JP4776567B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4776567B2
JP4776567B2 JP2007050442A JP2007050442A JP4776567B2 JP 4776567 B2 JP4776567 B2 JP 4776567B2 JP 2007050442 A JP2007050442 A JP 2007050442A JP 2007050442 A JP2007050442 A JP 2007050442A JP 4776567 B2 JP4776567 B2 JP 4776567B2
Authority
JP
Japan
Prior art keywords
conductive polymer
ions
layer
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007050442A
Other languages
Japanese (ja)
Other versions
JP2008218519A (en
Inventor
哲郎 岩佐
中島  宏
大村  誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007050442A priority Critical patent/JP4776567B2/en
Priority to KR1020070117881A priority patent/KR101083465B1/en
Priority to TW096143647A priority patent/TWI456612B/en
Priority to CN2007101969972A priority patent/CN101256901B/en
Priority to US12/027,537 priority patent/US8050014B2/en
Publication of JP2008218519A publication Critical patent/JP2008218519A/en
Application granted granted Critical
Publication of JP4776567B2 publication Critical patent/JP4776567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性高分子を固体電解質として有する固体電解コンデンサの製造方法に関する。
The present invention relates to a method for producing a solid electrolytic capacitor having a conductive polymer as a solid electrolyte.

従来、近年、電子機器の小型化、軽量化に伴って、高周波領域におけるインピーダンスが低く、小型で大容量の高周波用のコンデンサが要求されるようになってきた。そのため、電解質に導電性高分子を用いた固体電解コンデンサに対しても、高周波帯域での特性改善として更なるESR(Equivalent Series Resistance)の低減が求められている。ここで導電性高分子は、ピロール、チオフェン、フラン、アニリン等を重合して得られる高分子のことを示す。   2. Description of the Related Art Conventionally, in recent years, along with the reduction in size and weight of electronic devices, there has been a demand for a high-frequency capacitor having a low impedance in the high-frequency region and having a small size and a large capacity. Therefore, even for a solid electrolytic capacitor using a conductive polymer as an electrolyte, further reduction in ESR (Equivalent Series Resistance) is required as a characteristic improvement in a high frequency band. Here, the conductive polymer refers to a polymer obtained by polymerizing pyrrole, thiophene, furan, aniline, or the like.

導電性高分子の形成方法としては、化学重合法や電解重合法がある。一般に、電解重合法で形成された導電性高分子の膜は、化学重合法で形成された導電性高分子の膜より導電性に優れ、且つ強固な膜が形成できる。電解重合法で作製された導電性高分子を固体電解質層として用いた場合、その表面が平滑になりやすく、その上に形成される陰極引出層との密着性が悪く、高周波領域でのESRが増大してしまう。   As a method for forming the conductive polymer, there are a chemical polymerization method and an electrolytic polymerization method. In general, a conductive polymer film formed by an electrolytic polymerization method is superior in conductivity to a conductive polymer film formed by a chemical polymerization method, and a strong film can be formed. When a conductive polymer produced by an electropolymerization method is used as a solid electrolyte layer, its surface tends to be smooth, its adhesion to the cathode lead layer formed thereon is poor, and ESR in a high frequency region is low. It will increase.

一方、ESRを低減する方法として、固体電解質層と陰極引出層との密着性を改善することが行われている。例えば、導電性粉末を導電性高分子内に埋め込んで固体電解質層表面に凹凸を設け、陰極引出層との密着力を強化する技術(例えば特許文献1)や、電解重合による導電性高分子の上に化学重合による導電性高分子を形成し、陰極引出層との密着性を良好にする技術(例えば特許文献2)等が知られている。
特開平7−94368号公報 特開2000−133549号公報
On the other hand, as a method for reducing ESR, improving the adhesion between the solid electrolyte layer and the cathode lead layer is performed. For example, a technique for embedding conductive powder in a conductive polymer to provide irregularities on the surface of the solid electrolyte layer and strengthening the adhesion with the cathode lead layer (for example, Patent Document 1), or a conductive polymer by electrolytic polymerization A technique (for example, Patent Document 2) that forms a conductive polymer by chemical polymerization to improve the adhesion to the cathode lead layer is known.
JP-A-7-94368 JP 2000-133549 A

しかしながら、前者の技術(特許文献1)では、導電性粉末の存在によって固体電解質層が厚くなってしまい、コンデンサが大型化するという問題点があった。
また、後者の技術(特許文献2)では、電解重合による導電性高分子を形成した後に化学重合による導電性高分子を形成するので、工程数が増え、製造が容易でないという問題があった。
However, the former technique (Patent Document 1) has a problem that the solid electrolyte layer becomes thick due to the presence of the conductive powder, and the capacitor becomes large.
In the latter technique (Patent Document 2), since the conductive polymer is formed by chemical polymerization after the conductive polymer is formed by electrolytic polymerization, there is a problem that the number of processes increases and manufacturing is not easy.

本発明は、上記の問題を鑑みて、陰極引出層との密着性に優れた固体電解質を作製し、小型でESR特性に優れ、且つ製造が容易な固体電解コンデンサの製造方法を提供することを目的とする。
In view of the above problems, the present invention provides a method for producing a solid electrolytic capacitor that produces a solid electrolyte excellent in adhesion to the cathode lead layer and is small, excellent in ESR characteristics, and easy to manufacture. Objective.

上記問題を解決するため、本発明は、固体電解質層を有する固体電解コンデンサの製造方法において、前記固体電解質層は、電解重合導電性高分子と化学重合導電性高分子とを有する導電性高分子ハイブリッド層を有し、前記導電性高分子ハイブリッド層は、電解酸化され得る金属イオン及び/又は金属酸化物イオンを含有する電解重合液中で、電解重合反応と、前記金属イオン及び/又は金属酸化物イオンが電解酸化されて発生する酸化剤を用いて化学重合反応とを行うことにより形成されることを特徴とする。
In order to solve the above problems, the present invention provides a method for producing a solid electrolytic capacitor having a solid electrolyte layer, wherein the solid electrolyte layer includes a conductive polymer having an electrolytic polymerization conductive polymer and a chemical polymerization conductive polymer. The conductive polymer hybrid layer has an electropolymerization reaction and the metal ions and / or metal oxides in an electropolymerization solution containing metal ions and / or metal oxide ions that can be electrolytically oxidized. It is formed by performing a chemical polymerization reaction using an oxidizing agent generated by electrolytic oxidation of product ions.

前記金属イオン及び/又は金属酸化物イオンは、鉄(II)イオン、ニッケル(II)イオン、ルテニウム(II)イオン、マンガン(II)イオン、マンガン酸イオン、クロム酸イオンからなる群から選ばれる少なくとも一種を含んでいることが好ましい。
The metal ions and / or metal oxide ions are at least selected from the group consisting of iron (II) ions, nickel (II) ions, ruthenium (II) ions, manganese (II) ions, manganate ions, and chromate ions. It is preferable that 1 type is included.

本発明に係る固体電解コンデンサによれば、前記導電性高分子ハイブリッド層は、その上に形成される陰極引出層との密着性が良好で、接触面積が増大し集電が向上することから、ESRの低減を実現できる。しかも、前記導電性高分子ハイブリッド層は、電解重合導電性高分子と化学重合導電性高分子を含有するものであるから、小型を維持してESRに優れた固体電解コンデンサを実現できる。   According to the solid electrolytic capacitor according to the present invention, the conductive polymer hybrid layer has good adhesion with the cathode lead layer formed thereon, the contact area is increased, and the current collection is improved. ESR can be reduced. Moreover, since the conductive polymer hybrid layer contains an electropolymerized conductive polymer and a chemically polymerized conductive polymer, a solid electrolytic capacitor excellent in ESR can be realized while maintaining a small size.

また、本発明に係る固体電解コンデンサの製造方法によれば、前記導電性高分子ハイブリッド層は、電解重合中に化学重合が行われて形成されるので、工程数を増大することなくESR特性に優れた固体電解コンデンサを簡易な製造方法で製造できる。しかも、電解重合液中での化学重合は、重合膜表面近傍で酸化剤が発生して起きるため、電解重合導電性高分子と化学重合導電性高分子との接触抵抗が小さく導電性が良好な前記導電性高分子ハイブリッド層が得られ、ESRの低減に寄与する。   Also, according to the method for manufacturing a solid electrolytic capacitor according to the present invention, the conductive polymer hybrid layer is formed by performing chemical polymerization during electrolytic polymerization, so that the ESR characteristic can be obtained without increasing the number of steps. An excellent solid electrolytic capacitor can be manufactured by a simple manufacturing method. Moreover, since chemical polymerization in the electrolytic polymerization solution occurs due to the generation of an oxidizing agent near the surface of the polymer film, the contact resistance between the electrolytic polymerization conductive polymer and the chemical polymerization conductive polymer is small and the conductivity is good. The conductive polymer hybrid layer is obtained and contributes to the reduction of ESR.

本発明を実施するための最良の形態について、以下に説明する。
図1は、本発明の一実施形態を示す固体電解コンデンサの断面図である。本実施の形態の固体電解コンデンサは、陽極リード10を植立した弁作用金属からなる陽極体1の周面に、誘電体皮膜2、固体電解質層3が形成され、固体電解質層3の上に、第一陰極引出層4、第二陰極引出層5が形成されたコンデンサ素子8を有する。コンデンサ素子8は、陽極リード10に陽極リードフレーム20が接続され、第二陰極引出層5に導電性接着剤(図示せず)を介して陰極リードフレーム21が接続されている。このコンデンサ素子8の周囲には、陽極リードフレーム20及び陰極リードフレーム21の端部が外部に引き出されるように外装樹脂が被覆形成されている。以上のように、本実施の形態による固体電解コンデンサが構成されている。なお、固体電解質3上に形成される陰極引出層は、第一陰極引出層4及び第二陰極引出層5による積層構造でなく、単層構造であってもよい。
The best mode for carrying out the present invention will be described below.
FIG. 1 is a cross-sectional view of a solid electrolytic capacitor showing an embodiment of the present invention. In the solid electrolytic capacitor of the present embodiment, a dielectric film 2 and a solid electrolyte layer 3 are formed on the peripheral surface of an anode body 1 made of a valve metal that has an anode lead 10 planted thereon, on the solid electrolyte layer 3. The capacitor element 8 has the first cathode lead layer 4 and the second cathode lead layer 5 formed thereon. In the capacitor element 8, an anode lead frame 20 is connected to the anode lead 10, and a cathode lead frame 21 is connected to the second cathode lead layer 5 via a conductive adhesive (not shown). A sheathing resin is coated around the capacitor element 8 so that the ends of the anode lead frame 20 and the cathode lead frame 21 are drawn out to the outside. As described above, the solid electrolytic capacitor according to the present embodiment is configured. Note that the cathode lead layer formed on the solid electrolyte 3 may have a single-layer structure instead of the laminated structure of the first cathode lead layer 4 and the second cathode lead layer 5.

上記固体電解質層3は、電解重合導電性高分子と化学重合導電性高分子とを含有する導電性高分子ハイブリッド層32有している。具体的には、固体電解質層3は、誘電体皮膜2上に形成された導電性プレコート層31と、この導電性プレコート層31上に形成され、第一陰極引出層4と接触する上記導電性高分子ハイブリッド層32とから構成されている。なお、導電性高分子とは具体的にはピロール、チオフェン、フラン等の複素環化合物、アニリン等の芳香族化合物、及びそれらの誘導体をモノマーとして重合させ高分子化したものをいう。上記電解重合導電性高分子とは、電解重合によって形成された導電性高分子をいう。上記化学重合導電性高分子とは、化学重合によって形成された導電性高分子をいう。   The solid electrolyte layer 3 has a conductive polymer hybrid layer 32 containing an electropolymerized conductive polymer and a chemically polymerized conductive polymer. Specifically, the solid electrolyte layer 3 includes the conductive precoat layer 31 formed on the dielectric film 2 and the conductive conductivity formed on the conductive precoat layer 31 and in contact with the first cathode lead layer 4. And a polymer hybrid layer 32. The conductive polymer specifically refers to a polymer obtained by polymerizing a heterocyclic compound such as pyrrole, thiophene or furan, an aromatic compound such as aniline, or a derivative thereof as a monomer. The electropolymerized conductive polymer refers to a conductive polymer formed by electrolytic polymerization. The chemical polymerization conductive polymer refers to a conductive polymer formed by chemical polymerization.

上記導電性高分子ハイブリッド層32は、電解重合反応と同時に化学重合反応を発生させることによって形成され、電解重合導電性高分子中に化学重合導電性高分子が混在した構造を有するものである。従って、この導電性高分子ハイブリッド層32の表面には、単なる電解重合導電性高分子の膜に比べて微細な凹凸が形成されている。
なお、上記コンデンサ素子8を構成する陽極体1、誘電体皮膜2、第一陰極引出層4、第二陰極引出層5は、公知の固体電解コンデンサと同様に種々の物質が採用される。
The conductive polymer hybrid layer 32 is formed by generating a chemical polymerization reaction simultaneously with the electrolytic polymerization reaction, and has a structure in which the chemically polymerized conductive polymer is mixed in the electrolytic polymerization conductive polymer. Accordingly, fine irregularities are formed on the surface of the conductive polymer hybrid layer 32 as compared with a film of a simple electropolymerized conductive polymer.
The anode element 1, the dielectric film 2, the first cathode extraction layer 4, and the second cathode extraction layer 5 constituting the capacitor element 8 are made of various materials in the same manner as known solid electrolytic capacitors.

次に、本実施の形態の固体電解コンデンサの製造方法を説明する。
まず、弁作用金属からなる陽極体1を陽極酸化して表面に誘電体皮膜2を形成した後、例えば、化学重合による導電性高分子層または熱分解による二酸化マンガン層などの導電性プレコート層31を誘電体皮膜2表面に形成する。
Next, the manufacturing method of the solid electrolytic capacitor of this Embodiment is demonstrated.
First, an anode body 1 made of a valve metal is anodized to form a dielectric film 2 on the surface, and then, for example, a conductive precoat layer 31 such as a conductive polymer layer by chemical polymerization or a manganese dioxide layer by thermal decomposition. Is formed on the surface of the dielectric film 2.

次いで、導電性プレコート層31表面に、電解重合導電性高分子と化学重合導電性高分子とを含む導電性高分子ハイブリッド層32を形成する。この導電性高分子ハイブリッド層32は、少なくとも導電性高分子を形成するモノマーと、支持電解質とを含む溶液に、電解酸化可能な金属イオン又は電解酸化可能な金属酸化物イオンを予め少量添加した電解重合液を調整し、この電解重合液中に図2(a)に示すように、導電性プレコート層31が形成された陽極体素子1Aを浸漬し、この陽極体素子1Aの一部に外部から陽極棒を当接するか電解重合用電極を陽極リード10に接続し、前記電解重合液中に配設した陰極板と陽極体素子1Aを通電して重合反応を開始することにより形成される。   Next, a conductive polymer hybrid layer 32 including an electropolymerized conductive polymer and a chemically polymerized conductive polymer is formed on the surface of the conductive precoat layer 31. This conductive polymer hybrid layer 32 is an electrolysis in which a small amount of a metal ion capable of electrolytic oxidation or a metal oxide ion capable of electrolytic oxidation is added in advance to a solution containing at least a monomer that forms a conductive polymer and a supporting electrolyte. As shown in FIG. 2 (a), an anode body element 1A on which a conductive precoat layer 31 is formed is immersed in this electrolytic polymerization liquid, and a part of this anode body element 1A is externally applied. It is formed by contacting the anode rod or connecting the electrode for electrolytic polymerization to the anode lead 10 and starting the polymerization reaction by energizing the cathode plate and the anode element 1A disposed in the electrolytic polymerization solution.

すると、図2(b)に示すように、上記重合反応は、陽極体素子1Aを陽極として電解重合反応が行われるのと同時に、電解酸化可能な金属イオンまたは金属酸化物イオンMn+が陽極(上記陽極体素子1Aや、本重合反応によってこの陽極体素子1A上に形成されていく重合膜も含む。)の表面やこの表面近傍で、電解酸化されて高原子価となり、この高原子価となった金属イオンまたは金属酸化物イオンM(n+α)+が酸化剤として作用して近傍のモノマーを酸化し化学重合反応が行われる。また、酸化剤として機能した高原子価の金属イオン又は金属酸化物イオンM(n+α)+は、上記化学重合反応によって還元されるので、電解酸化可能な低原子価の金属イオン又は金属酸化物イオンMn+に戻り、上記陽極付近等で再び電解酸化される。これを繰り返すことにより、化学重合反応が維持される。例えば、電解重合液に予め第一鉄イオン(Fe2+)を少量添加し重合反応を開始すると、電解重合反応以外に、第一鉄イオン(Fe2+)が上記陽極上で酸化されて第二鉄イオン(Fe3+)が発生し、この第二鉄イオン(Fe3+)が近傍のモノマーを酸化し化学重合反応が発生する。 Then, as shown in FIG. 2B, in the polymerization reaction, the electrolytic polymerization reaction is performed using the anode element 1A as the anode, and at the same time, the metal ions or metal oxide ions M n + that can be electrooxidized are converted into the anode ( The surface of the anode body element 1A and a polymer film formed on the anode body element 1A by the main polymerization reaction) and the vicinity of the surface are electrolytically oxidized to have a high valence. The formed metal ions or metal oxide ions M (n + α) + act as an oxidizing agent to oxidize nearby monomers and perform a chemical polymerization reaction. In addition, since the high-valent metal ion or metal oxide ion M (n + α) + functioning as an oxidant is reduced by the chemical polymerization reaction, the low-valent metal ion or metal oxide ion that can be electrolytically oxidized Returning to M n + , electrolytic oxidation is performed again in the vicinity of the anode. By repeating this, the chemical polymerization reaction is maintained. For example, when a small amount of ferrous ion (Fe 2+ ) is added to the electrolytic polymerization solution in advance and the polymerization reaction is started, in addition to the electrolytic polymerization reaction, ferrous ion (Fe 2+ ) is oxidized on the anode and ferric iron is added. Ions (Fe 3+ ) are generated, and the ferric ions (Fe 3+ ) oxidize nearby monomers to generate a chemical polymerization reaction.

前述したことにより、陽極体素子1A表面には、電解重合反応によって電解重合導電性高分子膜が形成されると同時に、この電解重合導電性高分子膜の表面に化学重合反応によって微細な化学重合導電性高分子膜が適度に形成され、これによって、電解重合導電性高分子中に化学重合導電性高分子が混在した上記導電性高分子ハイブリッド層32が形成される。   As described above, an electrolytic polymerization conductive polymer film is formed on the surface of the anode element 1A by an electrolytic polymerization reaction, and at the same time, fine chemical polymerization is performed on the surface of the electrolytic polymerization conductive polymer film by a chemical polymerization reaction. A conductive polymer film is appropriately formed, whereby the conductive polymer hybrid layer 32 in which the chemically polymerized conductive polymer is mixed in the electropolymerized conductive polymer is formed.

ここで、電解酸化可能な金属イオンまたは金属酸化物イオンは、2.5×10−5mol/l〜1.0×10−4mol/lの範囲で電解重合液中に含まれていることが好ましい。電解重合液に含有されている電解酸化可能な金属イオン及び/又は金属酸化物イオンの量が2.5×10−5mol/l以上であれば、電解重合液中で化学重合が十分に行われ、上記導電性高分子ハイブリッド層32の表面が粗くなり、固体電解質層3と第一陰極引出層4との密着性がさらに向上する。また、上記金属イオン及び/又は金属酸化物イオンの量が1.0×10−4mol/l以下であれば、化学重合導電性高分子より強固でESRの小さい電解重合導電性高分子の割合が多くなり、強固な膜が形成されやすくなり、また導電性も向上してESRの低減効果が得られやすい。 Here, electrolytically oxidizable metal ions or metal oxide ions are included in the electrolytic polymerization solution in a range of 2.5 × 10 −5 mol / l to 1.0 × 10 −4 mol / l. Is preferred. If the amount of electrolytically oxidizable metal ions and / or metal oxide ions contained in the electrolytic polymerization solution is 2.5 × 10 −5 mol / l or more, chemical polymerization is sufficiently performed in the electrolytic polymerization solution. As a result, the surface of the conductive polymer hybrid layer 32 becomes rough, and the adhesion between the solid electrolyte layer 3 and the first cathode lead layer 4 is further improved. Moreover, if the amount of the metal ions and / or metal oxide ions is 1.0 × 10 −4 mol / l or less, the proportion of the electropolymerized conductive polymer that is stronger than the chemically polymerized conductive polymer and has a small ESR. Therefore, a strong film is easily formed, and the conductivity is improved, so that the effect of reducing ESR is easily obtained.

電解重合液に含有される金属イオンまたは金属酸化物イオンは、1種類であってもよいし、複数種含有してもよい。また、用いる金属イオン及び金属酸化物イオンは電解酸化可能なものであれば特に限定されないが、酸化還元反応によって低原子価と高原子価との状態が可逆的に反応しやすいものが好ましく、例えば鉄(II)イオン、ニッケル(II)イオン、ルテニウム(II)イオン、マンガン(II)イオン、及びマンガン酸イオン、クロム酸イオンなどが例示される。また、これら金属イオン及び金属酸化物イオンは、各種の無機塩または有機塩の形で電解重合液に添加されてもよい。   One or more types of metal ions or metal oxide ions may be contained in the electrolytic polymerization solution. Further, the metal ion and metal oxide ion to be used are not particularly limited as long as they are electrolytically oxidizable, but those in which the state of low valence and high valence easily react reversibly by an oxidation-reduction reaction are preferable. Examples include iron (II) ions, nickel (II) ions, ruthenium (II) ions, manganese (II) ions, manganate ions, chromate ions, and the like. These metal ions and metal oxide ions may be added to the electrolytic polymerization solution in the form of various inorganic salts or organic salts.

上記のようにして固体電解質層3が形成された後、固体電解質層3の上記導電性高分子ハイブリッド層32上に第一陰極引出層4、第二陰極引出層5を形成してコンデンサ素子8が作製される。その後、作製されたコンデンサ素子8の第二陰極引出層5に陰極リードフレーム21を接続すると共に、陽極リード10と陽極リードフレーム20を接続し、前記陰極リードフレーム21及び前記陽極リードフレーム20の一部を残して外装樹脂7で被覆し、露出している陰極リードフレーム21及び陽極リードフレーム20を、外装に沿って折曲して、図1に示す本実施の形態の固体電解コンデンサが完成する。   After the solid electrolyte layer 3 is formed as described above, the first cathode extraction layer 4 and the second cathode extraction layer 5 are formed on the conductive polymer hybrid layer 32 of the solid electrolyte layer 3 to form the capacitor element 8. Is produced. Thereafter, the cathode lead frame 21 is connected to the second cathode lead layer 5 of the manufactured capacitor element 8, and the anode lead 10 and the anode lead frame 20 are connected. Then, the exposed cathode lead frame 21 and anode lead frame 20 are bent along the exterior to complete the solid electrolytic capacitor of the present embodiment shown in FIG. .

尚、上記の固体電解コンデンサは、特許請求の範囲及び均等の意味の範囲内で適宜に変更が可能である。例えば、本発明の固体電解コンデンサは、図3に示すような構造でもよい。また、本発明の導電性高分子ハイブリッド層32を固体電解質層3に有するコンデンサ素子を複数作製し、積層させてもよい。   The above-mentioned solid electrolytic capacitor can be appropriately changed within the scope of the claims and the equivalent meaning. For example, the solid electrolytic capacitor of the present invention may have a structure as shown in FIG. A plurality of capacitor elements having the conductive polymer hybrid layer 32 of the present invention in the solid electrolyte layer 3 may be produced and laminated.

(実施例1)
陽極リード10を有する焼結体(陽極体)1の周面に誘電体皮膜層2を形成し、その上に導電性プレコート層31を形成した陽極体素子1Aを作製した。次いで、モノマーとしてピロールが0.018mol/l、支持電解質としてアルキルナフタレンスルホン酸塩が0.004mol/l及び電解酸化される第一鉄イオンが2.5×10−5mol/l生成する量の硫酸第一鉄を含む電解重合液(10L)に、陽極体素子1Aを浸漬し、公知の電解重合法と同じようにして陽極体素子1Aと電解重合液中の陰極板との間に通電することで、陽極体素子1Aの導電性プレコート層31の上に電解重合導電性高分子と化学重合導電性高分子とが混在した導電性高分子ハイブリッド層32を前述のように形成し、固体電解質層3を形成した。
Example 1
An anode element 1A in which the dielectric coating layer 2 was formed on the peripheral surface of the sintered body (anode body) 1 having the anode lead 10 and the conductive precoat layer 31 was formed thereon was produced. Next, 0.018 mol / l of pyrrole as a monomer, 0.004 mol / l of alkylnaphthalene sulfonate as a supporting electrolyte, and 2.5 × 10 −5 mol / l of ferrous ion to be electrolytically oxidized are generated. Anode element 1A is immersed in an electrolytic polymerization solution (10 L) containing ferrous sulfate, and electricity is passed between anode element 1A and the cathode plate in the electrolytic polymerization solution in the same manner as in a known electrolytic polymerization method. Thus, the conductive polymer hybrid layer 32 in which the electropolymerized conductive polymer and the chemically polymerized conductive polymer are mixed on the conductive precoat layer 31 of the anode element 1A is formed as described above, and the solid electrolyte Layer 3 was formed.

次に、上記固体電解質層3の上にカーボン層(第一陰極引出層)4、銀ペースト層(第二陰極引出層)5を形成し、コンデンサ素子8を作製した。その後、前記コンデンサ素子8の銀ペースト層5に陰極リードフレーム21を、陽極リード10に陽極リードフレーム20を夫々接続し、前記陽極リードフレーム20と、前記陰極リードフレーム21の一部を除いてコンデンサ素子8を外装樹脂7で被覆し、露出している各リードフレーム20,21を、外装に沿って折曲し、固体電解コンデンサを完成させた。   Next, a carbon layer (first cathode extraction layer) 4 and a silver paste layer (second cathode extraction layer) 5 were formed on the solid electrolyte layer 3 to produce a capacitor element 8. Thereafter, a cathode lead frame 21 is connected to the silver paste layer 5 of the capacitor element 8, and an anode lead frame 20 is connected to the anode lead 10. The anode lead frame 20 and a part of the cathode lead frame 21 are excluded, and the capacitor is removed. The element 8 was covered with the exterior resin 7, and the exposed lead frames 20 and 21 were bent along the exterior to complete a solid electrolytic capacitor.

(実施例2)
硫酸第一鉄の量を、第一鉄イオンが5.0×10−5mol/l生成するようにすること以外は実施例1と同様にして、固体電解コンデンサを作製した。
(Example 2)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that ferrous sulfate was produced in an amount of 5.0 × 10 −5 mol / l of ferrous sulfate.

(実施例3)
硫酸第一鉄の量を、第一鉄イオンが7.5×10−5mol/l生成するようにすること以外は実施例1と同様にして、固体電解コンデンサを作製した。
(Example 3)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that ferrous sulfate was produced in an amount of 7.5 × 10 −5 mol / l of ferrous sulfate.

(実施例4)
硫酸第一鉄の量を、第一鉄イオンが1.0×10−4mol/l生成するようにすること以外は実施例1と同様にして、固体電解コンデンサを作製した。
(Example 4)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that ferrous sulfate was produced in an amount of 1.0 × 10 −4 mol / l of ferrous sulfate.

(比較例)
硫酸第一鉄を加えないこと以外は実施例1と同様にして、固体電解コンデンサを作製した。この場合、固体電解質としては、上記導電性プレコート層31上に電解重合による電解重合導電性高分子層のみが形成されたものとなる。
上記全ての実施例及び比較例について、ESRを測定した。結果を表1及び図4に示す。
(Comparative example)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that ferrous sulfate was not added. In this case, as the solid electrolyte, only the electropolymerized conductive polymer layer by electropolymerization is formed on the conductive precoat layer 31.
ESR was measured for all the examples and comparative examples. The results are shown in Table 1 and FIG.

Figure 0004776567
Figure 0004776567

表1より、第一鉄イオンを含有する電解重合液を用いて重合を行った実施例1〜4は、第一鉄イオンを加えなかった比較例より、ESRが低く抑えられている。
これは、上記導電性高分子ハイブリッド層32は、単なる電解重合導電性高分子層に比べて、化学重合導電性高分子の混在によって表面に微細な凹凸を有してその表面積が拡大すると共に導電性高分子ハイブリッド層32とカーボン層4との密着性が向上し、その結果、固体電解質層3とカーボン層4との接触面積が増大し集電が向上して、ESRの低減を可能にしたと考えられる。
From Table 1, Examples 1-4 which superposed | polymerized using the electrolytic polymerization liquid containing a ferrous ion are restrained ESR lower than the comparative example which did not add a ferrous ion.
This is because the conductive polymer hybrid layer 32 has fine irregularities on the surface due to the mixing of the chemically polymerized conductive polymer, and the surface area of the conductive polymer hybrid layer 32 is increased. As a result, the contact area between the solid polymer layer 3 and the carbon layer 4 is increased, the current collection is improved, and the ESR can be reduced. it is conceivable that.

本発明の一実施形態による固体電解コンデンサの構成を示す断面図である。It is sectional drawing which shows the structure of the solid electrolytic capacitor by one Embodiment of this invention. 本発明の一実施形態による固体電解コンデンサの製造方法における導電性高分子ハイブリッド層の形成過程を示す模式図である。It is a schematic diagram which shows the formation process of the conductive polymer hybrid layer in the manufacturing method of the solid electrolytic capacitor by one Embodiment of this invention. 本発明の一実施形態による固体電解コンデンサの別の構成を示す断面図である。It is sectional drawing which shows another structure of the solid electrolytic capacitor by one Embodiment of this invention. 本発明の一実施形態による固体電解コンデンサの製造に際して電解重合液中の第一鉄イオンの添加量と、得られた固体電解コンデンサのESRとの関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the ferrous ion in an electrolytic polymerization liquid, and ESR of the obtained solid electrolytic capacitor at the time of manufacture of the solid electrolytic capacitor by one Embodiment of this invention.

符号の説明Explanation of symbols

1 陽極体
2 誘電体皮膜
3 固体電解質層
4 第一陰極層(カーボン層)
5 第二陰極層(銀ペースト層)
7 外装樹脂
8 コンデンサ素子
10 陽極リード
20 陽極リードフレーム
21 陰極リードフレーム
31 導電性プレコート層
32 導電性高分子ハイブリッド層
1 Anode body 2 Dielectric film 3 Solid electrolyte layer 4 First cathode layer (carbon layer)
5 Second cathode layer (silver paste layer)
7 Exterior resin 8 Capacitor element 10 Anode lead 20 Anode lead frame 21 Cathode lead frame 31 Conductive precoat layer 32 Conductive polymer hybrid layer

Claims (2)

固体電解質層を有する固体電解コンデンサの製造方法において、
前記固体電解質層は、電解重合導電性高分子と化学重合導電性高分子とを有する導電性高分子ハイブリッド層を有し、
前記導電性高分子ハイブリッド層は、電解酸化され得る金属イオン及び/又は金属酸化物イオンを含有する電解重合液中で、電解重合反応と、前記金属イオン及び/又は金属酸化物イオンが電解酸化されて発生する酸化剤を用いて化学重合反応とを行うことにより形成されることを特徴とする固体電解コンデンサの製造方法。
In a method for producing a solid electrolytic capacitor having a solid electrolyte layer,
The solid electrolyte layer has a conductive polymer hybrid layer having an electropolymerized conductive polymer and a chemically polymerized conductive polymer,
The conductive polymer hybrid layer is formed by electrolytic polymerization reaction and electrolytic oxidation of the metal ions and / or metal oxide ions in an electrolytic polymerization solution containing metal ions and / or metal oxide ions that can be electrolytically oxidized. A method for producing a solid electrolytic capacitor, wherein the solid electrolytic capacitor is formed by performing a chemical polymerization reaction using an oxidant that is generated.
前記金属イオン及び/又は金属酸化物イオンは、鉄(II)イオン、ニッケル(II)イオン、ルテニウム(II)イオン、マンガン(II)イオン、マンガン酸イオン、クロム酸イオンからなる群から選ばれる少なくとも一種を含んでいることを特徴とする請求項に記載の固体電解コンデンサの製造方法。
The metal ions and / or metal oxide ions are at least selected from the group consisting of iron (II) ions, nickel (II) ions, ruthenium (II) ions, manganese (II) ions, manganate ions, and chromate ions. The method for producing a solid electrolytic capacitor according to claim 1 , comprising one kind.
JP2007050442A 2007-02-28 2007-02-28 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4776567B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007050442A JP4776567B2 (en) 2007-02-28 2007-02-28 Manufacturing method of solid electrolytic capacitor
KR1020070117881A KR101083465B1 (en) 2007-02-28 2007-11-19 Solid electrolytic condenser and manufacturing method thereof
TW096143647A TWI456612B (en) 2007-02-28 2007-11-19 Solid electrolytic capacitor and manufacturing method thereof
CN2007101969972A CN101256901B (en) 2007-02-28 2007-12-07 Solid electrolytic capacitor and method for production thereof
US12/027,537 US8050014B2 (en) 2007-02-28 2008-02-07 Solid electrolytic capacitor and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050442A JP4776567B2 (en) 2007-02-28 2007-02-28 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008218519A JP2008218519A (en) 2008-09-18
JP4776567B2 true JP4776567B2 (en) 2011-09-21

Family

ID=39838250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050442A Expired - Fee Related JP4776567B2 (en) 2007-02-28 2007-02-28 Manufacturing method of solid electrolytic capacitor

Country Status (2)

Country Link
JP (1) JP4776567B2 (en)
CN (1) CN101256901B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114132A (en) * 2009-11-26 2011-06-09 Sanyo Electric Co Ltd Electrolytic capacitor and method of manufacturing the same
CN102751102B (en) * 2012-07-18 2014-10-15 中国振华(集团)新云电子元器件有限责任公司 Method for reducing equivalent series resistance of electrolytic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3267311B2 (en) * 1991-06-22 2002-03-18 ルビコン株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2765462B2 (en) * 1993-07-27 1998-06-18 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
JPH0786095A (en) * 1993-09-10 1995-03-31 Rubycon Corp Solid-state electrolytic capacitor and its manufacture
JPH1145824A (en) * 1997-07-24 1999-02-16 Matsushita Electric Ind Co Ltd Capacitor and its manufacture
JP2002324733A (en) * 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor, its manufacturing method and oxidizing agent solution for conductive polymer polymerization used therein

Also Published As

Publication number Publication date
CN101256901A (en) 2008-09-03
CN101256901B (en) 2011-07-20
JP2008218519A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5484995B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR101083465B1 (en) Solid electrolytic condenser and manufacturing method thereof
CN102201286B (en) The manufacture method of solid electrolytic capacitor
JP3906043B2 (en) Manufacturing method of solid electrolytic capacitor
JP4845699B2 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP2014049520A (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6142292B2 (en) Solid electrolytic capacitor
JP5502562B2 (en) Manufacturing method of solid electrolytic capacitor
JP4776567B2 (en) Manufacturing method of solid electrolytic capacitor
JP2012069788A (en) Solid electrolytic capacitor
JP4845781B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006261439A (en) Solid electrolytic capacitor and its manufacturing method
JP4823113B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4748726B2 (en) Solid electrolytic capacitor
JP2010003772A (en) Solid electrolytic capacitor
JP4401195B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH11121279A (en) Organic solid electrolytic capacitor and manufacturing method therefor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009238776A (en) Method of manufacturing solid electrolytic capacitor
JP4241495B2 (en) Method and apparatus for producing conductive polymer
JP2010161429A (en) Method of manufacturing solid electrolytic capacitor
JP4637700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005191126A (en) Method for forming conductive polymer, and method for producing electronic component
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R151 Written notification of patent or utility model registration

Ref document number: 4776567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees