a fluid outlet (8) formed on the second end side in the length direction, and the chamber (2C). 2C) has a top surface portion (2CU) and a bottom surface portion (2CB) in the side direction,
当該チャンバー(2C)は、前記長さ方向の第一端部側は、前記流体入口(7)側に向けて先細りの漏斗状に形成し、In the chamber (2C), the first end portion in the length direction is formed into a tapered funnel shape toward the fluid inlet (7) side,
前記長さ方向の第二端部側は、前記流体出口(8)側に向けて先細りの漏斗状に形成し、The second end side in the length direction is formed in a funnel shape tapered toward the fluid outlet (8) side,
前記チャンバー(2C)の天面部(2CU)または底面部(2CB)に、ペルチエ素子(PD)を装着し、A Peltier element (PD) is mounted on the top surface (2CU) or the bottom surface (2CB) of the chamber (2C),
前記チャンバー(2C)内に、複数の熱伝導部材(9)を配置し、A plurality of heat conducting members (9) are disposed in the chamber (2C),
当該熱伝導部材(9)は、長さ方向と、当該長さ方向に略垂直に交わる側部方向とを有し、The heat conducting member (9) has a length direction and a side direction that intersects the length direction substantially perpendicularly,
当該熱伝導部材(9)は、前記長さ方向の第一端部側に上部(9U)、前記長さ方向の第二端部側に下部(9B)とを有し、The heat conducting member (9) has an upper part (9U) on the first end side in the length direction and a lower part (9B) on the second end side in the length direction,
当該熱伝導部材(9)の上部(9U)または下部(9B)は、前記チャンバー(2C)の天面部(2CU)または底面部(2CB)より外部に露出するように配置し、The upper part (9U) or the lower part (9B) of the heat conducting member (9) is disposed so as to be exposed to the outside from the top surface part (2CU) or the bottom surface part (2CB) of the chamber (2C),
当該熱伝導部材(9)は、前記チャンバー(2C)の長さ方向の第一端部側から第二端部側に見て、複数列配置し、かつ当該隣接する列同士で重ならないように交互に配置し、The heat conducting member (9) is arranged in a plurality of rows so as not to overlap each other when seen from the first end portion side in the length direction of the chamber (2C) to the second end portion side. Alternately
当該熱伝導部材(9)の上部(9U)または下部(9B)は前記ペルチエ素子(PD)と直接接触し、The upper part (9U) or lower part (9B) of the heat conducting member (9) is in direct contact with the Peltier element (PD),
流体が前記チャンバー(2C)の流体入口(7)から前記チャンバー(2C)内に導入される際に、当該流体が、前記熱伝導部材(9)の側部壁面に衝突し、当該熱伝導部材(9)間の隙間を経て、前記流体出口(8)より流出するように形成した、ことを特徴とするペルチエユニット(1´)。When the fluid is introduced into the chamber (2C) from the fluid inlet (7) of the chamber (2C), the fluid collides with the side wall surface of the heat conducting member (9), and the heat conducting member (9) A Peltier unit (1 ') formed so as to flow out from the fluid outlet (8) through a gap between them.
請求項1に記載のペルチエユニット(1´)を構成部材の一部に含むことを特徴とする医療機器 A medical device comprising the Peltier unit (1 ') according to claim 1 as a part of a constituent member . 少なくとも人工肺(20)、貯血槽(30)、血液ポンプ(40)、血液フィルタ(50)、回路(60)のいずれか一つと、ペルチエユニット要素(1)を有し、At least one of an artificial lung (20), a blood reservoir (30), a blood pump (40), a blood filter (50), a circuit (60), and a Peltier unit element (1),
当該ペルチエユニット要素(1)は、熱交換部(2)を有し、当該熱交換部(2)の少なくとも天面部または底面部に、熱伝導体(3)、ペルチエ素子(PD)を順次積層し、当該ペルチエ素子(PD)に放熱部材(5)を装着し、The Peltier unit element (1) has a heat exchanging part (2), and a heat conductor (3) and a Peltier element (PD) are sequentially laminated on at least the top or bottom part of the heat exchanging part (2). The heat dissipation member (5) is attached to the Peltier element (PD),
前記ペルチエ素子(PD)の放熱面と前記放熱部材(5)との間に断熱材(4)を配置し、A heat insulating material (4) is disposed between the heat dissipation surface of the Peltier element (PD) and the heat dissipation member (5),
前記少なくとも人工肺(20)、貯血槽(30)、血液ポンプ(40)、血液フィルタ(50)、回路(60)のいずれか一つが、前記ペルチエユニット要素(1)の熱交換部(2)を、前記ペルチエ素子(PD)を除いて、請求項1に記載の前記ペルチエユニット(1´)の熱交換部(2´)に置換したものであり、Any one of the artificial lung (20), the blood reservoir (30), the blood pump (40), the blood filter (50), and the circuit (60) is a heat exchange part (2) of the Peltier unit element (1). Is replaced with the heat exchange part (2 ') of the Peltier unit (1') according to claim 1, except for the Peltier element (PD),
当該熱交換部(2´)の熱伝導部材(9)の上部(9U)または下部(9B)と前記ペルチエ素子(PD)との間に、前記熱伝導体(3)を配置したものであることを特徴とする人工心肺装置(10)。The heat conductor (3) is arranged between the upper part (9U) or the lower part (9B) of the heat conduction member (9) of the heat exchange part (2 ′) and the Peltier element (PD). A heart-lung machine (10) characterized by the above.
JP2005117952A 2005-04-15 2005-04-15 Peltier unit, medical device including Peltier unit, and heart-lung machine Expired - Fee Related JP4782465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117952A JP4782465B2 (en) 2005-04-15 2005-04-15 Peltier unit, medical device including Peltier unit, and heart-lung machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117952A JP4782465B2 (en) 2005-04-15 2005-04-15 Peltier unit, medical device including Peltier unit, and heart-lung machine

Publications (2)

Publication Number Publication Date
JP2006296452A JP2006296452A (en) 2006-11-02
JP4782465B2 true JP4782465B2 (en) 2011-09-28

Family

ID=37465301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117952A Expired - Fee Related JP4782465B2 (en) 2005-04-15 2005-04-15 Peltier unit, medical device including Peltier unit, and heart-lung machine

Country Status (1)

Country Link
JP (1) JP4782465B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201012521D0 (en) * 2010-07-27 2010-09-08 Univ Strathclyde Integrated perfusion system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512919U (en) * 1978-07-10 1980-01-26
JP2000093449A (en) * 1998-09-24 2000-04-04 Nikkiso Co Ltd Free heating and cooling type chdf device
JP2001004245A (en) * 1999-06-18 2001-01-12 Daikin Ind Ltd Thermoelectric converter

Also Published As

Publication number Publication date
JP2006296452A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
EP2056686B1 (en) Cooling apparatus for reducing risk of male infertility in heated environments
US7588549B2 (en) Thermoelectric temperature control for extracorporeal blood circuit
US20210236329A1 (en) Apparatus and method for rapidly cooling or heating the body temperature of a patient
JP2022002714A (en) Heat exchanging system, system and cassette
US20060173396A1 (en) Systems and methods for temperature adjustment using bodily fluids as a thermic medium
JP2005527324A5 (en)
JP2022180401A (en) Cold plate design in heat exchanger for intravascular temperature management catheter and/or heat exchange pad
TWI557276B (en) A gas generator
CN102525643B (en) There is the conduit of liquid-cooled control handle
JP2002500915A (en) Method and apparatus for selective organ hypothermia treatment
US8475508B2 (en) Therapeutic cooling system
JP4782465B2 (en) Peltier unit, medical device including Peltier unit, and heart-lung machine
JP5744460B2 (en) Device for circulating or injecting liquid into the living body
JP2014526942A (en) Heat exchange during fluid degassing
JP2011024626A (en) Liquid temperature adjuster
JP7190201B2 (en) Hollow fiber membrane oxygenator
WO2021057240A1 (en) Cold and hot compress system
JP2016159120A (en) Thermoregulation pad and thermoregulation apparatus
JP5101261B2 (en) Epidural cooling system
JP2000506764A (en) Oxygenator with anhydrous heat exchanger
CN208851778U (en) The medical mute cooling instrument of fin type water cooling
CN220360626U (en) Ultrasonic therapeutic apparatus
CN217066752U (en) Sub-low temperature external fatty liver therapeutic instrument
JP2004197961A (en) Thin heat pipe for regulating living body temperature, and living body temperature regulating device
CN116510105A (en) Medical pump device and in-vitro life support system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees