JP4781003B2 - Silica-titania glass for nanoimprint stamper - Google Patents

Silica-titania glass for nanoimprint stamper Download PDF

Info

Publication number
JP4781003B2
JP4781003B2 JP2005132751A JP2005132751A JP4781003B2 JP 4781003 B2 JP4781003 B2 JP 4781003B2 JP 2005132751 A JP2005132751 A JP 2005132751A JP 2005132751 A JP2005132751 A JP 2005132751A JP 4781003 B2 JP4781003 B2 JP 4781003B2
Authority
JP
Japan
Prior art keywords
silica
titania
titania glass
glass
nanoimprint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005132751A
Other languages
Japanese (ja)
Other versions
JP2006306674A (en
Inventor
朗 藤ノ木
裕幸 西村
哲司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2005132751A priority Critical patent/JP4781003B2/en
Publication of JP2006306674A publication Critical patent/JP2006306674A/en
Application granted granted Critical
Publication of JP4781003B2 publication Critical patent/JP4781003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Description

本発明は、半導体リソグラフィー、次世代光ディスク、バイオテクノロジー等で用いられるナノインプリント技術に用いられるスタンパー、特に面積が100cm2を超える大面積スタンパーに好適に用いられるシリカ・チタニアガラス(本発明において、チタニアを含有するシリカガラスをシリカ・チタニアガラスと称する。)に関する。 The present invention relates to a silica-titania glass suitably used for a stamper used in nanoimprint technology used in semiconductor lithography, next-generation optical discs, biotechnology, etc., in particular, a large-area stamper having an area exceeding 100 cm 2 (in the present invention, titania The silica glass contained is referred to as silica-titania glass.

線幅が40nm以下の半導体の描画方式については、未だその方式が検討されている段階であるが、波長13.5nmのEUV光を用いるEUVリソグラフィー(Extreme Ultra-Violet Lithography)の対抗方式としてスタンパーを用いてパターンを転写するナノインプリント技術が注目を浴びてきている。
これは、ステンシル、テンプレートあるいはスタンパーと呼ばれる微細なパターンを刻印した型を、紫外線硬化型レジストを塗布したウエハー表面に一定の押圧で押し付け、上部から例えば水銀灯のG線やI線などの紫外線を照射してレジストを感光させてパターン形成を行う手法である。
A semiconductor drawing method with a line width of 40 nm or less is still under investigation, but a stamper is used as a countermeasure for EUV lithography (Extreme Ultra-Violet Lithography) using EUV light with a wavelength of 13.5 nm. Nanoimprint technology that uses it to transfer patterns has attracted attention.
This is because a mold engraved with a fine pattern called a stencil, template or stamper is pressed against the wafer surface coated with an ultraviolet curable resist with a certain amount of pressure and irradiated from the top with ultraviolet rays such as G-rays and I-rays from mercury lamps. Then, the resist is exposed to form a pattern.

ナノインプリント技術の特徴はその応用がリソグラフィーのみに留まらず、例えば転写パターンサイズが100μm程度の次世代光ディスクの製造やDNAチップ等への応用が検討されていて、応用範囲が非常に広いことである。このようなスタンパーは一定の押圧を均等に伝える為に機械的剛性および強度が必要であり、また、直接レジスト等と接触する為に不要な不純物が少ないこと、毎回洗浄が必要である為に化学的な耐久性が高いことが要求される。
このため、スタンパー素材としてはポリカーボネート等の樹脂、ガラス、セラミクスが用いられるが(例えば、特許文献1及び2等参照。)、光硬化型レジストを用いる光ナノインプリント技術では紫外線に対して透明なガラス、好適にはシリカガラスが用いられる。
The feature of the nanoimprint technology is that its application is not limited to lithography, but for example, the production of next-generation optical discs with a transfer pattern size of about 100 μm and the application to DNA chips and the like are being studied, and the application range is very wide. Such a stamper requires mechanical rigidity and strength to transmit a certain amount of pressure evenly, and since there are few unnecessary impurities for direct contact with resist, etc., and cleaning is required every time. High durability is required.
For this reason, resins such as polycarbonate, glass, and ceramics are used as the stamper material (see, for example, Patent Documents 1 and 2). However, in the optical nanoimprint technology using a photocurable resist, glass that is transparent to ultraviolet rays, Silica glass is preferably used.

また、ナノインプリント技術の利点の一つとして大面積の一括転写が挙げられるが、面積が100cm2を超えるような大面積の転写に用いられる大型スタンパーにおいては数十nmという微細なパターンの位置精度が極めて重要になってくる。例えば線膨張係数(CTE)が5×10-7/℃(500ppb/℃)の6インチ角のシリカガラススタンパーを用いる場合、スタンパーの対角は約210mmであるから、温度が1℃変化するごとに最大0.1μm(100nm)長さが変化することになる。このような長さ変化は線幅数10nmのパターンにとっては大きな問題となり、少なくともCTEをシリカガラスの半分以下の±200ppb/℃に抑えることが必要である。
特開2004−288845号公報 特開2004−288802号公報
One of the advantages of nanoimprint technology is batch transfer of large areas, but large stampers used for large area transfer with an area exceeding 100 cm 2 have a fine pattern positional accuracy of several tens of nanometers. It becomes extremely important. For example, when a 6-inch square silica glass stamper having a coefficient of linear expansion (CTE) of 5 × 10 −7 / ° C. (500 ppb / ° C.) is used, the diagonal of the stamper is about 210 mm. The maximum length changes to 0.1 μm (100 nm). Such a change in length is a big problem for a pattern with a line width of several tens of nm, and at least CTE must be suppressed to ± 200 ppb / ° C., which is half or less of silica glass.
JP 2004-288845 A JP 2004-288802 A

本発明は、ナノインプリント用スタンパー、特に紫外線を用いたナノインプリント用の大型スタンパーで問題となる、温度変化に対する形状の安定性と好適な紫外線透過率とを両立させた素材を提供することを目的とする。即ち、線膨張係数が±200ppb/℃以下と極めて小さく、かつ紫外線透過率の良好な超低膨張ガラスを提供することを目的としている。   It is an object of the present invention to provide a material that has both a shape stability against temperature change and a suitable ultraviolet transmittance, which is a problem in a nanoimprint stamper, particularly a large stamper for nanoimprint using ultraviolet rays. . That is, an object of the present invention is to provide an ultra-low expansion glass having an extremely small linear expansion coefficient of ± 200 ppb / ° C. or less and a good ultraviolet transmittance.

上記課題を解決するために、本発明のナノインプリントスタンパー用シリカ・チタニアガラスは、2質量%以上15質量%以下のチタニアを含有するシリカ・チタニアガラスであって、20℃から35℃の温度範囲における線膨張係数が±200ppb/℃の範囲にあることを特徴とする。   In order to solve the above problems, the silica-titania glass for a nanoimprint stamper of the present invention is a silica-titania glass containing titania of 2% by mass or more and 15% by mass or less, in a temperature range of 20 ° C. to 35 ° C. The linear expansion coefficient is in the range of ± 200 ppb / ° C.

本発明のシリカ・チタニアガラスは、波長365nmの紫外線に対する内部透過率が90%以上であることが好ましい。
また、波長185nmの低圧水銀灯を出力25mW/cmで5cmの距離で100時間照射した際の365nmの波長における内部透過率の変化ΔT%が5%以下であることが好適である。
本発明のシリカ・チタニアガラスが、使用方向に脈理が存在しないことが好ましい。
The silica-titania glass of the present invention preferably has an internal transmittance of 90% or more for ultraviolet rays having a wavelength of 365 nm.
Further, it is preferable that the change ΔT% in internal transmittance at a wavelength of 365 nm when a low-pressure mercury lamp having a wavelength of 185 nm is irradiated at a distance of 5 cm at an output of 25 mW / cm for 100 hours is 5% or less.
The silica-titania glass of the present invention preferably has no striae in the direction of use.

前記ナノインプリント技術が、紫外線硬化方式であることが好ましい。   The nanoimprint technique is preferably an ultraviolet curing method.

本発明によれば、ナノインプリント用スタンパー、特に紫外線を用いたナノインプリント用の大型スタンパーで問題となる、温度変化に対する形状の安定性と好適な紫外線透過率とを両立させた素材、即ち、線膨張係数が±200ppb/℃以下と極めて小さく、かつ紫外線透過率の良好な超低膨張ガラスを提供することができる。   According to the present invention, a nanoimprint stamper, in particular, a large-size stamper for nanoimprint using ultraviolet rays, which is a problem, is a material that has both shape stability against temperature change and suitable ultraviolet transmittance, that is, a linear expansion coefficient. Can be provided as an ultra-low expansion glass having an extremely low UV transmittance of ± 200 ppb / ° C. or less.

以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.

本発明は、ナノインプリント用スタンパーの素材としてシリカ・チタニアガラスを用いることにより、20℃〜35℃の温度範囲における線膨張係数を±200ppb/℃の範囲に抑えることを可能とするものである。
本発明のシリカ・チタニアガラスは、2質量%以上15質量%以下のチタニアを含有するシリカガラスであり、チタニアとSiO2の組成からなるものが好ましい。チタニア濃度は、好ましくは4重量%以上、さらに好ましくは6質量%以上、好ましくは13質量%以下、さらに好ましくは8質量%以下である。
The present invention makes it possible to suppress the linear expansion coefficient in a temperature range of 20 ° C. to 35 ° C. to a range of ± 200 ppb / ° C. by using silica-titania glass as a material for a stamper for nanoimprinting.
The silica-titania glass of the present invention is a silica glass containing 2% by mass or more and 15% by mass or less of titania, and is preferably composed of a composition of titania and SiO 2 . The titania concentration is preferably 4% by weight or more, more preferably 6% by weight or more, preferably 13% by weight or less, and more preferably 8% by weight or less.

該シリカ・チタニアガラスの製造方法は特に限定されず、公知の方法を適宜選択すればよい。本発明のシリカ・チタニアガラスは、使用方向に脈理が存在しないことが好ましい為、脈理除去を施されたシリカ・チタニアガラスが特に好適である。   The method for producing the silica / titania glass is not particularly limited, and a known method may be appropriately selected. Since the silica-titania glass of the present invention preferably has no striae in the direction of use, the silica-titania glass from which striae has been removed is particularly suitable.

本発明によれば、更に、波長365nmの紫外線に対する内部透過率を90%以上、即ち90%以上100%以下の素材を提供することができる。
また、波長185nmの低圧水銀灯を出力25mW/cmで、試料との距離を5cm離して100時間照射した際の365nmの波長における内部透過率の変化ΔT%を5%以下にすることができる。
Further, according to the present invention, it is possible to provide a material having an internal transmittance of 90% or more, that is, 90% or more and 100% or less with respect to ultraviolet rays having a wavelength of 365 nm.
Moreover, the change ΔT% in internal transmittance at a wavelength of 365 nm when a low-pressure mercury lamp with a wavelength of 185 nm is irradiated for 100 hours with an output of 25 mW / cm and a distance of 5 cm from the sample can be reduced to 5% or less.

本発明のシリカ・チタニアガラスを用いるナノインプリント技術としては、特に限定されないが、紫外線硬化方式であることが好ましい。   Although it does not specifically limit as a nanoimprint technique using the silica titania glass of this invention, It is preferable that it is an ultraviolet curing system.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.

(実施例1)
四塩化珪素及び四塩化チタンを酸水素バーナーによって得られる酸水素火炎中に導入し垂直に保持され回転している直径30mm、長さ1mのシリカガラス製基体上に堆積して直径300mm、長さ1000mm、重量25kg弱のシリカ・チタニアガラス多孔質体を得た。シリカ・チタニアガラスを成長する際の四塩化珪素と四塩化チタンの流量割合を調整して、得られるシリカ・チタニアガラスの組成をシリカ分93.2質量%、チタニア分6.8質量%に調整した。
得られたシリカ・チタニアガラス多孔質体をヘリウムガス雰囲気のゾーン加熱電気炉内をゆっくりと移動させつつ、1500℃に加熱して透明な直径100mm、長さ1350mmのシリカ・チタニアガラスインゴットを得た(VAD法によるシリカ・チタニアガラスインゴットの作製工程)。
Example 1
Silicon tetrachloride and titanium tetrachloride are introduced into an oxyhydrogen flame obtained by an oxyhydrogen burner and deposited on a silica glass substrate having a diameter of 30 mm and a length of 1 m which is held vertically and rotated, and has a diameter of 300 mm. A porous silica / titania glass having a thickness of 1000 mm and a weight of less than 25 kg was obtained. Adjust the flow rate ratio of silicon tetrachloride and titanium tetrachloride when growing silica / titania glass, and adjust the composition of silica / titania glass to 93.2 mass% for silica and 6.8 mass% for titania. did.
The obtained silica-titania glass porous body was heated to 1500 ° C. while slowly moving in a zone heating electric furnace in a helium gas atmosphere to obtain a transparent silica-titania glass ingot having a diameter of 100 mm and a length of 1350 mm. (Process for producing a silica-titania glass ingot by the VAD method).

前記得られたシリカ・チタニアガラスインゴットから直径60mm、厚さ10mmのサンプルを切り出し、1150℃で100時間保持後300℃まで1時間当り1℃の割合で徐冷して歪除去を施した後、両端を研磨して干渉計で均質性測定を行ったところ、外周より約5mmに脈理が存在していることが判った。
前記得られたシリカ・チタニアガラスインゴットの両端をそれぞれ75mmずつカットし、更に外周を深さで5mm外周研削して、外径90mm、長さ1200mmのシリカ・チタニアガラスインゴットを作製した。このシリカ・チタニアガラスインゴットを半分(長さ600mm)に切り、内底面の形状が一辺の長さが180mmの正方形で、深さ600mmのグラファイト型内に端部を下に設置し、グラファイト容器ごと真空炉内に設置して1600℃まで5時間かけて昇温し、昇温と同時に通電を停止しそのまま炉冷した。
更に得られたシリカ・チタニアガラス角材を大気雰囲気下で1150℃で100時間保持後300℃まで1時間辺り1℃の割合で徐冷して歪を除去した(徐歪処理工程)。
A sample having a diameter of 60 mm and a thickness of 10 mm was cut out from the obtained silica-titania glass ingot, held at 1150 ° C. for 100 hours, and then gradually cooled to 300 ° C. at a rate of 1 ° C. per hour to remove strain, When both ends were polished and homogeneity was measured with an interferometer, it was found that striae existed about 5 mm from the outer periphery.
Both ends of the silica / titania glass ingot thus obtained were cut by 75 mm, and the outer periphery was further ground by 5 mm to produce a silica / titania glass ingot having an outer diameter of 90 mm and a length of 1200 mm. This silica-titania glass ingot is cut in half (600 mm in length), and the shape of the inner bottom surface is a square with a side length of 180 mm. The end is placed in a graphite mold with a depth of 600 mm. It was installed in a vacuum furnace and the temperature was raised to 1600 ° C. over 5 hours.
Further, the obtained silica-titania glass square was held at 1150 ° C. for 100 hours in an air atmosphere and then slowly cooled to 300 ° C. at a rate of 1 ° C. for 1 hour to remove strain (gradual strain treatment step).

このようにして1辺の長さが180mm、厚さ120mmのシリカ・チタニアガラス成型体を得た。得られた成型体の上下面及び側面を10mmづつカットし、更に寸法だしの精密カット後、上下面に平行に厚さ8mmにスライスし、152mm角の両面を6025フォトマスクの仕様(フラットネス2μm以下、面粗さRa 5Å以下)を満たすように超精密研磨を行って一辺の長さが152.0mm、厚さ6.25mmの透明な平板状の基板に加工した。   Thus, a silica-titania glass molded body having a side length of 180 mm and a thickness of 120 mm was obtained. Cut the top and bottom and side surfaces of the resulting molded body in 10mm increments, and after further precision cutting, slice into 8mm thickness parallel to the top and bottom surfaces, and both sides of the 152mm square are 6025 photomask specifications (flatness 2μm Then, ultra-precision polishing was performed so as to satisfy a surface roughness Ra of 5 mm or less, and a transparent flat substrate having a side length of 152.0 mm and a thickness of 6.25 mm was processed.

得られたシリカ・チタニアガラス基板の152mm角の面をシュリーレン装置(溝尻光学製 SCHLIEREN COMPACT 150)で脈理観察したが、脈理は認められなかった。
また、得られたシリカ・チタニアガラス基板の紫外線透過率測定を行った。厚さ6.25mmにおける見かけ透過率スペクトルを図1に示す。図1から求めた波長365nmにおける内部透過率は99.9%であった。
The striae of the obtained 152 mm square surface of the silica-titania glass substrate was observed with a schlieren apparatus (SCHLIEREN COMPACT 150, manufactured by Mizojiri Optics), but no striae was observed.
Further, the ultraviolet transmittance of the obtained silica / titania glass substrate was measured. An apparent transmittance spectrum at a thickness of 6.25 mm is shown in FIG. The internal transmittance at a wavelength of 365 nm determined from FIG. 1 was 99.9%.

また、得られたシリカ・チタニアガラス基板の線膨張係数をレーザー干渉式熱膨張計(ULVAC理工社製レーザー膨張計 LIX−1)を用いて測定した。結果を実施例2、実施例3及び比較例1と併せて表1に示す。   Moreover, the linear expansion coefficient of the obtained silica-titania glass substrate was measured using a laser interference thermal dilatometer (Laser dilatometer LIX-1 manufactured by ULVAC Riko Co., Ltd.). The results are shown in Table 1 together with Example 2, Example 3 and Comparative Example 1.

更に得られたシリカガラス基板に加速試験の目的で使用波長より短い波長185nmの低圧水銀灯の紫外線を出力25mW/cmにて5cmの距離で100時間照射して波長365nmにおける透過率変化を調べた結果、5%以下であった。   Further, the obtained silica glass substrate was irradiated with ultraviolet rays from a low pressure mercury lamp having a wavelength of 185 nm shorter than the wavelength used for the purpose of an acceleration test for 100 hours at a distance of 5 cm at an output of 25 mW / cm, and the change in transmittance at a wavelength of 365 nm was examined. 5% or less.

(実施例2)
火炎中に導入する四塩化珪素と四塩化チタンの濃度を変化させてシリカ97.9質量%、チタニア2.1質量%のシリカ・チタニアガラスインゴットを作成した以外は実施例1と同様の方法を用い、同様に一辺の長さが152mm、厚さ6.25mmの超精密に研磨されたシリカ・チタニアガラス基板を作製した。
(Example 2)
The same method as in Example 1 was used except that silica and titania glass ingots of 97.9% by mass of silica and 2.1% by mass of titania were prepared by changing the concentrations of silicon tetrachloride and titanium tetrachloride introduced into the flame. In the same manner, a silica / titania glass substrate having a length of one side of 152 mm and a thickness of 6.25 mm was polished.

得られたシリカ・チタニアガラス基板について、実施例1と同様に線膨張係数を調べた。結果を表1に示す。
また、得られたシリカ・チタニアガラス基板の152mm角の面についてシュリーレン装置を用いて脈理測定を行ったが脈理は認められなかった。得られたシリカ・チタニアガラス基板の紫外線透過率を測定したところ、365nmの内部透過率は99.9%であった。さらに、実施例1と同様に紫外線照射による透過率変化を調べた結果、5%以下であった。
The linear expansion coefficient of the obtained silica / titania glass substrate was examined in the same manner as in Example 1. The results are shown in Table 1.
Further, striae measurement was performed on a 152 mm square surface of the obtained silica / titania glass substrate using a schlieren apparatus, but no striae was observed. When the ultraviolet transmittance of the obtained silica / titania glass substrate was measured, the internal transmittance at 365 nm was 99.9%. Further, as a result of examining the change in transmittance due to ultraviolet irradiation in the same manner as in Example 1, it was 5% or less.

(実施例3)
火炎中に導入する四塩化珪素と四塩化チタンの濃度を変化させてシリカ89.8質量%、チタニア10.2質量%のシリカ・チタニアガラスインゴットを作成した以外は実施例1と同様の方法を用い、同様に一辺の長さが152mm、厚さ6.25mmの超精密に研磨されたシリカ・チタニアガラス基板を作製した。
(Example 3)
The same method as in Example 1 was performed except that a silica-titania glass ingot of 89.8% by mass of silica and 10.2% by mass of titania was prepared by changing the concentrations of silicon tetrachloride and titanium tetrachloride introduced into the flame. In the same manner, a silica / titania glass substrate having a length of one side of 152 mm and a thickness of 6.25 mm was polished.

得られたシリカ・チタニアガラス基板について、実施例1と同様に線膨張係数を調べた。結果を表1に示す。
また、得られたシリカ・チタニアガラス基板の152mm角の面についてシュリーレン装置を用いて脈理測定を行ったが脈理は認められなかった。得られたシリカ・チタニアガラス基板の紫外線透過率を測定したところ、365nmの内部透過率は99.9%であった。さらに、実施例1と同様に紫外線照射による透過率変化を調べた結果、5%以下であった。
The linear expansion coefficient of the obtained silica / titania glass substrate was examined in the same manner as in Example 1. The results are shown in Table 1.
Further, striae measurement was performed on a 152 mm square surface of the obtained silica / titania glass substrate using a schlieren apparatus, but no striae was observed. When the ultraviolet transmittance of the obtained silica / titania glass substrate was measured, the internal transmittance at 365 nm was 99.9%. Further, as a result of examining the change in transmittance due to ultraviolet irradiation in the same manner as in Example 1, it was 5% or less.

(比較例1)
原料を四塩化珪素のみとした以外は実施例1と同様のVADによるスート法を用いてシリカガラスインゴットを作製した。更に実施例1と同様に一辺の長さが152mm、厚さ6.25mmの超精密に研磨されたシリカガラス基板を作製した。
得られたシリカガラス基板の152mm角の面についてシュリーレン装置を用いて脈理測定を行ったが脈理は認められなかった。得られたシリカガラス基板の紫外線透過率を測定したところ、365nmの内部透過率は99.9%であった。実施例1と同様に線膨張係数を調べた。結果を表1に示す。同様に紫外線照射による透過率変化を調べた結果、5%以下であった。
(Comparative Example 1)
A silica glass ingot was produced using the VAD soot method similar to Example 1 except that the raw material was only silicon tetrachloride. Further, in the same manner as in Example 1, a silica glass substrate polished on ultra-precision with a side length of 152 mm and a thickness of 6.25 mm was produced.
Striae measurement was performed on a 152 mm square surface of the obtained silica glass substrate using a schlieren apparatus, but no striae was observed. When the ultraviolet transmittance of the obtained silica glass substrate was measured, the internal transmittance at 365 nm was 99.9%. The linear expansion coefficient was examined in the same manner as in Example 1. The results are shown in Table 1. Similarly, as a result of examining the change in transmittance due to ultraviolet irradiation, it was 5% or less.

Figure 0004781003
Figure 0004781003

表1に示した如く、実施例1〜3の本発明のシリカ・チタニアガラスは線膨張係数が±200ppb/℃以内と極めて小さく、且つ紫外線透過率が良好であり、脈理のない超低膨張ガラスであった。一方、比較例1のシリカガラスは、線膨張係数が200ppb/℃を超えていた。   As shown in Table 1, the silica-titania glasses of Examples 1 to 3 of the present invention have a very low linear expansion coefficient within ± 200 ppb / ° C., a good ultraviolet transmittance, and an ultra-low expansion without striae. It was glass. On the other hand, the silica glass of Comparative Example 1 had a linear expansion coefficient exceeding 200 ppb / ° C.

実施例1の紫外線透過率測定の結果を示すグラフであるIt is a graph which shows the result of the ultraviolet-ray-transmittance measurement of Example 1.

Claims (5)

2質量%以上15質量%以下のチタニアを含有するシリカ・チタニアガラスであって、20℃から35℃の温度範囲における線膨張係数が±200ppb/℃の範囲にあることを特徴とするナノインプリントスタンパー用シリカ・チタニアガラス。   A silica-titania glass containing titania of 2% by mass or more and 15% by mass or less, and having a linear expansion coefficient in a temperature range of 20 ° C. to 35 ° C. within a range of ± 200 ppb / ° C. Silica-titania glass. 波長365nmの紫外線に対する内部透過率が90%以上であることを特徴とする請求項1記載のナノインプリントスタンパー用シリカ・チタニアガラス。 2. The silica / titania glass for a nanoimprint stamper according to claim 1, wherein an internal transmittance for ultraviolet rays having a wavelength of 365 nm is 90% or more. 波長185nmの低圧水銀灯を出力25mW/cmで5cmの距離で100時間照射した際の365nmの波長における内部透過率の変化ΔT%が5%以下であることを特徴とする請求項1又は2記載のナノインプリントスタンパー用シリカ・チタニアガラス。   The change in internal transmittance ΔT% at a wavelength of 365 nm when a low-pressure mercury lamp with a wavelength of 185 nm is irradiated at a distance of 5 cm at an output of 25 mW / cm for 100 hours is 5% or less. Silica-titania glass for nanoimprint stampers. 使用方向に脈理が存在しないことを特徴とする請求項1〜3のいずれか1項記載のナノインプリントスタンパー用シリカ・チタニアガラス。   4. The silica-titania glass for a nanoimprint stamper according to any one of claims 1 to 3, wherein no striae exist in the direction of use. ナノインプリント技術が紫外線硬化方式であることを特徴とする請求項1〜4のいずれか1項記載のナノインプリントスタンパー用シリカ・チタニアガラス。   The silica-titania glass for a nanoimprint stamper according to any one of claims 1 to 4, wherein the nanoimprint technology is an ultraviolet curing method.
JP2005132751A 2005-04-28 2005-04-28 Silica-titania glass for nanoimprint stamper Active JP4781003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132751A JP4781003B2 (en) 2005-04-28 2005-04-28 Silica-titania glass for nanoimprint stamper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132751A JP4781003B2 (en) 2005-04-28 2005-04-28 Silica-titania glass for nanoimprint stamper

Publications (2)

Publication Number Publication Date
JP2006306674A JP2006306674A (en) 2006-11-09
JP4781003B2 true JP4781003B2 (en) 2011-09-28

Family

ID=37473992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132751A Active JP4781003B2 (en) 2005-04-28 2005-04-28 Silica-titania glass for nanoimprint stamper

Country Status (1)

Country Link
JP (1) JP4781003B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042714B2 (en) * 2007-06-06 2012-10-03 信越化学工業株式会社 Titania-doped quartz glass for nanoimprint molds
JP2009013048A (en) * 2007-06-06 2009-01-22 Shin Etsu Chem Co Ltd Titania-doped quartz glass for nanoimprint molds
KR101479804B1 (en) * 2007-09-13 2015-01-06 아사히 가라스 가부시키가이샤 TiO2-CONTAINING QUARTZ GLASS SUBSTRATE
JP2009274947A (en) * 2008-04-16 2009-11-26 Asahi Glass Co Ltd Silica glass for euv lithography optical component containing tio2
CN102067036B (en) * 2008-07-23 2013-05-01 株式会社尼康 Optical member for photomask and method for manufacturing the optical member
JP2010149482A (en) * 2008-12-26 2010-07-08 Toshiba Corp Mold for inprint and pattern forming method
JP5637146B2 (en) 2009-12-04 2014-12-10 旭硝子株式会社 Method for producing quartz glass substrate for imprint mold and method for producing imprint mold
EP2532508A4 (en) * 2010-02-03 2014-01-08 Asahi Glass Co Ltd Process for producing article having finely rugged structure on surface
US8541325B2 (en) * 2010-02-25 2013-09-24 Corning Incorporated Low expansivity, high transmission titania doped silica glass
CN103003054B (en) * 2010-07-12 2014-11-19 旭硝子株式会社 TIO2-containing quartz-glass substrate for an imprint mold and manufacturing method therefor
JP2011051893A (en) * 2010-11-29 2011-03-17 Shin-Etsu Chemical Co Ltd Titania-doped quartz glass for nanoimprint mold
JP2016113356A (en) * 2014-12-12 2016-06-23 旭硝子株式会社 Method for finish-working the surface of pre-polished glass substrate surface
JP7155098B2 (en) * 2019-12-11 2022-10-18 クアーズテック株式会社 SILICA GLASS FOR OPTICAL DEVICE AND METHOD FOR MANUFACTURING THE SAME

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786618A (en) * 1987-05-29 1988-11-22 Corning Glass Works Sol-gel method for making ultra-low expansion glass
JPH11288513A (en) * 1998-03-31 1999-10-19 Sony Corp Disk substrate molding stamper and its manufacture
US7053017B2 (en) * 2002-03-05 2006-05-30 Corning Incorporated Reduced striae extreme ultraviolet elements
JP4340086B2 (en) * 2003-03-20 2009-10-07 株式会社日立製作所 Nanoprinting stamper and fine structure transfer method
JP4073343B2 (en) * 2003-03-20 2008-04-09 株式会社日立製作所 Light-transmitting nanostamp method
JP4792705B2 (en) * 2003-04-03 2011-10-12 旭硝子株式会社 Silica glass containing TiO2 and method for producing the same
JP2004315247A (en) * 2003-04-11 2004-11-11 Nikon Corp METHOD OF MANUFACTURING SiO2-TiO2 BASED GLASS, SiO2-TiO2 BASED GLASS AND EXPOSURE DEVICE
EP2241538B1 (en) * 2004-07-01 2013-05-29 Asahi Glass Company, Limited Silica glass containing TiO2 and process for its production
JP4646314B2 (en) * 2005-02-01 2011-03-09 信越石英株式会社 Method for producing homogeneous silica-titania glass
JP4568219B2 (en) * 2005-02-01 2010-10-27 信越石英株式会社 Method for producing homogeneous silica-titania glass

Also Published As

Publication number Publication date
JP2006306674A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4781003B2 (en) Silica-titania glass for nanoimprint stamper
JP5042714B2 (en) Titania-doped quartz glass for nanoimprint molds
KR101418602B1 (en) Titania-Doped Quartz Glass for Nanoimprint Molds
TWI471281B (en) Titania-doped quartz glass member and making method
US6758063B2 (en) Photolithography method, photolithography mask blanks, and method of making
JP2005104820A (en) SILICA GLASS CONTAINING TiO2 AND PROCESS FOR PRODUCTION THEREOF
KR20100118125A (en) Tio2-containing silica glass and optical member for lithography using the same
JP2008100891A (en) Titania-silica glass
JPH09235134A (en) High-purity synthetic silica glass for far ultraviolet ray and production thereof
KR100815975B1 (en) Method for a lithography using a photo mask which utilizes a glass optical member
JPH09241030A (en) High purity silica glass for far ultraviolet and its production
KR101869989B1 (en) Nanoimprint mold-forming synthetic quartz glass and making method
JP5637146B2 (en) Method for producing quartz glass substrate for imprint mold and method for producing imprint mold
WO2010134449A1 (en) Method for producing tio2-sio2 glass body, method for heat-treating tio2-sio2 glass body, tio2-sio2 glass body, and optical base for euvl
NL2027828B1 (en) Low inclusion tio2-sio2 glass obtained by hot isostatic pressing
JP5417889B2 (en) Silica glass containing TiO2 and optical member for lithography using the same
JP5287271B2 (en) Method for molding silica glass containing TiO2 and optical member for EUV lithography molded thereby
JP4744046B2 (en) Method for producing synthetic quartz glass material
JP3126188B2 (en) Quartz glass substrate for photomask
JP5402975B2 (en) Silica glass containing TiO2 and method for producing the same
JP2004143011A (en) Synthetic quartz glass material for optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250