JP4780271B2 - Method for producing polycrystalline silicon - Google Patents

Method for producing polycrystalline silicon Download PDF

Info

Publication number
JP4780271B2
JP4780271B2 JP2004136567A JP2004136567A JP4780271B2 JP 4780271 B2 JP4780271 B2 JP 4780271B2 JP 2004136567 A JP2004136567 A JP 2004136567A JP 2004136567 A JP2004136567 A JP 2004136567A JP 4780271 B2 JP4780271 B2 JP 4780271B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
polycrystalline silicon
silane
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004136567A
Other languages
Japanese (ja)
Other versions
JP2005314191A (en
Inventor
守 中野
敏由記 石井
久典 森
昌晃 坂口
匡希 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004136567A priority Critical patent/JP4780271B2/en
Publication of JP2005314191A publication Critical patent/JP2005314191A/en
Application granted granted Critical
Publication of JP4780271B2 publication Critical patent/JP4780271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は半導体用多結晶シリコンの製造方法に関する。より詳しくは、原料ガスの消費効率がよく、経済性に優れた多結晶シリコンの製造方法に関する。
The present invention relates to a method for producing polycrystalline silicon for semiconductors. More specifically, the present invention relates to a method for producing polycrystalline silicon that is highly efficient in consumption of raw material gas and excellent in economic efficiency.

半導体級純度の多結晶シリコンを製造する方法としては、三塩化シラン(SiHCl3)の熱分解および水素還元による製造法(シーメンス法)が従来から知られている。この製造法は、塩化水素と金属シリコンを反応させて粗三塩化シランを製造し、これを蒸留等によって精製し、赤熱するシリコン棒を備えた加熱反応炉に精製した三塩化シランガスを導入し、三塩化シランの熱分解(4SiHCl3 → Si+3SiCl4+2H2)および水素還元(SiHCl3+H2→ Si+3HCl)によって高純度の多結晶シリコンを製造する方法である。 As a method for producing polycrystalline silicon having semiconductor grade purity, a production method (Siemens method) by thermal decomposition and hydrogen reduction of silane trichloride (SiHCl 3 ) is conventionally known. In this production method, hydrogen trichloride and metal silicon are reacted to produce crude trichlorosilane, which is purified by distillation or the like, and purified silane trichloride gas is introduced into a heating reactor equipped with a red hot silicon rod, This is a method for producing high-purity polycrystalline silicon by thermal decomposition (4SiHCl 3 → Si + 3SiCl 4 + 2H 2 ) and hydrogen reduction (SiHCl 3 + H 2 → Si + 3HCl) of trichlorosilane.

従来のシーメンス法は、シランガスの反応効率が低いために、大量の廃棄物が生じる欠点があり、これを解消するために、副生する四塩化珪素の量を制御して多結晶シリコンの消費に見合うだけ循環させることによって廃棄物量を低減する製造方法が提案されている(特許文献1)。しかし、この製法は各工程の制御が煩雑であるという問題がある。
特開平11−49508号公報
The conventional Siemens method has the disadvantage that a large amount of waste is generated due to the low reaction efficiency of silane gas.To solve this, the amount of silicon tetrachloride produced as a by-product is controlled to consume polycrystalline silicon. A manufacturing method that reduces the amount of waste by circulating as much as possible has been proposed (Patent Document 1). However, this manufacturing method has a problem that the control of each process is complicated.
Japanese Patent Laid-Open No. 11-49508

本発明は、従来の製造方法における上記問題を解決したものであり、反応炉を直列に複数段設け、前工程の反応炉で排出された未反応シランガスを次工程の反応炉に導入して反応させることによってシランガスの利用効率を格段に高めた製造方法を提供する。   The present invention solves the above-mentioned problem in the conventional production method, and a reaction furnace is provided in a plurality of stages in series, and unreacted silane gas discharged in the reaction furnace of the previous process is introduced into the reaction furnace of the next process to react. To provide a production method in which the utilization efficiency of silane gas is remarkably enhanced.

本発明は、多結晶シリコンを製造する以下の製造方法および製造装置に関する。
〔1〕 三塩化シランガスの熱分解および水素還元によって多結晶シリコンを製造する方法において、複数の加熱反応炉を直列に接続し、前工程の反応炉から排出された未反応三塩化シランガスを含む排ガスを次工程の反応炉に導入して反応させることによって、未反応三塩化シランガスを順次利用して多結晶シリコンを析出させ、さらに、二段目以降の反応炉から抜き出した未反応三塩化シランガスおよび副生ガスを含む排ガスから水素を分離して、この水素を前工程の反応炉に戻し、一方、水素を分離した残りの三塩化シランガスを精製して前工程の反応炉に戻すと共に原料供給工程から三塩化シランガスを導入して不足量の三塩化シランガスを補いつつ反応させることを特徴とする多結晶シリコンの製造方法。
〔2〕 三塩化シランガスの熱分解および水素還元によって多結晶シリコンを製造する装置であって、直列に接続された複数の加熱反応炉と、各反応炉に精製した三塩化シランガスを導入する供給工程と、反応炉から排出された排ガスを前工程の反応炉に戻す循環系とを備え、循環系には排ガスから水素を分離する手段と、分離した水素を前工程の反応炉に導入する管路と、水素を分離した排ガス中の三塩化シランガスを精製する手段と、精製した三塩化シランガスを反応炉に導入する管路が設けられていることを特徴とする多結晶シリコンの製造装置。
The present invention relates to the following manufacturing method and manufacturing apparatus for manufacturing polycrystalline silicon.
[1] In a method for producing polycrystalline silicon by thermal decomposition and hydrogen reduction of silane trichloride gas, exhaust gas containing unreacted silane trichloride gas discharged from the reactor in the previous process by connecting a plurality of heating reactors in series Is introduced into a reaction furnace in the next step to cause reaction, thereby precipitating polycrystalline silicon by sequentially using unreacted silane trichloride gas, and further, unreacted silane trichloride gas extracted from the second and subsequent reactors and Hydrogen is separated from the exhaust gas containing the by-product gas, and this hydrogen is returned to the reactor in the previous process, while the remaining trichlorosilane gas from which hydrogen has been separated is purified and returned to the reactor in the previous process and the raw material supply process A process for producing polycrystalline silicon, comprising introducing a silane trichloride gas from the reaction to make up the reaction while supplementing a deficient amount of the silane trichloride gas.
[2] An apparatus for producing polycrystalline silicon by thermal decomposition and hydrogen reduction of silane trichloride gas, a plurality of heating reactors connected in series, and a supply process for introducing purified silane trichloride gas into each reactor And a circulation system for returning the exhaust gas discharged from the reaction furnace to the reaction furnace in the previous process, the circulation system having means for separating hydrogen from the exhaust gas, and a conduit for introducing the separated hydrogen into the reaction furnace in the previous process And a means for purifying the silane trichloride gas in the exhaust gas from which hydrogen has been separated, and a pipe for introducing the purified silane trichloride gas into the reaction furnace.

〔具体的な説明〕
本発明の製造方法は、シランガスの熱分解および水素還元によって多結晶シリコンを製造する方法において、複数の加熱反応炉を直列に接続し、前工程の反応炉から排出された未反応シランガスを含む排ガスを次工程の反応炉に導入して反応させることによって未反応シランガスを順次利用して多結晶シリコンを析出させることを特徴とする多結晶シリコンの製造方法である。
[Specific description]
The production method of the present invention is a method for producing polycrystalline silicon by thermal decomposition of silane gas and hydrogen reduction, wherein a plurality of heated reaction furnaces are connected in series, and exhaust gas containing unreacted silane gas discharged from the previous reaction furnace In the next step, the polycrystalline silicon is deposited by sequentially using the unreacted silane gas, thereby producing polycrystalline silicon.

本発明に係る製造プロセス(方法ないし装置)の一例を図1に示す。図示する製造プロセスは、シランガスの熱分解および水素還元によって多結晶シリコンを製造するシステムであって、複数の加熱反応炉として一次反応炉10と二次反応炉20を有し、この一次反応炉10と二次反応炉20が原料供給工程に対して直列に接続して配置されている。   An example of a manufacturing process (method or apparatus) according to the present invention is shown in FIG. The production process shown in the figure is a system for producing polycrystalline silicon by thermal decomposition of silane gas and hydrogen reduction, and has a primary reaction furnace 10 and a secondary reaction furnace 20 as a plurality of heating reaction furnaces. And the secondary reaction furnace 20 are connected in series to the raw material supply step.

一次反応炉10の前工程には、金属シリコンと塩素を反応させて粗三塩化シランガスを製造する塩化工程7と、この粗三塩化シランガスを精製する工程8からなる原料供給工程6が設けられている。さらに、原料供給工程6の精製工程8から一次反応炉10および二次反応炉20に精製した三塩化シランガスを導入する管路9が設けられている。このように、反応炉10、20に原料供給工程6から導入されるシランガスは三塩化シランを主体としたクロルシランガスである。   The pre-process of the primary reactor 10 is provided with a raw material supply step 6 comprising a chlorination step 7 for producing a crude trichlorosilane gas by reacting metal silicon and chlorine, and a step 8 for purifying the crude trichlorosilane gas. Yes. Furthermore, a conduit 9 is provided for introducing the purified trichlorosilane gas from the purification step 8 of the raw material supply step 6 to the primary reaction furnace 10 and the secondary reaction furnace 20. Thus, the silane gas introduced into the reaction furnaces 10 and 20 from the raw material supply step 6 is a chlorosilane gas mainly composed of silane trichloride.

一方、二次反応炉20から排出された排ガスを前工程の一次反応炉10に返送する循環系30が設けられている。この循環系30には排ガスから水素を分離する水素分離手段31と、分離した水素を前工程の反応炉に導入する管路32と、水素を分離した排ガス中のシランガスを精製する精製手段33と、精製したシランガスを反応炉に導入する管路34が設けられている。水素分離手段31および排ガス精製手段33として蒸留装置を用いることができる。   On the other hand, a circulation system 30 for returning the exhaust gas discharged from the secondary reaction furnace 20 to the primary reaction furnace 10 in the previous process is provided. The circulation system 30 includes a hydrogen separation means 31 for separating hydrogen from the exhaust gas, a pipe line 32 for introducing the separated hydrogen into the reaction furnace of the previous process, and a purification means 33 for purifying the silane gas in the exhaust gas from which hydrogen has been separated. A conduit 34 for introducing the purified silane gas into the reaction furnace is provided. A distillation apparatus can be used as the hydrogen separation means 31 and the exhaust gas purification means 33.

一次反応炉10および二次反応炉20の炉内には種棒となる多数のシリコン棒が立設されており、該シリコン棒は高圧電流を通じて800℃以上に加熱される。炉内に導入された精製三塩化シランガスは赤熱したシリコン表面で熱分解してシリコンを析出する。さらに四塩化珪素および水素などが副生する。副生した水素は炉内の三塩化シランと反応し、この三塩化シランの水素還元によってさらにシリコンおよび塩化水素などが副生する。   In the furnaces of the primary reaction furnace 10 and the secondary reaction furnace 20, a large number of silicon rods serving as seed rods are erected, and the silicon rods are heated to 800 ° C. or higher through a high-voltage current. The purified silane trichloride gas introduced into the furnace is thermally decomposed on the red hot silicon surface to deposit silicon. Furthermore, silicon tetrachloride and hydrogen are by-produced. The by-produced hydrogen reacts with silane trichloride in the furnace, and silicon and hydrogen chloride are further by-produced by hydrogen reduction of the silane trichloride.

一次反応炉10には管路9を通じて原料供給工程6の精製工程8から三塩化シランガスが導入され、また排ガスから分離した水素が管路32を通じて炉内に導入され、さらに水素を分離した排ガスが精製工程33を経て炉内に導入される。排ガスは主に未反応の三塩化シラン(TCS)や四塩化珪素(STC)、ジクロロシランなどの単体やこれらが混合したクロロシランガスである。このようにクロルシランガスと水素ガスを原料として多結晶シリコンが製造される。先に述べたように、炉内に導入されたこれらの原料ガスは赤熱したシリコン棒表面で熱分解され、さらに水素還元されて、シリコン棒表面にシリコンが析出する。   Silane trichloride gas is introduced into the primary reactor 10 from the purification step 8 of the raw material supply step 6 through the pipe 9, hydrogen separated from the exhaust gas is introduced into the furnace through the pipe 32, and the exhaust gas from which hydrogen is further separated is introduced. It is introduced into the furnace through a purification step 33. The exhaust gas is mainly unreacted silane trichloride (TCS), silicon tetrachloride (STC), simple substance such as dichlorosilane, or chlorosilane gas mixed with these. In this way, polycrystalline silicon is produced using chlorosilane gas and hydrogen gas as raw materials. As described above, these source gases introduced into the furnace are thermally decomposed on the surface of the red hot silicon rod and further reduced with hydrogen to deposit silicon on the surface of the silicon rod.

一次反応炉10の反応後、未反応の三塩化シラン、および副生した四塩化珪素や水素、その他のシランガスを含む排ガスが一次反応炉10から二次反応炉20に導入される。さらに、二次反応炉20には原料供給工程6の精製工程8から三塩化シランガスが管路9を通じて導入される。このように原料供給工程6から不足量の三塩化シランガスを補いつつ適度な濃度に調整することによって、未反応の三塩化シランガスを順次原料として反応させ、多結晶シリコンを析出させる。   After the reaction in the primary reactor 10, unreacted silane trichloride, and by-product silicon tetrachloride, hydrogen, and other silane gas containing exhaust gas are introduced from the primary reactor 10 into the secondary reactor 20. Further, silane trichloride gas is introduced into the secondary reactor 20 from the purification step 8 of the raw material supply step 6 through the pipe 9. In this way, by adjusting the concentration to an appropriate level while supplementing the deficient amount of silane trichloride gas from the material supply step 6, unreacted silane trichloride gas is sequentially reacted as a material to deposit polycrystalline silicon.

二次反応炉20から抜き出した未反応ガスおよび副生ガスを含む排ガスは水素分離手段31に導かれ、蒸留等によって水素ガスと液化されたシランガスに分離される。この水素は管路32を通じて前工程の一次反応炉10に返送される。一方、水素を分離した残りの排ガスは精製手段33に導かれ、蒸留等によって三塩化シラン、四塩化珪素、およびその他のクロルシランガスに分離精製される。精製したクロルシランガスは管路34を通じて前工程の一次反応炉10に返送され、原料ガスとして再利用される。   The exhaust gas containing unreacted gas and by-product gas extracted from the secondary reaction furnace 20 is guided to the hydrogen separation means 31 and separated into hydrogen gas and liquefied silane gas by distillation or the like. This hydrogen is returned to the primary reactor 10 in the previous step through the pipe 32. On the other hand, the remaining exhaust gas from which hydrogen has been separated is guided to the purification means 33 and separated and purified into trichlorosilane, silicon tetrachloride, and other chlorosilane gases by distillation or the like. The purified chlorosilane gas is returned to the primary reactor 10 in the previous step through the pipe 34 and reused as a raw material gas.

二次反応炉より多くの反応炉(三次反応炉、四次反応炉…)を配設する場合には、二段目以降の反応炉(二段目の反応炉を含む)には二次反応炉20に接続するものと同様の循環系30、および原料供給系の精製工程8から精製三塩化シランガスを導入する管路9を設け、二段目以降の反応炉に原料供給系から不足量のシランガスを補いつつ、未反応のクロルシランガスを順次原料として用いて多結晶シリコンを析出させれば良い。


When more reactors (tertiary reactors, quaternary reactors ...) are installed than secondary reactors, secondary reactors are included in the second and subsequent reactors (including the second reactor). A circulation system 30 similar to that connected to the furnace 20 and a conduit 9 for introducing purified silane trichloride gas from the purification step 8 of the raw material supply system are provided, and the second and subsequent reactors are provided with an insufficient amount from the raw material supply system. While supplementing silane gas, polycrystalline silicon may be deposited using unreacted chlorosilane gas as a raw material in order.


本発明の製造プロセスは、複数の加熱反応炉を直列に接続し、前工程の反応炉から排出された未反応シランガスを含む排ガスを次工程の反応炉に導入して反応させることによって未反応シランガスを順次利用して多結晶シリコンを析出させるので、従来の製法に対して原料の利用効率が格段に優れる。従って、多結晶シリコンを安価に製造することができる。また、製造された多結晶シリコンは高純度であり、半導体材料として用いることができ、またソーラ用材料、その他の用途に広く利用することができる。   In the production process of the present invention, unreacted silane gas is obtained by connecting a plurality of heating reactors in series and introducing and reacting an exhaust gas containing unreacted silane gas discharged from the reactor in the previous step into the reactor in the next step. Since the polycrystalline silicon is deposited by sequentially using these, the utilization efficiency of the raw material is remarkably superior to the conventional manufacturing method. Therefore, polycrystalline silicon can be manufactured at low cost. Further, the produced polycrystalline silicon has a high purity, can be used as a semiconductor material, and can be widely used for solar materials and other applications.

因みに、従来の製法においても反応炉の排ガスから水素を分離し、さらに水素を分離した未反応シランガスを含む排ガスを精製して反応炉に循環しているが、水素分離工程は高温の排出ガスを−50℃以下まで冷却し、水素ガスと液化したシランガスとを分離して精製するので、莫大な冷却エネルギーが必要であり、生産性を大きく低下させる要因の一つになっている。   Incidentally, even in the conventional manufacturing method, hydrogen is separated from the exhaust gas of the reactor, and the exhaust gas containing unreacted silane gas from which hydrogen has been separated is purified and circulated to the reactor. Since it cools to -50 degrees C or less and isolate | separates and refine | purifies hydrogen gas and liquefied silane gas, huge cooling energy is required and it is one of the factors which reduce productivity significantly.

本発明の製造プロセスは、複数段に設けた反応炉の相互間で排ガスを冷却液化せずに次工程の反応炉に導入して原料ガスとして利用するので、エネルギー効率が格段に向上し、かつ原料ガスの利用効率も高い。また、二次反応炉には不足量のシランガスが原料供給工程から導入さることによって、効率良く多結晶シリコンを製造することができる。   In the manufacturing process of the present invention, the exhaust gas is introduced into the reactor in the next step without being liquefied between the reactors provided in a plurality of stages and used as a raw material gas, so that energy efficiency is remarkably improved, and The utilization efficiency of source gas is also high. Moreover, polycrystalline silicon can be efficiently manufactured by introducing a deficient amount of silane gas into the secondary reactor from the raw material supply process.

本発明の製造プロセスは原料ガスの使用効率が従来の製造方法に比べて格段に良い。例えば、従来の製造方法では、投入原料ガス中のシリコン分を100%とすると、多結晶シリコンとして約10%しか生成されず、残りは最終的に未反応シランガスや四塩化珪素、その他のシラン化合物として排出されている。因みに、従来の製造方法に従って2基の反応炉を並列に配置しても、前工程の反応炉の排ガスを次工程の反応炉に導入することがないので、1炉分の投入原料ガスが単純に2倍になるだけであり、反応効率を高めることはできない。   In the production process of the present invention, the use efficiency of the raw material gas is much better than the conventional production method. For example, in the conventional manufacturing method, assuming that the silicon content in the input raw material gas is 100%, only about 10% is produced as polycrystalline silicon, and the remainder is finally unreacted silane gas, silicon tetrachloride, and other silane compounds. Are discharged as. Incidentally, even if two reactors are arranged in parallel according to the conventional manufacturing method, the exhaust gas from the reactor in the previous process is not introduced into the reactor in the next process, so the input gas for one furnace is simple. The reaction efficiency cannot be increased.

一方、本発明の製造プロセスでは、前工程の反応炉から排出された未反応のクロルシランガスを次工程の反応炉で原料ガスとして使用するので、この次工程の反応炉に投入する原料ガスを一次投入原料ガスの30%〜80%まで減らすことができ、このような原料ガスの節約によっても従来と同量のシリコンを製造することができる。すなわち、従来の製造方法では投入原料ガスが2炉分で200%必要であるのに対して、本発明の製造プロセスでは2炉分で130〜180%の投入原料ガスによって、従来の2炉分と同量の多結晶シリコンを製造することができる。   On the other hand, in the production process of the present invention, unreacted chlorosilane gas discharged from the reaction furnace in the previous step is used as a raw material gas in the reaction furnace in the next step. The amount of raw material gas can be reduced to 30% to 80%, and the same amount of silicon can be produced as the conventional material gas can be saved. That is, in the conventional manufacturing method, 200% of the input raw material gas is required for two furnaces, whereas in the manufacturing process of the present invention, the conventional raw material gas for two furnaces is supplied by 130 to 180% of the input raw material gas. The same amount of polycrystalline silicon can be produced.

さらに本発明の製造プロセスでは、水素ガスは従来の並列炉とは異なり、反応炉が直列配列であるため、1炉分の水素ガスで2炉運転することができ、水素分離工程のコストを半減することができる。   In addition, in the production process of the present invention, unlike conventional parallel furnaces, the reaction furnaces are arranged in series, so that two furnaces can be operated with hydrogen gas for one furnace, reducing the cost of the hydrogen separation process by half. can do.

以下に本発明の実施例を比較例と共に示す。   Examples of the present invention are shown below together with comparative examples.

図1に示す製造プロセスに従い、一次反応炉と二次反応炉を用い、一次反応炉の排ガスを二次反応炉に導入する一方、二次反応炉の排ガスから水素を分離して一次反応炉に返送し、さらに水素を分離した排ガスを精製し、原料の三塩化シランガスと共に一次反応炉に供給して反応させ、多結晶シリコンを製造した。原料ガスはクロルシランガスと水素ガスであり、クロルシランガスはジクロロシラン、三塩化シラン(TCS)、四塩化珪素(STC)の単体または混合ガスである。この結果を各反応炉の操業条件と共に表1に示した(A1〜A2)。   In accordance with the manufacturing process shown in FIG. 1, the primary reactor and the secondary reactor are used to introduce the primary reactor exhaust gas into the secondary reactor while the hydrogen is separated from the secondary reactor exhaust gas into the primary reactor. The exhaust gas from which hydrogen was separated and purified was purified, and supplied to the primary reactor with the raw material trichlorosilane gas to react with it to produce polycrystalline silicon. The source gas is chlorosilane gas and hydrogen gas, and the chlorosilane gas is a simple substance or mixed gas of dichlorosilane, trichlorosilane (TCS), and silicon tetrachloride (STC). The results are shown in Table 1 together with the operating conditions of each reactor (A1 to A2).

比較例Comparative example

二次反応炉を用いず、一次反応炉B1とB2を並列に設置し、各一次反応炉に原料の三塩化シランガスを導入しする一方、各一次反応炉の排ガスから水素を分離しておのおの一次反応炉に戻し、さらに水素を分離した排ガスを精製して一次反応炉に戻し、三塩化シランガスと共に反応させた。この結果を一次反応炉の操業条件と共に表1に示した(B1〜B2)。   Primary reactors B1 and B2 are installed in parallel without using a secondary reactor, and primary trichlorosilane gas is introduced into each primary reactor while primary hydrogen is separated from the exhaust gas of each primary reactor. After returning to the reaction furnace, the exhaust gas from which hydrogen was separated was purified and returned to the primary reaction furnace, and reacted with silane trichloride gas. The results are shown in Table 1 together with the operating conditions of the primary reactor (B1 to B2).

表1に示すように、本発明の実施例は何れも、一次反応炉に導入した三塩化シランガスの供給量164〜182トンに対して多結晶シリコンが約3.4トン前後製造され、また、二次反応炉においては、導入量(一次反応炉の排ガス量+補給量)約68〜88トンに対して多結晶シリコンが約3.9〜約4.6トン製造され、これらを合計したポリシリコン1トン当たりの三塩化シランガスの消費量は約31.5トンであり、比較例に対して生誕効率が格段に優れている。
一方、比較例では、並列した反応炉のポリシリコン生産効率は、原料のトリクロロシラン合計量341トンに対してポリシリコン生産量約6.9トンであり、ポリシリコン1トン当たりの三塩化シランガスの消費量は約49.4トンである。
As shown in Table 1, in all of the examples of the present invention, polycrystalline silicon was produced at about 3.4 tons with respect to a supply amount of 164 to 182 tons of silane trichloride gas introduced into the primary reactor, In the secondary reactor, about 3.9 to about 4.6 tons of polycrystalline silicon is produced for about 68 to 88 tons of introduction amount (primary reactor exhaust gas amount + replenishment amount). The consumption of silane trichloride gas per ton of silicon is about 31.5 tons, and the birth efficiency is remarkably superior to the comparative example.
On the other hand, in the comparative example, the polysilicon production efficiency of the parallel reactors is about 6.9 tons of polysilicon with respect to the total amount of trichlorosilane of the raw material of 341 tons, and the amount of silane trichloride gas per ton of polysilicon. Consumption is about 49.4 tons.

Figure 0004780271
Figure 0004780271

本発明の製造プロセス図Manufacturing process diagram of the present invention

符号の説明Explanation of symbols

6−原料供給工程、7−塩化工程、8−精製工程、9−管路、10−一次反応炉、20−二次反応炉、30−循環系、31−水素分離手段、32−管路、33−精製手段、34−管路。   6- Raw material supply process, 7- Chlorination process, 8- Purification process, 9- Pipe line, 10- Primary reactor, 20- Secondary reactor, 30- Circulation system, 31- Hydrogen separation means, 32- Pipe line, 33-purification means, 34-pipeline.

Claims (2)

三塩化シランガスの熱分解および水素還元によって多結晶シリコンを製造する方法において、複数の加熱反応炉を直列に接続し、前工程の反応炉から排出された未反応三塩化シランガスを含む排ガスを次工程の反応炉に導入して反応させることによって、未反応三塩化シランガスを順次利用して多結晶シリコンを析出させ、さらに、二段目以降の反応炉から抜き出した未反応三塩化シランガスおよび副生ガスを含む排ガスから水素を分離して、この水素を前工程の反応炉に戻し、一方、水素を分離した残りの三塩化シランガスを精製して前工程の反応炉に戻すと共に原料供給工程から三塩化シランガスを導入して不足量の三塩化シランガスを補いつつ反応させることを特徴とする多結晶シリコンの製造方法。
In the method for producing polycrystalline silicon by thermal decomposition and hydrogen reduction of silane trichloride gas, a plurality of heating reactors are connected in series, and the exhaust gas containing unreacted silane trichloride gas discharged from the reactor in the previous process is the next process By introducing into the reaction furnace of the reactor and reacting it, the unreacted silane trichloride gas is sequentially used to deposit polycrystalline silicon, and the unreacted silane trichloride gas and by-product gas extracted from the second and subsequent reactors. The hydrogen is separated from the exhaust gas containing the hydrogen, and this hydrogen is returned to the reaction furnace in the previous process, while the remaining trichlorosilane gas from which the hydrogen has been separated is purified and returned to the reaction furnace in the previous process. A method for producing polycrystalline silicon, wherein silane gas is introduced to react while supplementing a deficient amount of silane trichloride gas.
三塩化シランガスの熱分解および水素還元によって多結晶シリコンを製造する装置であって、直列に接続された複数の加熱反応炉と、各反応炉に精製した三塩化シランガスを導入する供給工程と、反応炉から排出された排ガスを前工程の反応炉に戻す循環系とを備え、循環系には排ガスから水素を分離する手段と、分離した水素を前工程の反応炉に導入する管路と、水素を分離した排ガス中の三塩化シランガスを精製する手段と、精製した三塩化シランガスを反応炉に導入する管路が設けられていることを特徴とする多結晶シリコンの製造装置。 An apparatus for producing polycrystalline silicon by thermal decomposition and hydrogen reduction of silane trichloride gas, a plurality of heating reactors connected in series, a supply step for introducing purified silane trichloride gas into each reactor, and a reaction A circulation system for returning the exhaust gas discharged from the furnace to the reaction furnace in the previous process, the circulation system having means for separating hydrogen from the exhaust gas, a conduit for introducing the separated hydrogen into the reaction furnace in the previous process, and a hydrogen An apparatus for producing polycrystalline silicon, characterized in that means for purifying silane trichloride gas in the exhaust gas from which gas is separated and a pipe for introducing the purified silane trichloride gas into the reaction furnace are provided.
JP2004136567A 2004-04-30 2004-04-30 Method for producing polycrystalline silicon Expired - Fee Related JP4780271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136567A JP4780271B2 (en) 2004-04-30 2004-04-30 Method for producing polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136567A JP4780271B2 (en) 2004-04-30 2004-04-30 Method for producing polycrystalline silicon

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009168189A Division JP5321827B2 (en) 2009-07-16 2009-07-16 Polycrystalline silicon manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2005314191A JP2005314191A (en) 2005-11-10
JP4780271B2 true JP4780271B2 (en) 2011-09-28

Family

ID=35441994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136567A Expired - Fee Related JP4780271B2 (en) 2004-04-30 2004-04-30 Method for producing polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP4780271B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935327B2 (en) 2006-08-30 2011-05-03 Hemlock Semiconductor Corporation Silicon production with a fluidized bed reactor integrated into a siemens-type process
JP5018156B2 (en) * 2007-03-19 2012-09-05 Jnc株式会社 Method for producing polycrystalline silicon
DE102008000052A1 (en) * 2008-01-14 2009-07-16 Wacker Chemie Ag Method of depositing polycrystalline silicon
RU2388690C2 (en) * 2008-05-22 2010-05-10 Общество с ограниченной ответственностью "Группа СТР" Method for synthesis of polycrystalline silicon
JP5444839B2 (en) * 2008-05-28 2014-03-19 三菱マテリアル株式会社 Trichlorosilane production apparatus and production method
JP5321252B2 (en) * 2009-05-29 2013-10-23 三菱マテリアル株式会社 Polycrystalline silicon manufacturing method and manufacturing apparatus
DE102010040293A1 (en) * 2010-09-06 2012-03-08 Wacker Chemie Ag Process for producing polycrystalline silicon
JP5542031B2 (en) * 2010-11-11 2014-07-09 信越化学工業株式会社 Polycrystalline silicon manufacturing method and polycrystalline silicon manufacturing system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792460A (en) * 1986-07-15 1988-12-20 Electric Power Research Institute, Inc. Method for production of polysilanes and polygermanes, and deposition of hydrogenated amorphous silicon, alloys thereof, or hydrogenated amorphous germanium
JPH1149508A (en) * 1997-06-03 1999-02-23 Tokuyama Corp Production with decreased waste of polycrystalline silicon
JP2002068727A (en) * 2000-08-29 2002-03-08 Jgc Corp Method for manufacturing high purity silica
JP4038110B2 (en) * 2001-10-19 2008-01-23 株式会社トクヤマ Method for producing silicon

Also Published As

Publication number Publication date
JP2005314191A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
KR101400481B1 (en) Process for producing trichlorosilane and apparatus for producing trichlorosilane
JP5601438B2 (en) Trichlorosilane production method and trichlorosilane production apparatus
US6368568B1 (en) Method for improving the efficiency of a silicon purification process
EP0133209A2 (en) Trichlorosilane production process and equipment
JP4714196B2 (en) Method for producing trichlorosilane and method for producing polycrystalline silicon
US20090060820A1 (en) Method for producing trichlorosilane and method for producing polycrystalline silicon
EP2070871B1 (en) Process for production of multicrystal silicon and facility for production of multicrystal silicon
JP2009149502A (en) Method for separating and recovering conversion reaction gas
KR20120093374A (en) Process for producing trichlorosilane
JP2006321675A (en) Method for producing silicon
GB2028289A (en) Producing silicon
US7691357B2 (en) Method for producing polycrystalline silicon
EP2036857A2 (en) Method for producing trichlorosilane
JP4780271B2 (en) Method for producing polycrystalline silicon
JP5321827B2 (en) Polycrystalline silicon manufacturing method and manufacturing apparatus
WO2010050241A1 (en) Process for production of trichlorosilane and method for use thereof
CN105980305B (en) Process for preparing trichlorosilane
JP5392488B2 (en) Production method and use of trichlorosilane
CN103820852A (en) System and method for preparation of polycrystalline silicon by utilizing hydrochloric acid and silicon tetrachloride
JP2006169012A (en) Hexachlorodisilane and method of producing the same
CN107074561A (en) Use the poly plant and method of high-efficiency hybrid horizontal reactor
JP4831285B2 (en) Method for producing polycrystalline silicon
JP5333725B2 (en) Method for producing and using trichlorosilane
JP2006176357A (en) Method for producing hexachlorodisilane
US8029756B1 (en) Closed-loop silicon production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees