JP4778719B2 - Copolymer latex for can sealant - Google Patents

Copolymer latex for can sealant Download PDF

Info

Publication number
JP4778719B2
JP4778719B2 JP2005098289A JP2005098289A JP4778719B2 JP 4778719 B2 JP4778719 B2 JP 4778719B2 JP 2005098289 A JP2005098289 A JP 2005098289A JP 2005098289 A JP2005098289 A JP 2005098289A JP 4778719 B2 JP4778719 B2 JP 4778719B2
Authority
JP
Japan
Prior art keywords
sealing material
copolymer latex
copolymer
polymerization
persulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005098289A
Other languages
Japanese (ja)
Other versions
JP2006274168A (en
Inventor
銀平 鈴木
敬規 野島
勝彦 石田
広之 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Toyo Seikan Group Holdings Ltd
Original Assignee
JSR Corp
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Toyo Seikan Kaisha Ltd filed Critical JSR Corp
Priority to JP2005098289A priority Critical patent/JP4778719B2/en
Publication of JP2006274168A publication Critical patent/JP2006274168A/en
Application granted granted Critical
Publication of JP4778719B2 publication Critical patent/JP4778719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Sealing Material Composition (AREA)

Description

本発明は缶シーリング材用共重合体ラテックスに関し、更に詳しくは、粘度安定性及びライニング作業性に優れた缶シーリング材の製造に好適な缶シーリング材用共重合体ラテックスに関する。   The present invention relates to a copolymer latex for can sealing materials, and more particularly to a copolymer latex for can sealing materials suitable for producing a can sealing material excellent in viscosity stability and lining workability.

従来、缶詰の製造に際しては、缶胴に内容物を充填した後、缶端(キャン・エンド)を被蓋し、次いで缶胴フランジと缶端周縁部との間で二重巻き締めを行って密封を行っている。この際、缶胴と缶蓋との二重巻き締め部分における密封を完全にするために、缶端の周縁に設けられた溝内にシーリング材をライニングした後、これを巻き締める方法が用いられている。   Conventionally, when manufacturing canned foods, the can body is filled with the contents, then the can end (can end) is covered, and then double winding is performed between the can body flange and the peripheral edge of the can end. Sealing is performed. At this time, in order to completely seal the double-clamping portion between the can body and the can lid, a method is used in which a sealing material is lined in a groove provided at the peripheral edge of the can end and then this is wound. ing.

このシーリング材は、通常、ゴムを主成分として調製されるものである。このゴムとしては、コールドラバーと呼ばれる固形ゴムが一般に用いられていた。しかしながら、(1)固形ゴムは、その製造工程中において使用される重合停止剤等の不純物を含むため、これらの不純物を除去しなければならない。また、缶シーリング材は、水性である共重合体ラテックス、又は溶液の状態で使用されるものである。従って、固形ゴムを水に分散させるか、又は溶媒に溶解若しくは分散させる必要があり、缶シーリング材を製造するに際しての生産性に劣るものである。また、(2)固形ゴムは、素練り及び加工時に分子が切断されてしまい、機械的・化学的特性が劣化し、その結果、缶シーリング材の密封性が悪化するという欠点がある。   This sealing material is usually prepared mainly with rubber. As this rubber, a solid rubber called a cold rubber was generally used. However, (1) Since solid rubber contains impurities such as a polymerization terminator used in the production process, these impurities must be removed. The can sealing material is used in the form of an aqueous copolymer latex or a solution. Therefore, it is necessary to disperse the solid rubber in water, or dissolve or disperse it in a solvent, which is inferior in productivity when producing a can sealing material. In addition, (2) solid rubber has a drawback that molecules are cut during mastication and processing, resulting in deterioration of mechanical and chemical characteristics, and as a result, the sealing performance of the can sealing material is deteriorated.

これらの欠点等を解消するための従来技術として、それを構成する共重合体のトルエン不溶分及びムーニー粘度を所定の数値範囲内に規定した、缶シーリング材の構成材料として好適な共重合体ラテックスが開示されている(例えば、特許文献1参照)。この共重合体ラテックスを用いれば、密封性、巻き締め性、耐熱水スクイズアウト性、及びフレーバーに優れた缶シーリング材を得ることができる。   As a conventional technique for solving these drawbacks, a copolymer latex suitable as a constituent material of a can sealing material, in which the toluene insoluble content and Mooney viscosity of the copolymer constituting the copolymer are defined within a predetermined numerical range. Is disclosed (for example, see Patent Document 1). If this copolymer latex is used, a can sealing material excellent in sealing property, winding property, hot water squeeze-out property, and flavor can be obtained.

しかし、特許文献1で開示された共重合体ラテックスであっても、その粘度が経時的に徐々に低下してしまうという問題がある。従って、缶シーリング材が十分なシール性を長期間に渡って発揮し難くなる場合があるため、粘度安定性の向上を図る必要性がある。また、近年、密閉缶製造の生産性向上のため、缶の巻き締め工程における巻き締め機の走行速度を更に上げる傾向にある。しかし、このような高速度巻き締めシステムを採用した場合、従来の缶シーリング材ではその作業性(ライニング作業性)が必ずしも良好であるとはいえない。従って、密閉缶製造の更なる生産性向上を図るべく、缶シーリング材のライニング作業性を改良する必要性がある。
特許第2619301号公報
However, even the copolymer latex disclosed in Patent Document 1 has a problem that its viscosity gradually decreases with time. Therefore, there is a case where it becomes difficult for the can sealing material to exhibit sufficient sealing performance for a long period of time, and thus there is a need to improve the viscosity stability. Moreover, in recent years, in order to improve the productivity of manufacturing sealed cans, there is a tendency to further increase the traveling speed of the winding machine in the can winding process. However, when such a high-speed winding system is adopted, the workability (lining workability) is not always good with the conventional can sealing material. Therefore, there is a need to improve the lining workability of the can sealing material in order to further improve the productivity of manufacturing the sealed can.
Japanese Patent No. 2619301

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、粘度安定性、及びライニング作業性に優れた缶シーリング材の製造に好適な缶シーリング材用共重合体ラテックスを提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide a can sealing suitable for the production of a can sealing material having excellent viscosity stability and lining workability. It is to provide a copolymer latex for materials.

本発明者らは上記課題を達成すべく鋭意検討した結果、重合の後、その成分中に残留した、重合に際して開始剤として用いた過硫酸塩の減少・除去を図るための処理を行い、残留した過硫酸塩の濃度を低減させることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have performed a treatment for reducing and removing persulfate used as an initiator in the polymerization after the polymerization and remaining in the components. It has been found that the above-mentioned problems can be achieved by reducing the concentration of the persulfate, and the present invention has been completed.

即ち、本発明によれば、以下に示す缶シーリング材用共重合体ラテックスが提供される。   That is, according to the present invention, the following copolymer latex for can sealing materials is provided.

[1]開始剤として過硫酸塩を使用し、重合して製造した缶シーリング材用共重合体ラテックスであって、重合した後、還元剤を添加して、残留した前記過硫酸塩(残留過硫酸塩)の減少処理を更にしてなり、前記減少処理後の前記残留過硫酸塩の濃度が、50ppm以下である缶シーリング材用共重合体ラテックス。 [1] A copolymer latex for can sealing materials produced by polymerization using persulfate as an initiator, and after polymerization, a reducing agent is added to form the residual persulfate (residual excess). A copolymer latex for a can sealing material, further comprising a reduction treatment of sulfate), wherein the concentration of the residual persulfate after the reduction treatment is 50 ppm or less.

]前記還元剤が、亜硫酸水素ナトリウムである前記[]に記載の缶シーリング材用共重合体ラテックス。 [ 2 ] The copolymer latex for can sealing material according to [ 1 ], wherein the reducing agent is sodium bisulfite.

](a)共役ジエン系単量体、(b)芳香族ビニル化合物、及び(c)必要に応じて用いられるその他の共重合可能な単量体、を主成分とする単量体成分を、50〜90質量%の重合転化率で乳化重合して製造されるものであり、それを構成する共重合体の、トルエン不溶分が10〜70%、ムーニー粘度(ML1+4,100℃)が60〜150である前記[1]または[2]に記載の缶シーリング材用共重合体ラテックス。 [ 3 ] A monomer component mainly composed of (a) a conjugated diene monomer, (b) an aromatic vinyl compound, and (c) another copolymerizable monomer used as necessary. Is produced by emulsion polymerization at a polymerization conversion of 50 to 90% by mass, and the copolymer constituting it is 10 to 70% insoluble in toluene, Mooney viscosity (ML 1 + 4 , 100 The copolymer latex for can sealing material according to the above [1] or [2] , wherein the (° C.) is 60 to 150.

本発明の缶シーリング材用共重合体ラテックスは、重合した後、還元剤を添加して、残留した過硫酸塩の減少処理を更にしてなるものであり、減少処理後の残留過硫酸塩の濃度が、所定の濃度以下のものである。従って、粘度安定性及びライニング作業性に優れた缶シーリング材の製造に好適であるという効果を奏するものである。 The copolymer latex for can sealing material of the present invention is obtained by polymerizing and then adding a reducing agent to further reduce the residual persulfate. The density is below a predetermined density. Therefore, there is an effect that it is suitable for production of a can sealing material excellent in viscosity stability and lining workability.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

本発明の缶シーリング材用共重合体ラテックスの一実施形態は、開始剤として過硫酸塩を使用し、重合して製造したものであり、重合した後、還元剤を添加して、残留した過硫酸塩(残留過硫酸塩)の減少処理を更にしてなり、減少処理後の残留過硫酸塩の濃度が、50ppm以下のものである。以下、その詳細について説明する。 One embodiment of the copolymer latex for can sealing material of the present invention is produced by polymerization using a persulfate as an initiator. After polymerization, a reducing agent is added to the residual latex. Further reduction treatment of sulfate (residual persulfate) is performed, and the concentration of residual persulfate after the reduction treatment is 50 ppm or less. The details will be described below.

本実施形態の缶シーリング材用共重合体ラテックスは、開始剤として過硫酸塩を使用し、重合して製造したものであるが、重合の後、その成分中に残留した過硫酸塩(残留過硫酸塩)の減少処理を施して得られるものである。ここで、「減少処理」とは、重合直後のもの(共重合体ラテックス前駆体)に残留している過硫酸塩を、例えば還元剤を用いて化学的に処理することにより減少・除去する処理をいう。より具体的には、共重合体ラテックス前駆体に還元剤を添加し、適当時間混合することにより実施することができる。還元剤としては、亜硫酸水素ナトリウム、亜硫酸ナトリウム、ピロ重亜硫酸ナトリウム、硫酸第一鉄を挙げることができる。これらのなかでも、共重合体ラテックス前駆体中に残留した過硫酸塩を減少させる効果が高いことから、亜硫酸水素ナトリウムが好適に用いられる。   The copolymer latex for can sealing material of the present embodiment is produced by polymerization using persulfate as an initiator. After polymerization, the persulfate (residual excess) remaining in the component is used. (Sulphate) reduction treatment. Here, the “reduction treatment” is a treatment for reducing / removing the persulfate remaining immediately after polymerization (copolymer latex precursor) by chemically treating the persulfate, for example, using a reducing agent. Say. More specifically, it can be carried out by adding a reducing agent to the copolymer latex precursor and mixing it for an appropriate time. Examples of the reducing agent include sodium bisulfite, sodium sulfite, sodium pyrobisulfite, and ferrous sulfate. Among these, sodium bisulfite is preferably used because of its high effect of reducing the persulfate remaining in the copolymer latex precursor.

本実施形態の缶シーリング材用共重合体ラテックスの、減少処理後の残留過硫酸塩の濃度は50ppm以下である。残留過硫酸塩の濃度が50ppm以下であると、長期間経過した場合であっても粘度が低下し難く、粘度安定性に優れるといった効果を奏する。従って、長期間に渡って信頼性に優れた缶シーリング材を得ることが可能となる。また、本実施形態の缶シーリング材用共重合体ラテックスは、その粘度が低下し難いことから、ライニング作業性に優れた缶シーリング材を提供することができる。このため、本実施形態の缶シーリング材用共重合体ラテックスを用いれば、密閉缶製造の更なる生産性向上を図ることもできる。   The concentration of residual persulfate after the reduction treatment of the copolymer latex for can sealing material of this embodiment is 50 ppm or less. When the concentration of the residual persulfate is 50 ppm or less, the viscosity is hardly lowered even when a long period of time elapses, and an effect of excellent viscosity stability is obtained. Therefore, it becomes possible to obtain a can sealing material excellent in reliability over a long period of time. Moreover, since the copolymer latex for can sealing materials of this embodiment is hard to reduce in viscosity, a can sealing material excellent in lining workability can be provided. For this reason, if the copolymer latex for can sealing materials of this embodiment is used, the productivity improvement of sealed can manufacture can also be aimed at.

一般に、過硫酸塩を開始剤として使用した場合、共重合体ラテックス中に残留したこの過硫酸塩の量は経時的に減少するが、本明細書にいう「残留過硫酸塩の濃度(量)」とは、重合終了直後から48時間経過後に測定した濃度(量)をいうものとする。より粘度安定性及びライニング作業性に優れた缶シーリング材を提供するといった観点から、減少処理後の残留過硫酸塩の濃度は20ppm以下であることが好ましく、10ppm以下であることが更に好ましい。なお、本実施形態の缶シーリング材用共重合体ラテックスの、減少処理後の残留過硫酸塩の濃度の下限値については特に限定されないが、0ppmであることが最も好ましい。ここで、本明細書にいう「残留過硫酸塩の濃度が0ppm」とは、JIS K0113(1997)に準拠した電位差滴定方法(検出限界値=0.1ppm)によっても過硫酸塩が検出されないことをいう。   In general, when persulfate is used as an initiator, the amount of this persulfate remaining in the copolymer latex decreases with time, but the “residual persulfate concentration (amount)” referred to in this specification. "" Means the concentration (amount) measured 48 hours after the completion of polymerization. From the viewpoint of providing a can sealing material that is more excellent in viscosity stability and lining workability, the concentration of residual persulfate after the reduction treatment is preferably 20 ppm or less, and more preferably 10 ppm or less. The lower limit value of the residual persulfate concentration after the reduction treatment of the copolymer latex for can sealing material of the present embodiment is not particularly limited, but is most preferably 0 ppm. Here, “the concentration of residual persulfate is 0 ppm” in this specification means that no persulfate is detected even by a potentiometric titration method (detection limit value = 0.1 ppm) in accordance with JIS K0113 (1997). Say.

本実施形態の缶シーリング材用共重合体ラテックスは、開始剤として過硫酸塩を使用し、重合して製造したものであれば、これを構成する単量体成分の種類や配合比等に限定はない。但し、本実施形態の缶シーリング材用共重合体ラテックスは、(a)共役ジエン系単量体(以下、単に「(a)成分」ともいう)、(b)芳香族ビニル化合物(以下、単に「(b)成分」ともいう)、及び(c)必要に応じて用いられるその他の共重合可能な単量体(以下、単に「(c)成分」ともいう)、を主成分とする単量体成分を、50〜90質量%の重合転化率で乳化重合して製造されるものであり、それを構成する共重合体の、トルエン不溶分が10〜70%、ムーニー粘度(ML1+4,100℃)が60〜150であるものであることが、密封性、巻き締め性、耐熱水スクイズアウト性、及びフレーバーに優れた缶シーリング材を得ることができるために好ましい。以下、各単量体成分、及び共重合体の物性値について説明する。 The copolymer latex for can sealing material of the present embodiment is limited to the types and blending ratios of the monomer components constituting the copolymer latex as long as it is produced by polymerization using persulfate as an initiator. There is no. However, the copolymer latex for a can sealing material of the present embodiment includes (a) a conjugated diene monomer (hereinafter also simply referred to as “(a) component”), (b) an aromatic vinyl compound (hereinafter simply referred to as “a”). A monomer comprising “(b) component”) and (c) other copolymerizable monomer (hereinafter also simply referred to as “(c) component”) used as necessary. The body component is produced by emulsion polymerization at a polymerization conversion of 50 to 90% by mass, and the copolymer constituting it is 10 to 70% insoluble in toluene, Mooney viscosity (ML 1 + 4 , 100 [deg.] C.) is preferably from 60 to 150 because a sealing material excellent in sealing property, winding property, hot water squeeze-out property, and flavor can be obtained. Hereinafter, the physical properties of each monomer component and copolymer will be described.

(a)成分の具体例としては、1,3−ブタジエン、イソプレン、2−クロロ−1,3−ブタジエン等を挙げることができる。これらのなかでも、特に1,3−ブタジエンが好ましい。また、これらの(a)成分は、単独で、又は2種以上を混合して使用することができる。   Specific examples of the component (a) include 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene and the like. Among these, 1,3-butadiene is particularly preferable. Moreover, these (a) components can be used individually or in mixture of 2 or more types.

(b)成分の具体例としては、スチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレン、スチレンスルホン酸ナトリウム等を挙げることができる。これらのなかでも、特にスチレンが好ましい。また、これらの(b)成分は、単独で、又は2種以上を混合して使用することができる。   Specific examples of the component (b) include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, sodium styrenesulfonate, and the like. Of these, styrene is particularly preferable. Moreover, these (b) components can be used individually or in mixture of 2 or more types.

(c)成分の具体例としては、アクリロニトリル、メタクリロニトリル等のシアン化ビニル単量体、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n−ブチルアクリレート、n−ブチルメタクリレート、イソブチルアクリレート、イソブチルメタアクリレート、アミルアクリレート、アミルメタクリレート、イソアミルアクリレート、イソアミルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、n−オクチルアクリレート、n−オクチルメタクリレート、2−エチルヘキシルアクリレート、2−エチルヘキシルメタクリレート、イソノニルアクリレート、イソノニルメタクリレート、ラウリルアクリレート、ラウリルメタクリレート等のアクリル酸アルキルエステル類又はメタクリル酸アルキルエステル類、イタコン酸、アクリル酸、メタクリル酸、フマル酸等のエチレン系不飽和カルボン酸単量体、アクリルアミド、メタクリルアミド等のアミド系単量体、グリシジルアクリレート、グリシジルメタクリレート等のグリシジル単量体、β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート、β−ヒドロキシプロピルアクリレート、β−ヒドロキシプロピルメタクリレート等のアクリル酸ヒドロキシアルキルエステル単量体又はメタクリル酸ヒドロキシアルキルエステル単量体等を挙げることができる。これらのなかでも、特にエチレン系不飽和カルボン酸単量体、フマル酸が好ましい。また、これらの(c)成分は、単独で、又は2種以上を混合して使用することができる。   Specific examples of the component (c) include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl. Methacrylate, amyl acrylate, amyl methacrylate, isoamyl acrylate, isoamyl methacrylate, hexyl acrylate, hexyl methacrylate, n-octyl acrylate, n-octyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isononyl acrylate, isononyl methacrylate, lauryl Acrylic acid alkyl esters such as acrylate and lauryl methacrylate or Crylic acid alkyl esters, itaconic acid, acrylic acid, methacrylic acid, fumaric acid and other ethylenically unsaturated carboxylic acid monomers, acrylamide, methacrylamide and other amide monomers, glycidyl acrylate, glycidyl methacrylate and other glycidyl monomers Acrylic acid hydroxyalkyl ester monomers or methacrylic acid hydroxyalkyl ester monomers such as mer, β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, β-hydroxypropyl acrylate, β-hydroxypropyl methacrylate, etc. it can. Among these, an ethylenically unsaturated carboxylic acid monomer and fumaric acid are particularly preferable. Moreover, these (c) components can be used individually or in mixture of 2 or more types.

単量体成分に占める(a)〜(c)成分の組成比は、これらの単量体成分を乳化重合して得られる缶シーリング材用共重合体ラテックスを構成する共重合体のトルエン不溶分、ムーニー粘度、更にはガラス転移温度などを考慮して適宜設定される。好ましくは(a)成分30〜80質量%、(b)成分20〜70質量%、及び(c)成分0〜40質量%、であり、更に好ましくは(a)成分40〜70質量%、(b)成分30〜60質量%、(c)成分0〜30質量%(但し、(a)+(b)+(c)=100質量%)である。   The composition ratio of the components (a) to (c) in the monomer components is determined by the toluene insoluble content of the copolymer constituting the copolymer latex for can sealing materials obtained by emulsion polymerization of these monomer components. , Mooney viscosity, and glass transition temperature are taken into consideration. Preferably (a) component 30-80 mass%, (b) component 20-70 mass%, and (c) component 0-40 mass%, More preferably, (a) component 40-70 mass%, ( b) Component 30 to 60% by mass, (c) Component 0 to 30% by mass (provided that (a) + (b) + (c) = 100% by mass).

(a)成分が30質量%未満であると密封性が低下する傾向にある。一方、(a)成分が80質量%超であると耐スクイズ性が低下する傾向にある。また、(b)成分が20質量%未満であると耐スクイズ性が低下する傾向にある。一方、(b)成分が70質量%超であると密封性が低下する傾向にある。更に、(c)成分が40質量%超であると密封性が低下する傾向にある。   When the component (a) is less than 30% by mass, the sealing property tends to be lowered. On the other hand, when the component (a) is more than 80% by mass, the squeeze resistance tends to decrease. Further, when the component (b) is less than 20% by mass, the squeeze resistance tends to decrease. On the other hand, when the component (b) is more than 70% by mass, the sealing property tends to be lowered. Furthermore, when the component (c) is more than 40% by mass, the sealing property tends to be lowered.

乳化重合は、通常の乳化重合条件下で行うことができる。例えば、単量体成分の90〜300質量%に相当する量の水中で、乳化剤、分子量調節剤、及び重合開始剤、その他必要に応じて各種電解質やpH調整剤等の存在下、単量体成分を乳化重合すればよい。乳化重合温度は、通常5〜85℃であり、35〜80℃とすることが好ましい。共役ジエン系の(共)重合体ラテックスは、一般に、乳化重合温度によって、コールドラバー(重合温度約10℃以下)とホットラバー(重合温度35〜85℃)の2種類に分けることができる。本実施形態においてはいずれの共重合体ラテックスを用いてもよい。但し、コールドラバーには比較的多量の重合抑制剤が含有されており、これが缶シーリング材を構成する組成物中に混入して、缶詰内容物のフレーバーに影響を与える場合がある。従って、本実施形態においては、35〜80℃の温度で乳化重合を行うことにより得られるホットラバーを用いることが好ましい。   Emulsion polymerization can be performed under normal emulsion polymerization conditions. For example, in water in an amount corresponding to 90 to 300% by mass of the monomer component, in the presence of an emulsifier, a molecular weight regulator, a polymerization initiator, and other electrolytes and pH regulators as necessary, the monomer What is necessary is just to emulsion-polymerize a component. The emulsion polymerization temperature is usually 5 to 85 ° C and preferably 35 to 80 ° C. The conjugated diene-based (co) polymer latex can generally be classified into two types, a cold rubber (polymerization temperature of about 10 ° C. or less) and a hot rubber (polymerization temperature of 35 to 85 ° C.) depending on the emulsion polymerization temperature. In the present embodiment, any copolymer latex may be used. However, a relatively large amount of a polymerization inhibitor is contained in the cold rubber, which may be mixed into the composition constituting the can sealing material and affect the flavor of the canned contents. Therefore, in this embodiment, it is preferable to use a hot rubber obtained by performing emulsion polymerization at a temperature of 35 to 80 ° C.

乳化重合に用いられる乳化剤としては、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ジフェニルエーテルジスルホン酸ナトリウム、コハク酸ジアルキルエステルスルホン酸ナトリウム、ロジン酸カリウム、不均化ロジン酸カリウムなどのアニオン系乳化剤、ポリオキシエチレンアルキルエステル、ポリオキシエチレンアルキルアリルエーテル等のノニオン系乳化剤を単独で、又は2種以上を組み合わせて使用することができる。ドデシルベンゼンスルホン酸ナトリウム、不均化ロジン酸カリウム、精製した不均化ロジン酸カリウムが特に好ましい。   Emulsifiers used in emulsion polymerization include anionic emulsifiers such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium diphenyl ether disulfonate, sodium dialkyl ester sulfonate succinate, potassium rosinate and disproportionated potassium rosinate, polyoxy Nonionic emulsifiers such as ethylene alkyl ester and polyoxyethylene alkyl allyl ether can be used alone or in combination of two or more. Sodium dodecylbenzenesulfonate, disproportionated potassium rosinate, and purified disproportionated potassium rosinate are particularly preferred.

乳化剤の使用量は、単量体成分に対して0.1〜7質量%とすることが好ましく、0.5〜5質量%とすることが更に好ましい。乳化剤の使用量が単量体成分に対して0.1質量%未満であると、重合安定性が悪化して凝固物が発生する傾向にある。一方、7質量%超であると、最終製品として得られる缶シーリング材の密封性が低下する傾向にある。   The amount of the emulsifier used is preferably 0.1 to 7% by mass, and more preferably 0.5 to 5% by mass with respect to the monomer component. When the amount of the emulsifier used is less than 0.1% by mass relative to the monomer component, the polymerization stability tends to deteriorate and a coagulated product tends to be generated. On the other hand, if it exceeds 7% by mass, the sealing property of the can sealing material obtained as the final product tends to be lowered.

また、乳化重合に際しては、分子量調節剤を使用することが好ましい。分子量調節剤としては、t−ドデシルメルカプタン、n−ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類、ジメチルキサントゲンジスルフィド、ジエチレンキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲンジスルフィド類、テトラメチルチウラムジスルフィド、テトラエチレンチウラムジスルフィド、テトラブチルチウラムジスルフィド等のチウラムジスルフィド類、四塩化炭素、臭化エチレン等のハロゲン化炭化水素類、α−メチルスチレンダイマー、ペンタフェニルエタン等の炭化水素類、アクロレイン、メタクロレイン、アリルアルコール、2−エチルヘキシルチオグリコレート、ターピノーレン、α−テルピネン、γ−テルピネン、ジペンテン等を挙げることができる。これらのなかでも、特にメルカプタン類が好ましい。これらの分子量調節剤は、単独で又は2種以上組み合わせて使用することができる。なお、分子量調節剤の使用量は、単量体成分に対して0.01〜3質量%とすることが好ましく、0.01〜2質量%とすることが更に好ましい。   In the emulsion polymerization, it is preferable to use a molecular weight regulator. Examples of molecular weight regulators include mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan, xanthogen disulfides such as dimethylxanthogen disulfide, diethylenexanthogen disulfide, diisopropylxanthogen disulfide, tetramethylthiuram disulfide, tetraethylenethiuram disulfide, Thiuram disulfides such as tetrabutylthiuram disulfide, halogenated hydrocarbons such as carbon tetrachloride and ethylene bromide, hydrocarbons such as α-methylstyrene dimer and pentaphenylethane, acrolein, methacrolein, allyl alcohol, 2- Examples thereof include ethylhexyl thioglycolate, terpinolene, α-terpinene, γ-terpinene, and dipentene. Among these, mercaptans are particularly preferable. These molecular weight regulators can be used alone or in combination of two or more. In addition, it is preferable to set it as 0.01-3 mass% with respect to a monomer component, and, as for the usage-amount of a molecular weight regulator, it is still more preferable to set it as 0.01-2 mass%.

乳化重合に際しては、重合開始剤として、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩を使用する。これらの過硫酸塩を単独で、又は2種以上を組み合わせて使用することができる。重合開始剤の使用量は、単量体成分に対して0.03〜2質量%とすることが好ましく、0.05〜1質量%とすることが更に好ましい。なお、乳化重合を促進させるために、ピロ重亜硫酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、グルコース、ホルムアルデヒドスルホキシレート、L−アスコルビン酸等の還元剤や、グリシン、アラニン、エチレンジアミン四酢酸ナトリウム等のキレート化剤等を併用することもできる。   In emulsion polymerization, a persulfate such as potassium persulfate, sodium persulfate, or ammonium persulfate is used as a polymerization initiator. These persulfates can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.03 to 2% by mass and more preferably 0.05 to 1% by mass with respect to the monomer component. In order to promote emulsion polymerization, reducing agents such as sodium pyrobisulfite, sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, glucose, formaldehyde sulfoxylate, L-ascorbic acid, glycine, alanine, ethylenediamine A chelating agent such as sodium acetate can also be used in combination.

乳化重合を行うに際し、単量体成分を重合系内に添加する方法としては、一括添加法、連続添加法等を採用することができる。乳化重合における重合転化率は、50〜90質量%とすることが好ましい。   In performing emulsion polymerization, a batch addition method, a continuous addition method, or the like can be employed as a method for adding the monomer component into the polymerization system. The polymerization conversion rate in the emulsion polymerization is preferably 50 to 90% by mass.

本実施形態の缶シーリング材用共重合体ラテックスを構成する共重合体のトルエン不溶分は、10〜70%であることが好ましく、10〜60%であることが更に好ましい。共重合体のトルエン不溶分が70%超であると、共重合体の密着性が不十分となり、最終製品として得られる缶シーリング材の密封性が低下する傾向にある。一方、共重合体のトルエン不溶分が10%未満であると、耐スクイズ性が劣る傾向にある。   The toluene insoluble content of the copolymer constituting the copolymer latex for can sealing material of the present embodiment is preferably 10 to 70%, and more preferably 10 to 60%. When the toluene insoluble content of the copolymer is more than 70%, the adhesiveness of the copolymer becomes insufficient, and the sealing property of the can sealing material obtained as the final product tends to be lowered. On the other hand, when the toluene insoluble content of the copolymer is less than 10%, the squeeze resistance tends to be inferior.

本明細書にいう「トルエン不溶分」とは、以下に示す方法によって測定・算出した値をいう。先ず、乳化重合によって得られる共重合体ラテックスのpHを約8に調整した後、ガラス板上に流延及び乾燥して、厚さ0.3mmのフィルムを形成する。次に、形成したフィルムの0.3gをトルエン100ml中に入れて約16時間静置した後に手で振盪する。更に4時間静置してフィルムを溶解させた後、得られた溶液を120メッシュの金網でろ過し、ホールピペットを用いてろ液を採取する。採取したろ液をホットプレートを用いて蒸発、乾燥させることによりトルエン不溶分の質量を測定する。測定した質量から、共重合体の質量に対するトルエン不溶分の割合を「トルエン不溶分」として算出することができる。   The “toluene insoluble matter” in the present specification refers to a value measured and calculated by the following method. First, the pH of the copolymer latex obtained by emulsion polymerization is adjusted to about 8, and then cast and dried on a glass plate to form a film having a thickness of 0.3 mm. Next, 0.3 g of the formed film is placed in 100 ml of toluene and allowed to stand for about 16 hours, and then shaken by hand. Furthermore, after leaving still for 4 hours and dissolving a film, the obtained solution is filtered with a 120 mesh metal-mesh, and a filtrate is extract | collected using a whole pipette. The collected filtrate is evaporated and dried using a hot plate to measure the mass of toluene insoluble matter. From the measured mass, the ratio of the toluene insoluble to the mass of the copolymer can be calculated as “toluene insoluble”.

トルエン不溶分は、例えばメルカプタン類を分子量調節剤として使用する場合において、単量体成分に対するメルカプタン類の使用量を、0.01〜1.5質量%の範囲内で変更することによって調整することができる。なお、フレーバーの良好な共重合体ラテックスを製造するには、単量体成分に対するメルカプタン類の使用量を、0.01〜1質量%の範囲内とすることが好ましい。また、共重合体のトルエン不溶分は、重合開始剤の使用量、重合温度、重合転化率、又は単量体成分の組成等の各種条件の選択によっても調整可能である。これらの条件の選択と、分子量調節剤の種類及び量の選択とを組み合わせることにより、所望とするトルエン不溶分を持った共重合体を製造することもできる。   Toluene-insoluble content is adjusted by changing the amount of mercaptans used relative to the monomer component within the range of 0.01 to 1.5% by mass, for example, when mercaptans are used as molecular weight regulators. Can do. In order to produce a copolymer latex having a good flavor, the amount of mercaptans used relative to the monomer component is preferably within the range of 0.01 to 1% by mass. The toluene-insoluble content of the copolymer can also be adjusted by selecting various conditions such as the amount of the polymerization initiator used, the polymerization temperature, the polymerization conversion rate, or the composition of the monomer components. By combining the selection of these conditions with the selection of the type and amount of the molecular weight regulator, a copolymer having a desired toluene-insoluble content can be produced.

また、本実施形態の缶シーリング材用共重合体ラテックスを構成する共重合体のムーニー粘度(ML1+4,100℃)は、60〜150であることが好ましく、65〜130であることが更に好ましい。共重合体のムーニー粘度(ML1+4,100℃)が60未満であると、最終製品として得られる缶シーリング材の抗張力が小さくなってちぎれが発生し易くなる傾向にある。ちぎれが発生した場合には、ちぎれた部分が巻き締め部外にスクイズアウトして、缶内容物中に混入したり、クリープにより長期保存後の密封性が低下したりする傾向にある。一方、共重合体のムーニー粘度(ML1+4,100℃)が150超であると、最終製品として得られる缶シーリング材の密封性が低下する傾向にある。なお、共重合体のムーニー粘度(ML1+4,100℃)は、単量体組成、分子量調節剤の種類及び量、重合温度、重合転化率等を調整することによって調整することができる。 Further, the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the copolymer constituting the copolymer latex for can sealing material of the present embodiment is preferably 60 to 150, and preferably 65 to 130. Further preferred. If the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the copolymer is less than 60, the tensile strength of the can sealing material obtained as the final product tends to be small and tearing tends to occur. When tearing occurs, the torn part is squeezed out of the tightening part and mixed in the contents of the can, or the sealing property after long-term storage tends to decrease due to creep. On the other hand, when the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the copolymer exceeds 150, the sealing property of the can sealing material obtained as the final product tends to be lowered. The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the copolymer can be adjusted by adjusting the monomer composition, the type and amount of the molecular weight regulator, the polymerization temperature, the polymerization conversion rate, and the like.

なお、本実施形態の缶シーリング材用共重合体ラテックスを構成する共重合体のガラス転移温度は、−20℃以下であることが好ましく、−30〜−80℃であることが更に好ましい。共重合体のガラス転移温度が−20℃超であると、最終製品として得られる缶シーリング材の密封性が低下する傾向にある。   In addition, it is preferable that the glass transition temperature of the copolymer which comprises the copolymer latex for can sealing materials of this embodiment is -20 degrees C or less, and it is still more preferable that it is -30--80 degreeC. When the glass transition temperature of the copolymer is higher than -20 ° C, the sealing property of the can sealing material obtained as the final product tends to be lowered.

また、本実施形態の缶シーリング材用共重合体ラテックスは、第一の単量体成分を乳化重合し、次いで第二の単量体成分を乳化重合する二段重合方法によって得られる、いわゆるコアシェル型の共重合体ラテックスであることが、より密封性、及び巻き締め性に優れた缶シーリング材を得ることができるために好ましい。ここで、第一の単量体成分を重合して得られる重合体(第一の重合体)のガラス転移温度は、−50〜0℃であることが好ましく、−40〜−10℃であることが更に好ましい。また、第一の重合体のガラス転移温度は、第二の単量体成分を重合して得られる重合体(第二の重合体)のガラス転移温度よりも、10℃以上高いことが好ましく、20℃以上高いことが好ましい。   Further, the copolymer latex for can sealing material of the present embodiment is a so-called core shell obtained by a two-stage polymerization method in which the first monomer component is emulsion-polymerized and then the second monomer component is emulsion-polymerized. A type of copolymer latex is preferable because a can sealing material having better sealing properties and winding properties can be obtained. Here, the glass transition temperature of the polymer (first polymer) obtained by polymerizing the first monomer component is preferably −50 to 0 ° C., and −40 to −10 ° C. More preferably. The glass transition temperature of the first polymer is preferably higher by 10 ° C. than the glass transition temperature of the polymer obtained by polymerizing the second monomer component (second polymer), It is preferably 20 ° C. or higher.

第一の重合体のガラス転移温度が−50℃未満であると、最終製品として得られる缶シーリング材の密封性が低下する傾向にある。一方、第一の重合体のガラス転移温度が0℃超であると、得られる缶シーリング材のモジュラスが高くなり、巻き締め性が低下する傾向にある。また、第一の重合体のガラス転移温度と、第二の重合体のガラス転移温度との差が10℃未満であると、最終製品として得られる缶シーリング材の密封性が低下する傾向にある。また、第二の重合体のガラス転移温度は、−20℃以下であることが好ましく、−80〜−30℃であることが更に好ましい。第二の重合体のガラス転移温度が−20℃超であると、最終製品として得られる缶シーリング材の密封性、及び巻き締め性が低下する傾向にある。なお、このようなコアシェル型の共重合体ラテックスの調製方法については、例えば特公平5−1813号公報等にその詳細が記載されている。   When the glass transition temperature of the first polymer is less than −50 ° C., the sealing property of the can sealing material obtained as the final product tends to be lowered. On the other hand, if the glass transition temperature of the first polymer is more than 0 ° C., the modulus of the resulting can sealing material tends to be high, and the winding property tends to be lowered. Further, if the difference between the glass transition temperature of the first polymer and the glass transition temperature of the second polymer is less than 10 ° C., the sealing property of the can sealing material obtained as the final product tends to be lowered. . Further, the glass transition temperature of the second polymer is preferably −20 ° C. or less, and more preferably −80 to −30 ° C. When the glass transition temperature of the second polymer is higher than −20 ° C., the sealing property and the winding property of the can sealing material obtained as the final product tend to be lowered. Details of the method for preparing such a core-shell type copolymer latex are described in, for example, Japanese Patent Publication No. 5-1813.

本明細書にいう「ガラス転移温度」とは、以下に示す方法によって測定・算出した値をいう。先ず、約5gの共重合体ラテックスをガラス板に薄く引き伸ばし、25℃で7日間乾燥させることによって、乾燥フィルムを得る。得られた乾燥フィルムについて、例えば理学電気社製の示差走査熱量分析計(DSC)を使用すれば、ガラス転移温度を測定することができる(測定条件:昇温速度=20℃/分、チッ素雰囲気下、サンプル量=20mg)。なお、共重合体のガラス転移温度の調整は、例えば単量体組成を変化させることによって行うことができる。   “Glass transition temperature” as used herein refers to a value measured and calculated by the following method. First, about 5 g of copolymer latex is thinly drawn on a glass plate and dried at 25 ° C. for 7 days to obtain a dry film. About the obtained dried film, for example, a differential scanning calorimeter (DSC) manufactured by Rigaku Corporation can be used to measure the glass transition temperature (measuring conditions: heating rate = 20 ° C./min, nitrogen). Sample amount = 20 mg under atmosphere). In addition, adjustment of the glass transition temperature of a copolymer can be performed by changing a monomer composition, for example.

本実施形態の缶シーリング材用共重合体ラテックスに、例えば一般の缶シーリング材の製造に使用されている重質炭酸カルシウム、軽質炭酸カルシウム、クレー、酸化チタン、酸化亜鉛等の無機顔料、ロジン又はそのエステル類、テルペン樹脂等の粘着付与剤、その他増粘剤、老化防止剤、防腐剤等の添加剤を配合して、缶シーリング材を製造することができる。缶シーリング材用のコンパウンドとしての好ましい配合例としては、共重合体ラテックス(固形分換算)100質量部、無機顔料50〜200質量部、粘着付与剤50〜150質量部、及びその他添加剤0.1〜5質量部、等を挙げることができる。なお、本実施形態の共重合体ラテックスを用いた缶シーリング材の固形分濃度は、35〜70質量%程度に調製されることが好ましい。   In the copolymer latex for can sealing material of the present embodiment, for example, an inorganic pigment such as heavy calcium carbonate, light calcium carbonate, clay, titanium oxide, zinc oxide, rosin or the like used in the production of general can sealing materials Can sealing materials can be produced by blending additives such as esters, terpene resins and other tackifiers, other thickeners, anti-aging agents, and preservatives. As a preferable blending example as a compound for a can sealing material, 100 parts by mass of a copolymer latex (in terms of solid content), 50 to 200 parts by mass of an inorganic pigment, 50 to 150 parts by mass of a tackifier, and other additives 1-5 mass parts, etc. can be mentioned. In addition, it is preferable that the solid content concentration of the can sealing material using the copolymer latex of the present embodiment is adjusted to about 35 to 70% by mass.

缶シーリング材用のコンパウンドは、定法に従って調製することができる。例えば、缶シーリング材用のコンパウンドに配合される、共重合体ラテックスをはじめとする各種成分の水分散液又は水溶液をそれぞれ調製し、これらを所定の配合割合となるように配合することによって、調製することができる。ここで、缶シーリング材用のコンパウンドに配合される無機顔料(顔料、及び無機充填材)の水分散液における、無機顔料の平均粒径は、0.3〜8μmであることが好ましい。   A compound for a can sealing material can be prepared according to a conventional method. For example, it is prepared by preparing aqueous dispersions or aqueous solutions of various components including copolymer latex, which are blended in a compound for a can sealing material, and blending them so as to have a predetermined blending ratio. can do. Here, the average particle diameter of the inorganic pigment in the aqueous dispersion of the inorganic pigment (pigment and inorganic filler) blended in the compound for the can sealing material is preferably 0.3 to 8 μm.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性値の測定方法、及び評価方法を以下に示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. Moreover, the measuring method and evaluation method of various physical property values are shown below.

[トルエン不溶分]:共重合体ラテックスのpHを約8に調整した後、ガラス板上に流延及び乾燥して、厚さ0.3mmのフィルムを形成する。次に、形成したフィルムの0.3gをトルエン100ml中に入れて約16時間静置した後に手で振盪する。更に4時間静置してフィルムを溶解させた後、得られた溶液を120メッシュの金網でろ過し、ホールピペットを用いてろ液を採取する。採取したろ液をホットプレートを用いて蒸発、乾燥させることによりトルエン不溶分の質量を測定する。測定した質量から、共重合体の質量に対するトルエン不溶分の割合を「トルエン不溶分(%)」として算出する。   [Toluene-insoluble matter]: After adjusting the pH of the copolymer latex to about 8, it is cast and dried on a glass plate to form a film having a thickness of 0.3 mm. Next, 0.3 g of the formed film is placed in 100 ml of toluene and allowed to stand for about 16 hours, and then shaken by hand. Furthermore, after leaving still for 4 hours and dissolving a film, the obtained solution is filtered with a 120 mesh metal-mesh, and a filtrate is extract | collected using a whole pipette. The collected filtrate is evaporated and dried using a hot plate to measure the mass of toluene insoluble matter. From the measured mass, the ratio of the toluene insoluble content to the copolymer mass is calculated as “toluene insoluble content (%)”.

[ムーニー粘度(ML1+4,100℃)]:JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。 [Mooney viscosity (ML 1 + 4 , 100 ° C.)]: Measured in accordance with JIS K6300 using an L rotor under conditions of preheating 1 minute, rotor operating time 4 minutes, temperature 100 ° C.

[ガラス転移温度]:約5gの共重合体ラテックスをガラス板に薄く引き伸ばし、25℃で7日間乾燥させることによって、乾燥フィルムを得る。得られた乾燥フィルムについて、示差走査熱量分析計DSC(理学電気社製)を使用し、昇温速度=20℃/分、チッ素雰囲気下、サンプル量=20mgの条件下でガラス転移温度(℃)を測定する。   [Glass Transition Temperature]: About 5 g of copolymer latex is thinly stretched on a glass plate and dried at 25 ° C. for 7 days to obtain a dry film. About the obtained dried film, using a differential scanning calorimeter DSC (manufactured by Rigaku Denki Co., Ltd.), the glass transition temperature (° C.) under the conditions of a heating rate = 20 ° C./min, a nitrogen atmosphere, and a sample amount = 20 mg. ).

[残留過硫酸塩(過硫酸アンモニウム)濃度]:JIS K0113(1997)に準拠した電位差滴定方法により測定した。なお、検出限界値(下限値)は0.1ppmである。   [Residual persulfate (ammonium persulfate) concentration]: Measured by a potentiometric titration method based on JIS K0113 (1997). The detection limit value (lower limit value) is 0.1 ppm.

[BH粘度]:コンパウンドの液温を25℃に調整し、ローター#4、回転数20回転の時の粘度(mPa・s)をBH粘度計(東京計器社製)で測定した。   [BH Viscosity]: The liquid temperature of the compound was adjusted to 25 ° C., and the viscosity (mPa · s) at the time of rotor # 4 and rotation of 20 was measured with a BH viscometer (manufactured by Tokyo Keiki Co., Ltd.).

[AP粘度]:ノズル径0.7mmのノズルが配設された容量100mlの容器に、液温が25℃に調整されたコンパウンドを入れ、0.098MPaの空気圧を負荷してノズルからコンパウンドを押し出した。空気圧の負荷を開始した時点から、コンパウンドが押し出されるまでの時間を「AP粘度(秒)」として測定した。   [AP viscosity]: A compound with a liquid temperature adjusted to 25 ° C. is placed in a container with a capacity of 100 ml in which a nozzle having a nozzle diameter of 0.7 mm is disposed, and the compound is pushed out from the nozzle by applying an air pressure of 0.098 MPa. It was. The time from the start of the pneumatic load until the compound was pushed out was measured as “AP viscosity (seconds)”.

[粘度安定性]:以下に示す基準に従って粘度安定性を評価した。
○:AP粘度変化が、1ヶ月経過後に3秒以内であること。
△:AP粘度変化が、1週間経過後に15秒以内であり、更に1週間後粘度と1ヶ月後粘度の差が5秒以内であること。
×:上記(○、△)以外。
[Viscosity stability]: Viscosity stability was evaluated according to the following criteria.
○: AP viscosity change is within 3 seconds after 1 month.
Δ: AP viscosity change is within 15 seconds after 1 week, and further, the difference between the viscosity after 1 week and the viscosity after 1 month is within 5 seconds.
X: Other than the above (◯, Δ).

[ライニング作業性]:高速ライニングマシンを使用し、2インチ径のアルミ缶蓋に、フィルム体積が50mm3になるようにコンパウンドをフィルム状にノズルより塗布し、以下に示す基準に従ってライニング作業性を評価した。なお、製造後1週間以上経過したコンパウンドを使用し、24時間連続ライニングを行ってライニング作業性を確認した。
○:規定の塗布量に設定後、無調整で、塗布量の±5%以内で連続ライニング可能であり、かつ、コンパウンドはみ出し等の蓋汚れが発生しなかった。
△:規定の塗布量に設定後、無調整で、塗布量の±5%を超え、±10%以内で連続ライニング可能であり、かつ、コンパウンドはみ出し等の蓋汚れが発生しなかった。
×:規定の塗布量に設定後、無調整で塗布量の±10%以内で連続ライニングが不可能であった。
[Lining workability]: Using a high-speed lining machine, a compound is applied from a nozzle to a 2-inch aluminum can lid so that the film volume is 50 mm 3, and the lining workability is achieved according to the following criteria. evaluated. In addition, the lining workability | operativity was confirmed by performing the continuous lining for 24 hours using the compound which passed 1 week or more after manufacture.
○: After setting to the prescribed coating amount, no adjustment was required, continuous lining was possible within ± 5% of the coating amount, and no cover contamination such as protrusion of the compound occurred.
Δ: After setting to the prescribed coating amount, without adjustment, the coating amount exceeded ± 5%, and continuous lining was possible within ± 10%, and no cover stains such as protrusion of the compound occurred.
X: After setting to the prescribed coating amount, continuous lining was impossible within ± 10% of the coating amount without adjustment.

(実施例1)
単量体成分として1,3−ブタジエン6部とスチレン8部、分子量調節剤としてt−ドデシルメルカプタン0.3部、乳化剤としてロジン酸カリウム3.0部、重合開始剤として過硫酸アンモニウム0.1部、及び水130部を、内容積100リットルのステンレス製反応器に仕込み、重合温度50〜80℃で撹拌しながら乳化重合を行った。このときの重合転化率は、85%であった。次いで、1,3−ブタジエン54部、スチレン32部の混合単量体成分を連続的に添加して乳化重合を続けて行い、重合転化率85%のときに重合を停止し、亜硫酸水素ナトリウムを0.15部添加して、残留過硫酸塩(過硫酸アンモニウム)を減少させる減少処理を行った。残留単量体成分をスチーミングにより除去し、全固形分が50%になるまで濃縮して共重合体ラテックス(実施例1)を得た。
Example 1
6 parts 1,3-butadiene and 8 parts styrene as monomer components, 0.3 part t-dodecyl mercaptan as molecular weight regulator, 3.0 parts potassium rosinate as emulsifier, 0.1 part ammonium persulfate as polymerization initiator And 130 parts of water were charged into a stainless steel reactor having an internal volume of 100 liters, and emulsion polymerization was carried out while stirring at a polymerization temperature of 50 to 80 ° C. The polymerization conversion rate at this time was 85%. Subsequently, 54 parts of 1,3-butadiene and 32 parts of styrene were continuously added to carry out emulsion polymerization, and the polymerization was stopped when the polymerization conversion rate was 85%, and sodium bisulfite was added. 0.15 parts was added to perform a reduction treatment to reduce residual persulfate (ammonium persulfate). Residual monomer components were removed by steaming and concentrated to a total solid content of 50% to obtain a copolymer latex (Example 1).

得られた共重合体ラテックスを構成する共重合体の残留過硫酸アンモニウム濃度は0ppm(検出限界(0.1ppm)未満)、トルエン不溶分は50%、ムーニー粘度(ML1+4,100℃)は80、及びガラス転移温度は−50℃であった。なお、共重合体ラテックスの配合処方、及び各種物性値を表1に示す。 The copolymer constituting the obtained copolymer latex has a residual ammonium persulfate concentration of 0 ppm (less than the detection limit (0.1 ppm)), a toluene insoluble content of 50%, and a Mooney viscosity (ML 1 + 4 , 100 ° C.). 80 and the glass transition temperature was −50 ° C. Table 1 shows the formulation of the copolymer latex and various physical property values.

(実施例2〜6、比較例1)
表1に示す配合処方とするとともに、添加した亜硫酸水素ナトリウムの量を、実施例2:0.12部、実施例3:0.10部、実施例4:0.08部、実施例5:0.05部、実施例6:0.03部、及び比較例1:0部(添加しない)として減少処理を行ったこと以外は、前述の実施例1と同様にして、共重合体ラテックス(実施例2〜6、比較例1)を得た。得られた共重合体ラテックスの各種物性値を表1に示す。
(Examples 2-6, Comparative Example 1)
While setting it as the mixing | blending prescription shown in Table 1, the quantity of the added sodium hydrogen sulfite is 0.12 part in Example 2: 0.10 part in Example 3: 0.08 part in Example 4: 0.08 part, Example 5: Copolymer latex (0.05%), Example 6: 0.03 part, and Comparative Example 1 except that the reduction treatment was performed as 0 part (not added). Examples 2 to 6 and Comparative Example 1) were obtained. Various physical property values of the obtained copolymer latex are shown in Table 1.

(コンパウンドA)
水と分散剤(β−ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩)を入れたボールミルに顔料(酸化チタン、カーボン)と無機充填剤(クレー)を加え、毎時1500回転で6時間ボールミルを回転させることにより、顔料と無機充填剤の水分散液(顔料、及び無機充填剤の平均粒径=4μm)を得た。また、水、界面活性剤(アルキルベンゼンスルホン酸ナトリウム)、及び保護コロイド(カゼイン)を入れた水溶液に粘着付与樹脂を加えて乳化することにより、粘着付与樹脂の水分散液を得た。更に、増粘剤(メチルセルロース)と粘稠剤(カラヤガム)を水及びアンモニア水溶液に溶かすことにより、増粘剤・粘稠剤の水溶液を得た。
(Compound A)
Add pigment (titanium oxide, carbon) and inorganic filler (clay) to a ball mill containing water and a dispersant (sodium salt of β-naphthalenesulfonic acid formalin condensate), and rotate the ball mill at 1500 rpm for 6 hours. Thus, an aqueous dispersion of pigment and inorganic filler (average particle diameter of pigment and inorganic filler = 4 μm) was obtained. Also, an aqueous dispersion of the tackifying resin was obtained by adding and emulsifying the tackifying resin to an aqueous solution containing water, a surfactant (sodium alkylbenzenesulfonate), and a protective colloid (casein). Furthermore, an aqueous solution of a thickener / thickener was obtained by dissolving a thickener (methylcellulose) and a thickener (karaya gum) in water and an aqueous ammonia solution.

共重合体ラテックス(実施例1)を乾燥固形分で100部、無機充填剤70部、顔料10部、老化防止剤としてN,N’−ジ−2−ナフチル−p−フェニレンジアミン0.5部、粘着付与樹脂として水添ロジングリセリンエステル50部、分散剤・界面活性剤3部、防腐剤として安息香酸1部、及び増粘剤・粘稠剤3部となるようにそれぞれを混合タンクに投入した。混合タンクの内容物を撹拌機で均一に混合することによりコンパウンドAを製造した。なお、コンパウンドの配合処方を表2に示す。   100 parts of copolymer latex (Example 1) in dry solids, 70 parts of inorganic filler, 10 parts of pigment, 0.5 part of N, N'-di-2-naphthyl-p-phenylenediamine as an antioxidant , 50 parts hydrogenated rosin glycerin ester as tackifying resin, 3 parts dispersant / surfactant, 1 part benzoic acid as preservative, and 3 parts thickener / viscosity agent into each mixing tank did. Compound A was produced by uniformly mixing the contents of the mixing tank with a stirrer. Table 2 shows the compounding formula of the compound.

製造したコンパウンドAのBH粘度は、製造直後が4700mPa・s、1週間後が4600mPa・s、1ヶ月後が4650mPa・sであった。また、得られたコンパウンドAのAP粘度は、製造直後が73秒、1週間後が71秒、1ヶ月後が73秒であった。更に、粘度安定性及びライニング作業性の評価は、いずれも「○」であった。なお、コンパウンドAの粘度及び評価結果を表1に示す。   The BH viscosity of the produced Compound A was 4700 mPa · s immediately after production, 4600 mPa · s after 1 week, and 4650 mPa · s after 1 month. The AP viscosity of Compound A thus obtained was 73 seconds immediately after production, 71 seconds after 1 week, and 73 seconds after 1 month. Furthermore, the evaluations of viscosity stability and lining workability were both “◯”. Table 1 shows the viscosity of Compound A and the evaluation results.

(コンパウンドB〜G)
実施例2〜6、及び比較例1の共重合体ラテックスのいずれかを用いること以外は、前述のコンパウンドAの場合と同様にして、コンパウンドB〜Gを製造した。製造したコンパウンドB〜Gの粘度及び評価結果を表1に示す。
(Compounds B to G)
Compounds B to G were produced in the same manner as in the case of Compound A described above except that any one of the copolymer latexes of Examples 2 to 6 and Comparative Example 1 was used. Table 1 shows the viscosities and evaluation results of the produced compounds B to G.

Figure 0004778719
Figure 0004778719

Figure 0004778719
Figure 0004778719

表1に示す結果から明らかなように、実施例1の共重合体ラテックスを用いて得たコンパウンドについては、BH粘度、AP粘度の経時的な変化はほとんどなく良好であり、粘度安定性、及びライニング作業性についても良好であった。また、実施例2〜4の共重合体ラテックスを用いて得たコンパウンドについては、BH粘度は経時的な変化は少なく良好であった。なお、AP粘度は、製造直後より若干低下する傾向にあるが、その後の変化はなかった。また、粘度安定性、及びライニング作業性は、実施例1に比してやや劣った。実施例5,6の共重合体ラテックスを用いて得たコンパウンドについては、BH粘度、AP粘度ともに経時的に低下する傾向を示し、粘度安定性、及びライニング作業性は、実施例1に比してやや劣った。一方、比較例1の共重合体ラテックスを用いて得たコンパウンドについては、BH粘度、AP粘度ともに経時的に大きく低下した。更に、粘度安定性、及びライニング作業性も、実施例1に比して著しく劣る結果であった。   As is clear from the results shown in Table 1, the compound obtained using the copolymer latex of Example 1 is good with little change in BH viscosity and AP viscosity over time, viscosity stability, and The lining workability was also good. In addition, for the compounds obtained using the copolymer latex of Examples 2 to 4, the BH viscosity was good with little change over time. The AP viscosity tended to be slightly lower than that immediately after production, but there was no change thereafter. Further, the viscosity stability and lining workability were slightly inferior to those of Example 1. About the compound obtained using the copolymer latex of Examples 5 and 6, both BH viscosity and AP viscosity showed a tendency to decrease with time, and the viscosity stability and lining workability were slightly higher than those of Example 1. Somewhat inferior. On the other hand, for the compound obtained using the copolymer latex of Comparative Example 1, both the BH viscosity and the AP viscosity were greatly reduced over time. Furthermore, viscosity stability and lining workability were also significantly inferior to those of Example 1.

本発明の缶シーリング材用共重合体ラテックスは、缶胴と缶蓋との二重巻き締め部分を密封するために、缶端の周縁に設けられた溝内にライニングされる缶シーリング材を製造するための材料として好適である。   The copolymer latex for can sealing material of the present invention produces a can sealing material that is lined in a groove provided at the peripheral edge of the can end in order to seal the double winding portion between the can body and the can lid. It is suitable as a material for this.

Claims (3)

開始剤として過硫酸塩を使用し、重合して製造した缶シーリング材用共重合体ラテックスであって、
重合した後、還元剤を添加して、残留した前記過硫酸塩(残留過硫酸塩)の減少処理を更にしてなり、
前記減少処理後の前記残留過硫酸塩の濃度が、50ppm以下である缶シーリング材用共重合体ラテックス。
A copolymer latex for can sealing material produced by polymerization using persulfate as an initiator,
After polymerization, a reducing agent is added to further reduce the residual persulfate (residual persulfate).
A copolymer latex for can sealing material, wherein the concentration of the residual persulfate after the reduction treatment is 50 ppm or less.
前記還元剤が、亜硫酸水素ナトリウムである請求項に記載の缶シーリング材用共重合体ラテックス。 Wherein the reducing agent is a can sealing material for copolymer latex of claim 1 is sodium bisulfite. (a)共役ジエン系単量体、(b)芳香族ビニル化合物、及び(c)必要に応じて用いられるその他の共重合可能な単量体、を主成分とする単量体成分を、50〜90質量%の重合転化率で乳化重合して製造されるものであり、
それを構成する共重合体の、トルエン不溶分が10〜70%、ムーニー粘度(ML1+4,100℃)が60〜150である請求項1又は2に記載の缶シーリング材用共重合体ラテックス。
A monomer component mainly composed of (a) a conjugated diene monomer, (b) an aromatic vinyl compound, and (c) another copolymerizable monomer used as necessary, It is produced by emulsion polymerization at a polymerization conversion rate of ˜90% by mass,
The copolymer for can sealing material according to claim 1 or 2 , wherein the copolymer constituting the copolymer has a toluene insoluble content of 10 to 70% and a Mooney viscosity (ML 1 + 4 , 100 ° C) of 60 to 150. latex.
JP2005098289A 2005-03-30 2005-03-30 Copolymer latex for can sealant Active JP4778719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098289A JP4778719B2 (en) 2005-03-30 2005-03-30 Copolymer latex for can sealant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098289A JP4778719B2 (en) 2005-03-30 2005-03-30 Copolymer latex for can sealant

Publications (2)

Publication Number Publication Date
JP2006274168A JP2006274168A (en) 2006-10-12
JP4778719B2 true JP4778719B2 (en) 2011-09-21

Family

ID=37209220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098289A Active JP4778719B2 (en) 2005-03-30 2005-03-30 Copolymer latex for can sealant

Country Status (1)

Country Link
JP (1) JP4778719B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198803B2 (en) 2007-06-15 2013-05-15 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット How to seal the can
JP5594508B2 (en) * 2009-04-07 2014-09-24 三菱レイヨン株式会社 Acrylic resin for fired paste, method for producing the same, and fired paste composition
JP5499951B2 (en) * 2010-06-30 2014-05-21 日本ゼオン株式会社 Secondary battery binder, production method, secondary battery negative electrode composition, and secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815512A (en) * 1981-07-22 1983-01-28 Japan Exlan Co Ltd Production of water-soluble polymer having good stability
JPS61271339A (en) * 1985-05-27 1986-12-01 Nippon Ratetsukusu Kako Kk Copolymer latex
JPS6363709A (en) * 1986-09-03 1988-03-22 Japan Synthetic Rubber Co Ltd Aqueous copolymer latex for can sealing compound
JP2606320B2 (en) * 1988-09-30 1997-04-30 日本合成ゴム株式会社 Hollow polymer particles
JPH0735448B2 (en) * 1988-09-30 1995-04-19 日本合成ゴム株式会社 Crosslinked hollow polymer particles
JP2619301B2 (en) * 1990-07-13 1997-06-11 日本合成ゴム株式会社 Copolymer latex for can sealing material
US5216065A (en) * 1990-11-29 1993-06-01 The Mead Corporation Emulsion polymerization with large particle size
JP2003082036A (en) * 2001-09-14 2003-03-19 Jsr Corp Copolymer latex for sealant

Also Published As

Publication number Publication date
JP2006274168A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
WO2016133190A1 (en) Latex composition and one-pack aqueous adhesive
WO2018008509A1 (en) Latex composition and one-pack type aqueous adhesive composed of said latex composition
JP2007332206A (en) Chloroprene-based polymer latex and application thereof
JP4778719B2 (en) Copolymer latex for can sealant
JP6631976B2 (en) Latex composition and one-part water-based adhesive
JP4819500B2 (en) Process for producing polychloroprene latex composition
JP3201669B2 (en) Composition for paper coating
JP2014152183A (en) Polychloroprene latex composition and adhesive
JP2003082036A (en) Copolymer latex for sealant
JP2619301B2 (en) Copolymer latex for can sealing material
JPH06248030A (en) Seed polymer and latex for coating paper obtained by using the same
JP2004091965A (en) Method for producing copolymer latex for paper coating use
JP3429062B2 (en) Method for producing copolymer latex for paper coating and composition for paper coating
JPS6363709A (en) Aqueous copolymer latex for can sealing compound
JP5347216B2 (en) Copolymer latex and process for producing the same
JP2003238924A (en) Delayed tack type sticking agent composition and sticking label
JP2005008859A (en) Polychloroprene latex composition, adhesive, coating material and production method for the same composition
JP2003277544A (en) Copolymer latex
KR100343544B1 (en) The Manufacturing Method of Dual Seed System Styrene-Butadiene Latex
JP2003277448A (en) Copolymer latex
JP4687649B2 (en) Copolymer latex composition, paper coating composition and coated paper
JP5185480B2 (en) Thermoplastic resin composition excellent in molding appearance and method for producing the same
JP2003277546A (en) Copolymer latex
JP4281587B2 (en) Production method of chloroprene rubber
JPH0531582B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Ref document number: 4778719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250