JP4778403B2 - A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC. - Google Patents

A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC. Download PDF

Info

Publication number
JP4778403B2
JP4778403B2 JP2006302400A JP2006302400A JP4778403B2 JP 4778403 B2 JP4778403 B2 JP 4778403B2 JP 2006302400 A JP2006302400 A JP 2006302400A JP 2006302400 A JP2006302400 A JP 2006302400A JP 4778403 B2 JP4778403 B2 JP 4778403B2
Authority
JP
Japan
Prior art keywords
voc
exhaust gas
gas
liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006302400A
Other languages
Japanese (ja)
Other versions
JP2008114203A (en
Inventor
泰人 川瀬
昭昌 小田
友潔 竹山
剛志 池田
榮一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Refine Co Ltd
Original Assignee
Nippon Refine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Refine Co Ltd filed Critical Nippon Refine Co Ltd
Priority to JP2006302400A priority Critical patent/JP4778403B2/en
Publication of JP2008114203A publication Critical patent/JP2008114203A/en
Application granted granted Critical
Publication of JP4778403B2 publication Critical patent/JP4778403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、半導体などの電気、電子部品の製造工場、電池の製造工場、フィルム・皮革など化学工場などの熱風乾燥機などから排出されるVOCを含有する排ガスを回収部では吸収液である水にVOCを吸収(回収)することで排ガスを浄化し、さらにはVOC濃縮部で吸収液(本願明細書に記載されている吸収液は吸収水を意味する。)である水を蒸発させ、VOCを濃縮するVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法および装置に関する。なお、本願発明における「VOC」とは、水より沸点が高く、水に溶けやすい親水性、水と共沸点を持たない物性を持つ揮発性有機化合物を意味している。 The present invention relates to water that is an absorption liquid in an exhaust gas containing VOC discharged from a hot air dryer of a chemical factory such as a factory for manufacturing electrical or electronic parts such as semiconductors, batteries, or a film or leather. By absorbing (recovering) the VOC, the exhaust gas is purified. Further, the VOC concentrating unit evaporates the water which is the absorption liquid (the absorption liquid described in the present specification means absorption water), and VOC is obtained. The present invention relates to a method and apparatus for recovering and concentrating VOCs from exhaust gas containing VOCs for purifying exhaust gas and purifying the exhaust gas. Note that “VOC” in the present invention means a volatile organic compound having a higher boiling point than water, being easily soluble in water, and having physical properties that do not have an azeotropic point with water.

従来、熱風乾燥機などから排出されるVOCを含有する排ガスを浄化し、さらにVOCを回収・再利用する方法としては、(i)冷却法、(ii)活性炭・ゼオライトなどの固体吸着剤を使用する吸着法、(iii)液体状難揮発性溶剤を使用する吸収法、(iv)水を使用する吸収法などがある。2006年4月、改正大気汚染防止法に基づく揮発性有機化合物(VOC)の排出規制が施行され、排ガスに含有するVOCの排出基準が決められた。現時点ではほとんどの場合送風機または排風機の風量が一定量以上の場合に適用されるが、自主的な削減が求められることは必然である。また、有限な資源を有効に活用する再利用(リサイクル)についても今後の技術開発の大きな課題の一つである。   Conventionally, as a method of purifying exhaust gas containing VOC discharged from a hot air dryer, and further recovering / reusing VOC, (i) a cooling method and (ii) using a solid adsorbent such as activated carbon / zeolite (Iii) an absorption method using a liquid volatile solvent, and (iv) an absorption method using water. In April 2006, emission regulations for volatile organic compounds (VOC) based on the revised Air Pollution Control Law were enforced, and the emission standards for VOC contained in exhaust gas were determined. At the present time, it is almost always applied when the air volume of the blower or exhaust fan exceeds a certain level, but it is inevitable that voluntary reduction is required. In addition, reuse (recycling) that effectively uses limited resources is one of the major issues in future technology development.

前記(i)の冷却法は、排ガスを間接的熱交換器により冷却水などで冷却し、空気中のVOCの蒸気圧を低くし、その差を利用してVOCを凝縮し、回収する方法である。1例としてN,N−ジメチルホルムアミド(DMF)を1000ppm(v/v)含む温度100℃の排ガスを、20℃まで冷却した場合を説明する。100℃のDMFの蒸気圧は19.5kPa(100℃の最大飽和量)であり、20℃のそれは0.35kPaである。この蒸気圧の差分(19.5−0.35=19.15)の量が凝縮し、液として回収することが出来る。しかし浄化ガスとして排出する20℃の空気中でDMFは0.35kPaの蒸気圧を持っており、このときのDMFの濃度は≒3500ppm(v/v)であり、排ガス規制値をクリアーすることは出来ない。温度と蒸気圧の関係から推定するとこの値以下にVOCを除去することは、事実上困難といえる。蒸気圧はVOCの種類により異なるが、冷却可能な温度に限界(冷却水の温度・量など)があるため、蒸気圧は一定値までしか下げることができず、規制値をクリアーすることは容易ではない。また、回収したVOC液には排ガス中の湿分(水)が同時に凝縮するので回収したVOCの回収液濃度を一定にすることが出来ず、回収VOCの精製リサイクルには不向きであるなど問題があった。   The cooling method (i) is a method in which exhaust gas is cooled with cooling water or the like by an indirect heat exchanger, the vapor pressure of VOC in the air is lowered, and the VOC is condensed and recovered using the difference. is there. As an example, a case where exhaust gas at a temperature of 100 ° C. containing 1000 ppm (v / v) of N, N-dimethylformamide (DMF) is cooled to 20 ° C. will be described. The vapor pressure of DMF at 100 ° C. is 19.5 kPa (maximum saturation at 100 ° C.) and that at 20 ° C. is 0.35 kPa. This vapor pressure difference (19.5-0.35 = 19.15) is condensed and can be recovered as a liquid. However, DMF has a vapor pressure of 0.35 kPa in 20 ° C. air discharged as purified gas, and the concentration of DMF at this time is ≈3500 ppm (v / v), so that the exhaust gas regulation value is cleared. I can't. When estimated from the relationship between temperature and vapor pressure, it can be said that it is practically difficult to remove VOC below this value. Vapor pressure varies depending on the type of VOC, but because there is a limit to the temperature that can be cooled (cooling water temperature, amount, etc.), the vapor pressure can only be lowered to a certain value, making it easy to clear the regulation value is not. In addition, since the moisture (water) in the exhaust gas condenses in the recovered VOC liquid at the same time, the recovered VOC recovered liquid concentration cannot be made constant and is not suitable for purification and recycling of recovered VOC. there were.

前記(ii)の活性炭・ゼオライトなどの固体吸着剤を使用する吸着法(特許文献1参照)は、前段で排ガスを吸着剤で効率よく吸着できる条件である約40℃位まで冷却し、吸着剤にVOC・水を選択的に吸着させ、ガスを浄化する。吸着したVOCは140〜150℃の脱着条件まで加温され分離(脱着)する。このように(ii)の方法は吸着(冷却)・脱着(加熱)を繰り返してVOCを回収する方法である。冷却する熱、脱着する熱などが必要であるためランニングコストが大きい、高温で過熱あるいは吸着剤の触媒作用によりVOCが反応して他の物質ができる(DMFの場合は蟻酸とジメチルアミンが生成する)、また回収したVOCには排ガス中の湿分(水)を同時に吸着・脱着するため、浄化後のガスおよび回収液中のVOC濃度を一定にすることが出来ないのでリサイクルには不向きである、更には吸着剤の経年劣化により定期的な交換を必要とする、などといった問題がある。   The adsorption method using the solid adsorbent such as activated carbon / zeolite (ii) (refer to Patent Document 1) is cooled to about 40 ° C., which is a condition in which the exhaust gas can be adsorbed efficiently by the adsorbent in the previous stage, and the adsorbent The gas is purified by selectively adsorbing VOC / water. The adsorbed VOC is heated to a desorption condition of 140 to 150 ° C. and separated (desorbed). As described above, the method (ii) is a method of recovering VOC by repeating adsorption (cooling) and desorption (heating). Heating for cooling, heat for desorption, etc. are necessary, so running cost is high, VOC reacts due to overheating or catalytic action of adsorbent at high temperature to produce other substances (in the case of DMF, formic acid and dimethylamine are generated ) In addition, since the moisture (water) in the exhaust gas is simultaneously adsorbed and desorbed in the recovered VOC, the concentration of the VOC in the purified gas and the recovered liquid cannot be made constant, so it is not suitable for recycling. In addition, there is a problem that periodic replacement is required due to deterioration of the adsorbent over time.

前記(iii)の液体状難揮発性溶剤を使用する吸収法(特許文献2参照)は、簡略すれば〔0004〕の固体吸着剤を液体の難揮発性溶剤に変えた方法である。すなわち、吸収塔でVOC・水を吸収した難揮発性溶剤を放散塔(VOC・水を分離する塔)に送り、難揮発性溶剤からVOC・水を分離して再度吸収塔に戻すことでVOCを回収する方法である。吸収効率を上げるため、吸収塔に流入する排ガスを冷却し、VOC・水を分離するために加熱するなどランニングコストが大きい。また回収したVOCには排ガス中に湿分(水)が同時に吸収・分離するためVOC濃度を一定にすることが出来ないのでリサイクルには不向きである、更には吸収塔・放散塔それに付帯する加熱器・冷却器など装置が複雑である、などといった問題がある。   The absorption method using the liquid hardly volatile solvent (iii) (refer to Patent Document 2) is a method in which the solid adsorbent of [0004] is changed to a liquid hardly volatile solvent. That is, the VOC / water absorbed in the absorption tower is sent to a stripping tower (a column for separating VOC / water), and VOC / water is separated from the hardly volatile solvent and returned to the absorption tower again. It is a method to collect. In order to improve the absorption efficiency, the exhaust gas flowing into the absorption tower is cooled, and the running cost is high, such as heating to separate VOC / water. The recovered VOC absorbs and separates moisture (water) in the exhaust gas at the same time, so the VOC concentration cannot be kept constant, making it unsuitable for recycling. There are problems such as complicated equipment such as coolers and coolers.

前記(iv)の水を使用する吸収法(特許文献3参照)は、一般に水スクラバー型式と呼ばれる水を吸収剤とするガス吸収方法である。水のVOCに対する吸収は温度が低いほど吸収効率が良好であるので吸収塔に導入する排ガスは前もって冷却し、多量の水と気液接触させ、ガスの洗浄を行う。従来、水を吸収剤としたガス吸収装置は浄化ガスに含まれるVOC濃度を規制値以下に分離する目的と、水に吸収したVOCを活性汚泥処理を介して規制値以下のVOCに減じて放流する目的の2つの目的であった。この2つの目的のため大容量の水を供給する必要があり、吸収したVOCのリサイクルには、水と分離するためには回収コストがかかるため、工業的に実用化することは実質的に不可能であった。本発明の対象とする水より高沸点で、親水性であり、さらには水と共沸点をもたない物性を持つVOCについて、本発明者等は既設設備を転用した場合、浄化ガスの濃度は50ppm以上と高く、リサイクルを考慮した塔底部より回収できるVOCの濃度は50%以下であったなどの問題がある。   The absorption method using water (iv) (see Patent Document 3) is a gas absorption method using water as an absorbent, generally called a water scrubber type. Since the absorption efficiency of water with respect to VOC is better as the temperature is lower, the exhaust gas introduced into the absorption tower is cooled in advance, brought into gas-liquid contact with a large amount of water, and the gas is washed. Conventional gas absorbers using water as an absorbent have the purpose of separating the VOC concentration contained in the purified gas below the regulation value, and the VOC absorbed in the water is reduced to the VOC below the regulation value through activated sludge treatment and discharged. There were two purposes. For these two purposes, it is necessary to supply a large volume of water, and recycling of the absorbed VOC requires a recovery cost to separate it from the water. It was possible. With respect to VOCs having higher boiling point than water targeted by the present invention, hydrophilicity, and physical properties that do not have azeotropic point with water, the present inventors, when diverting existing equipment, There is a problem that the concentration of VOC which is as high as 50 ppm or higher and can be recovered from the bottom of the column considering recycling is 50% or less.

特許文献4及び特許文献5では、VOC回収方法として水吸収・濃縮法を物質収支に基づき、実施例から説明している。双方ともVOCを回収し、濃縮することを目的とした特許であるが、この装置のポイントの1つに回収濃縮液(特許文献4および5では収集液)の濃度制御がある。しかし、実装置への適用を考えた場合、特許文献4ではVOC貯留部(特許文献4では水置換塔下部)のVOC濃度を測定し、吸収液(特許文献4では補給水)の量により制御する方法を提案している。また特許文献5では、吸収液(特許文献5では補給水)を2つに分割し、制御1は排ガスと浄化ガス(特許文献5では処理済ガス)の温度差で吸収液の量を制御し、制御2ではVOC貯留部(特許文献5では水置換塔下部)のVOC濃度により吸収液の量を制御する複雑な方法を提案している。双方とも最下部にあるVOC貯留部の濃度を装置の最上部に供給する吸収液の量を制御する方法であり時間的な遅れが生じ、正確な制御は難しい。また、排ガス中に含まれるVOCは多成分の場合があり通常の濃度計では正確なVOC測定が難しい。また、双方の文献とも排ガスの対象として取り扱うのは高温排ガスのみであり、低温排ガスへの対応に欠如している。更には、実際のVOC含有排ガスは濃度変動、温度変動、また季節・天候の変化による外乱からの影響を受け常にガス中のVOC、水の組成が一定となることは無いため、特許文献4及び特許文献5の方法で回収率、濃縮率を制御することは困難である。   In Patent Document 4 and Patent Document 5, a water absorption / concentration method as a VOC recovery method is described from Examples based on the material balance. Both are patents aimed at collecting and concentrating VOC, but one of the points of this apparatus is the concentration control of the collected concentrated liquid (collected liquid in Patent Documents 4 and 5). However, when considering application to an actual apparatus, in Patent Document 4, the VOC concentration in the VOC storage unit (in the lower part of the water displacement tower in Patent Document 4) is measured, and controlled by the amount of absorption liquid (make-up water in Patent Document 4). Proposed method to do. In Patent Document 5, the absorption liquid (supplementary water in Patent Document 5) is divided into two, and Control 1 controls the amount of the absorption liquid by the temperature difference between the exhaust gas and the purified gas (treated gas in Patent Document 5). In Control 2, a complicated method is proposed in which the amount of the absorbing liquid is controlled by the VOC concentration in the VOC storage section (lower part of the water displacement tower in Patent Document 5). Both methods are methods for controlling the amount of the absorbing liquid supplied to the uppermost part of the apparatus with the concentration of the VOC storage part located at the lowermost part, causing a time delay, and accurate control is difficult. Further, the VOC contained in the exhaust gas may be multi-component, and accurate VOC measurement is difficult with a normal densitometer. In addition, both documents deal only with high-temperature exhaust gas as an object of exhaust gas, and lack correspondence with low-temperature exhaust gas. Furthermore, since the actual VOC-containing exhaust gas is affected by disturbances due to concentration fluctuations, temperature fluctuations, and seasonal / weather changes, the composition of VOC and water in the gas does not always become constant. It is difficult to control the recovery rate and the concentration rate by the method of Patent Document 5.

特開2001−137646号公報JP 2001-137646 A 特開2000−157834号公報JP 2000-157834 A 特開平10−118440号公報JP-A-10-118440 特開2004−230265号公報Japanese Patent Laid-Open No. 2004-230265 特開2005−246218号公報JP 2005-246218 A

本発明の第1の課題は、VOC含有排ガスに含有される水より高沸点で、親水性であり、さらには水と共沸点を持たない物性を持つVOCを水で吸収(回収)し、浄化ガスとして改正大気汚染防止法に基づく揮発性有機化合物(VOC)の排出規制値(ppmC)を大幅にクリアーする点にある。
本発明の第2の課題は、回収するVOC回収液濃度を、リサイクル負荷を低減するのに必要な高濃度で回収し、再使用する点にある。
本発明の第3の課題は、VOC含有排ガスが持つ温度(エネルギー)を最大限利用し、VOCの濃縮エネルギーとして利用する点にある。
本発明の第4の課題は、VOC含有排ガスに含有するVOC濃度は時間と共に常に変動するため、この変動するVOC濃度に適応し、常に浄化ガスのVOC濃度を要求される排出規制値未満までクリアーする制御機構を開発し、連続無人運転を可能にするVOC回収濃縮装置を提供する点にある。
本発明の第5の課題は、吸収水として使用する水は無機物の析出を防止するため、蒸留水、純水または軟水を使用することが望ましいが、これらの水を精製するにはランニングコストの負荷が大きい。この課題を克服するためには、この蒸留水、純水、軟水を浄化ガスの湿度分として放出することを減少すべく、浄化ガス出口に冷却器を設置し、凝縮させて吸収液の供給量を減少させる装置を提供する点にある。さらには、除湿機を具備させ、除湿したガスのクローズドシステムを提供する点にある。
本発明の第6の課題は、通常の熱風乾燥機から排出されるVOC含有排ガスは高温度の場合が多い。しかし、低温のVOC含有排ガスを対象とすることがある場合、低温VOC含有排ガスを直接加熱器で加熱するか、あるいは、VOC貯留部からの循環液を加熱し、エネルギーを補うことで低温VOC含有排ガスに適用できる装置を提供する点にある。
本発明の第7の課題は、通常の熱風乾燥機から排出されるガスは、大気から取り込んだ空気を使用することが多く、季節変化や天候変化に伴ってガス中に含まれる湿度(水分)が変動することが多い。吸着式のVOC処理設備では、ガス中の水分の影響によりVOCの回収率、濃縮率を一定制御することが困難である。この課題を克服するべく季節の変化、天候の変化に伴うガス中の水分に関係なく常時、VOC回収率、濃縮率を一定に制御することができる装置を提供する点にある。
本発明の第8の課題は、VOC濃縮部とVOC回収部を分離して、装置全体の高さを低くする装置を提供する点にある。
本発明の第9の課題は、設置面積を小さくするため、円筒形状にこだわらずに縦角型、横置き角型、円筒形型などいろいろな形状を採用することが可能な設備を提供する点にある。
The first object of the present invention is to purify by absorbing (recovering) VOC with water having a higher boiling point than water contained in the VOC-containing exhaust gas, hydrophilicity, and further having no physical boiling point with water. As a gas, the emission control value (ppmC) of volatile organic compounds (VOC) based on the revised Air Pollution Control Law is greatly cleared.
The second problem of the present invention is that the VOC recovery liquid concentration to be recovered is recovered at a high concentration necessary for reducing the recycling load and reused.
The third object of the present invention is to utilize the temperature (energy) of the VOC-containing exhaust gas as much as possible and to use it as the VOC concentration energy.
The fourth problem of the present invention is that the VOC concentration contained in the VOC-containing exhaust gas always fluctuates with time. Therefore, the VOC concentration of the purifying gas is constantly cleared to less than the required emission regulation value. The purpose of this is to provide a VOC recovery and concentration device that enables continuous unmanned operation.
The fifth problem of the present invention is that the water used as the absorption water is preferably distilled water, pure water or soft water in order to prevent the precipitation of inorganic substances. The load is large. In order to overcome this problem, in order to reduce the release of distilled water, pure water, and soft water as the moisture content of the purified gas, a cooler is installed at the purified gas outlet and condensed to supply the absorption liquid. It is in the point which provides the apparatus which reduces this. Furthermore, it is provided with a dehumidifier and provides a closed system for dehumidified gas.
The sixth problem of the present invention is that the VOC-containing exhaust gas discharged from a normal hot air dryer is often at a high temperature. However, when the low-temperature VOC-containing exhaust gas is sometimes targeted, the low-temperature VOC-containing exhaust gas is heated directly with a heater, or the circulating fluid from the VOC storage part is heated to supplement the energy to supplement the low-temperature VOC-containing exhaust gas. The object is to provide an apparatus applicable to exhaust gas.
A seventh problem of the present invention is that the gas discharged from a normal hot air dryer often uses air taken from the atmosphere, and the humidity (moisture) contained in the gas with seasonal changes and weather changes Often fluctuate. In an adsorption-type VOC treatment facility, it is difficult to control the VOC recovery rate and concentration rate to a certain level due to the influence of moisture in the gas. An object of the present invention is to provide an apparatus capable of constantly controlling the VOC recovery rate and the concentration rate regardless of the moisture in the gas accompanying the change in season and weather to overcome this problem.
An eighth object of the present invention is to provide an apparatus for reducing the height of the entire apparatus by separating the VOC concentrating part and the VOC recovery part.
A ninth object of the present invention is to provide equipment capable of adopting various shapes such as a vertical square type, a horizontal square type, and a cylindrical type, regardless of the cylindrical shape, in order to reduce the installation area. It is in.

本発明の第1は、排ガスに含まれるVOCを回収濃縮し、排ガスを浄化する方法において、1ブロックの気液接触機構を持つVOC濃縮部と前記VOC濃縮部のガス下流側(装置内ガス出口側)に1〜数ブロックの気液接触機構を持つVOC回収部から構成される排ガスからのVOC回収濃縮装置を用い、VOC回収部のガス下流側より供給される吸収液により、VOC回収部において排ガスに含有されているVOCを吸収しながらVOC濃縮部内を流下させ、一方、VOC濃縮部ガス上流側よりVOC含有排ガスを導入し、VOC濃縮部において吸収液である水を蒸発させ、VOC回収部を経て系外に浄化ガスを放出し、VOC濃縮部で濃縮されたVOC濃縮液は、VOC濃縮部および/またはVOC回収部の下端に設けられたVOC貯留部に送り、VOC貯留部に溜まったVOC貯留液はVOC濃縮部のガス下流側に循環供給し、循環液中の水の蒸発によりVOCの濃縮を行い、VOC貯留部に溜まったVOCの濃縮された循環液は、濃度測定により一定濃度に達すると回収濃縮液として系外に排出することを特徴とするVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法に関する。
本発明の第2は、「排ガスが持ち込むエネルギーから算出した水の蒸発量を超えない範囲」の量よりなるVOCを回収するための主吸収液をVOC回収部のガス下流側から散布するとともに、VOC回収液の濃度を調整するための補助的な量の副吸収液を前記装置内へ供給するものである請求項1記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法に関する。
本発明の第3は、前記VOC回収部を経て系外に排出される浄化ガスの出口に冷却手段を設け、ここで凝縮した水は吸収液として再利用するものである請求項1または2記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法に関する。
本発明の第4は、前記VOC貯留部においてVOC貯留部の温度変化を表わす温度曲線に温度上昇変異点が発生した時点で回収濃縮液の系外排出を行うものである請求項1〜3いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法に関する。
本発明の第5は、前記浄化ガスを冷却し、浄化ガス中の水蒸気を凝縮し吸収液として再利用するものである請求項1〜4いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法に関する。
本発明の第6は、排ガスの温度が水の蒸発に不充分なときは、(イ)VOC濃縮部に排ガスを導入する前段階で、排ガスを加熱する、(ロ)VOC貯留部を加熱する、(ハ)VOC貯留液をVOC濃縮部のガス下流側に循環する段階で加熱する、の少なくとも1つの加熱方法で加熱を行うものである請求項1〜5いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法に関する。
本発明の第7は、1ブロックの気液接触機構を持つVOC濃縮部と前記VOC濃縮部のガス下流側(装置内ガス出口側)に1〜数ブロックの気液接触機構を持つVOC回収部から構成される排ガスに含まれるVOCを回収濃縮装置、浄化する装置において、前記VOC濃縮部のガス上流側(装置内ガス入り口側)よりVOC含有排ガスを導入するためのVOC含有ガス導入手段、VOC回収部のガス下流側より吸収液を供給する手段、排ガス中のVOCを回収し、ガスを浄化するためのVOC回収部における吸収液散布手段、VOC回収部における浄化ガス排出手段、前記VOC濃縮部および前記VOC回収部から送られてくるVOC含有処理液を貯留するためのVOC貯留部、VOC貯留部に留った貯留液をVOC濃縮部のガス下流側に循環供給し、循環液中の吸収水の蒸発によりVOCを濃縮する手段、VOC貯留部に設けられた貯留液のVOC濃度測定手段、および前記貯留液中のVOC濃度が所定の濃度に達したとき、その貯留液を回収濃縮液として系外に排出する排出手段よりなることを特徴とする排ガス浄化・VOC回収濃縮装置に関する。
本発明の第8は、前記浄化ガス排出手段にガス冷却用熱交換器を付設した請求項7記載の排ガス浄化・VOC回収濃縮装置に関する。
本発明の第9は、前記VOC回収部上部の吸収液散布手段の更に上部に設けられた浄化ガス出口に浄化ガス冷却用熱交換器を設け、該熱交換器から出た浄化ガスをキャリアーガスとして利用し、乾燥機に戻して再利用することを特徴とするキャリアーガスのリサイクル・クローズドシステムを設けた請求項7または8記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化するための装置に関する。
本発明の第10は、
(a)VOC濃縮部に排ガスを導入する前段階、
(b)VOC貯留部、
(c)VOC貯留液をVOC濃縮部のガス下流側に循環する段階、
の少なくとも1箇所に加熱手段を設けた請求項7〜9いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化するための装置に関する。
A first aspect of the present invention is a method for recovering and concentrating VOC contained in exhaust gas and purifying the exhaust gas. A VOC enrichment unit having a one-block gas-liquid contact mechanism and a gas downstream side of the VOC enrichment unit (gas outlet in the apparatus) In the VOC recovery unit, an absorption liquid supplied from the gas downstream side of the VOC recovery unit is used, using a VOC recovery and concentration device composed of a VOC recovery unit having a gas-liquid contact mechanism of one to several blocks on the side) While absorbing the VOC contained in the exhaust gas, the inside of the VOC concentrating part is allowed to flow down, while the VOC-containing exhaust gas is introduced from the upstream side of the VOC concentrating part gas, and the water as the absorbing liquid is evaporated in the VOC concentrating part, and the VOC recovery part The VOC concentrated liquid discharged through the system and discharged from the system and concentrated in the VOC concentration unit is stored in the VOC storage unit provided at the lower end of the VOC concentration unit and / or the VOC recovery unit. The VOC storage liquid collected in the VOC storage section is circulated and supplied to the gas downstream side of the VOC concentration section, the VOC is concentrated by evaporation of water in the circulation liquid, and the VOC stored in the VOC storage section is concentrated. The circulating fluid relates to a method of recovering and concentrating VOC from VOC-containing exhaust gas, wherein the circulating fluid is discharged out of the system as a recovered concentrated solution when the concentration reaches a certain concentration.
In the second aspect of the present invention, a main absorbent for recovering VOC having an amount of “a range not exceeding the amount of evaporation of water calculated from the energy brought in by exhaust gas” is sprayed from the gas downstream side of the VOC recovery unit, 2. The method of recovering and concentrating VOC from exhaust gas containing VOC according to claim 1, wherein an auxiliary amount of auxiliary absorption liquid for adjusting the concentration of the VOC recovery liquid is supplied into the apparatus. .
The third aspect of the present invention is that a cooling means is provided at the outlet of the purified gas discharged out of the system through the VOC recovery section, and the condensed water is reused as an absorbing solution. The present invention relates to a method for recovering and concentrating VOC from exhaust gas containing VOC and purifying exhaust gas.
The fourth aspect of the present invention is that the recovered concentrated liquid is discharged out of the system when a temperature rise mutation point occurs in the temperature curve representing the temperature change of the VOC storage section in the VOC storage section. The present invention relates to a method for recovering and concentrating VOC from the VOC-containing exhaust gas described above to purify the exhaust gas.
5th of this invention cools the said purification | cleaning gas, condenses the water vapor | steam in purification | cleaning gas, and recycles it as an absorption liquid, collect | recovers and concentrates VOC from the VOC containing exhaust gas in any one of Claims 1-4. The present invention relates to a method for purifying exhaust gas.
According to the sixth aspect of the present invention, when the temperature of the exhaust gas is insufficient for water evaporation, (b) heating the exhaust gas at a stage before introducing the exhaust gas into the VOC concentrating unit, and (b) heating the VOC storage unit. From the VOC-containing exhaust gas according to any one of claims 1 to 5, wherein the heating is performed by at least one heating method of (c) heating the VOC storage liquid at a stage of circulating the VOC storage liquid to the gas downstream side of the VOC concentration unit. The present invention relates to a method for recovering and concentrating VOC and purifying exhaust gas.
The seventh aspect of the present invention is a VOC concentrator having a one-block gas-liquid contact mechanism and a VOC recovery unit having one to several blocks of gas-liquid contact mechanism on the gas downstream side (gas outlet side in the apparatus) of the VOC concentrator. VOC-containing gas introduction means for introducing VOC-containing exhaust gas from the gas upstream side (gas inlet side in the device) of the VOC concentrating section in a device for collecting and concentrating VOC contained in the exhaust gas composed of Means for supplying absorption liquid from the gas downstream side of the recovery unit, VOC recovery means for recovering VOC in the exhaust gas and purifying the gas, purified gas discharge means in the VOC recovery unit, the VOC concentration unit And the VOC storage section for storing the VOC-containing processing liquid sent from the VOC recovery section, and the storage liquid remaining in the VOC storage section is circulated to the gas downstream side of the VOC concentration section. Means for supplying and concentrating VOC by evaporation of absorbed water in the circulating liquid, means for measuring the VOC concentration of the stored liquid provided in the VOC storage section, and when the VOC concentration in the stored liquid reaches a predetermined concentration, The present invention relates to an exhaust gas purification / VOC recovery and concentration apparatus, characterized by comprising discharge means for discharging the stored liquid as a recovered concentrated liquid to the outside of the system.
The eighth aspect of the present invention relates to an exhaust gas purification / VOC recovery and concentration apparatus according to claim 7, wherein a gas cooling heat exchanger is attached to the purified gas discharge means.
According to a ninth aspect of the present invention, a purified gas cooling heat exchanger is provided at a purified gas outlet provided further above the absorbing liquid spraying means above the VOC recovery unit, and the purified gas discharged from the heat exchanger is transferred to a carrier gas. 9. To recover and concentrate VOC from the VOC-containing exhaust gas according to claim 7 or 8, which is provided with a carrier gas recycle / closed system, wherein the exhaust gas is returned to the dryer and reused. Relating to the device.
The tenth aspect of the present invention is
(A) a stage before introducing exhaust gas into the VOC enrichment section;
(B) VOC storage part,
(C) circulating the VOC storage liquid to the gas downstream side of the VOC concentrator,
The present invention relates to an apparatus for recovering and concentrating VOC from exhaust gas containing VOC according to any one of claims 7 to 9, wherein a heating means is provided at at least one location.

本発明の課題を解決するための主な手段としては、VOC含有排ガスが1ブロックのVOC濃縮部と1〜数ブロックのVOC回収部を通過する過程において水の蒸発作用と水の吸収作用により、VOC含有排ガスが含有するVOCの濃縮および吸収をおこなわせ、VOC含有排ガス中のVOCを除去して基準値以下の浄化ガスを系外に放出し、吸収(回収)したVOCをリサイクル可能な濃度まで濃縮し、系外に排出する手段である。
この手段の基本的なブロックフローを図1に示す。VOC回収部のガス下流側より供給される吸収水はVOC回収部においてVOC含有排ガスに含有するVOCを吸収し、VOC濃縮部に流下する。VOC濃縮部ガス上流側より導入する排ガスは、VOC濃縮部で吸収液である水を蒸発し、VOC回収部を経て系外に浄化ガスとして放出し、VOC濃縮部および/またはVOC回収部の最下端に設けられたVOC貯留部の液はポンプなどによりVOC濃縮部のガス下流側に循環供給し、循環液中の水の蒸発によりVOCの濃縮をおこない、VOCの濃縮された循環液は、濃度測定により一定濃度に達すると回収濃縮液として系外に排出する基本フローである。
As a main means for solving the problems of the present invention, in the process in which the VOC-containing exhaust gas passes through one block of the VOC concentrating unit and one to several blocks of the VOC recovery unit, Concentrates and absorbs VOC contained in VOC-containing exhaust gas, removes VOC in VOC-containing exhaust gas, discharges purified gas below the standard value to the outside of the system, and absorbs (recovers) VOC to a recyclable concentration It is a means to concentrate and discharge out of the system.
A basic block flow of this means is shown in FIG. The absorption water supplied from the gas downstream side of the VOC recovery unit absorbs VOC contained in the VOC-containing exhaust gas in the VOC recovery unit and flows down to the VOC concentration unit. The exhaust gas introduced from the upstream side of the VOC concentrating part gas evaporates the water that is the absorbing liquid in the VOC concentrating part, discharges it as a purified gas outside the system through the VOC recovering part, and reaches the top of the VOC concentrating part and / or the VOC collecting part. The liquid in the VOC storage section provided at the lower end is circulated and supplied to the gas downstream side of the VOC concentrating section by a pump, etc., and the VOC is concentrated by evaporation of water in the circulating liquid. This is a basic flow to discharge out of the system as a recovered concentrated liquid when a certain concentration is reached by measurement.

本発明方法では、水でVOCを吸収し、熱エネルギーで吸収した水溶液の水分を蒸発することで回収した液を濃縮する。そのため、本発明方法に適用するVOCは、水より沸点が大きく(蒸気圧が小さく)、共沸点を持たない、即ち共沸混合物を生成しないことが前提条件となる。塔頂(VOCガス下流側)から純水を連続的に供給するため、VOC回収部では回収部上流側から下流側にかけて吸収液中のVOC濃度が0に漸近する回収液の濃度勾配が作られ、ガスが排出されるときにはVOCはほとんど含まれていない状態となる。回収部を通った吸収液にはVOCが含まれるため、回収部のVOC回収性能を上げるには、吸収水の量を増やせばよいが、そうするとVOC回収液の濃度が薄くなる、あるいは回収液の容量が増えるといった問題が生じる。したがって回収部の前段に濃縮部を設けVOC含有排ガスの熱エネルギーを利用して吸収液の水分を蒸発させ濃縮することで前記問題を解決している。   In the method of the present invention, VOC is absorbed by water, and the recovered liquid is concentrated by evaporating the water in the aqueous solution absorbed by heat energy. Therefore, VOC applied to the method of the present invention has a larger boiling point (smaller vapor pressure) than water and does not have an azeotropic point, that is, does not form an azeotropic mixture. Since pure water is continuously supplied from the top of the column (on the downstream side of the VOC gas), the VOC recovery unit creates a concentration gradient of the recovered liquid in which the VOC concentration in the absorbent gradually approaches 0 from the upstream side to the downstream side of the recovery unit. When the gas is discharged, the VOC is hardly included. Since the absorption liquid that has passed through the recovery section contains VOC, the amount of absorbed water can be increased in order to improve the VOC recovery performance of the recovery section. The problem of increased capacity arises. Therefore, the above-mentioned problem is solved by providing a concentrating part in front of the recovery part and evaporating and concentrating the moisture in the absorbing liquid using the thermal energy of the VOC-containing exhaust gas.

VOCと吸収液である水との具体的な関係についてみると、(a)VOCは水より高沸点であることから、水の蒸気圧はVOCのそれより大きい、すなわち水はVOCより蒸発しやすい、(b)VOCは親水性であること、すなわちVOCは水に溶解しやすい、(c)VOCは水と共沸点を持たない、いいかえれば、VOCは水と共沸混合物を生成しない、即ちVOCは水と低沸点共沸混合物を生成して水と共に蒸発することがない性質を持つ物質であるなどということができる。本発明に適用するVOCは、上記(a)、(b)、(c)の3条件を備えた物性をもつVOCである。
前記条件にかなうVOCとしては、例えば、NMP(N−メチルピロリドン)、DMF(N,N−ジメチルホルムアミド)、DMAC(N,N−ジメチルアセトアミド)、DMSO(ジメチルスルホキシド)、EG(エチレングリコール)、DEG(ジエチレングリコール)、TEG(トリエチレングリコール)、PG(プロピレングリコール)、1,4−BD(1,4−ブタンジオール)、MEA(モノエタノールアミン)、DGME(ジエチレングリコールモノメチルエーテル)などを挙げることができる。
Looking at the specific relationship between VOC and the absorbing water, (a) Since VOC has a higher boiling point than water, the vapor pressure of water is greater than that of VOC, that is, water is more likely to evaporate than VOC. (B) VOC is hydrophilic, ie VOC is readily soluble in water, (c) VOC has no azeotropic point with water, in other words, VOC does not form an azeotrope with water, ie VOC Can be said to be a substance having the property of forming a low boiling azeotrope with water and not evaporating with water. The VOC applied to the present invention is a VOC having physical properties with the above three conditions (a), (b), and (c).
Examples of VOCs that meet the above conditions include NMP (N-methylpyrrolidone), DMF (N, N-dimethylformamide), DMAC (N, N-dimethylacetamide), DMSO (dimethylsulfoxide), EG (ethylene glycol), Examples include DEG (diethylene glycol), TEG (triethylene glycol), PG (propylene glycol), 1,4-BD (1,4-butanediol), MEA (monoethanolamine), and DGME (diethylene glycol monomethyl ether). it can.

VOC回収部のガス下流側より供給する第1の吸収液(主吸収液)、またはVOCの濃度が規定以上に達し、回収濃縮液として系外に排出された場合や水の蒸発によりVOC貯留部の液面が低下した場合に供給する第2の吸収液(副吸収液)は、共に水とする。これらの水はVOC濃縮部においてVOC含有排ガスの持ち込むエネルギー(排ガスが高温の場合)または外部から供給されるエネルギー(排ガスが低温の場合)によりその大部分が蒸発する。第1および第2の吸収水にカルシウム塩、マグネシウム塩など無機物が混入(硬水など)すると、これら無機物は蒸発しないので濃縮され、溶解度を超えると無機物の結晶が析出する。この結晶がVOC濃縮部またはVOC回収部の気液接触機構に付着するとその機能の効率を減少させる可能性がある。またVOC貯留部の循環液中に残留する回収濃縮液のリサイクルをおこなうには別装置で精製する必要があり、このとき回収濃縮液に残存する前記無機物が壁面付着などによりVOCの精製歩留まりに悪影響を与える。この現象を避けるため、供給する吸収液である水は、無機物などを含有しないよう、前もって処理した蒸留水、軟水、純水を使用することが好ましい。 When the concentration of the first absorption liquid (main absorption liquid) or VOC supplied from the gas downstream side of the VOC recovery section reaches or exceeds the specified level and is discharged out of the system as a recovery concentrated liquid or by evaporation of water, the VOC storage section The second absorbing liquid (sub-absorbing liquid) to be supplied when the liquid level decreases is water. Most of these waters evaporate in the VOC concentrating part by the energy brought into the VOC-containing exhaust gas (when the exhaust gas is high temperature) or the energy supplied from the outside (when the exhaust gas is low temperature). When inorganic substances such as calcium salt and magnesium salt are mixed into the first and second absorbed water (hard water or the like), these inorganic substances are not evaporated and concentrated, and when the solubility is exceeded, inorganic crystals are precipitated. If this crystal adheres to the gas-liquid contact mechanism of the VOC concentrating part or the VOC recovery part, the efficiency of the function may be reduced. In addition, in order to recycle the recovered concentrated liquid remaining in the circulating liquid in the VOC storage section, it is necessary to purify with a separate device. At this time, the inorganic substance remaining in the recovered concentrated liquid adversely affects the purification yield of VOCs due to wall adhesion or the like. give. In order to avoid this phenomenon, it is preferable to use distilled water, soft water, or pure water that has been treated in advance so that the water that is the absorption liquid to be supplied does not contain inorganic substances.

VOC濃縮部を構成する気液接触機構は棚段、不規則充填物、規則充填物、散水スプレーなど通常使用されている気液接触手段や本出願人の特願2006−045996号の新規充填物よりなる気液接触手段などを用いても差し支えないが、圧力損失が大きいものはガスの空塔速度を速くするとフラッディング(気液接触部で流下するはずの液が落ちず滞留するため、気液接触機構が崩れる現象。液−ガス比が影響する)が起こりやすくなるため装置の適応条件を狭くし、また圧力が大きい分、送風機の電力が大きくなる等のランニングコストに影響を与えるため、圧力損失の小さいものが好ましい。VOC含有排ガスとVOC貯留部から循環する液の流れ方向は向流又は並流でおこなうことができるが、圧力損失を小さくする並流が好ましい。   The gas-liquid contact mechanism that constitutes the VOC concentrating unit is a normally used gas-liquid contact means such as shelves, irregular packing, regular packing, sprinkling spray, etc., and new packing of Japanese Patent Application No. 2006-045996 of the present applicant. However, if the gas superficial velocity is increased, flooding (the liquid that should flow down at the gas-liquid contact section will not fall off and stay in the liquid-liquid contact means may be used. The phenomenon that the contact mechanism collapses (which is affected by the liquid-gas ratio) is likely to occur, so the adaptation conditions of the device are narrowed, and since the pressure increases, the power of the blower increases, which affects the running cost. Those with small loss are preferred. The flow direction of the liquid circulated from the VOC-containing exhaust gas and the VOC reservoir can be countercurrent or cocurrent, but cocurrent that reduces pressure loss is preferred.

VOC濃縮部の主な機能は、導入するVOC含有排ガスの温度が高い場合は、VOC含有排ガスが持つエネルギーを利用し、VOC含有排ガスの温度が低い場合はガス加熱したエネルギーで、あるいは循環する循環液を加熱したエネルギーで、VOC回収部から流下するVOCを吸収した吸収水とVOC貯留部の循環液中の水の両者を蒸発させ、VOCを濃縮する機能である。 The main function of the VOC concentrating unit is to use the energy of the VOC-containing exhaust gas when the temperature of the VOC-containing exhaust gas to be introduced is high, or when the temperature of the VOC-containing exhaust gas is low, with the energy heated by the gas, or the circulating circulation This is a function of concentrating VOC by evaporating both the absorbed water that has absorbed the VOC flowing down from the VOC recovery section and the water in the circulating liquid in the VOC storage section with the energy of heating the liquid.

VOC回収部を構成する気液接触機構は棚段、不規則充填物、規則充填物などの通常使用されている気液接触手段や、本出願人の特願2006−045996号にかかる新規充填物などの気液接触手段を用いて差し支えないが、本発明で供給する吸収水の量は、通常の水スクラバー式ガス吸収装置の吸収水量に比べて1/2〜1/100程度の少量であることが好ましく、精密な液分散器を付帯した高性能の気液接触機構を用いることが望ましい。また、圧力損失が大きいものは〔0013〕で述べた理由と同様ガスの空塔速度を速くするとフラッディング(気液接触部で流下するはずの液が落ちず滞留するため、気液接触機構が崩れる現象。液−ガス比が影響する)が起こりやすくなるため、装置の適応条件を狭くし、また圧力が大きい分、送風機の電力が大きくなる等のランニングコストに影響を与えるため、圧力損失の小さいものが好ましい。 The gas-liquid contact mechanism that constitutes the VOC recovery unit includes normally used gas-liquid contact means such as shelves, irregular packing, and regular packing, and new packing according to Japanese Patent Application No. 2006-045996 of the present applicant. Although no problem with gas-liquid contact means such as the amount of absorbed water supplied in the present invention, a small amount of approximately 1 / 2-1 / 100 in comparison with the absorption of water of normal water scrubber type gas absorber It is preferable to use a high-performance gas-liquid contact mechanism with a precise liquid disperser. Also, if the pressure loss is large, the same as the reason described in [0013], if the gas superficial velocity is increased, flooding (the liquid that should flow down at the gas-liquid contact part does not fall and stays, causing the gas-liquid contact mechanism to collapse. Phenomenon (which is affected by the liquid-gas ratio) is likely to occur, so the adaptation conditions of the device are narrowed, and since the pressure increases, the running cost such as the power of the blower increases, so the pressure loss is small Those are preferred.

VOC回収部の主な機能は、VOC濃縮部を経てVOC回収部に流入するVOC含有排ガス中に含有されるVOCを、VOC回収部ガス下流側から供給する吸収水に吸収させ、VOC含有排ガスを浄化することにある。排ガスと吸収水の流れは物質移動(排ガス中のVOCが吸収液に移動する)を伴うため効率の良い向流でなければならない。 The main function of the VOC recovery unit is to absorb the VOC contained in the VOC-containing exhaust gas flowing into the VOC recovery unit through the VOC concentrating unit into the absorption water supplied from the VOC recovery unit gas downstream side, and to absorb the VOC-containing exhaust gas. It is to purify. Since the flow of the exhaust gas and the absorption water involves mass transfer (VOC in the exhaust gas moves to the absorption liquid), it must be an efficient countercurrent flow.

〔0017〕で述べた気液接触機構は、濃縮液の濃度と温度から回収部へ送入されるVOC濃度をシミュレーション及び試験データより算出し、算出結果より得られたVOC濃度と要求される規定値未満のVOC濃度から、回収部での水に吸収されるVOC移動量が決まり、その値から設計をする。棚段の場合は、その物質移動量に必要な段数、不規則充填物、規則充填物及び特願2006−045996号の新規充填物の場合は、その段数に合わせた充填高さが必要となる。   The gas-liquid contact mechanism described in [0017] calculates the VOC concentration sent to the recovery unit from the concentration and temperature of the concentrate from the simulation and test data, and obtains the VOC concentration obtained from the calculation result and the required regulations. From the VOC concentration below the value, the VOC transfer amount absorbed in the water in the recovery unit is determined, and the design is made from that value. In the case of shelves, in the case of the number of stages necessary for the mass transfer amount, irregular packing, ordered packing, and new packing of Japanese Patent Application No. 2006-045996, the filling height corresponding to the number of stages is required. .

熱風乾燥器などから排出するVOC含有排ガスは、高温(80℃±10℃)の場合が多い。高温VOC含有排ガスの場合、VOC濃縮部上面にVOC貯留部の液をポンプ循環し、気液接触により循環液中の水を蒸発(VOCの濃縮)させることで高温VOC含有排ガスを冷却する。しかるにガス発生源においてVOC含有排ガス温度が低い、または発生源と排気場所の距離が長いため途中で冷却される、などVOC含有排ガス温度が低い(45℃以下)場合がある。この場合、VOC濃縮部に流入するエネルギーが少ないため、言い換えれば循環液に含まれる水を蒸発する量が少ないため、循環液の濃度を上げることができない。このエネルギー不足を補うため、前記ポンプ循環ラインの途中に加熱用熱交換器を設け循環液を加熱するといった方法が挙げられる。加熱する方法は、循環ラインに限らず、低温排ガスを加熱するとか、VOC貯留部の液を加熱する、など熱を補う手段であればどのような方法でも良い。
なお、本発明においては、約45℃以下のVOC含有排ガスを低温VOC含有排ガスとして、約45℃を上回る温度のVOC含有排ガスを高温VOC含有排ガスとして、それぞれ説明するものである。
VOC-containing exhaust gas discharged from a hot air dryer or the like is often at a high temperature (80 ° C. ± 10 ° C.). In the case of high-temperature VOC-containing exhaust gas, the liquid in the VOC storage unit is pump-circulated on the upper surface of the VOC concentration unit, and water in the circulating liquid is evaporated (concentration of VOC) by gas-liquid contact to cool the high-temperature VOC-containing exhaust gas. However, there are cases where the VOC-containing exhaust gas temperature is low (45 ° C. or lower) such that the VOC-containing exhaust gas temperature is low in the gas generation source, or because the distance between the generation source and the exhaust location is long and the gas is cooled. In this case, since the energy flowing into the VOC concentrating part is small, in other words, the amount of water contained in the circulating fluid is small, the circulating fluid concentration cannot be increased. In order to compensate for this energy shortage, a method of heating the circulating liquid by providing a heat exchanger for heating in the middle of the pump circulation line can be mentioned. The heating method is not limited to the circulation line, and any method may be used as long as it is a means for supplementing heat, such as heating the low-temperature exhaust gas or heating the liquid in the VOC storage unit.
In the present invention, a VOC-containing exhaust gas having a temperature of about 45 ° C. or less is described as a low-temperature VOC-containing exhaust gas, and a VOC-containing exhaust gas having a temperature higher than about 45 ° C. is described as a high-temperature VOC-containing exhaust gas.

吸収水は、例えば図2や図3に示すように、主吸収液入口と副吸収液入口の少なくとも2箇所より供給することが好ましい。主吸収液入口(1)より供給する水の量は、排ガスが持ち込むエネルギー(温度と量から算出)とこのエネルギーから算出した水の蒸発量を超えない量(例えば算出量の90%)によって調節することがVOC濃度を調節する具体的な方法である。 For example, as shown in FIGS. 2 and 3, the absorption water is preferably supplied from at least two locations of the main absorption liquid inlet and the sub absorption liquid inlet. The amount of water supplied from the main absorption liquid inlet (1) is adjusted by the energy (calculated from the temperature and amount) brought in by the exhaust gas and the amount not exceeding the amount of water evaporation calculated from this energy (for example, 90% of the calculated amount) This is a specific method for adjusting the VOC concentration.

副吸収液入口(2)より供給する水の量は、VOC循環液のVOC濃度を調節するために活用する。即ち、主吸収液入口(1)から供給する水の量は算出量より少ない量とする。この場合VOC貯留部(または装置全体)の水の量は減少し、VOCを常時濃縮することとなる。VOC含有排ガスに含有されているVOCの濃度は常に変動するのでVOCの凝縮熱も当然変動すること、VOC貯留部のVOC濃度は常に変動することなど、VOC含有排ガスが持ち込む熱量は非定常である。副吸収液入口(2)から供給する水は、これらの変動のバッファーとなり、VOC貯留部のVOC濃度を検知することでVOC貯留部のVOC濃度を一定に調節することを容易にする。主吸収液入口(1)のみの1箇所でこれらの変動を感知し、調節することは余りにも非定常であり過ぎるので調節不可能である。副吸収液入口(2)は、(カ)VOC回収部のガス下流側〔主吸収液入口(1)と同位置〕、(キ)VOC貯留部、または(ク)VOC回収部とVOC濃縮部の中間、の3箇所が適当であるが、主な変動要因がVOC含有排ガスであることを考慮するとVOC貯留部に供給することがもっとも適している。   The amount of water supplied from the auxiliary absorbent inlet (2) is utilized to adjust the VOC concentration of the VOC circulating liquid. That is, the amount of water supplied from the main absorbent inlet (1) is set to be smaller than the calculated amount. In this case, the amount of water in the VOC storage unit (or the entire apparatus) decreases, and VOC is constantly concentrated. The amount of heat brought into the VOC-containing exhaust gas is unsteady, such as the concentration of VOC contained in the VOC-containing exhaust gas always changes, so the condensation heat of the VOC naturally also changes, and the VOC concentration in the VOC storage part always changes. . The water supplied from the secondary absorbent inlet (2) serves as a buffer for these fluctuations, and it is easy to adjust the VOC concentration in the VOC storage unit to be constant by detecting the VOC concentration in the VOC storage unit. Sensing and adjusting these variations at one location only at the main absorbent inlet (1) is too unsteady and cannot be adjusted. The secondary absorption liquid inlet (2) is (f) the gas downstream side of the VOC recovery unit [same position as the main absorption liquid inlet (1)], (g) the VOC storage unit, or (v) the VOC recovery unit and the VOC concentration unit. However, considering that the main fluctuation factor is the VOC-containing exhaust gas, it is most suitable to supply it to the VOC storage section.

なお、本発明では、計算から求めた吸収に必要な吸収液を主吸収液と称し、現実の操作に必要とされる濃度調整分として用いられる吸収液を副吸収液と称している。主吸収液も副吸収液も同じく水を用いるが、主吸収液はVOCを回収するため、副吸収液はVOC回収濃縮液の濃度調整のためのものであり、異なった制御を行う。したがって、かりに主吸収液と副吸収液が同一の位置から供給されることがあっても、その前段では別系統の異なった制御システムにより供給されるものである。いいかえれば、主吸収液と副吸収液の装置への供給口は、同位置であっても異なった位置であってもよいが、供給量を制御するシステムは別のものである。   In the present invention, an absorption liquid necessary for absorption obtained from calculation is referred to as a main absorption liquid, and an absorption liquid used as a concentration adjustment necessary for actual operation is referred to as a secondary absorption liquid. Both the main absorption liquid and the sub absorption liquid use water, but the main absorption liquid collects VOC, so the sub absorption liquid is for adjusting the concentration of the VOC collection concentrated liquid, and performs different control. Therefore, even if the main absorption liquid and the auxiliary absorption liquid are supplied from the same position, they are supplied by different control systems of different systems in the preceding stage. In other words, the supply ports of the main absorption liquid and the sub absorption liquid to the apparatus may be the same position or different positions, but the system for controlling the supply amount is different.

VOC貯留部の液は、一定濃度に達した場合系外に排出する。循環液の濃度測定方法は、排ガスが持ち込むVOCが1成分(VOC1成分と水)であれば一般的な比重・超音波・比抵抗値・屈折率などの濃度計で測定できる。しかし、VOCが2成分以上(VOC2成分以上と水)であり、更に成分の割合が常時変動する場合は一般的な濃度計では測定不可の場合が多い。VOCが2成分以上混在する場合、VOC貯留部の液温度は、水の割合が減少(水の蒸発により)し、ある濃度より濃縮が進むと急激に温度上昇が現れる。この温度上昇変異点によりVOC貯留部の濃度を推定することが出来る。濃度が一定濃度に達したとき、循環ポンプの吐出配管に設けたバイパス弁を作動するなどして、回収濃縮液を系外に排出する。   The liquid in the VOC storage part is discharged out of the system when it reaches a certain concentration. The circulating fluid concentration can be measured with a general concentration meter such as specific gravity, ultrasonic wave, specific resistance value, refractive index, etc. if the VOC brought into the exhaust gas is one component (VOC1 component and water). However, when the VOC is two or more components (VOC two or more components and water) and the ratio of the components is constantly fluctuating, it is often impossible to measure with a general densitometer. When two or more VOC components coexist, the liquid temperature in the VOC storage portion decreases rapidly (due to water evaporation), and when the concentration proceeds from a certain concentration, the temperature suddenly increases. The concentration of the VOC reservoir can be estimated from this temperature rise mutation point. When the concentration reaches a certain concentration, the recovered concentrated liquid is discharged out of the system by operating a bypass valve provided in the discharge pipe of the circulation pump.

吸収液である水は、純水または蒸留水が望ましいが、純水はイオン交換樹脂または逆浸透膜で精製処理する工程が必要であるため、精製処理する前段の水の水質にもよるが試算によれば¥500/m以上のランニングコストがかかる。本発明では吸収液の水はVOC濃縮部でその殆どの量が蒸発し、浄化ガスに伴って系外に飛散する。この飛散する浄化ガスはその温度において関係湿度ほぼ100%であり、冷却により水が凝縮すれば、吸収液として再利用で、さらにここで水を凝縮しておけば、湿度100%の浄化ガスが大気に拡散冷却し、降下液滴となる現象を防止することも出来る。 The water that is the absorption liquid is preferably pure water or distilled water, but since pure water requires a purification process with an ion exchange resin or reverse osmosis membrane, it depends on the quality of the water before the purification process. According to this, a running cost of ¥ 500 / m 3 or more is required. In the present invention, most of the water in the absorbing solution evaporates in the VOC concentrating part and is scattered outside the system along with the purified gas. The scattered purified gas has a relative humidity of almost 100% at that temperature. If water is condensed by cooling, it can be reused as an absorbing solution. If the water is further condensed here, the purified gas having a humidity of 100% can be obtained. It is also possible to prevent the phenomenon of falling droplets by diffusing and cooling to the atmosphere.

前記VOC濃縮部、VOC貯留部およびVOC回収部の形状は、円筒縦型垂直設置形状、角筒縦型垂直設置形状、角筒横型垂直設置形状など、いずれであってもよい。   The VOC concentrating unit, the VOC storing unit, and the VOC collecting unit may be any one of a cylindrical vertical vertical installation shape, a rectangular tube vertical vertical installation shape, a rectangular tube horizontal vertical installation shape, and the like.

〔0025〕で述べたように純水を製造するためには、ランニングコストの負荷が大きい。VOC含有排ガスの温度が高すぎる場合(常時80℃以上)、VOC含有排ガスの熱エネルギーから水の供給量が決まる本装置では、純水の必要量が大きくなる。また、それに伴ってVOC貯留部の濃縮液の温度も上昇するため、〔0018〕及び〔0019〕で述べたVOCの物質移動量が大きくなり、回収部に必要な気液接触機構の段数あるいは充填高さを大きくする必要がある。そのとき、VOC含有排ガスの温度を本装置に送入される前段で本装置が最低限必要である一定温度まで下げることにより、純水の供給量を減らすことを可能とし、また濃縮液の温度が下がるため、VOCの回収部を通る物質移動量を小さくすることができ、気液接触機構の必要な段数あるいは充填高さを小さくすることができる。   As described in [0025], in order to produce pure water, the running cost is heavy. When the temperature of the VOC-containing exhaust gas is too high (always 80 ° C. or higher), the required amount of pure water increases in this apparatus in which the amount of water supplied is determined from the thermal energy of the VOC-containing exhaust gas. In addition, the temperature of the concentrated liquid in the VOC storage unit rises accordingly, increasing the mass transfer amount of the VOC described in [0018] and [0019], and the number of stages or filling of the gas-liquid contact mechanism necessary for the recovery unit It is necessary to increase the height. At that time, it is possible to reduce the supply amount of pure water by lowering the temperature of the VOC-containing exhaust gas to a certain temperature that is necessary for the apparatus at the previous stage before being sent to the apparatus, and the temperature of the concentrate. Therefore, the amount of mass transfer through the VOC recovery unit can be reduced, and the required number of stages or filling height of the gas-liquid contact mechanism can be reduced.

本発明方法を実際の装置に適応する場合、VOC含有排ガス条件(VOC濃度、ガス流量、ガス温度、排ガス中の水分)の変動に適応できる装置でなければいけない。この変化に適応しつつ、回収したVOC溶液の濃度はほぼ一定にし、また浄化したガスの濃度は規制値を大幅にクリアーする装置を提供するための制御方法について述べる。   When the method of the present invention is applied to an actual apparatus, the apparatus must be adaptable to fluctuations in VOC-containing exhaust gas conditions (VOC concentration, gas flow rate, gas temperature, moisture in exhaust gas). A control method for providing a device in which the concentration of the recovered VOC solution is made substantially constant while adapting to this change, and the concentration of the purified gas is largely cleared of the regulation value will be described.

吸収液の供給量は、VOC含有排ガスの持ち込む熱エネルギー(ガス流量とガス温度から計算)から決定する。ガスの流量や温度が変動しても、VOC含有排ガスの持ち込む熱エネルギーは、流量と温度から演算させることで求まり、それに伴って水の量も決まる。
最も変動要素で問題となるのはVOC濃度の変動である。しかしVOC濃度は毎分、毎秒と変化し、それに対応させた水を常時供給することは不可能である。そこで制御を簡易化するために次のフローで制御を行うことができる。
1.VOC貯留部には予め水を一定量いれておく。
2.VOC含有排ガスの流量と温度から、必要な吸収水の量を算出し、決定。
3.必要な吸収水の量は、2.で決定した量より少ない量(例えば算出した量の
90%)を実際の吸収水の供給量とする。
4.2→3の制御をすることでVOC貯留部では水の蒸発により
液面が減少する。しかし、排ガス中のVOCを吸収した分は増加する。
5.最終的には、貯留部で要求される濃度まで濃縮していき、
この濃度になったら液を抜き出してタンクへ輸送する。抜き出すときは、
濃縮部の循環に必要な量は貯留部に残しておく。そして抜き出した分
再度水を補充する。
6.「2.」に戻る。
この制御により、ガス濃度、温度、流量の変動に適応することが可能となる。
The supply amount of the absorbing liquid is determined from the thermal energy (calculated from the gas flow rate and gas temperature) brought into the VOC-containing exhaust gas. Even if the flow rate and temperature of the gas fluctuate, the thermal energy brought into the VOC-containing exhaust gas can be obtained by calculating from the flow rate and temperature, and the amount of water is determined accordingly.
The most problematic factor is the fluctuation of the VOC concentration. However, the VOC concentration changes every minute and every second, and it is impossible to constantly supply water corresponding to the VOC concentration. Therefore, in order to simplify the control, the control can be performed in the following flow.
1. A predetermined amount of water is previously placed in the VOC storage unit.
2. Calculate the required amount of absorbed water from the flow rate and temperature of the VOC-containing exhaust gas.
3. The amount of water required is 2. An amount smaller than the amount determined in step (for example, 90% of the calculated amount) is set as the actual absorbed water supply amount.
By controlling from 4.2 to 3, the liquid level decreases in the VOC reservoir due to water evaporation. However, the amount of VOC absorbed in the exhaust gas increases.
5. Ultimately, it will be concentrated to the required concentration in the reservoir,
When this concentration is reached, the liquid is extracted and transported to the tank. When extracting
The amount necessary for the circulation of the concentrating part is left in the storage part. Then add water again for the extracted amount.
6). Return to “2.”.
This control makes it possible to adapt to changes in gas concentration, temperature, and flow rate.

図2は、図1のブロックフロー図を具現化した高温VOC含有排ガスを処理するVOC濃縮部とVOC回収部を垂直方向に置く基本的フローを示す。VOC濃縮部ガス上流側に導入した高温VOC含有排ガスはVOC濃縮部およびVOC回収部で気液接触を行い、浄化ガスとして系外に排気される。この間、VOC濃縮部ではVOC貯留部の循環液をポンプでVOC濃縮部ガス下流側に循環し、高温VOC含有排ガスと接触させ、循環液に含まれる水を蒸発することでVOC含有排ガス温度自身は低下することになる。VOC濃縮部で充分に気液接触した後段でのVOC含有排ガス中のVOC濃度は、蒸発によって高濃度に濃縮された回収液の濃度での気液平衡関係での濃度(VOCと水の蒸気圧差での濃度)となり、VOC含有排ガスはVOC回収部へ導入される。VOC回収部ではこの除去できていないVOCを吸収水に吸収(溶解)させ、排ガス中のVOCを分離する基本フローである。 FIG. 2 shows a basic flow in which a VOC enrichment unit and a VOC recovery unit that process the high-temperature VOC-containing exhaust gas that embodies the block flow diagram of FIG. 1 are placed in the vertical direction. The high-temperature VOC-containing exhaust gas introduced to the upstream side of the VOC enrichment part gas makes gas-liquid contact in the VOC enrichment part and the VOC recovery part, and is exhausted out of the system as a purified gas. During this time, in the VOC concentrating unit, the circulating fluid in the VOC storing unit is circulated by the pump downstream of the VOC concentrating unit gas, brought into contact with the high-temperature VOC-containing exhaust gas, and the VOC-containing exhaust gas temperature itself is evaporated by evaporating the water contained in the circulating fluid. Will be reduced. The VOC concentration in the VOC-containing exhaust gas after the gas-liquid contact in the VOC concentrating part is the concentration in the vapor-liquid equilibrium relationship with the concentration of the recovered liquid concentrated to a high concentration by evaporation (the difference in vapor pressure between VOC and water). The VOC-containing exhaust gas is introduced into the VOC recovery unit. This is a basic flow in which the VOC recovery unit absorbs (dissolves) the unremovable VOC in the absorption water and separates the VOC in the exhaust gas.

図3は、図2の基本的フローにおいて、低温VOC含有排ガスを処理する場合(45℃前後の温度より低い場合)に必要な熱を補うための加熱方法を加味したフロー図である。加熱する熱媒体の制御ポイントは、図中(イ)や(ロ)ではVOC貯留部液温度またはVOC濃縮部上部温度が最適であり、図中(ハ)の場合はガス加熱器の出口温度が最適である。   FIG. 3 is a flow diagram including a heating method for supplementing heat necessary for processing the low-temperature VOC-containing exhaust gas in the basic flow of FIG. 2 (when the temperature is lower than about 45 ° C.). As for the control point of the heating medium to be heated, the VOC reservoir liquid temperature or VOC concentrator upper part temperature is optimal in (a) and (b) in the figure, and in the case of (c) in the figure, the outlet temperature of the gas heater is Is optimal.

本発明本方法では、水の蒸発により濃縮を促進させるが、蒸発した水は全て蒸気として系外に放出される。放出される前段に除湿機を設けることにより、除湿によって得られた凝縮水は再度吸収液として再利用が可能であり、またガスは湿度管理されているため、再度乾燥機のキャリアーガスとして戻すことが可能となる。
本発明方法はVOC含有排ガスの熱エネルギーを使用して水を蒸発させVOC水溶液を濃縮する機構を有しているが、ガス温度が低い場合、水の蒸発に必要な熱エネルギーが不足するケースがある。この場合、〔0031〕で述べたように加熱器を、濃縮液循環部、あるいは濃縮液貯留部、また本装置に排ガスが入る前段で設置することにより、足りない熱エネルギーを補助することで装置を問題なく稼動することが可能。
In the method of the present invention, concentration is promoted by evaporation of water, but all of the evaporated water is discharged out of the system as vapor. By providing a dehumidifier before the release, the condensed water obtained by dehumidification can be reused again as an absorbing liquid, and the gas is humidity-controlled, so it should be returned again as a carrier gas for the dryer. Is possible.
The method of the present invention has a mechanism for evaporating water using the thermal energy of the VOC-containing exhaust gas and concentrating the VOC aqueous solution. However, when the gas temperature is low, there is a case where the thermal energy necessary for water evaporation is insufficient. is there. In this case, as described in [0031], the heater is installed in the concentrated liquid circulation section, the concentrated liquid storage section, or before the exhaust gas enters the apparatus, thereby assisting the insufficient heat energy. Can be operated without problems.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図4は、本発明に基づくVOC回収濃縮装置の物質収支図である。FはVOC回収濃縮装置に導入する空気:G〔kg/h〕、水分:H〔kg/h〕、VOC:S〔kg/h〕からなるVOC含有排ガスである。水分:H〔kg/h〕は乾燥室に導入する空気中の水分(取り入れる空気の関係湿度から求められる)と被乾燥物から蒸発する水分の和である。 FIG. 4 is a mass balance diagram of the VOC recovery and concentration apparatus according to the present invention. F is a VOC-containing exhaust gas composed of air: G 1 [kg / h], moisture: H 1 [kg / h], and VOC: S 1 [kg / h] to be introduced into the VOC recovery and concentration apparatus. Moisture: H 1 [kg / h] is the sum of the moisture in the air introduced into the drying chamber (determined from the relative humidity of the air taken in) and the moisture evaporated from the material to be dried.

DはVOC回収濃縮装置で回収し、リサイクル容易な濃度まで濃縮された回収濃縮液で、水分:H〔kg/h〕、VOC:S〔kg/h〕の組成をもつ液である。 D is a recovered concentrated liquid recovered by a VOC recovery and concentration apparatus and concentrated to an easily recyclable concentration, and has a composition of moisture: H 3 [kg / h] and VOC: S 3 [kg / h].

F′はVOC回収濃縮装置で処理された浄化ガスで、その組成は、空気:G〔kg/h〕、水分:H〔kg/h〕、VOC:S〔kg/h〕である。 F ′ is a purified gas processed by the VOC recovery and concentration device, and its composition is air: G 2 [kg / h], moisture: H 2 [kg / h], and VOC: S 2 [kg / h]. .

M(kg/h)は、VOC回収部でVOCを吸収(回収)する吸収水流量である。 M (kg / h) is an absorbed water flow rate at which VOC is absorbed (recovered) by the VOC recovery unit.

これらF、D、F′、Mの関係(物質収支)はINPUT=OUTPUTであるから
空気については
=G〔容量(VOL)の場合は温度により異なる〕・・・(1)
水分については
M=H+H−H ・・・(2)
VOCについては
=S−S ・・・(3)
の関係が成立する。ここでHは浄化ガスが持ち去る水分で、浄化ガスの温度における関係湿度100%の水分量であり、Hは回収濃縮液に含まれる水分で、濃縮液濃度により決まる。またSは改正大気汚染防止法に基づく排ガスに含有するVOCの排出基準以下に設定されたVOCの濃度で、VOC回収部の吸収率〔水とVOCの気液平衡(吸収平衡)から必要な処理時間(高さ)を決める〕から決まる数値である。
The relationship between these F, D, F ', and M (material balance) is INPUT = OUTPUT.
G 1 = G 2 [in the case of capacity (VOL), it depends on temperature] (1)
About moisture
M = H 2 + H 3 −H 1 (2)
About VOC
S 2 = S 1 -S 3 (3)
The relationship is established. Here, H 2 is the moisture carried away by the purified gas, which is the amount of moisture with a relative humidity of 100% at the temperature of the purified gas, and H 3 is the moisture contained in the recovered concentrate, which is determined by the concentration of the concentrate. The S 2 at a concentration of VOC which is set below the emission standard of VOC contained in the exhaust gas based on the revised Air Pollution Control Law, necessary from the absorption rate of the VOC recovery unit [vapor-liquid equilibrium of water and VOC (absorption equilibrium) The processing time (height) is determined].

図5は、本発明に基づくVOC回収濃縮装置の熱収支図である。図4の物質収支図に各箇所の温度をF=t、F′=t、D=t、M=tとし、F′における関係湿度Ψと熱収支計算に必要な空気、水、VOCの比熱および水、VOCの潜熱を表示している。ここでは、図2に示すVOC含有排ガスの温度は高温VOC含有排ガスとし、t>t>t>tとする。 FIG. 5 is a heat balance diagram of the VOC recovery and concentration apparatus according to the present invention. In the material balance diagram of FIG. 4, the temperatures of the respective locations are F = t 1 , F ′ = t 2 , D = t 3 , M = t 4 , the relative humidity Ψ 2 at F ′ and the air necessary for the heat balance calculation, The specific heat of water and VOC and the latent heat of water and VOC are displayed. Here, the temperature of the VOC-containing exhaust gas shown in FIG. 2 is a high-temperature VOC-containing exhaust gas, and t 1 > t 3 > t 2 > t 4 .

ここで、F′における関係湿度Ψは、VOC濃縮部およびVOC回収部においてVOC含有排ガス(空気)と吸収水との間で充分な気液接触が行われているので、浄化ガスの関係湿度はほぼ100%飽和の状態である。また、水は極性物質であるので温度と蒸発潜熱の関係は計算上無視できない。(水およびVOCの比熱、VOCの潜熱は一定とする)。さらに、計算を簡略するため温度の基準を0℃とする。 Here, the relative humidity Ψ 2 in F ′ is the relative humidity of the purified gas because sufficient gas-liquid contact is made between the VOC-containing exhaust gas (air) and the absorbed water in the VOC concentration unit and the VOC recovery unit. Is almost 100% saturated. Moreover, since water is a polar substance, the relationship between temperature and latent heat of vaporization cannot be ignored in calculation. (The specific heat of water and VOC and the latent heat of VOC are constant). Furthermore, the temperature reference is set to 0 ° C. to simplify the calculation.

VOC回収濃縮装置全体の熱収支は以下のようになる。
(I)排ガスFの持ち込む熱量Qは、下記式(4)で示すことができる。
=(G×Cpa+H×Cpw+S×Cpvoc)×t
+H×λwt1+S×λvoct1 ・・・(4)
ここでλwt1とλvoct1は温度tにおける水およびVOCの蒸発潜熱である。
(II)吸収液Mの持ち込む熱量Qは、下記式(5)で示すことができる。
Mの温度(t)は、大気と同等の常温とする。
=M×Cpw×t ・・・(5)
(III)回収濃縮液Dの持ち出す熱量Qは、つぎのとおりである。
Dの温度(t)は、t>t>tであるが、排ガスによる水の蒸発(熱交換)はVOC濃縮部で行われる。水と空気は直接接触し、温度tにおける空気の関係湿度100%に相対する水分が瞬時に蒸発する。最終的な空気、水分、温度の平衡関係はF′である。したがってtの温度はVOC濃縮部の効率を90%と仮定すると(tは濃縮部の気液接触機構の性能および接触時間などによって異なる)、回収濃縮液Dの持ち出す熱量Qは、下記式(7)で示すことができる。
≒(t−t)×(1−0.9)+t ・・・(6)
=(H×Cpw+S×Cpvoc)×t ・・・(7)
(IV)浄化ガスF′の持ち出す熱量QF′は、下記式(8)で示すことができる。
F′=(G×Cpa+H×Cpw+S×Cpvoc)×t+H
×λwt2+S×λvoct2 ・・・(8)
ここでλwt2とλvoct2は温度tにおける水およびVOCの蒸発潜熱である。
また、Hは空気Gが温度tにおける関係湿度Ψ=100%に等しい量とする。
The heat balance of the entire VOC recovery and concentration device is as follows.
(I) The amount of heat Q F brought into the exhaust gas F can be expressed by the following formula (4).
Q F = (G 1 × C pa + H 1 × C pw + S 1 × C pvoc ) × t 1
+ H 1 × λ wt 1 + S 1 × λ voct1 (4)
Here, λ wt1 and λ voct1 are the latent heat of vaporization of water and VOC at the temperature t 1 .
(II) The amount of heat Q M brought into the absorbing liquid M can be expressed by the following formula (5).
The temperature of M (t 4 ) is a room temperature equivalent to the atmosphere.
Q M = M × C pw × t 4 (5)
(III) The amount of heat Q D taken out of the recovered concentrated liquid D is as follows.
The temperature (t 3 ) of D is t 1 > t 3 > t 2 , but water evaporation (heat exchange) by the exhaust gas is performed in the VOC concentration unit. Water and air in direct contact, opposite water evaporates instantaneously relative humidity of 100% of the air at the temperature t 3. The final balance of air, moisture and temperature is F '. Accordingly, the temperature of t 3 is assuming 90% efficiency of VOC concentration portion (t 3 varies depending on the performance and contact time of the gas-liquid contact mechanism in the enrichment section), the amount of heat Q D to bring the recovered concentrate D is represented by the following It can be shown by equation (7).
t 3 ≈ (t 1 −t 2 ) × (1−0.9) + t 2 (6)
Q D = (H 3 × C pw + S 3 × C pvoc ) × t 3 (7)
(IV) The amount of heat Q F ′ carried out by the purified gas F ′ can be expressed by the following formula (8).
Q F ′ = (G 2 × C pa + H 2 × C pw + S 2 × C pvoc ) × t 2 + H 2
× λ wt2 + S 2 × λvoct2 (8)
Here lambda wt2 and lambda Voct2 is latent heat of vaporization of water and VOC at a temperature t 2.
Further, H 2 is an amount in which the air G 2 is equal to the relative humidity Ψ = 100% at the temperature t 2 .

VOC回収濃縮装置に持ち込まれる熱量(INPUT)はQとQの和であり、下記式(9)で示すことができる。
INPUT=Q+Q={(G×Cpa+H×Cpw+S×Cpvoc
×t+H×λwt1+S×λvoct1}+{M×Cpw
×t} ・・・(9)
この式で、吸収水M以外の値は初期条件であり既知の数値である。
The amount of heat (INPUT) brought into the VOC recovery and concentration device is the sum of Q F and Q M , and can be expressed by the following formula (9).
INPUT = Q F + Q M = {(G 1 × C pa + H 1 × C pw + S 1 × C pvoc )
× t 1 + H 1 × λ wt 1 + S 1 × λ voct1 } + {M × C pw
× t 4 } (9)
In this equation, values other than the absorbed water M are initial conditions and are known numerical values.

VOC回収装置から持ち出す熱量(OUTPUT)は、回収濃縮液Dの持ち出す熱量Qと浄化ガスF′の持ち出す熱量QF′の和であり、下記式(10)で示すことができる。
OUTPUT=Q+QF′={(H×Cpw+S×Cpvoc)×t
+{(G×Cpa+H×Cpw+S×Cpvoc)×t
+H×λwt2+S×λvoct2} ・・・(10)
物質収支より、SはSがVOC規制値以下の決められた値であり、S=S−Sで求められる。HはSの濃縮液濃度から求められる。GはGに等しい。この式で不明な値はHとtであるがHはtにおいてGに含まれる飽和湿度ψ=100%の関係があり、tを仮定すれば求めることができる。(λwt2とλvoct2もtが決まれば求めることができる)。
Heat bring the VOC recovery system (OUTPUT) is the sum of 'heat Q F to bring the' with heat Q D to bring the recovered concentrate D purifying gases F, can be represented by the following formula (10).
OUTPUT = Q D + Q F ′ = {(H 3 × C pw + S 3 × C pvoc ) × t 3 }
+ {(G 2 × C pa + H 2 × C pw + S 2 × C pvoc ) × t 2
+ H 2 × λ wt 2 + S 2 × λ voct2 } (10)
From mass balance, S 3 is the value S 2 has been determined in the following VOC regulation value is calculated by S 3 = S 1 -S 2. H 3 is determined from the concentration of S 2 concentrate. G 2 is equal to G 1. Although unknown values in this formula is H 2 and t 2 H 2 has saturated humidity [psi = 100% of the relationships included in the G 2 at t 2, can be determined assuming a t 2.wt2 and λ voct2 also can be determined once the t 2).

物質収支同様、熱収支の場合もINPUT=OUTPUTが成立するので、INPUTの未知数はMである。Mは物質収支より
M=H+H−H
で与えられるようにHと関係がある。即ち、
−H=M−H=M′
とすれば、M′はVOC濃縮部における水の蒸発量である。
M′×λwt2
は水の蒸発熱量であり、その殆どがVOC濃縮部にて蒸発する。
OUTPUTの未知数はtとHおよびλwt2とλvoct2であるが、tを仮定すればHおよびλwt2とλvoct2は求められる。
Like the mass balance, INPUT = OUTPUT holds in the case of the heat balance, so the unknown of INPUT is M. M is from mass balance M = H 2 + H 3 −H 1
Is related to H 2 as given by That is,
H 2 −H 1 = M−H 3 = M ′
Then, M ′ is the amount of water evaporated in the VOC concentrating part.
M ′ × λ wt2
Is the amount of heat of water evaporation, most of which evaporates in the VOC concentrator.
OUTPUT unknowns is a lambda Voct2 and t 2 and H 2 and lambda wt2, H 2 and lambda wt2 the lambda Voct2 Assuming t 2 is obtained.

(1)本発明により、従来のVOC含有排ガス処理技術では到達できない領域〔(イ)浄化ガス中のVOCの規制値を更に下回る濃度まで除去すること。(ロ)回収したVOCの精製リサイクルを容易におこなえる濃度まで濃縮すること。(ハ)濃縮にはVOC含有排ガスのエネルギーを利用することで省エネルギー化を図る〕まで踏み込んだ技術を開発し、業界の環境保全・工程簡略化・省エネルギー化が達成できた。
(2)水より高沸点で、親水性であり、さらには水と共沸しない物性を持つ揮発性有機化合物を対象としているが、これらの物質(溶剤)は最近の電気・電子・電池・フィルム・皮革など技術革新により使用される頻度が益々増加している。従来は、これら新しい溶剤の大気汚染・廃液処理などの対策が遅れていたが、本発明はこれを取り戻したものである。
(3)実施例6のように、本発明を軸として(A)排ガス処理、(B)VOCの回収、(C)吸収液の回収、(D)乾燥機に送る空気のリサイクル、の4項目を1つの設備で行うことが可能で、大気汚染を防止し、廃液処理を必要としない、排ガス処理装置を確立することができた。
(1) According to the present invention, an area that cannot be reached by the conventional VOC-containing exhaust gas treatment technology [(i) Removal to a concentration that is further lower than the VOC regulation value in the purified gas. (B) Concentrate the collected VOCs to a concentration that facilitates purification and recycling. (C) Energy saving is achieved by using the energy of exhaust gas containing VOC for enrichment], and industry environmental conservation, process simplification, and energy saving were achieved.
(2) Volatile organic compounds that have higher boiling point than water, are hydrophilic, and have physical properties that do not azeotrope with water, but these substances (solvents) are used in recent electricity, electronics, batteries, and films.・ The frequency of use of leather and other technological innovations is increasing. Conventionally, measures such as air pollution and waste liquid treatment of these new solvents have been delayed, but the present invention has recovered them.
(3) As in Example 6, four items of (A) exhaust gas treatment, (B) recovery of VOC, (C) recovery of absorbent, (D) recycling of air sent to the dryer, centering on the present invention It was possible to establish a flue gas treatment apparatus that can prevent air pollution and does not require waste liquid treatment.

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれにより何ら限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by this.

実施例1
図6は、ある合成皮革の乾式製造法における熱風乾燥工程で発生するN,N−ジメチルホルムアミド(DMF)含有排ガスを処理する本発明の実施形態の1例である。図中、LCは液面調節計、FICは流量指示・調節計である。乾燥用空気は外気から取り入れるが除湿機などを介して導入する。その条件は、
空気量G =1000kg/h、
温度t =20℃、
関係湿度ψ =30%、
空気中に含まれる水分H=1000×0.0045=4.5kg/h
(0.0045は温度20℃、関係湿度30%に於ける乾燥空気1.0kgに含まれる水分量の概算である)で示される。この空気を加熱し、樹脂組成物(合成皮革材料)をDMFに溶解した溶液を心材に塗布し、これを数台の乾燥機を使用して乾燥する。
乾燥機から排出される排ガスは、約80℃(この温度は70〜120℃の変動がある)で平均1500ppm(w/w)(S≒1000×0.0015=1.5kg/h)のDMF蒸気が含まれている(実際には0〜3000ppm(w/w)の変動がある)。乾燥時には心材からの水の発生は無いものとする。このDMF含有排ガスを本発明のVOC回収濃縮装置で処理(浄化ガス濃度を20ppm(w/w)まで除去)した場合の物質収支を以下に示す。回収濃縮液のDMF濃度は80%とし、吸収液の温度は25℃とする。
Example 1
FIG. 6 is an example of an embodiment of the present invention for treating an exhaust gas containing N, N-dimethylformamide (DMF) generated in a hot air drying process in a dry manufacturing method of a certain synthetic leather. In the figure, LC is a liquid level controller, and FIC is a flow rate indicator / controller. Drying air is taken from outside air but introduced through a dehumidifier. The condition is
Air amount G 0 = 1000 kg / h,
Temperature t 0 = 20 ° C.,
Relative humidity ψ 0 = 30%,
Moisture contained in air H 0 = 1000 × 0.0045 = 4.5 kg / h
(0.0045 is an estimate of the amount of water contained in 1.0 kg of dry air at a temperature of 20 ° C. and a relative humidity of 30%). This air is heated, a solution obtained by dissolving a resin composition (synthetic leather material) in DMF is applied to the core material, and this is dried using several dryers.
The exhaust gas discharged from the dryer is about 80 ° C. (this temperature varies from 70 to 120 ° C.) and averages 1500 ppm (w / w) (S 1 ≈1000 × 0.0015 = 1.5 kg / h). DMF vapor is included (actually, there is a variation of 0 to 3000 ppm (w / w)). It is assumed that no water is generated from the heartwood during drying. The material balance when this DMF-containing exhaust gas is treated with the VOC recovery and concentration apparatus of the present invention (purified gas concentration is removed to 20 ppm (w / w)) is shown below. The DMF concentration of the collected concentrated liquid is 80%, and the temperature of the absorbing liquid is 25 ° C.

計算するに当たり各物質の緒元は、以下のとおりである。
空気の比熱 :Cpa =0.24 kcal/kg・℃
水の比熱 :Cpw =1.0 kcal/kg・℃
水の蒸発潜熱:λw30 =579 kcal/kg・30℃
λw28 =580 kcal/kg・28℃
λw80 =551 kcal/kg・80℃
λw25 =582 kcal/kg・25℃
飽和水分 :X =0.028kg水/kg乾き空気・30℃
X =0.026kg水/kg乾き空気・28℃
DMFの比熱 :CpDMF=0.485kcal/kg・℃
DMFの潜熱 :λDMF =138.6kcal/kg
In the calculation, the specifications of each substance are as follows.
Specific heat of air: C pa = 0.24 kcal / kg · ° C.
Specific heat of water: C pw = 1.0 kcal / kg · ° C
Evaporation latent heat of water: λ w30 = 579 kcal / kg · 30 ° C
λ w28 = 580 kcal / kg · 28 ° C
λ w80 = 551 kcal / kg · 80 ° C
λ w25 = 582 kcal / kg · 25 ° C
Saturated water: X = 0.028 kg water / kg dry air, 30 ° C
X = 0.026 kg water / kg dry air, 28 ° C
Specific heat of DMF: CpDMF = 0.485 kcal / kg · ° C.
DMF latent heat: λ DMF = 138.6 kcal / kg

先ず、物質収支を計算する。
DMFについて、
浄化ガス中のDMFは20ppm(w/w)であるので、
≒1000×0.00002=0.02kg/h
故に、回収濃縮液のDMFは、
=1.5−0.02=1.48kg/h、
したがって回収濃縮液の水は、
=(1.48÷0.8)−1.48=0.37kg/h
で示される。
First, calculate the mass balance.
About DMF
Since DMF in the purified gas is 20 ppm (w / w),
S 2 ≈1000 × 0.00002 = 0.02 kg / h
Therefore, the recovered concentrated DMF is
S 3 = 1.5−0.02 = 1.48 kg / h,
Therefore, the recovered concentrated water is
H 3 = (1.48 ÷ 0.8) −1.48 = 0.37 kg / h
Indicated by

そこで、まず前記(9)式でINPUTを計算すると
INPUT={(1000×0.24+4.5×1.0+1.5×0.485)
×80+4.5×551+1.5×138.6}+(M=H+H
−H)×25
=22306+(1000×0.028+0.37−4.5)×25
=22903kcal/h
(10)式にしたがい、t=30℃、関係湿度ψ=100%と仮定したときのOUTPUTを計算すると、
=(80−30)×(1−0.9)+30=35℃
OUTPUT={(0.37×1.0+1.48×0.485)×35}
+{(1000×0.24+0.028×1000×1.0
+0.02×0.485)×30+0.028×1000×579
+0.02×138.6}
=24293kcal/h
INPUT(=22903)<OUTPUT(=24293)となる。
(10)式にしたがい、t=28℃、関係湿度ψ=100%と再仮定してOUTPUTを計算すると、
=(80−28)×(1−0.9)+28=33.2℃
OUTPUT={(0.37×1.0+1.48×0.485)×33.2}
+{(1000×0.24+0.026×1000×1.0
+0.02×0.485)×28+0.026×1000
×580+0.02×138.6}
=22566kcal/h
=28℃では、
INPUT(=22903)>OUTPUT(=22566)となる。
この試算でINPUT=OUTPUTとなる温度tは、
=30℃では、
INPUT(=22903)<OUTPUT(=24293)
であり、この関係から28〜30℃の間にあることが分かる。
=29℃として吸収水Mを計算すると
M=1000×0.029+0.028−4.5=24.5kg/h
でほぼバランスすることがわかる。
実際のMは、計算で求めたMの約90%を吸収液Mとし、回収液の濃度調整に必要な吸収液をMとして全体のマテリアルバランスをとることで濃度制御が可能となる(M=M+M)。
これらの計算に基づいて図6に示す実施例1で実証したところ、温度tの変動に伴う温度t、tが数%の誤差があったが、浄化ガス中のVOC濃度、回収濃縮液の濃度など所定の能力を得ることができた。
Therefore, when INPUT is calculated by the above equation (9), INPUT = {(1000 × 0.24 + 4.5 × 1.0 + 1.5 × 0.485)
× 80 + 4.5 × 551 + 1.5 × 138.6} + (M = H 2 + H 3
−H 1 ) × 25
= 22306+ (1000 × 0.028 + 0.37−4.5) × 25
= 22903 kcal / h
According to the equation (10), OUTPUT is calculated when t 2 = 30 ° C. and the relative humidity ψ = 100%.
t 3 = (80-30) × (1-0.9) + 30 = 35 ° C.
OUTPUT = {(0.37 × 1.0 + 1.48 × 0.485) × 35}
+ {(1000 × 0.24 + 0.028 × 1000 × 1.0
+ 0.02 × 0.485) × 30 + 0.028 × 1000 × 579
+ 0.02 × 138.6}
= 24293 kcal / h
INPUT (= 22903) <OUTPUT (= 24293).
According to the equation (10), OUTPUT is calculated assuming that t 2 = 28 ° C. and the relative humidity ψ = 100%.
t 3 = (80−28) × (1−0.9) + 28 = 33.2 ° C.
OUTPUT = {(0.37 × 1.0 + 1.48 × 0.485) × 33.2}
+ {(1000 × 0.24 + 0.026 × 1000 × 1.0
+ 0.02 × 0.485) × 28 + 0.026 × 1000
× 580 + 0.02 × 138.6}
= 22566 kcal / h
At t 2 = 28 ° C
INPUT (= 22903)> OUTPUT (= 22566).
In this trial calculation, the temperature t 2 at which INPUT = OUTPUT is
At t 2 = 30 ° C.
INPUT (= 22903) <OUTPUT (= 24293)
From this relationship, it can be seen that it is between 28-30 ° C.
When the absorbed water M is calculated with t 2 = 29 ° C., M = 1000 × 0.029 + 0.028−4.5 = 24.5 kg / h
It turns out that it is almost balanced.
Actual M is about 90% of M determined by calculation with the absorption liquid M 1, the absorption liquid required for density adjustment of the recovering solution becomes possible density control by taking the material balance of the overall M 2 ( M = M 1 + M 2 ).
Based on these calculations, the first embodiment shown in FIG. 6 proved that the temperatures t 2 and t 3 accompanying the fluctuation of the temperature t 1 had an error of several percent, but the VOC concentration in the purified gas, the recovery concentration Predetermined ability such as liquid concentration could be obtained.

実施例2
図7は、図6と同じ合成皮革の乾式製法における熱風乾燥工程で発生するN,N−ジメチルホルムアミド(DMF)含有排ガスを処理する本発明の実施形態の1例である。乾燥用空気は外気から取り入るが、その条件は、
空気量G =1000kg/h、
温度t =30℃、
関係湿度ψ =50%、
空気中に含まれる水分H=1000×0.0133=13.3kg/h
(0.0133は温度30℃、関係湿度50%に於ける乾燥空気1.0kgに含まれる水分量である)で示される。この空気を加熱し、樹脂組成物(合成皮革材料)をDMFに溶解した溶液を心材に塗布し、これを数種の乾燥機を使用して乾燥する。この乾燥工程では、心材に温度が加わると製品の物性に悪影響を及ぼすことから高温の熱風で乾燥することが出来ない。乾燥機から排出されるDMF含有排ガスは約30℃(この温度は20〜40℃の変動がある)で平均500ppm(w/w)(S≒1000×0.0005=0.5kg/h)のDMF蒸気が含まれている(実際には0〜1000ppm(w/w)の変動がある)。乾燥時には心材からの水の発生は無いものとする。このDMF含有排ガスを本発明のVOC回収濃度装置で処理(浄化ガス濃度を20ppm(w/w)まで除去)した場合の物質収支を示している。回収濃縮液のDMF濃度は80%とし、吸収液の温度は25℃とする。
Example 2
FIG. 7 is an example of an embodiment of the present invention for treating an exhaust gas containing N, N-dimethylformamide (DMF) generated in a hot air drying step in the same synthetic leather dry manufacturing method as FIG. The drying air is taken from outside air, but the condition is
Air amount G 0 = 1000 kg / h,
Temperature t 0 = 30 ° C.,
Relative humidity ψ = 50%,
Moisture contained in air H 0 = 1000 × 0.0133 = 13.3 kg / h
(0.0133 is the amount of water contained in 1.0 kg of dry air at a temperature of 30 ° C. and a relative humidity of 50%). The air is heated, a solution obtained by dissolving a resin composition (synthetic leather material) in DMF is applied to the core material, and this is dried using several types of dryers. In this drying process, if temperature is applied to the core material, the physical properties of the product are adversely affected, so that it cannot be dried with high-temperature hot air. DMF-containing exhaust gas discharged from the dryer is about 30 ° C. (this temperature varies between 20 and 40 ° C.) and average 500 ppm (w / w) (S 1 ≈1000 × 0.0005 = 0.5 kg / h) Of DMF vapor (which actually varies from 0 to 1000 ppm (w / w)). It is assumed that no water is generated from the heartwood during drying. The material balance when this DMF-containing exhaust gas is treated with the VOC recovery concentration apparatus of the present invention (purified gas concentration is removed to 20 ppm (w / w)) is shown. The DMF concentration of the collected concentrated liquid is 80%, and the temperature of the absorbing liquid is 25 ° C.

本実施例は図3に示す低温VOC含有排ガスのVOC回収濃度装置に該当する。この場合、〔0038〕の式(9)の排ガスが持ち込む熱であるINPUTが少なく、VOC濃縮部における水の蒸発に要する熱量が不足するため外部から熱(Qとする)を補う必要がある。高温排ガスの場合、持ち込む熱量により吸収水の量を決めていたが、低温排ガスの場合、VOC回収部の気液接触機構(液分散器の性能も含めて)の効率が関わってくる。即ち、気液接触機構を下降する液(L)と上昇するガス(G)の比(L/G)に下限値があり、L/Gの下限値のときのLはL=50〜200L/m・h(mはVOC回収部の断面積であり、気液接触機構の種類・性能により液量が異なる)としている。VOC回収部の断面積をガス流量より決めれば最低液量MはLと回収部の断面積の積から必然的に決まる。このMを元に高温ガスの計算式を逆算するとtの温度および外部から補う熱量Qが求められる。 This embodiment corresponds to the low-temperature VOC-containing exhaust gas VOC recovery concentration apparatus shown in FIG. In this case, INPUT exhaust gas is heat to bring the formula (9) is small, it is necessary to supplement the heat (and Q S) from the outside due to the lack amount of heat required for the evaporation of water in the VOC concentration of the [0038] . In the case of high-temperature exhaust gas, the amount of absorbed water is determined by the amount of heat brought in, but in the case of low-temperature exhaust gas, the efficiency of the gas-liquid contact mechanism (including the performance of the liquid distributor) of the VOC recovery unit is involved. That is, the ratio (L / G) of the liquid (L) that descends the gas-liquid contact mechanism and the gas (G) that rises has a lower limit, and L when the lower limit of L / G is L = 50 to 200 L / m 2 · h (m 2 is the cross-sectional area of the VOC recovery unit, and the amount of liquid varies depending on the type and performance of the gas-liquid contact mechanism). If the cross-sectional area of the VOC recovery unit is determined from the gas flow rate, the minimum liquid amount M is inevitably determined from the product of L and the cross-sectional area of the recovery unit. Heat Q S compensate the temperature and external t 2 when calculated back calculation formula of the hot gas to the M based on is determined.

実施例1のtおよびSの条件を、図7に示す実施例2の条件に変えて、M、t、およびQを求める。
VOC吸収部の断面積を0.16 m(ガスの空塔速度≒2.0m/s)とすれば
M=0.16m×50L/m・h=8L/h=8kg/h
〔0037〕の(9)式は、
INPUT=Q+Q={(G×Cpa+H×Cpw+S×Cpvoc
×t+H×λwt1+S×λvoct1}+{M×t
+Q
となり数値を代入すると
INPUT={(1000×0.24+13.3×1.0+0.5×0.485)
×30+13.3×579+0.5×138.6}+8×25+Q
=(15576+Q) kcal/h
は物質収支より、
−S=0.5−0.02=0.48からH=(0.48/0.8)
−0.48=0.12

M=H+H−Hより、H=8+13.3−0.12=21.18kg/h
1000kg/hの空気に、H=21.18kg/hの水分の時の飽和温度は、湿度図表によりt≒26.0℃が求められる。
これを元にOUTPUTを計算すると、
=(30−26)×(1−0.9)+26=26.4℃
OUTPUT={(0.12×1.0+0.48×0.485)×26.4}
+{(1000×0.24+21.18×1.0+0.02
×0.485)×26+21.18×581.5+0.02
×138.6}
=19120kcal/h
(581.5は26℃に於ける水の蒸発潜熱)
INPUT=OUTPUTより、
=19120−15576=3544kcal/h
この熱量を熱媒体により図3に示すcase1の循環液、case2のVOC貯留部、case3のVOC含有排ガスのうち、1箇所で外部加熱を行なう。これらの計算に基づいて図7に示す実施例2で実証したところ、温度tの変動に伴う温度t、tが数%の誤差があったが、浄化ガス中のVOC濃度、回収濃縮液の濃度など所定の能力を得ることができた。また、濃縮がかかりすぎた場合は、VOC貯留部に吸収液を補充し濃度調整を行えばよい。
The conditions of t 1 and S 1 in the first embodiment are changed to the conditions in the second embodiment shown in FIG. 7, and M, t 2 , and Q S are obtained.
If the cross-sectional area of the VOC absorber is 0.16 m 2 (gas superficial velocity ≈ 2.0 m / s), M = 0.16 m 2 × 50 L / m 2 · h = 8 L / h = 8 kg / h
[0037] Equation (9) is
INPUT = Q F + Q M = {(G 1 × C pa + H 1 × C pw + S 1 × C pvoc )
× t 1 + H 1 × λ wt 1 + S 1 × λ voct1 } + {M × t 4 }
+ Q S
INPUT = {(1000 × 0.24 + 13.3 × 1.0 + 0.5 × 0.485)
× 30 + 13.3 × 579 + 0.5 × 138.6} + 8 × 25 + Q S
= (15576 + Q S ) kcal / h
H 3 is based on the mass balance.
S 1 −S 2 = 0.5−0.02 = 0.48 to H 3 = (0.48 / 0.8)
-0.48 = 0.12
H 2 is M = H 2 + H 3 −H 1 , H 2 = 8 + 13.3−0.12 = 21.18 kg / h
The saturation temperature when H 2 = 21.18 kg / h of water in 1000 kg / h of air is obtained from the humidity chart as t 2 ≈26.0 ° C.
If OUTPUT is calculated based on this,
t 3 = (30−26) × (1−0.9) + 26 = 26.4 ° C.
OUTPUT = {(0.12 × 1.0 + 0.48 × 0.485) × 26.4}
+ {(1000 × 0.24 + 21.18 × 1.0 + 0.02
× 0.485) × 26 + 21.18 × 581.5 + 0.02
× 138.6}
= 19120 kcal / h
(581.5 is the latent heat of vaporization of water at 26 ° C)
From INPUT = OUTPUT,
Q S = 19120-15576 = 3544 kcal / h
This heat quantity is externally heated in one place among the circulating fluid of case 1 shown in FIG. 3, the VOC storage part of case 2, and the VOC-containing exhaust gas of case 3 shown in FIG. Based on these calculations were demonstrated in Example 2 shown in FIG. 7, the temperature t 2, t 3 due to variations in the temperature t 1 there was a few percent error, VOC concentration in the purified gas, recovered concentrated Predetermined ability such as liquid concentration could be obtained. If the concentration is excessive, the VOC reservoir may be replenished with an absorbing solution to adjust the concentration.

実施例3
実施例3にかかる図8は、吸収液供給方法、言い換えれば回収濃縮液の濃度調整に関する1実施例である。図中、XCは濃度調節計、FICは温度指示・調節計、LCは上下限液面調節計である。図6の実施例で吸収液供給量は、M=24.5kg/hであり、このうちVOC貯留部の濃度調整として使用する水は、H=0.37kg/h(この場合導入する排ガスに常に1500ppm(w/w)のVOCが含まれている場合)である。VOC含有排ガス中のVOC濃度が0〜3000ppm(w/w)の変動があるとすれば回収濃縮液の濃度を一定に調節するためにはH=0〜0.74kg/hの調節が必要であり、この量はM=24.5の−1.5%〜+1.5%の微妙な調節を必要とする。さらに非定常なVOCの濃度変化や排ガス温度の変化に対し、1箇所(VOC回収部上)の水供給量を安価な調節機構で対処することは不可能である。図8に基づき説明すると、吸収液供給手段として、VOC吸収部上部に主供給口を設け、供給量の90%{〔0047〕で述べた液ガス比(L/G)の最低値を上回ること}を供給し、残りは副吸収液供給口よりVOC貯留部の上下限の液面の間で間歇供給し、濃度センサーによりVOC濃度が上限に達した場合は、下限まで回収濃縮液を系外に抜き出し、上限まで副吸収液を供給する(当然吸収液を供給すればVOC濃度は低下する)。副吸収液口は主供給口と同位置、VOC回収部とVOC濃縮部の間部でも良いがタイムラグなどを防止するためにはVOC貯留部に供給することが望ましい。また、本実施例では上下限のON・OFFを使用したが、連続制御でも可能である。この方法は実施例1および実施例2より排ガス中のVOC濃度の非定常な変動に対しても最適な調整方法であることが確認された。
Example 3
FIG. 8 according to the third embodiment is an embodiment relating to the absorption liquid supply method, in other words, the concentration adjustment of the recovered concentrated liquid. In the figure, XC is a concentration controller, FIC is a temperature indicator / controller, and LC is an upper / lower liquid level controller. In the embodiment shown in FIG. 6, the supply amount of the absorbing liquid is M = 24.5 kg / h. Among these, the water used for adjusting the concentration of the VOC storage section is H = 0.37 kg / h (in this case, the exhaust gas to be introduced) Always 1500 ppm (w / w) VOC). If the VOC concentration in the VOC-containing exhaust gas varies from 0 to 3000 ppm (w / w), it is necessary to adjust H = 0 to 0.74 kg / h in order to adjust the concentration of the recovered concentrate to a constant level. Yes, this amount requires a fine adjustment of -1.5% to + 1.5% with M = 24.5. Furthermore, it is impossible to cope with the unsteady VOC concentration change or exhaust gas temperature change by using an inexpensive adjustment mechanism for the water supply amount at one place (on the VOC recovery unit). Explaining based on FIG. 8, as the absorbent supply means, a main supply port is provided at the upper part of the VOC absorption section, and 90% of the supply amount {L / G) exceeds the minimum value of the liquid gas ratio (L / G) described in [0047]. }, And the remainder is supplied intermittently between the upper and lower liquid levels of the VOC storage part from the auxiliary absorption liquid supply port, and when the VOC concentration reaches the upper limit by the concentration sensor, the recovered concentrated liquid is discharged to the lower limit. The sub-absorption liquid is supplied up to the upper limit (of course, if the absorption liquid is supplied, the VOC concentration decreases). The sub-absorption liquid port may be at the same position as the main supply port and between the VOC recovery unit and the VOC concentrating unit. However, in order to prevent a time lag or the like, it is desirable to supply it to the VOC storage unit. In this embodiment, the upper and lower limits of ON / OFF are used, but continuous control is also possible. It was confirmed from Example 1 and Example 2 that this method is an optimal adjustment method for unsteady fluctuations in the VOC concentration in the exhaust gas.

実施例4
VOC含有排ガス中に含まれるVOCが1つの成分であり、水との混合物である場合は、比重・屈折計・超音波など市販されている濃度計で測定することは簡単である。然るにVOCが2成分以上であり、水との混合物である場合は、水分濃度を測定することは簡単ではない。さらに本発明によるVOC回収濃縮装置に導入する排ガスの成分は、前工程の乾燥装置からのVOC含有排ガスであり、初期には低沸点VOCが多く、終期には高沸点VOCが多く含まれており、その割合を予測することは不可能である。図9は、回収濃縮液の濃度を検出する1実施例である。VOC貯留部に濃縮される液は、2成分以上のVOCと水の混合物であり、2成分以上の各成分はそれぞれ沸点が異なる。VOC濃縮部で水の蒸発により回収濃縮液が充分に濃縮されると、VOC貯留部の水分が減少する。この液をVOC濃縮部上部へ循環するとVOC濃縮部における水の量が少なくなっているため、蒸発する水の量が不足し、VOC濃縮部では水の蒸発(排ガスとの熱交換)が充分に行われない。その結果VOC貯留部の温度が上昇する。図10は、DMF、NMP、その他の多成分のVOCを含む排ガスを本発明によるVOC回収濃縮装置で処理したときのVOC貯留部の温度曲線を示す。この図より貯留部のVOC濃度がある濃度以上に達すると急激な温度上昇が起こり、水分の不足する濃度に達したことがわかる。この温度を測定し、回収濃縮液の系外排出をおこなうことにより一定濃度以上の濃縮液を得ることが出来る。
Example 4
When VOC contained in the VOC-containing exhaust gas is one component and is a mixture with water, it is easy to measure with a commercially available densitometer such as a specific gravity, a refractometer, or an ultrasonic wave. However, when the VOC has two or more components and is a mixture with water, it is not easy to measure the water concentration. Further, the exhaust gas component introduced into the VOC recovery and concentration apparatus according to the present invention is the VOC-containing exhaust gas from the drying apparatus in the previous step, and has a lot of low boiling point VOC in the initial stage and a lot of high boiling point VOC in the final stage. It is impossible to predict the proportion. FIG. 9 shows an example of detecting the concentration of the collected concentrated liquid. The liquid concentrated in the VOC reservoir is a mixture of two or more VOCs and water, and each of the two or more components has a different boiling point. When the recovered concentrated liquid is sufficiently concentrated by evaporation of water in the VOC concentration unit, the water content in the VOC storage unit is reduced. When this liquid is circulated to the upper part of the VOC concentrating part, the amount of water in the VOC concentrating part is reduced, so that the amount of water to be evaporated is insufficient, and the VOC concentrating part is sufficiently evaporated (heat exchange with exhaust gas). Not done. As a result, the temperature of the VOC storage unit rises. FIG. 10 shows a temperature curve of the VOC storage part when exhaust gas containing DMF, NMP, and other multi-component VOCs is processed by the VOC recovery and concentration apparatus according to the present invention. From this figure, it can be seen that when the VOC concentration in the reservoir reaches a certain concentration or more, a rapid temperature rise occurs, and the concentration at which moisture is insufficient is reached. By measuring this temperature and discharging the recovered concentrated solution out of the system, a concentrated solution having a certain concentration or more can be obtained.

実施例5
〔0013〕において吸収液の水は、無機物を含まない蒸留水または純水が望ましいと記載した。また〔0024〕では、蒸留水、純水など無機物を除去するには、水を精製する装置の投資やランニングコストがかかり、供給した水は大気放出で拡散するため投資が大きくなるケースがあることを述べた。
図11は、浄化ガスを間接的にクーリングタワー水やチラー水で冷却し、浄化ガス中の水蒸気を凝縮して吸収液として再利用する1実施例である。図11は、実施例1における図6の浄化ガス出口に付帯設備を設けたものである。
外気温度20℃(関係湿度ψ=30%、そのときの露点温度は11℃)の場合、クーリングタワーの冷却水は≒12℃まで冷却できる。この冷却水で実施例1の29℃の浄化ガスを22℃まで冷却した。凝縮する水の量(W)は
W=1000×(0.027−0.0167)=10.3kg/h
使用する水は24.5kg/hであるので約42%(10.3/24.5×100=42%)の蒸留水または純水を回収し再利用することができた。
Example 5
In [0013], it is described that the water of the absorbing solution is preferably distilled water or pure water not containing inorganic substances. In [0024], removing inorganic substances such as distilled water and pure water requires investment in equipment for purifying water and running costs, and the supplied water diffuses due to atmospheric discharge, which may increase the investment. Said.
FIG. 11 shows an embodiment in which the purified gas is indirectly cooled with cooling tower water or chiller water, and water vapor in the purified gas is condensed and reused as an absorbing liquid. FIG. 11 is a diagram in which incidental equipment is provided at the purified gas outlet of FIG.
When the outside air temperature is 20 ° C. (relevant humidity ψ = 30%, the dew point temperature is 11 ° C.), the cooling water in the cooling tower can be cooled to ≈12 ° C. The purified gas at 29 ° C. of Example 1 was cooled to 22 ° C. with this cooling water. The amount of water to condense (W) is W = 1000 × (0.027−0.0167) = 10.3 kg / h
Since the water used was 24.5 kg / h, about 42% (10.3 / 24.5 × 100 = 42%) of distilled water or pure water could be recovered and reused.

実施例6
環境保全を遵守する思想からVOC含有排ガス(浄化ガス)の大気放出を最小限としたいとする要望があり、本発明のVOC回収濃縮装置のクローズドシステムの実施例を図12に示す。本実施例では80℃のVOC含有排ガス(排ガスに含まれるVOCはNMPである)処理量が大量(1000kg/min)であったのでVOC濃縮部、VOC回収部の形状を角型とし、VOC濃縮部の気液接触機構をスプレー方式とした。また、装置高さに制限があり、VOC濃縮部とVOC回収部を図12に示す如く並立し、それぞれの底部で接続した。乾燥機の空気取入れ条件は25℃、関係湿度40%の空気条件で、リサイクルする空気も同条件で戻すことが求められた。
乾燥機からのVOC含有排ガスは、VOC濃縮部でスプレーにより噴霧された循環液と気液接触をおこない、VOC回収部で水との気液接触によりVOCを回収する。VOC回収部を出たガスはミストセパレーターを具備した水回収部で10℃(25℃、関係湿度40%における絶対湿度の露点温度)以下まで冷却し、乾燥機にリサイクルする。水回収部では蒸留水による直接接触による熱交換を行い、蒸留水は水冷却熱交換器を介してクーリングタワー、チラー水で冷却した。本実施例は図2に示す高温排ガスのVOC処理の基本フローに基づき、図6の計算手法を用い、図8の吸収液供給方法で行い、図11の水回収方法に加えて、空気のリサイクルにまで踏み込んだ実施例である。
Example 6
There is a demand for minimizing the release of VOC-containing exhaust gas (purified gas) into the atmosphere from the idea of complying with environmental conservation, and FIG. 12 shows an embodiment of the closed system of the VOC recovery and concentration apparatus of the present invention. In this example, the processing amount of VOC containing exhaust gas at 80 ° C. (VOC contained in exhaust gas is NMP) was large (1000 kg / min), so the shape of the VOC concentrating part and the VOC recovery part was rectangular, and the VOC concentration The gas-liquid contact mechanism of the part was a spray system. In addition, the height of the apparatus was limited, and the VOC concentrating part and the VOC recovery part were juxtaposed as shown in FIG. 12 and connected at the bottom. The air intake conditions of the dryer were 25 ° C. and the relative humidity was 40%, and the air to be recycled was required to be returned under the same conditions.
The VOC-containing exhaust gas from the dryer makes gas-liquid contact with the circulating fluid sprayed by the VOC concentrating unit, and VOC is recovered by gas-liquid contact with water in the VOC recovery unit. The gas exiting the VOC recovery unit is cooled to 10 ° C. (25 ° C., dew point of absolute humidity at a relative humidity of 40%) or less in a water recovery unit equipped with a mist separator and recycled to the dryer. In the water recovery unit, heat exchange was performed by direct contact with distilled water, and the distilled water was cooled with a cooling tower and chiller water via a water cooling heat exchanger. This embodiment is based on the basic flow of VOC treatment of high-temperature exhaust gas shown in FIG. 2, using the calculation method of FIG. 6 and the absorption liquid supply method of FIG. 8, and in addition to the water recovery method of FIG. This is an example in which the steps are taken.

本発明の基本的考え方を示すブロックフロー図である。It is a block flow figure showing the basic idea of the present invention. 図1を具現化した高温VOC含有排ガスを処理するための本発明の1つの具体的フロー図である。FIG. 2 is a specific flow diagram of one embodiment of the present invention for treating a high temperature VOC-containing exhaust gas embodying FIG. 1. 図1を具現化した低温VOC含有排ガスを処理するための本発明の1つの具体的フロー図である。FIG. 2 is a specific flow diagram of one embodiment of the present invention for treating a low temperature VOC containing exhaust gas embodying FIG. 1. 本発明の方法および装置の物質収支図である。1 is a mass balance diagram of the method and apparatus of the present invention. 本発明の方法および装置の熱収支図である。2 is a heat balance diagram of the method and apparatus of the present invention. 実施例1で用いた本発明の高温VOC含有排ガス浄化、VOC回収濃縮方式を示すフロー図である。It is a flowchart which shows the high temperature VOC containing exhaust gas purification of this invention used in Example 1, and a VOC collection | recovery concentration system. 実施例2で用いた本発明の低温VOC含有排ガス浄化、VOC回収濃縮方式を示すフロー図である。It is a flowchart which shows the low-temperature VOC containing waste gas purification of this invention used in Example 2, and a VOC collection | recovery concentration system. 実施例3で用いた吸収液供給方式を示すフロー図である。FIG. 6 is a flowchart showing an absorbing liquid supply method used in Example 3. 実施例4で用いたVOC濃度調整システムを示すフロー図である。FIG. 10 is a flowchart showing a VOC concentration adjustment system used in Example 4; 実施例4において、多成分系VOCを含むVOC含有排ガスを処理したときのVOC貯留部の温度曲線を示す。In Example 4, the temperature curve of a VOC storage part when processing the VOC containing exhaust gas containing multi-component VOC is shown. 実施例5で用いた蒸留水、純水回収方式を示すフロー図である。It is a flowchart which shows the distilled water used in Example 5, and a pure water collection | recovery system. 実施例6で用いたクローズド式VOC回収濃縮システムを示すフロー図である。FIG. 10 is a flowchart showing a closed VOC recovery and concentration system used in Example 6.

Claims (10)

排ガスに含まれるVOCを回収濃縮し、排ガスを浄化する方法において、1ブロックの気液接触機構を持つVOC濃縮部と前記VOC濃縮部のガス下流側に1〜数ブロックの気液接触機構を持つVOC回収部から構成される排ガスからのVOC回収濃縮装置を用い、VOC回収部のガス下流側より供給される吸収水により、VOC回収部において排ガスに含有されているVOCを吸収しながらVOC濃縮部内を流下させ、一方、VOC濃縮部ガス上流側よりVOC含有排ガスを導入し、VOC濃縮部において吸収液である水を蒸発させ、VOC回収部を経て系外に浄化ガスを放出し、VOC濃縮部で濃縮されたVOC濃縮液は、VOC濃縮部および/またはVOC回収部の下端に設けられたVOC貯留部に送り、VOC貯留部に溜まったVOC貯留液はVOC濃縮部のガス下流側に循環供給し、循環液中の水の蒸発によりVOCの濃縮を行い、VOC貯留部に溜まったVOCの濃縮された循環液は、濃度測定により一定濃度に達すると回収濃縮液として系外に排出することを特徴とするVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法。 In a method of recovering and concentrating VOC contained in exhaust gas and purifying exhaust gas, a VOC concentrator having a one-block gas-liquid contact mechanism and a gas-liquid contact mechanism of one to several blocks on the gas downstream side of the VOC concentrator Using the VOC recovery / concentration device configured from the exhaust gas composed of the VOC recovery unit, the VOC recovery unit absorbs the VOC contained in the exhaust gas in the VOC recovery unit by absorbing water supplied from the gas downstream side of the VOC recovery unit. On the other hand, the VOC-containing exhaust gas is introduced from the upstream side of the VOC concentrating part gas, the water as the absorbing liquid is evaporated in the VOC concentrating part, and the purified gas is discharged out of the system through the VOC collecting part, and the VOC concentrating part The VOC concentrated solution concentrated in the step is sent to the VOC storage unit provided at the lower end of the VOC concentration unit and / or the VOC recovery unit, and the VO collected in the VOC storage unit The stored liquid is circulated and supplied to the gas downstream side of the VOC concentrating unit, the VOC is concentrated by evaporation of the water in the circulating liquid, and the VOC-concentrated circulating liquid accumulated in the VOC storing unit is kept at a constant concentration by concentration measurement. A method for purifying exhaust gas by recovering and concentrating VOC from exhaust gas containing VOC, wherein the exhaust gas is discharged out of the system as a recovered concentrated liquid. 「排ガスが持ち込むエネルギーから算出した水の蒸発量を超えない範囲」の量よりなるVOCを回収するための主吸収液をVOC回収部のガス下流側から散布するとともに、VOC回収液の濃度を調整するための補助的な量の副吸収液を前記装置内へ供給するものである請求項1記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法。   Sprinkle the main absorption liquid for recovering VOC with the amount of “the range of water evaporation calculated from the energy brought in by the exhaust gas” from the gas downstream side of the VOC recovery section, and adjust the concentration of the VOC recovery liquid 2. A method for purifying exhaust gas by recovering and concentrating VOC from the VOC-containing exhaust gas according to claim 1, wherein an auxiliary amount of auxiliary absorption liquid is supplied into the apparatus. 前記VOC回収部を経て系外に排出される浄化ガスの出口に冷却手段を設け、ここで凝縮した水は吸収液として再利用するものである請求項1または2記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法。   The cooling means is provided at the outlet of the purified gas discharged out of the system through the VOC recovery section, and the condensed water is reused as an absorbing solution from the VOC-containing exhaust gas according to claim 1 or 2. A method of collecting and concentrating and purifying exhaust gas. 前記VOC貯留部においてVOC貯留部の温度変化を表わす温度曲線に温度上昇変異点が発生した時点で回収濃縮液の系外排出を行うものである請求項1〜3いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法。   The VOC-containing exhaust gas according to any one of claims 1 to 3, wherein the recovered concentrated liquid is discharged out of the system when a temperature rise mutation point occurs in a temperature curve representing a temperature change of the VOC storage part in the VOC storage part. Recovering and concentrating VOCs from wastewater and purifying exhaust gas. 前記浄化ガスを冷却し、浄化ガス中の水蒸気を凝縮し吸収液として再利用するものである請求項1〜4いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法。   The method for purifying exhaust gas by recovering and concentrating VOC from the VOC-containing exhaust gas according to any one of claims 1 to 4, wherein the purified gas is cooled, water vapor in the purified gas is condensed and reused as an absorbing solution. 排ガスの温度が水の蒸発に不充分なときは、(イ)VOC濃縮部に排ガスを導入する前段階で、排ガスを加熱する、(ロ)VOC貯留部を加熱する、(ハ)VOC貯留液をVOC濃縮部のガス下流側に循環する段階で加熱する、の少なくとも1つの加熱方法で加熱を行うものである請求項1〜5いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化する方法。   When the temperature of the exhaust gas is insufficient for water evaporation, (b) heating the exhaust gas in the stage before introducing the exhaust gas into the VOC concentrating part, (b) heating the VOC storage part, (c) the VOC storage liquid The VOC is exhausted from the VOC-containing exhaust gas according to any one of claims 1 to 5, and heated by at least one heating method of heating at a stage where the gas is circulated downstream of the VOC concentrating portion. How to purify. 1ブロックの気液接触機構を持つVOC濃縮部と前記VOC濃縮部のガス下流側に1〜数ブロックの気液接触機構を持つVOC回収部から構成される排ガスに含まれるVOCを回収濃縮、浄化する装置において、前記VOC濃縮部のガス上流側よりVOC含有排ガスを導入するためのVOC含有ガス導入手段、VOC回収部のガス下流側より吸収液を供給する手段、排ガス中のVOCを回収し、ガスを浄化するためのVOC回収部における吸収液散布手段、VOC回収部における浄化ガス排出手段、前記VOC濃縮部および前記VOC回収部から送られてくるVOC含有処理液を貯留するためのVOC貯留部、VOC貯留部に留った貯留液をVOC濃縮部のガス下流側に循環供給し、循環液中の吸収水の蒸発によりVOCを濃縮する手段、VOC貯留部に設けられた貯留液のVOC濃度測定手段、および前記貯留液中のVOC濃度が所定の濃度に達したとき、その貯留液を回収濃縮液として系外に排出する排出手段よりなることを特徴とするVOC含有排ガス中からVOCを回収濃縮し、排ガス浄化するための装置。 Collect and concentrate and purify VOCs contained in exhaust gas, which consists of a VOC concentrating unit with a one-block gas-liquid contact mechanism and a VOC recovery unit with one to several blocks of gas-liquid contact mechanism downstream of the VOC concentrating unit The VOC-containing gas introduction means for introducing the VOC-containing exhaust gas from the gas upstream side of the VOC enrichment section, the means for supplying the absorbing liquid from the gas downstream side of the VOC recovery section, and the VOC in the exhaust gas is recovered, Absorbing liquid spraying means in the VOC recovery section for purifying gas, purified gas discharging means in the VOC recovery section, the VOC concentrating section, and a VOC storing section for storing the VOC-containing processing liquid sent from the VOC recovery section , Means for circulatingly supplying the stored liquid remaining in the VOC storage section to the gas downstream side of the VOC concentration section, and concentrating the VOC by evaporation of absorbed water in the circulating liquid, V The VOC concentration measuring means for the stored liquid provided in the C storage section, and the discharging means for discharging the stored liquid as a recovered concentrated liquid outside the system when the VOC concentration in the stored liquid reaches a predetermined concentration. An apparatus for recovering and concentrating VOC from exhaust gas containing VOC and purifying exhaust gas. 前記浄化ガス排出手段にガス冷却用熱交換器を付設した請求項7記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化するための装置。   The apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC according to claim 7, wherein a heat exchanger for gas cooling is attached to the purifying gas discharge means. 前記VOC回収部上部の吸収液散布手段の更に上部に設けられた浄化ガス出口に浄化ガス冷却用熱交換器を設け、該熱交換器から出た浄化ガスをキャリアーガスとして利用し、乾燥機に戻して再利用することを特徴とするキャリアーガスのリサイクル・クローズドシステムを設けた請求項7または8記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化するための装置。 A purified gas cooling heat exchanger is provided at the purified gas outlet provided further above the absorbing liquid spraying means above the VOC recovery unit, and the purified gas emitted from the heat exchanger is used as a carrier gas for the dryer. The apparatus for recovering and concentrating VOC from the VOC-containing exhaust gas according to claim 7 or 8, which is provided with a carrier gas recycle / closed system that is returned and reused . (a)VOC濃縮部に排ガスを導入する前段階、
(b)VOC貯留部、
(c)VOC貯留液をVOC濃縮部のガス下流側に循環する段階、
の少なくとも1箇所に加熱手段を設けた請求項7〜9いずれか記載のVOC含有排ガス中からVOCを回収濃縮し、排ガスを浄化するための装置。
(A) a stage before introducing exhaust gas into the VOC enrichment section;
(B) VOC storage part,
(C) circulating the VOC storage liquid to the gas downstream side of the VOC concentrator,
The apparatus for recovering and concentrating VOC from the VOC-containing exhaust gas according to any one of claims 7 to 9, wherein a heating means is provided at at least one location of the exhaust gas.
JP2006302400A 2006-11-08 2006-11-08 A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC. Active JP4778403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302400A JP4778403B2 (en) 2006-11-08 2006-11-08 A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302400A JP4778403B2 (en) 2006-11-08 2006-11-08 A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC.

Publications (2)

Publication Number Publication Date
JP2008114203A JP2008114203A (en) 2008-05-22
JP4778403B2 true JP4778403B2 (en) 2011-09-21

Family

ID=39500618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302400A Active JP4778403B2 (en) 2006-11-08 2006-11-08 A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC.

Country Status (1)

Country Link
JP (1) JP4778403B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779310B2 (en) * 2009-02-27 2015-09-16 日本リファイン株式会社 Method and apparatus for recovering volatile organic compounds
KR101106279B1 (en) * 2009-04-13 2012-01-19 (주)키이엔지니어링 Device and method for recovering NMP from exhaust gas
JP5883554B2 (en) * 2010-04-21 2016-03-15 日本リファイン株式会社 Purification of volatile organic compound-containing gas, recovery and concentration of volatile organic compounds
KR101106531B1 (en) * 2011-03-11 2012-01-20 주식회사 영일이엔지 Apparatus for recovering volatile organic compounds of fluidized-bed dryer
JP6065340B2 (en) * 2012-11-14 2017-01-25 株式会社リコー Volatile organic compound reduction device, volatile organic compound reduction method, and gas-liquid contact device
JP6088268B2 (en) * 2013-01-30 2017-03-01 オルガノ株式会社 NMP purification system
CN104524929A (en) * 2015-01-13 2015-04-22 天津奥展兴达化工技术有限公司 Efficient energy-saving purification and recovery process of tail gas containing volatile organic compounds (VOCs)
CN107489883B (en) * 2017-10-13 2020-03-31 中石化炼化工程(集团)股份有限公司 Method for collecting and conveying VOCs (volatile organic chemicals) of petrochemical enterprises
CN109432955B (en) * 2018-12-27 2024-01-16 河北工业大学 Treatment method of tail gas containing non-water-soluble VOCs
CN110683964A (en) * 2019-09-27 2020-01-14 苏州巨联环保有限公司 DMAC (dimethylacetamide) recycling, purifying and circulating environment-friendly device
CN111871151A (en) * 2020-07-22 2020-11-03 循天能源环境科技有限公司 Absorption treatment method for VOCs organic waste gas
CN112452116A (en) * 2020-11-24 2021-03-09 天津大学 Device and method for recycling and treating waste gas containing N, N-dimethylacetamide
CN113491928A (en) * 2021-07-27 2021-10-12 中材锂膜有限公司 Oily coating waste gas treatment process and device
JP2024118057A (en) 2023-02-20 2024-08-30 プライムプラネットエナジー&ソリューションズ株式会社 Electrode manufacturing equipment and electrode manufacturing method
CN117619086B (en) * 2023-12-02 2024-04-26 广州市帝东环保科技有限公司 VOCs recovery device and recovery method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854019A (en) * 1971-11-17 1973-07-30
JP4030439B2 (en) * 2003-01-29 2008-01-09 日本リファイン株式会社 Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas

Also Published As

Publication number Publication date
JP2008114203A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4778403B2 (en) A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC.
US10143936B2 (en) Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US10143935B2 (en) Systems including an apparatus comprising both a humidification region and a dehumidification region
JP5779310B2 (en) Method and apparatus for recovering volatile organic compounds
US11525246B2 (en) Liquid desiccant vapor separation system
JP4927092B2 (en) System and method for managing moisture content in fluid
US20190300386A1 (en) Humidification-dehumidification systems and methods at low top brine temperatures
US11731073B2 (en) Apparatus and method for solvent recovery from drying process
US20210394116A1 (en) Exhaust gas purification system and method and data processing system for monitoring at least one exhaust gas purification system
Chen et al. A novel technical route based on wet flue gas desulfurization process for flue gas dehumidification, water and heat recovery
BR112014027446B1 (en) PROCESSES TO SELECTIVELY REMOVE AND RECOVER A CONTAMINATING GAS FROM A GAS OF ORIGIN CONTAINING CONTAMINANTS, AND PROCESS TO REMOVE A CONTAMINATING GAS FROM A GAS OF ORIGIN CONTAINING CONTAMINANTS
WO2020102467A1 (en) Exhaust gas purification system and method and data processing system for monitoring at least one exhaust gas purification system
KR101982374B1 (en) Process and device for treating volatile organic compound
CN101939076B (en) System for cooling a psychrometric mixture by coupling a condenser and an evaporator
CN110590633A (en) Combined type NMP recovery system
CN101732884A (en) Condensation device and method with high-efficiency temperature-reducing nucleation
JP6078237B2 (en) Solvent recovery apparatus and control method thereof
US20140026749A1 (en) Method of drying a wet carbon dioxide rich gas stream
CN110841439A (en) Organic waste gas treatment system and treatment method thereof
CN102335521B (en) Device and method for recycling and purifying organic solvent by temperature reduction and nucleation
CN101439237A (en) Device for processing organic discharge gas produced in coating procedure
KR100981073B1 (en) Method and apparatus for concentrating a substance having a higher boiling point than water in an exhaust gas
JP5883554B2 (en) Purification of volatile organic compound-containing gas, recovery and concentration of volatile organic compounds
US12102955B2 (en) Apparatus and method for solvent recovery from drying process
US20220152520A1 (en) Apparatus And Method For Solvent Recovery From Drying Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

R150 Certificate of patent or registration of utility model

Ref document number: 4778403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250