JP4776873B2 - Process for producing alkenyl group-containing polyglycerol derivative - Google Patents

Process for producing alkenyl group-containing polyglycerol derivative Download PDF

Info

Publication number
JP4776873B2
JP4776873B2 JP2003070065A JP2003070065A JP4776873B2 JP 4776873 B2 JP4776873 B2 JP 4776873B2 JP 2003070065 A JP2003070065 A JP 2003070065A JP 2003070065 A JP2003070065 A JP 2003070065A JP 4776873 B2 JP4776873 B2 JP 4776873B2
Authority
JP
Japan
Prior art keywords
glycidol
group
mol
alkenyl group
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003070065A
Other languages
Japanese (ja)
Other versions
JP2004277548A (en
Inventor
由浩 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2003070065A priority Critical patent/JP4776873B2/en
Publication of JP2004277548A publication Critical patent/JP2004277548A/en
Application granted granted Critical
Publication of JP4776873B2 publication Critical patent/JP4776873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は末端に二重結合を有するアルケニル基含有ポリグリセリン誘導体の製造方法に関する。さらに詳しくは、本発明は未反応グリシドール分及び副生ポリグリセリンの少ないアルケニル基含有ポリグリセリン誘導体の製造方法並びに本製造方法により得られたアルケニル基含有ポリグリセリン誘導体と反応性シリコーン化合物との反応により得られるポリグリセリン変性シリコーン化合物に関する。
【0002】
【従来の技術】
従来よりSi−H基を有する反応性ジメチルポリシロキサンの変性材料や、二重結合を有する反応性モノマーとの共重合用の原料として、末端に二重結合を有するアルケニル基含有ポリオキシアルキレン誘導体、特にアリル基含有ポリオキシアルキレン誘導体が工業的に広く使用されている。その中でもポリオキシエチレン鎖を有する誘導体は親水性の特徴を有しており、親水性セグメントを樹脂骨格に導入するための樹脂改質剤として用いられているが、さらに親水性の高い材料としてアルケニル基含有ポリグリセリン誘導体も知られている。
例えば、(ポリ)グリセリン変性シリコーンの原材料として、アリルアルコールにグリシドールを開環反応させた誘導体や、ジグリセリンにアリルグリシジルエーテルを開環反応させた誘導体が知られている。(例えば特許文献1)
【特許文献1】
特公昭62−34039号公報
しかし、これらの誘導体の合成は、アリルアルコールへのグリシドール開環反応触媒としてルイス酸触媒の三フッ化ホウ素が使用されており、触媒除去手段として珪酸マグネシウム系吸着剤を3.5重量%使用して精製処理を行っているが、吸着剤の量が多く高粘性を有する合成物の濾過は工業的には、収量、製造時間などの点で問題がある。また、精製工程で三フッ化ホウ素に含まれるホウ素分が残存した場合、アルケニル基含有ポリグリセリン誘導体中の水酸基とのエステル化反応により架橋成分が生成するため問題となる。
【0003】
上記の合成方法以外に、グリシドールの開環反応にはアルカリ触媒を用いることも可能である。しかし、この場合アリル基の二重結合がα位からβ位に内部転移して反応性の劣るプロペニル基に変化する事が知られており、シリコーン変性反応や、反応性モノマーとの共重合反応の反応性を低下させる要因となる。
【0004】
【発明が解決しようとする課題】
さらに、プロペニル基の一部は分解してプロピオンアルデヒドに変化する。このプロピオンアルデヒドは強度の臭気を有する物質であり、合成物中に極めて微量に存在しても不快な臭気が感じられる。
【0005】
アルケニル基含有ポリグリセリン誘導体は分子中に多数の水酸基を含有しており、高粘度のためアルケニル基含有ポリオキシアルキレン誘導体と比較して熱履歴の影響を受け易く、二重結合がα位からβ位に内部転移する割合が高い傾向にある。アルケニル基含有ポリグリセリン誘導体は高親水性という特徴から、化粧品関連用途における改質剤としての使用が見込まれ、臭気の無いアリル基含有ポリグリセリン誘導体が求められている。
【0006】
本発明の課題は、末端に二重結合を1個有するアルケニル基含有ポリグリセリン誘導体を製造するのに際して、本誘導体を高収率で得ることができ、二重結合の内部転移する割合を低くできるようにすることである。
【0007】
【課題を解決するための手段】
本発明は、式(1)で示される水酸基含有化合物にアルカリ触媒存在下、触媒濃度が式(1)で表される化合物に対し0.1〜3モル%、グリシドール付加反応温度が100〜140℃の条件にて、式(1)で示される水酸基含有化合物1モルに対して1〜モルに相当するグリシドールを開環重合させ、不活性雰囲気下に前記水酸基含有化合物およびグリシドールの仕込量総量に対し水を2〜10重量%および酸を加え不活性ガスバブリング下に水分を除去し精製処理することを特徴とする方法に関するものである。
【化3】

Figure 0004776873
【0008】
前記条件下で水酸基含有化合物にアルカリ触媒存在下、グリシドールを開環重合させることによって、本誘導体を高収率で得ることができ、二重結合の内部転移する割合を低くできる。
【0009】
本発明は、アルケニル基含有ポリグリセリン誘導体を不活性ガス雰囲気下で前記水酸基含有化合物およびグリシドールの仕込量総量に対し水を2〜10重量%加えて酸で精製処理を行う。
【0010】
これによって、本誘導体中に含まれる、二重結合の内部転移に起因する臭い成分を一層低減し、本誘導体の臭いを少なくすることに成功した。これは、特に化粧品などの用途においてきわめて重要である。
【0011】
また、本発明は、前記製造方法により得られるアルケニル基含有ポリグリセリン誘導体に係るものである。
【0012】
前記製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物との反応により、ポリグリセリン変性シリコーン化合物を製造できる。
【化4】
Figure 0004776873
(但し、式中Rは炭素数1〜5のアルキル基、またはフェニル基を示し、mおよびnは平均重合度を示し、mは1〜300、nは0〜50、RおよびRは炭素数1〜5のアルキル基、フェニル基または水素原子を示し、同一でも異なってもよい。但しn=0のとき、R、Rの少なくとも一方は水素原子である。)
【0013】
【発明の実施の形態】
本発明の製造方法は、式(1)で示される末端に二重結合を1個有する水酸基含有化合物に、グリシドール(2,3−エポキシ−1−プロパノール)を開環重合させ、末端に二重結合を1個有するアルケニル基含有ポリグリセリン誘導体を得る。
【0014】
式(1)において、Rは炭素数3〜5の末端に二重結合を1個有するアルケニル基であり、2−プロペニル基(アリル基)、2−メチル−2−プロペニル基(メタリル基)、3−ブテニル基、3−メチル−3−ブテニル基などが挙げられ、好ましくはアリル基である。
また、式(1)の化合物はグリセリンモノメタリルエーテルである。
なお、グリセリンモノアリルエーテルはアリルグリシジルエーテルのエポキシ基の加水分解物や、グリセリンとアリルクロリドのエーテル化物をそれぞれ蒸留することによって得ることができる。
グリセリンモノアリルエーテルは式(3)で示される。
【化5】
Figure 0004776873
【0015】
本発明方法において、グリシドール開環重合反応に使用する触媒としては公知のアルカリ触媒を使用することができる。アルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムメトキシドのメタノール溶液、カリウム−t−ブトキシドなどを用いることができる。
本発明方法において、使用するアルカリ触媒の量は式(1)で表される化合物に対し0.1〜3モル%とするが、0.2モル%以上とすることが更に好ましく、あるいは、2モル%以下とすることが更に好ましい。触媒の量が、式(1)で表される化合物に対し0.1モル%未満であると、反応速度が遅く、反応に長時間を要したり未反応のグリシドールが残存する恐れがある。触媒の量が、式(1)で表される化合物に対し3モル%を超えると、反応速度が速すぎて反応の制御が困難になり、二重結合がα位からβ位へ内部転移する割合が増える。なお、アルカリ触媒としてアルコール溶液を用いた場合は、実際に含まれるアルカリ触媒に換算して仕込みモル数の計算を行う。
【0016】
また、式(1)においてmが1の水酸基含有化合物を用いる場合は、触媒の仕込後にアルケニル基を含有しない副生ポリグリセリン誘導体の生成を抑制するため、温度70〜90℃、不活性ガスバブリング下、−0.2MPa(ゲージ圧力)以下の条件下で30分〜2時間、水酸基含有化合物の水分及びアルコラート化により生成した水分もしくはアルコールを反応系外へ減圧留去することができる。
【0017】
本発明方法において、グリシドールの開環重合時における反応温度は100〜140℃とする。この反応温度は、105℃以上とすることが更に好ましく、あるいは、125℃以下とすることが更に好ましい。反応温度が100℃未満であると、反応速度が遅く、反応に長時間を要したり未反応のグリシドールが残存する。反応速度が140℃を超えると、二重結合がα位からβ位へ内部転移する割合が増える。
【0018】
本発明方法において、グリシドール開環重合時のグリシドールの仕込み時間は3〜10時間が好ましく、6〜10時間がさらに好ましい。グリシドール開環重合時のグリシドールの仕込み時間が3時間未満の場合は、反応器内のグリシドール濃度が上昇し、グリシドールの水酸基への開環重合が起こりポリグリセリンが副生する恐れがある。グリシドール開環重合時のグリシドールの仕込み時間が10時間を超える場合は、工業上効率的ではない。なお、グリシドールの仕込み方法は、滴下による方法や、反応器下部より仕込む方法のいずれも用いることができ、仕込み速度はできるだけ均一にすることが望ましい。またグリシドールの開環重合時には、溶媒を用いないで反応を行うことが望ましいが、系内の粘度を下げ撹拌効率の低下を防止する目的でベンゼン、トルエン、キシレン、ジグライムなどの有機溶媒を用いてもよい。
【0019】
本発明において、グリシドールの付加モル数は、式(1)で示される水酸基含有化合物1モルに対して1〜モルとする。グリシドールの付加モル数がモルを超えると、グリシドール付加物が高粘度となり、反応器の撹拌効率が低下するため、ポリグリセリンの副生物や二重結合の内部転移が促進され、目的とするアルケニル基含有ポリグリセリン誘導体を得ることが難しい。
なお、本製造方法により得られるアルケニル基含有ポリグリセリン誘導体は、分岐構造の複雑な化学構造を有する重合体となる。そして実際の反応物は、これら分岐構造を有する多数の重合体の混合物となる。
【0020】
本発明方法において、アルカリ触媒を用いたグリシドール開環重合後に精製処理を行うことにより、臭いの少ない化合物を得ることができる。精製は以下のように行うことができる。精製処理剤として、アルカリ触媒の中和及び二重結合の内部転移物を分解する目的で酸を用いる。酸の中でも強酸を用いることが好ましい。強酸としては、例えば、硫酸、塩酸、燐酸などが挙げられ、より好ましくは塩酸である。
さらに、精製処理の際、内部転移物の分解を促進させることを目的として水を加える。水の添加量は水酸基含有化合物とグリシドールの仕込み総量に対し2〜10重量%である。処理条件としては処理温度が60〜100℃、処理時間が20分〜2時間で撹拌しながら行うのが好ましい。また、精製処理は温度100〜120℃、不活性ガスバブリング下、−0.05MPa(ゲージ圧力)以下の条件下で3〜6時間程度行うのが好ましい。不活性ガスは二重結合およびエーテル結合が酸素との接触により酸化されるのを防止するために使用し、具体的には窒素、ヘリウム、ネオン、アルゴン等が好ましい。なお、精製処理終了後は濾過により析出した塩を除去することができるが、必要に応じて活性白土や合成ゼオライト系吸着剤、イオン交換樹脂を用いてさらに高度に精製することも可能である。さらに、必要に応じて二重結合及びエーテル結合の酸化を防止するため、2,6−ジ−t−ブチル−p−クレゾール(BHT)、4,4’−ブチリデン−ビス−(6−t−ブチル−3−メチルフェノール)等のヒンダードフェノール系酸化防止剤や、トコフェロール等の酸化防止剤を添加することも可能である。また、製造後の保管方法については酸化による臭気の発生を避けるため、気密容器に密充填もしくは不活性ガスで置換の上保管することが好ましい。
【0021】
本発明の請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体は、式(2)で表される反応性シリコーンとを反応させることで、ポリグリセリン変性シリコーン化合物を得ることができる。
【化6】
Figure 0004776873
(但し、式中Rは炭素数1〜5のアルキル基、またはフェニル基を示し、mおよびnは平均重合度を示し、mは1〜300、nは0〜50、RおよびRは炭素数1〜5のアルキル基、フェニル基または水素原子を示し、同一でも異なってもよい。但しn=0のとき、R、Rの少なくとも一方は水素原子である。)
【0022】
式(2)において、R、RおよびRで示される炭素数1〜5のアルキル基、またはフェニル基としては、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソペンチル基、フェニル基等が挙げられ、好ましくはメチル基およびフェニル基、より好ましくはメチル基である。また、RおよびRは同一でも異なってもよいがn=0のとき、R、Rの少なくとも一方は水素原子である。
また、式(2)において、mおよびnは平均重合度を示し、mは1〜300で、好ましくは1〜200である。nは0〜50で、好ましくは0〜30である。
【0023】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物との仕込み比は、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体の二重結合の当量と、式(2)で示される反応性シリコーン化合物の−SiH基当量の比が1:0.7〜1:1.4であることが好ましく、1:0.8〜1:1.2であることがより好ましい。
【0024】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物との反応において、反応性シリコーン化合物の−SiH基とアルケニル基含有ポリグリセリン誘導体の二重結合を容易に反応させ、高収率でポリグリセリン変性シリコーンを得るためには、触媒を使用する。使用する触媒は特に制限は無いが、ニッケル、ルテニウム、ロジウム、パラジウム、イリジウム、白金などの第VIII族遷移金属あるいはそれらの化合物を好適に使用することができる。このような化合物の具体的な例としては、第VIII族遷移金属のクロロ錯体、オレフィン錯体、アルデヒド錯体、ケトン錯体、ホスフィン錯体、スルフィド錯体、ニトリル錯体などを挙げることができる。これらのうち、白金黒、塩化白金酸、あるいは、白金のオレフィン錯体、アルデヒド錯体、ケトン錯体などの白金系触媒が好ましく、塩化白金酸が特に好ましい。塩化白金酸は入手しやすく、また、塩化白金酸のアルコール溶液は均一系となるため取り扱いが容易であり、しかも反応の収率がよい。
【0025】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物の反応温度は40〜140℃で反応することが好ましく、さらに60〜120℃で反応することがより好ましい。反応温度が40℃未満であると反応時間が長くなり、反応温度が140℃を超えると反応時の圧力が高くなり操作が煩雑になる。
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物の反応時間は30分〜40時間の範囲で行うのが通常である。
【0026】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物の反応に際して、原料や製品の化合物の粘度を下げて撹拌を容易にしたり、反応をより円滑に行う目的でメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールなどの脂肪族アルコール系溶媒や、トルエン、キシレンなどの芳香族系溶媒を用いることができる。さらに、アルコール系溶媒を使用した場合、−Si基とアルコールの水酸基との副反応を抑制するため酢酸カリウム、酢酸ナトリウム等の反応調整剤を添加することも可能である。
【0027】
また、本発明は、グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:0.95〜1.05であり、この反応生成物の水酸基価が750〜850KOHmg/gであり、かつ25℃における動粘度が400〜480mm/sであることを特徴とする、アルケニル基含有ポリグリセリン誘導体に係るものである。
この発明において更に好ましくは、前記水酸基価が770〜830KOHmg/gである。あるいは、25℃における動粘度が410〜460mm/sである。
【0028】
グリセリンモノアリルエーテルとグリシドールとの反応によって得られた前記アルケニル基含有ポリグリセリン誘導体において、水酸基価を750KOHmg/g以上とすることによって、高分子量成分を抑制し、親水性が過度に上昇することを防止できる。また、水酸基価が850KOHmg/gを超え、かつ25℃における動粘度が400mm/s未満になると、未反応のグリシドールが含まれ、全体として低分子量となり、アルケニル基含有ポリグリセリン誘導体の親水性が低下する。水酸基価が850KOHmg/gを超え、かつ25℃における動粘度が480mm/sを超えると、他の反応性化合物との反応に寄与しないポリグリセリンが含まれるので好ましくない。
【0029】
また、本発明は、グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:1.90〜2.10であり、この反応生成物の水酸基価が770〜810KOHmg/gであり、かつ25℃における動粘度が2600〜3200mm/sであることを特徴とする、アルケニル基含有ポリグリセリン誘導体に係るものである。この発明において更に好ましくは、前記水酸基価が780〜805KOHmg/gである。あるいは、25℃における動粘度が2700〜3100mm/sである。
【0030】
グリセリンモノアリルエーテルとグリシドールとの反応によって得られた前記アルケニル基含有ポリグリセリン誘導体において、水酸基価を770KOHmg/g以上とすることによって、高分子量成分を抑制し、親水性が過度に上昇することを防止できる。また、水酸基価が810KOHmg/gを超え、かつ25℃における動粘度が2600mm/s未満になると、未反応のグリシドールが含まれ、全体として低分子量となり、アルケニル基含有ポリグリセリン誘導体の親水性が低下する。水酸基価が810KOHmg/gを超え、かつ25℃における動粘度が3200mm/sを超えると、他の反応性化合物との反応に寄与しないポリグリセリンが含まれるので好ましくない。
【0031】
本発明で得られたポリグリセリン変性シリコーンは、親水性の性質を有するポリグリセリンと疎水性の性質を有するポリジメチルシロキサンを界面活性剤として作用し、化粧品原料、洗浄剤、乳化分散剤、繊維処理剤、塗料添加剤、インク用添加剤、プラスチック添加剤、防曇剤、消泡剤、潤滑剤などに利用することが可能である。
【0032】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明する。なお、合成品の分析は下記に記す方法で行った。
(実験方法)
水酸基価: JIS K−1557 6.4
動粘度: JIS K−2283
不飽和度: JIS K−1557 6.7
また、臭気の判定方法については、10人のパネリストに次の5段階評価により臭気を判定してもらい、平均値を算出することにより行った。
1 全く臭いが無い
2 僅かに臭い有り
3 若干の刺激臭有り
4 やや強い刺激臭有り
5 かなり強い刺激臭有り
(理論値の計算方法:触媒添加量は無視する)
1.理論水酸基価
56110/[A(1+B/C)]×D
A:水酸基含有化合物の分子量
B:グリシドール仕込み量(g)
C:水酸基含有化合物仕込み量(g)
D: 式(1)で表される水酸基含有化合物において、m=0の場合には、D=1+AB/74C、m=1の場合はD=2+AB/74C
2.理論不飽和度
1000/[A(1+B/C)]
【0033】
(実施例1)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.54g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを7時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水11g(原料総仕込量に対して2重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物505gを得た。
合成品の分析値は水酸基価797KOHmg/g(理論値802)、動粘度(25℃)2900mm/s、不飽和度3.48meq/g(理論値3.57)となり、臭気判定の平均値は1.1であった。なお、実施例1〜6についての製造条件および測定結果を表1に示す。
【0034】
【表1】
Figure 0004776873
【0035】
(実施例2)
グリセリンモノアリルエーテル264g(2モル)、および水酸化カリウム1.12g(0.02モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを9時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水28g(原料総仕込量に対して5重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物510gを得た。
合成品の分析値は水酸基価799KOHmg/g(理論値802)、動粘度(25℃)3005mm/s、不飽和度3.45meq/g(理論値3.57)となり、臭気判定の平均値も低かった。
【0036】
(実施例3)
グリセリンモノアリルエーテル356.4g(2.7モル)、および水酸化ナトリウム0.32g(0.008モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール200g(2.7モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを6時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水17g(原料総仕込量に対して3重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物510gを得た。
合成品の分析値は水酸基価816KOHmg/g(理論値817)、動粘度(25℃)434mm/s、不飽和度4.84meq/g(理論値4.85)となり、臭気判定の平均値も低かった。
【0037】
(実施例4)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.54g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを7時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水11g(原料総仕込量に対して2重量%量)を添加して酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物511gを得た。
合成品の分析値は水酸基価795KOHmg/g(理論値802)、動粘度(25℃)2930mm/s、不飽和度3.49meq/g(理論値3.57)となり、臭気判定の平均値は2.2であった。
【0038】
(実施例5)
グリセリンモノアリルエーテル264g(2モル)、および水酸化カリウム1.12g(0.02モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを9時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水28g(原料総仕込量に対して5重量%量)を添加して酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物508gを得た。
合成品の分析値は水酸基価797KOHmg/g(理論値802)、動粘度(25℃)2980mm/s、不飽和度3.51meq/g(理論値3.57)となり、臭気判定の平均値は2.2であった。
【0039】
(実施例6)
グリセリンモノアリルエーテル356.4g(2.7モル)、および水酸化ナトリウム0.32g(0.008モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール200g(2.7モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを6時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水17g(原料総仕込量に対して3重量%量)を添加して酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物513gを得た。
合成品の分析値は水酸基価814KOHmg/g(理論値817)、動粘度(25℃)431mm/s、不飽和度4.83meq/g(理論値4.85)となり、臭気判定の平均値は2.1であった。
【0040】
(比較例1)
グリセリンモノアリルエーテル264g(2モル)、および水酸化ナトリウム5.60g(0.14モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間、水分の除去を行い、最後に析出した塩を濾別して化合物499gを得た。
合成品の分析値は水酸基価817KOHmg/g(理論値802)、動粘度(25℃)3278mm/s、不飽和度3.24meq/g(理論値3.57)となり、臭気を調べたところかなり強い刺激臭が認められた。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。なお、比較例1〜6の製造条件および測定結果を表2に示す。
【0041】
【表2】
Figure 0004776873
【0042】
(比較例2)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド1.12g(0.02モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで80℃の温度のままグリシドール296g(4モル)を計量槽に計り取り、75〜85℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを10時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、塩酸でpH4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間、水分の除去を行い、最後に析出した塩を濾別して化合物395gを得た。
合成品の分析値は水酸基価897KOHmg/g(理論値802)、動粘度(25℃)2460mm/s、不飽和度3.97meq/g(理論値3.57)となり、臭気判定の平均値は2.3であった。収量が少なく且つ分子量が小さくなっており、未反応のグリシドールが多く残存したことが窺える。
【0043】
(比較例3)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.56g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで150℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、酢酸でpH4〜6の弱酸性に調整し、30分撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間、水分の除去を行い、最後に析出した塩を濾別して化合物500gを得た。
合成品の分析値は水酸基価813KOHmg/g(理論値802)、動粘度(25℃)3168mm/s、不飽和度3.38meq/g(理論値3.57)となり、臭気判定の平均値は4.1であった。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。
【0044】
(比較例4)
グリセリンモノアリルエーテル264g(2モル)、および三フッ化ホウ素ジエチルエーテル錯体5.6gを1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら60℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、55〜65℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを7時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで昇温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、キョーワード600(協和化学工業(株)製)20g(原料総仕込量に対して3.5重量%量)を添加して95〜105℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間処理を行い、吸着剤を濾別して化合物370gを得た。なお、濾過の途中で目詰まりが生じ、収量が低下した。
合成品の分析値は水酸基価780KOHmg/g(理論値802)、動粘度(25℃)3784mm/s、不飽和度3.48meq/g(理論値3.57)となり、臭気判定の平均値は2.5であった。多量の吸着剤を使用していることにより収量が少ない点と、ホウ素が残存して一部ホウ酸エステル化され架橋構造を持った化合物が生成していることが窺える。
【0045】
(比較例5)
グリセリンモノアリルエーテル264g(2モル)、および水酸化ナトリウム5.60g(0.14モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水16.7g(原料総仕込み量に対して3重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物495gを得た。
合成品の分析値は水酸基価830KOHmg/g(理論値802)、動粘度(25℃)3402mm/s、不飽和度3.20meq/g(理論値3.57)となり、臭気判定の平均値は1.5であった。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。
【0046】
(比較例6)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.56g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで150℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水16.7g(原料総仕込み量に対して3重量%量)を添加して塩酸でpH4〜6の弱酸性に調整し、30分撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物497gを得た。
合成品の分析値は水酸基価824KOHmg/g(理論値802)、動粘度(25℃)3284mm/s、不飽和度3.34meq/g(理論値3.57)となり、臭気判定の平均値は1.3であった。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。
【0047】
(実施例7)
1リットル容四ツ口フラスコに撹拌装置、冷却管、滴下漏斗、窒素導入管を取り付け、実施例1で得られた化合物100gに、式(5)で示されるハイドロジェンジメチルポリシロキサン(商品名:KME1234、バイエル社製、Si−H基当量:2.17ミリ当量)128.7g、触媒として塩化白金酸六水和物のイソプロピルアルコール溶液(1×10-3モル/リットル)7.0ml、酢酸カリウム 0.1g、溶媒としてイソプロピルアルコール200gを仕込み、窒素雰囲気下イソプロピルアルコール還流温度で5時間撹拌を行った。反応終了後、サンプリングを行いN/10水酸化カリウムのイソプロピルアルコール溶液を加えて水素ガスの発生の有無を確認したところ、水素ガスの発生は認められなかった。
【化7】
Figure 0004776873
(但し、式中m=18、n=5を表す)
【0048】
(比較例7)
1リットル容四ツ口フラスコに撹拌装置、冷却管、滴下漏斗、窒素導入管を取り付け、比較例4で得られた化合物100gに、式(5)で示されるハイドロジェンジメチルポリシロキサン(商品名:KME1234、バイエル社製、Si−H基当量:2.17ミリ当量)128.7g、触媒として塩化白金酸六水和物のイソプロピルアルコール溶液(1×10-3モル/リットル)7.0ml、酢酸カリウム 0.1g、溶媒としてイソプロピルアルコール200gを仕込み、窒素雰囲気下イソプロピルアルコール還流温度で5時間撹拌を行った。反応終了後、サンプリングを行いN/10水酸化カリウムのイソプロピルアルコール溶液を加えて水素ガスの発生の有無を確認したところ、水素ガスが発生し、実施例5と比較してハイドロジェジメチルポリシロキサンとの反応性が低下した。
【0049】
【発明の効果】
本発明は、末端に二重結合を1個有するアルケニル基含有ポリグリセリン誘導体を製造するのに際し、未反応グリシドール分及び副生ポリグリセリンが少なく、さらに末端二重結合含有アルケニル基の内部転移を抑制することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alkenyl group-containing polyglycerin derivative having a double bond at the terminal. More specifically, the present invention relates to a method for producing an alkenyl group-containing polyglycerin derivative having a small amount of unreacted glycidol and by-product polyglycerin, and a reaction between the alkenyl group-containing polyglycerin derivative obtained by this production method and a reactive silicone compound. The present invention relates to the polyglycerin-modified silicone compound obtained.
[0002]
[Prior art]
Conventionally, as a raw material for copolymerization with a reactive dimethylpolysiloxane modified material having a Si-H group or a reactive monomer having a double bond, an alkenyl group-containing polyoxyalkylene derivative having a double bond at the terminal, In particular, allyl group-containing polyoxyalkylene derivatives are widely used industrially. Among them, derivatives having a polyoxyethylene chain have hydrophilic characteristics and are used as resin modifiers for introducing hydrophilic segments into the resin skeleton. Group-containing polyglycerol derivatives are also known.
For example, as raw materials for (poly) glycerin-modified silicones, derivatives obtained by ring-opening reaction of glycidol with allyl alcohol and derivatives obtained by ring-opening reaction of allyl glycidyl ether with diglycerin are known. (For example, Patent Document 1)
[Patent Document 1]
Japanese Examined Patent Publication No. 62-34039
However, the synthesis of these derivatives uses Lewis acid-catalyzed boron trifluoride as a glycidol ring-opening reaction catalyst for allyl alcohol, and uses magnesium silicate-based adsorbent as a catalyst removal means at 3.5% by weight. However, the filtration of a synthetic product having a large amount of adsorbent and high viscosity has problems in terms of industrial yield and production time. Moreover, when the boron content contained in boron trifluoride remains in the purification step, a problem arises because a crosslinking component is generated by an esterification reaction with a hydroxyl group in the alkenyl group-containing polyglycerin derivative.
[0003]
In addition to the above synthesis method, an alkali catalyst can be used for the ring-opening reaction of glycidol. However, in this case, it is known that the double bond of the allyl group is internally transferred from the α-position to the β-position and changed to a poorly reactive propenyl group, such as a silicone modification reaction or a copolymerization reaction with a reactive monomer. It becomes a factor to reduce the reactivity of.
[0004]
[Problems to be solved by the invention]
Further, a part of the propenyl group is decomposed to be changed to propionaldehyde. This propionaldehyde is a substance having a strong odor, and an unpleasant odor is felt even if it is present in a very small amount in the composite.
[0005]
Alkenyl group-containing polyglycerin derivatives contain a large number of hydroxyl groups in the molecule and are more susceptible to thermal history than alkenyl group-containing polyoxyalkylene derivatives due to their high viscosity. There is a tendency for the rate of internal transition to higher. Alkenyl group-containing polyglycerin derivatives are expected to be used as modifiers in cosmetic-related applications because of their high hydrophilicity, and allyl group-containing polyglycerin derivatives without odor are demanded.
[0006]
An object of the present invention is to produce an alkenyl group-containing polyglycerin derivative having one double bond at the terminal, whereby the derivative can be obtained in high yield, and the rate of internal transfer of double bonds can be reduced. Is to do so.
[0007]
[Means for Solving the Problems]
In the present invention, in the presence of an alkali catalyst in the hydroxyl group-containing compound represented by the formula (1), the catalyst concentration is 0.1 to 3 mol% with respect to the compound represented by the formula (1), and the glycidol addition reaction temperature is 100 to 140. 1 to 1 mol of the hydroxyl group-containing compound represented by the formula (1) under the condition of ° C. 8 The ring-opening polymerization of glycidol corresponding to mol was performed, and water was added in an amount of 2 to 10% by weight based on the total amount of the hydroxyl group-containing compound and glycidol charged under an inert atmosphere. and Add acid Remove moisture under inert gas bubbling The present invention relates to a method characterized by performing a purification treatment.
[Chemical 3]
Figure 0004776873
[0008]
By subjecting the hydroxyl group-containing compound to ring-opening polymerization in the presence of an alkali catalyst under the above conditions, this derivative can be obtained in high yield, and the internal transfer rate of double bonds can be reduced.
[0009]
The present invention so Alkenyl group-containing polyglycerin derivative under an inert gas atmosphere Add 2 to 10% by weight of water to the total amount of the hydroxyl group-containing compound and glycidol and add acid. Perform purification.
[0010]
As a result, the present invention succeeded in further reducing the odor component of the derivative due to the internal transfer of double bonds contained in the derivative and further reducing the odor of the derivative. This is particularly important in applications such as cosmetics.
[0011]
The present invention also relates to an alkenyl group-containing polyglycerin derivative obtained by the above production method.
[0012]
A polyglycerin-modified silicone compound is produced by reacting the alkenyl group-containing polyglycerin derivative obtained by the above production method with the reactive silicone compound represented by the formula (2). Can The
[Formula 4]
Figure 0004776873
(However, R in the formula 1 Represents an alkyl group having 1 to 5 carbon atoms or a phenyl group, m and n represent an average degree of polymerization, m is 1 to 300, n is 0 to 50, R 2 And R 3 Represents an alkyl group having 1 to 5 carbon atoms, a phenyl group or a hydrogen atom, which may be the same or different. However, when n = 0, R 2 , R 3 At least one of is a hydrogen atom. )
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, glycidol (2,3-epoxy-1-propanol) is subjected to ring-opening polymerization on a hydroxyl group-containing compound having one double bond at the terminal represented by the formula (1), and the terminal is doubled. An alkenyl group-containing polyglycerin derivative having one bond is obtained.
[0014]
In the formula (1), R is an alkenyl group having one double bond at the terminal of 3 to 5 carbon atoms, 2-propenyl group (allyl group), 2-methyl-2-propenyl group (methallyl group), A 3-butenyl group, a 3-methyl-3-butenyl group and the like can be mentioned, and an allyl group is preferable.
Moreover, the compound of Formula (1) is glycerol monomethallyl ether.
In addition, glycerol monoallyl ether can be obtained by distilling the hydrolyzate of the epoxy group of allyl glycidyl ether or the etherified product of glycerol and allyl chloride, respectively.
Glycerin monoallyl ether Is represented by equation (3).
[Chemical formula 5]
Figure 0004776873
[0015]
In the method of the present invention, a known alkali catalyst can be used as the catalyst used for the glycidol ring-opening polymerization reaction. As the alkali catalyst, for example, sodium hydroxide, potassium hydroxide, sodium methoxide, methanol solution of sodium methoxide, potassium t-butoxide and the like can be used.
In the method of the present invention, the amount of the alkali catalyst used is 0.1 to 3 mol% with respect to the compound represented by the formula (1), more preferably 0.2 mol% or more, or 2 More preferably, it is less than mol%. When the amount of the catalyst is less than 0.1 mol% with respect to the compound represented by the formula (1), the reaction rate is slow, and the reaction may take a long time or unreacted glycidol may remain. When the amount of the catalyst exceeds 3 mol% with respect to the compound represented by the formula (1), the reaction rate is too high to control the reaction, and the double bond is internally transferred from the α-position to the β-position. The percentage increases. When an alcohol solution is used as the alkali catalyst, the number of moles charged is calculated in terms of the alkali catalyst actually contained.
[0016]
Moreover, when using the hydroxyl group containing compound whose m is 1 in Formula (1), in order to suppress the production | generation of the by-product polyglycerol derivative which does not contain an alkenyl group after preparation of a catalyst, temperature 70-90 degreeC, an inert gas bubbling Under the condition of −0.2 MPa (gauge pressure) or lower, the water of the hydroxyl group-containing compound and the water or alcohol produced by the alcoholation can be distilled out of the reaction system under reduced pressure for 30 minutes to 2 hours.
[0017]
In the method of the present invention, the reaction temperature during ring-opening polymerization of glycidol is 100 to 140 ° C. The reaction temperature is more preferably 105 ° C. or higher, or more preferably 125 ° C. or lower. When the reaction temperature is less than 100 ° C., the reaction rate is slow, and the reaction takes a long time or unreacted glycidol remains. When the reaction rate exceeds 140 ° C., the rate of internal transfer of double bonds from α-position to β-position increases.
[0018]
In the method of the present invention, the charging time of glycidol during glycidol ring-opening polymerization is preferably 3 to 10 hours, more preferably 6 to 10 hours. When the charging time of glycidol at the time of glycidol ring-opening polymerization is less than 3 hours, the concentration of glycidol in the reactor increases, ring-opening polymerization of glycidol to a hydroxyl group may occur, and polyglycerin may be by-produced. When the charging time of glycidol during glycidol ring-opening polymerization exceeds 10 hours, it is not industrially efficient. In addition, as a charging method of glycidol, either a dropping method or a charging method from the lower part of the reactor can be used, and it is desirable to make the charging speed as uniform as possible. In addition, it is desirable to perform the reaction without using a solvent at the time of ring-opening polymerization of glycidol. However, for the purpose of reducing the viscosity in the system and preventing the stirring efficiency from being lowered, an organic solvent such as benzene, toluene, xylene, diglyme is used. Also good.
[0019]
In the present invention, the added mole number of glycidol is 1 to 1 mole per 1 mole of the hydroxyl group-containing compound represented by the formula (1). 8 Mole. The number of moles of glycidol added is 8 If the molar ratio is exceeded, the viscosity of the glycidol adduct becomes high and the stirring efficiency of the reactor decreases, so that the internal transition of polyglycerin by-products and double bonds is promoted, and the desired alkenyl group-containing polyglycerin derivative is obtained. It is difficult.
The alkenyl group-containing polyglycerin derivative obtained by this production method is a polymer having a complex chemical structure with a branched structure. The actual reactant is a mixture of a number of polymers having these branched structures.
[0020]
In the method of the present invention, a compound with less odor can be obtained by carrying out a purification treatment after glycidol ring-opening polymerization using an alkali catalyst. Purification can be performed as follows. As the purification treatment agent, an acid is used for the purpose of neutralizing the alkali catalyst and decomposing the internal transfer product of the double bond. Among acids, it is preferable to use a strong acid. Examples of the strong acid include sulfuric acid, hydrochloric acid, phosphoric acid and the like, and hydrochloric acid is more preferable.
Furthermore, water is added during the purification process for the purpose of promoting the decomposition of the internal transfer product. The amount of water added is 2 to 10% by weight based on the total amount of the hydroxyl group-containing compound and glycidol charged. The treatment conditions are preferably 60 to 100 ° C. and a treatment time of 20 minutes to 2 hours with stirring. Further, the purification treatment is preferably performed for about 3 to 6 hours under conditions of a temperature of 100 to 120 ° C. and an inert gas bubbling of −0.05 MPa (gauge pressure) or less. The inert gas is used for preventing the double bond and the ether bond from being oxidized by contact with oxygen. Specifically, nitrogen, helium, neon, argon and the like are preferable. In addition, although the salt which precipitated by filtration can be removed after completion | finish of a refinement | purification process, it can also refine | purify more highly using activated clay, a synthetic zeolite type adsorption agent, and an ion exchange resin as needed. Furthermore, 2,6-di-t-butyl-p-cresol (BHT), 4,4′-butylidene-bis- (6-t-) is used to prevent oxidation of double bonds and ether bonds as necessary. It is also possible to add a hindered phenolic antioxidant such as butyl-3-methylphenol) or an antioxidant such as tocopherol. As for the storage method after production, in order to avoid the generation of odor due to oxidation, it is preferable to store the product after it is tightly packed in an airtight container or replaced with an inert gas.
[0021]
The alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 of the present invention can obtain a polyglycerin-modified silicone compound by reacting with the reactive silicone represented by the formula (2). .
[Chemical 6]
Figure 0004776873
(However, R in the formula 1 Represents an alkyl group having 1 to 5 carbon atoms or a phenyl group, m and n represent an average degree of polymerization, m is 1 to 300, n is 0 to 50, R 2 And R 3 Represents an alkyl group having 1 to 5 carbon atoms, a phenyl group or a hydrogen atom, which may be the same or different. However, when n = 0, R 2 , R 3 At least one of is a hydrogen atom. )
[0022]
In formula (2), R 1 , R 2 And R 3 Specific examples of the alkyl group having 1 to 5 carbon atoms or phenyl group represented by the formula: methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group And a phenyl group, preferably a methyl group and a phenyl group, more preferably a methyl group. R 2 And R 3 May be the same or different, but when n = 0, R 2 , R 3 At least one of is a hydrogen atom.
Moreover, in Formula (2), m and n show an average degree of polymerization, m is 1-300, Preferably it is 1-200. n is 0-50, Preferably it is 0-30.
[0023]
In the present invention, the charging ratio between the alkenyl group-containing polyglycerin derivative obtained by the production method of claim 1 and the reactive silicone compound represented by formula (2) is obtained by the production method of claim 1. Preferably, the ratio of the equivalent of the double bond of the alkenyl group-containing polyglycerin derivative to the —SiH group equivalent of the reactive silicone compound represented by formula (2) is 1: 0.7 to 1: 1.4. 1: 0.8 to 1: 1.2 is more preferable.
[0024]
In the present invention, in the reaction of the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 and the reactive silicone compound represented by the formula (2), -SiH group and alkenyl group of the reactive silicone compound In order to easily react the double bond of the containing polyglycerin derivative and obtain a polyglycerin-modified silicone in a high yield, a catalyst is used. The catalyst to be used is not particularly limited, but a Group VIII transition metal such as nickel, ruthenium, rhodium, palladium, iridium, platinum, or a compound thereof can be preferably used. Specific examples of such compounds include group VIII transition metal chloro complexes, olefin complexes, aldehyde complexes, ketone complexes, phosphine complexes, sulfide complexes, nitrile complexes, and the like. Among these, platinum black, chloroplatinic acid, or platinum-based catalysts such as platinum olefin complexes, aldehyde complexes, and ketone complexes are preferable, and chloroplatinic acid is particularly preferable. Chloroplatinic acid is easy to obtain, and the alcoholic solution of chloroplatinic acid is easy to handle because it is a homogeneous system, and the reaction yield is good.
[0025]
In the present invention, the reaction temperature of the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 and the reactive silicone compound represented by formula (2) is preferably 40 to 140 ° C. It is more preferable to react at 60 to 120 ° C. When the reaction temperature is lower than 40 ° C, the reaction time becomes longer, and when the reaction temperature exceeds 140 ° C, the pressure during the reaction increases and the operation becomes complicated.
In the present invention, the reaction time of the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 and the reactive silicone compound represented by the formula (2) is usually in the range of 30 minutes to 40 hours. It is.
[0026]
In the present invention, when the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 and the reactive silicone compound represented by the formula (2) are reacted, the viscosity of the raw material or the product compound is lowered and stirred. For the purpose of facilitating or smoothing the reaction, aliphatic alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol, and aromatic solvents such as toluene and xylene can be used. . Furthermore, when an alcohol-based solvent is used, a reaction regulator such as potassium acetate or sodium acetate can be added in order to suppress side reactions between the —Si group and the hydroxyl group of the alcohol.
[0027]
Further, the present invention comprises a reaction product of glycerin monoallyl ether and glycidol, and the mixing ratio is glycerin monoallyl ether: glycidol = 1: 0.95 to 1.05 in a molar ratio. The hydroxyl value is 750-850 KOHmg / g, and the kinematic viscosity at 25 ° C. is 400-480 mm. 2 The alkenyl group-containing polyglycerol derivative is characterized by being / s.
In the present invention, the hydroxyl value is more preferably 770 to 830 KOHmg / g. Alternatively, the kinematic viscosity at 25 ° C. is 410 to 460 mm. 2 / S.
[0028]
In the alkenyl group-containing polyglycerin derivative obtained by the reaction of glycerin monoallyl ether and glycidol, the hydroxyl value is set to 750 KOHmg / g or more, thereby suppressing high molecular weight components and excessively increasing hydrophilicity. Can be prevented. The hydroxyl value exceeds 850 KOHmg / g and the kinematic viscosity at 25 ° C. is 400 mm. 2 When it is less than / s, unreacted glycidol is contained, the molecular weight becomes low as a whole, and the hydrophilicity of the alkenyl group-containing polyglycerin derivative is lowered. Hydroxyl value exceeds 850 KOHmg / g and kinematic viscosity at 25 ° C. is 480 mm 2 If it exceeds / s, polyglycerin that does not contribute to the reaction with other reactive compounds is included, which is not preferable.
[0029]
Further, the present invention comprises a reaction product of glycerin monoallyl ether and glycidol, and the blending ratio is glycerin monoallyl ether: glycidol = 1: 1.90-2.10 in a molar ratio. The hydroxyl value is 770-810 KOHmg / g, and the kinematic viscosity at 25 ° C. is 2600-3200 mm. 2 The alkenyl group-containing polyglycerol derivative is characterized by being / s. In the present invention, the hydroxyl value is more preferably 780 to 805 KOHmg / g. Alternatively, the kinematic viscosity at 25 ° C. is 2700-3100 mm 2 / S.
[0030]
In the alkenyl group-containing polyglycerin derivative obtained by the reaction of glycerin monoallyl ether and glycidol, a high molecular weight component is suppressed and the hydrophilicity is excessively increased by setting the hydroxyl value to 770 KOHmg / g or more. Can be prevented. Further, the hydroxyl value exceeds 810 KOHmg / g, and the kinematic viscosity at 25 ° C. is 2600 mm. 2 When it is less than / s, unreacted glycidol is contained, the molecular weight becomes low as a whole, and the hydrophilicity of the alkenyl group-containing polyglycerin derivative is lowered. Hydroxyl value exceeds 810 KOHmg / g and kinematic viscosity at 25 ° C. is 3200 mm 2 If it exceeds / s, polyglycerin that does not contribute to the reaction with other reactive compounds is included, which is not preferable.
[0031]
The polyglycerin-modified silicone obtained in the present invention acts as a surfactant using polyglycerin having hydrophilic properties and polydimethylsiloxane having hydrophobic properties, and is a cosmetic raw material, cleaning agent, emulsifying dispersant, fiber treatment It can be used as an agent, paint additive, ink additive, plastic additive, antifogging agent, antifoaming agent, lubricant and the like.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The analysis of the synthesized product was performed by the method described below.
(experimental method)
Hydroxyl value: JIS K-1557 6.4
Kinematic viscosity: JIS K-2283
Unsaturation degree: JIS K-1557 6.7
Moreover, about the determination method of odor, it asked by 10 panelists to determine odor by the following five-step evaluation, and performed by calculating an average value.
1 No smell at all
2 There is a slight smell
3 Some pungent odors
4 Slightly irritating odor
5 There is a strong pungent odor
(Theoretical calculation method: ignore the amount of catalyst added)
1. Theoretical hydroxyl value
56110 / [A (1 + B / C)] × D
A: Molecular weight of the hydroxyl group-containing compound
B: Amount of glycidol charged (g)
C: Amount of charged hydroxyl group-containing compound (g)
D: In the hydroxyl group-containing compound represented by the formula (1), when m = 0, D = 1 + AB / 74C, and when m = 1, D = 2 + AB / 74C
2. Theoretical unsaturation
1000 / [A (1 + B / C)]
[0033]
Example 1
264 g (2 mol) of glycerin monoallyl ether and 0.54 g (0.01 mol) of sodium methoxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured into a measuring tank, and glycidol was injected over 7 hours under the conditions of 105 to 115 ° C. and 0.5 MPa (gauge pressure), and the reaction was continued for 2 hours. Continued. Next, the temperature is lowered to 85 to 95 ° C., and after removing unreacted glycidol in a nitrogen bubbling at −0.097 MPa (gauge pressure) or less, 11 g of water (2% by weight based on the total amount of raw materials charged) is added. Then, the pH was adjusted to 4-6 slightly acidic with hydrochloric acid and stirred for 30 minutes. Subsequently, water was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure). Finally, the precipitated salt was separated by filtration to obtain 505 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 797 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 2900 mm. 2 / S, unsaturation degree 3.48 meq / g (theoretical value 3.57), and the average value of odor determination was 1.1. In addition, Table 1 shows manufacturing conditions and measurement results for Examples 1 to 6.
[0034]
[Table 1]
Figure 0004776873
[0035]
(Example 2)
264 g (2 mol) of glycerin monoallyl ether and 1.12 g (0.02 mol) of potassium hydroxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature is raised to 120 ° C., 296 g (4 moles) of glycidol is weighed into a measuring tank, and glycidol is injected over the course of 115 hours to 125 ° C. and 0.5 MPa (gauge pressure) or less, and further reacted for 2 hours. Continued. Next, the temperature is lowered to 85 to 95 ° C., and after removing unreacted glycidol in a nitrogen bubbling of −0.097 MPa (gauge pressure) or less, 28 g of water (5% by weight based on the total amount of raw materials charged) is added. Then, the pH was adjusted to 4-6 slightly acidic with hydrochloric acid and stirred for 30 minutes. Subsequently, water was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure), and finally the salt deposited was filtered to obtain 510 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 799 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 3005 mm. 2 / S, degree of unsaturation 3.45 meq / g (theoretical value 3.57), the average value of odor determination was also low.
[0036]
(Example 3)
356.4 g (2.7 mol) of glycerin monoallyl ether and 0.32 g (0.008 mol) of sodium hydroxide were charged into a 1 liter autoclave, and the system was replaced with nitrogen. The temperature was raised, and dehydration was performed in nitrogen bubbling for 1 hour or less at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 120 ° C., 200 g (2.7 mol) of glycidol was weighed into a measuring tank, and glycidol was injected over 6 hours under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure). The reaction continued for hours. Next, the temperature is lowered to 85 to 95 ° C., and after removing unreacted glycidol in a nitrogen bubbling of −0.097 MPa (gauge pressure) or less, 17 g of water (3% by weight based on the total amount of raw materials charged) is added. Then, the pH was adjusted to 4-6 slightly acidic with hydrochloric acid and stirred for 30 minutes. Subsequently, water was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure), and finally the salt deposited was filtered to obtain 510 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 816 KOH mg / g (theoretical value 817), kinematic viscosity (25 ° C.) 434 mm. 2 / S, degree of unsaturation 4.84 meq / g (theoretical value 4.85), the average value of odor determination was also low.
[0037]
Example 4
264 g (2 mol) of glycerin monoallyl ether and 0.54 g (0.01 mol) of sodium methoxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured into a measuring tank, and glycidol was injected over 7 hours under the conditions of 105 to 115 ° C. and 0.5 MPa (gauge pressure), and the reaction was continued for 2 hours. Continued. Next, the temperature is lowered to 85 to 95 ° C., and after removing unreacted glycidol in a nitrogen bubbling at −0.097 MPa (gauge pressure) or less, 11 g of water (2% by weight based on the total amount of raw materials charged) is added. Then, the pH was adjusted to 4-6 slightly acidic with acetic acid and stirred for 30 minutes. Subsequently, water was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure). Finally, the precipitated salt was separated by filtration to obtain 511 g of a compound.
The analysis values of the synthesized product are a hydroxyl value of 795 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 2930 mm 2 / S, degree of unsaturation 3.49 meq / g (theoretical value 3.57), and the average value of odor determination was 2.2.
[0038]
(Example 5)
264 g (2 mol) of glycerin monoallyl ether and 1.12 g (0.02 mol) of potassium hydroxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature is raised to 120 ° C., 296 g (4 moles) of glycidol is weighed into a measuring tank, and glycidol is injected over the course of 115 hours to 125 ° C. and 0.5 MPa (gauge pressure) or less, and further reacted for 2 hours. Continued. Next, the temperature is lowered to 85 to 95 ° C., and after removing unreacted glycidol in a nitrogen bubbling of −0.097 MPa (gauge pressure) or less, 28 g of water (5% by weight based on the total amount of raw materials charged) is added. Then, the pH was adjusted to 4-6 slightly acidic with acetic acid and stirred for 30 minutes. Subsequently, water was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure). Finally, the precipitated salt was separated by filtration to obtain 508 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 797 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 2980 mm. 2 / S, degree of unsaturation 3.51 meq / g (theoretical value 3.57), and the average value of odor determination was 2.2.
[0039]
(Example 6)
356.4 g (2.7 mol) of glycerin monoallyl ether and 0.32 g (0.008 mol) of sodium hydroxide were charged into a 1 liter autoclave, and the system was replaced with nitrogen. The temperature was raised, and dehydration was performed in nitrogen bubbling for 1 hour or less at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 120 ° C., 200 g (2.7 mol) of glycidol was weighed into a measuring tank, and glycidol was injected over 6 hours under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure). The reaction continued for hours. Next, the temperature is lowered to 85 to 95 ° C., and after removing unreacted glycidol in a nitrogen bubbling of −0.097 MPa (gauge pressure) or less, 17 g of water (3% by weight based on the total amount of raw materials charged) is added. Then, the pH was adjusted to 4-6 slightly acidic with acetic acid and stirred for 30 minutes. Subsequently, moisture was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure), and finally the salt deposited was filtered to obtain 513 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 814 KOH mg / g (theoretical value 817), kinematic viscosity (25 ° C.) 431 mm. 2 / S, degree of unsaturation 4.83 meq / g (theoretical value 4.85), the average value of odor determination was 2.1.
[0040]
(Comparative Example 1)
264 g (2 mol) of glycerin monoallyl ether and 5.60 g (0.14 mol) of sodium hydroxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured in a measuring tank, and glycidol was injected over 8 hours under the conditions of 105 to 115 ° C. and 0.5 MPa (gauge pressure), and the reaction was continued for 2 hours. Continued. Next, the temperature is lowered to 85 to 95 ° C., unreacted glycidol is removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, pH is adjusted to 4 to 6 weakly acidic with acetic acid, and the mixture is stirred for 30 minutes. did. Subsequently, moisture was removed for 1 hour in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure), and finally the salt deposited was filtered to obtain 499 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 817 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 3278 mm. 2 / S, degree of unsaturation 3.24 meq / g (theoretical value 3.57). When the odor was examined, a very strong irritating odor was observed. It seems that some of the allyl group was internally transferred to a propenyl group. In addition, Table 2 shows manufacturing conditions and measurement results of Comparative Examples 1 to 6.
[0041]
[Table 2]
Figure 0004776873
[0042]
(Comparative Example 2)
264 g (2 mol) of glycerin monoallyl ether and 1.12 g (0.02 mol) of sodium methoxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, 296 g (4 moles) of glycidol was measured in a measuring tank while maintaining the temperature at 80 ° C., and glycidol was injected over 10 hours under the conditions of 75 to 85 ° C. and 0.5 MPa (gauge pressure) or less, and the reaction was further continued for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, then adjusted to slightly acidic with hydrochloric acid to pH 4 to 6 and stirred for 30 minutes. Subsequently, moisture was removed for 1 hour in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure). Finally, the deposited salt was separated by filtration to obtain 395 g of a compound.
The analysis values of the synthesized product are a hydroxyl value of 897 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 2460 mm. 2 / S, degree of unsaturation 3.97 meq / g (theoretical value 3.57), and the average value of odor determination was 2.3. The yield is low and the molecular weight is small, indicating that a large amount of unreacted glycidol remains.
[0043]
(Comparative Example 3)
264 g (2 mol) of glycerin monoallyl ether and 0.56 g (0.01 mol) of sodium methoxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 150 ° C., 296 g (4 moles) of glycidol was weighed in a measuring tank, and glycidol was injected over 8 hours under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure), and the reaction was continued for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, then adjusted to weak acidity of pH 4 to 6 with acetic acid, and stirred for 30 minutes. Subsequently, moisture was removed for 1 hour in nitrogen bubbling at 105 to 115 ° C., −0.097 MPa (gauge pressure) or less, and finally deposited salt was separated by filtration to obtain 500 g of a compound.
The analysis values of the synthesized product are a hydroxyl value of 813 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 3168 mm. 2 / S, degree of unsaturation 3.38 meq / g (theoretical value 3.57), the average value of odor determination was 4.1. It seems that some of the allyl group was internally transferred to a propenyl group.
[0044]
(Comparative Example 4)
264 g (2 mol) of glycerin monoallyl ether and 5.6 g of boron trifluoride diethyl ether complex were charged into a 1 liter autoclave, and the system was replaced with nitrogen, and then the temperature was raised to 60 ° C. with stirring to give 296 g of glycidol. (4 mol) was weighed into a measuring tank, glycidol was injected over 7 hours under the conditions of 55 to 65 ° C. and 0.5 MPa (gauge pressure), and the reaction was continued for another 2 hours. Next, the temperature was raised to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 20 g of Kyoward 600 (manufactured by Kyowa Chemical Industry Co., Ltd.) 3.5 wt% with respect to the charged amount) and 95 to 105 ° C., −0.097 MPa (gauge pressure) or less, treated in nitrogen bubbling for 1 hour, and the adsorbent was filtered to obtain 370 g of a compound. It was. In addition, clogging occurred during the filtration, and the yield decreased.
The analysis value of the synthesized product is a hydroxyl value of 780 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 3784 mm. 2 / S, degree of unsaturation 3.48 meq / g (theoretical value 3.57), the average value of odor determination was 2.5. It can be seen that the yield is low due to the use of a large amount of adsorbent, and that a compound having a cross-linked structure is formed by partial boronation by remaining boron.
[0045]
(Comparative Example 5)
264 g (2 mol) of glycerin monoallyl ether and 5.60 g (0.14 mol) of sodium hydroxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured in a measuring tank, and glycidol was injected over 8 hours under the conditions of 105 to 115 ° C. and 0.5 MPa (gauge pressure), and the reaction was continued for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 16.7 g of water (3% by weight based on the total amount of raw materials charged) Was added, the pH was adjusted to 4-6 with hydrochloric acid, and the mixture was stirred for 30 minutes. Subsequently, water was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure), and finally the salt deposited was filtered to obtain 495 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 830 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 3402 mm. 2 / S, degree of unsaturation 3.20 meq / g (theoretical value 3.57), and the average value of odor determination was 1.5. It seems that some of the allyl group was internally transferred to a propenyl group.
[0046]
(Comparative Example 6)
264 g (2 mol) of glycerin monoallyl ether and 0.56 g (0.01 mol) of sodium methoxide were charged into a 1 liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at −0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 150 ° C., 296 g (4 moles) of glycidol was weighed in a measuring tank, and glycidol was injected over 8 hours under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure), and the reaction was continued for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 16.7 g of water (3% by weight based on the total amount of raw materials charged) Was adjusted to a slightly acidic pH of 4-6 with hydrochloric acid and stirred for 30 minutes. Subsequently, moisture was removed for 4 hours in nitrogen bubbling at 105 to 115 ° C. and −0.097 MPa (gauge pressure), and finally the salt deposited was filtered to obtain 497 g of a compound.
The analysis value of the synthesized product is a hydroxyl value of 824 KOH mg / g (theoretical value 802), kinematic viscosity (25 ° C.) 3284 mm. 2 / S, degree of unsaturation 3.34 meq / g (theoretical value 3.57), and the average value of odor determination was 1.3. It seems that some of the allyl group was internally transferred to a propenyl group.
[0047]
(Example 7)
A 1-liter four-necked flask was equipped with a stirrer, a cooling tube, a dropping funnel, and a nitrogen introduction tube, and 100 g of the compound obtained in Example 1 was added with hydrogen dimethylpolysiloxane represented by the formula (5) (trade name: KME 1234, manufactured by Bayer, Si—H group equivalent: 2.17 milliequivalent) 128.7 g, chloroplatinic acid hexahydrate isopropyl alcohol solution (1 × 10 6 as a catalyst) -3 (Mol / liter) 7.0 ml, potassium acetate 0.1 g, and 200 g of isopropyl alcohol as a solvent were charged, and the mixture was stirred at a reflux temperature of isopropyl alcohol for 5 hours in a nitrogen atmosphere. After completion of the reaction, sampling was performed, and an isopropyl alcohol solution of N / 10 potassium hydroxide was added to confirm whether hydrogen gas was generated. As a result, generation of hydrogen gas was not observed.
[Chemical 7]
Figure 0004776873
(However, m = 18 and n = 5 in the formula)
[0048]
(Comparative Example 7)
A 1-liter four-necked flask was equipped with a stirrer, a cooling tube, a dropping funnel, and a nitrogen introduction tube, and 100 g of the compound obtained in Comparative Example 4 was added with hydrogen dimethylpolysiloxane represented by the formula (5) (trade name: KME 1234, manufactured by Bayer, Si—H group equivalent: 2.17 milliequivalent) 128.7 g, chloroplatinic acid hexahydrate isopropyl alcohol solution (1 × 10 6 as a catalyst) -3 (Mol / liter) 7.0 ml, potassium acetate 0.1 g, and 200 g of isopropyl alcohol as a solvent were charged, and the mixture was stirred at a reflux temperature of isopropyl alcohol for 5 hours in a nitrogen atmosphere. After completion of the reaction, sampling was performed, and an isopropyl alcohol solution of N / 10 potassium hydroxide was added to confirm whether hydrogen gas was generated. As a result, hydrogen gas was generated. The reactivity of decreased.
[0049]
【The invention's effect】
In the present invention, when producing an alkenyl group-containing polyglycerin derivative having one double bond at the terminal, the amount of unreacted glycidol and by-product polyglycerin is small, and the internal transfer of the terminal double bond-containing alkenyl group is suppressed. can do.

Claims (3)

式(1)で示される水酸基含有化合物にアルカリ触媒存在下、触媒濃度が前記水酸基含有化合物に対し0.1〜3モル%、グリシドール付加反応温度が100〜140℃の条件にて、前記水酸基含有化合物1モルに対して1〜モルに相当するグリシドールを開環重合させ、不活性雰囲気下に前記水酸基含有化合物およびグリシドールの仕込量総量に対し水を2〜10重量%および酸を加え不活性ガスバブリング下に水分を除去し精製処理することを特徴とする、アルケニル基含有ポリグリセリン誘導体の製造方法。
Figure 0004776873
(但し、式中Rはアリル基、mは1を表す)
In the presence of an alkali catalyst in the hydroxyl group-containing compound represented by formula (1), the catalyst concentration is 0.1 to 3 mol% with respect to the hydroxyl group-containing compound, and the glycidol addition reaction temperature is 100 to 140 ° C. 1 to 8 mol of glycidol corresponding to 1 mol of the compound is subjected to ring-opening polymerization, and 2 to 10% by weight of water and an acid are added to the total amount of the hydroxyl group-containing compound and glycidol in an inert atmosphere to be inactive. A method for producing an alkenyl group-containing polyglycerin derivative, characterized by removing water under gas bubbling and performing a purification treatment.
Figure 0004776873
(In the formula, R represents an allyl group , and m represents 1).
前記アルケニル基含有ポリグリセリン誘導体が、グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:0.95〜1.05であり、前記反応生成物の水酸基価が750〜850KOHmg/gであり、かつ25℃における動粘度が400〜480mm/sであることを特徴とする、請求項記載の方法。The alkenyl group-containing polyglycerin derivative is a reaction product of glycerin monoallyl ether and glycidol, and the blending ratio is glycerin monoallyl ether: glycidol = 1: 0.95 to 1.05 in a molar ratio. 2. The method according to claim 1 , wherein the product has a hydroxyl value of 750 to 850 KOH mg / g and a kinematic viscosity at 25 [deg.] C. of 400 to 480 mm < 2 > / s. 前記アルケニル基含有ポリグリセリン誘導体が、グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:1.90〜2.10であり、前記反応生成物の水酸基価が770〜810KOHmg/gであり、かつ25℃における動粘度が2600〜3200mm/sであることを特徴とする、請求項記載の方法。The alkenyl group-containing polyglycerin derivative comprises a reaction product of glycerin monoallyl ether and glycidol, and the mixing ratio is glycerin monoallyl ether: glycidol = 1: 1.90-2.10 in a molar ratio, The method according to claim 1 , wherein the product has a hydroxyl value of 770 to 810 KOHmg / g and a kinematic viscosity at 25 ° C of 2600 to 3200 mm 2 / s.
JP2003070065A 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative Expired - Lifetime JP4776873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070065A JP4776873B2 (en) 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070065A JP4776873B2 (en) 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative

Publications (2)

Publication Number Publication Date
JP2004277548A JP2004277548A (en) 2004-10-07
JP4776873B2 true JP4776873B2 (en) 2011-09-21

Family

ID=33286913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070065A Expired - Lifetime JP4776873B2 (en) 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative

Country Status (1)

Country Link
JP (1) JP4776873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492064A1 (en) 2017-11-29 2019-06-05 Shin-Etsu Chemical Co., Ltd. Bicontinuous microemulsion composition and cosmetic

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057215B2 (en) * 2007-02-15 2012-10-24 日油株式会社 Process for producing polyoxyalkylene-modified organopolysiloxane compound
DE102008032066A1 (en) * 2008-07-08 2010-01-14 Byk-Chemie Gmbh Polyhydroxy-functional polysiloxanes as anti-adhesive and dirt-repellent additives in coatings, polymeric molding compounds and thermoplastics, process for their preparation and their use
DE102008032064A1 (en) * 2008-07-08 2010-01-14 Byk-Chemie Gmbh Polyhydroxy-functional polysiloxanes for increasing the surface energy of thermoplastics, processes for their preparation and their use
JP2011252049A (en) * 2010-06-01 2011-12-15 Daicel Corp Polylactic acid plasticization composition
CN105189430B (en) 2012-12-28 2018-08-10 道康宁东丽株式会社 High-purity glycerol derivatives containing monoene and its manufacturing method
JP2019515897A (en) 2016-04-27 2019-06-13 ダウ シリコーンズ コーポレーション Hydrophilic silane
EP3448350A1 (en) 2016-04-27 2019-03-06 Dow Corning Corporation Hydrophilic silanes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492064A1 (en) 2017-11-29 2019-06-05 Shin-Etsu Chemical Co., Ltd. Bicontinuous microemulsion composition and cosmetic
US11007127B2 (en) 2017-11-29 2021-05-18 Shin-Etsu Chemical Co., Ltd. Bicontinuous microemulsion composition and cosmetic

Also Published As

Publication number Publication date
JP2004277548A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US7999053B2 (en) Aldehyde functional siloxanes
JP4319711B2 (en) Method for producing siloxane-polyoxyalkylene copolymer
JP5587538B2 (en) Method for producing organic polymer having terminal end of trimethoxysilyl group
JP2022509658A (en) Preparation method of reactive sealant resin
JP4776873B2 (en) Process for producing alkenyl group-containing polyglycerol derivative
JP3925940B2 (en) Method for producing ether compound
JP3855344B2 (en) Process for producing polyoxyalkylene carboxylic acid
KR20220107237A (en) Polyether-modified polybutadiene and method for preparing same
CN114729126B (en) Low isomer hydrosilylation
JP3661810B2 (en) Method for producing hydroxyl group-containing siloxane compound
JP4468629B2 (en) Organic polymer having epoxy group-containing silicon group at terminal and method for producing the same
EP2170923B1 (en) Process for preparation of oligomeric or polymeric compounds using selective michael addition
JP5057215B2 (en) Process for producing polyoxyalkylene-modified organopolysiloxane compound
KR101684640B1 (en) A manufacturing method of glycidol using glycerol and glycidol manufactured by the method
JPH08500368A (en) How to convert acetal to ether
JPH11335463A (en) Polyether-modified polysiloxane composition freed of odor
JP3818704B2 (en) Method for producing oligoglycerin
JP2003096192A (en) Polyoxyalkylene-modified polysiloxane of high purity and its production method
CA2994475A1 (en) Process for producing hydrosilylable polyoxyalkylene ethers
JP4503777B2 (en) Method for producing modified vinyl ether polymer
JP6202471B2 (en) Method for producing medical polyoxypropylene polymer and method for producing medical polyoxypropylene / polyoxyethylene block copolymer
TWI393733B (en) Polysilane and its manufacturing method
JP2005298463A (en) Ring-opening polymerization method
JP4957001B2 (en) Process for producing terminal alkenyl group-containing polyoxyalkylene sterol derivative
JP2024519165A (en) Hydrogenated polyether modified polybutadiene and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080813

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Ref document number: 4776873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term