JP4774495B2 - Charged particle beam irradiation equipment - Google Patents

Charged particle beam irradiation equipment Download PDF

Info

Publication number
JP4774495B2
JP4774495B2 JP2007009541A JP2007009541A JP4774495B2 JP 4774495 B2 JP4774495 B2 JP 4774495B2 JP 2007009541 A JP2007009541 A JP 2007009541A JP 2007009541 A JP2007009541 A JP 2007009541A JP 4774495 B2 JP4774495 B2 JP 4774495B2
Authority
JP
Japan
Prior art keywords
irradiation
charged particle
particle beam
target
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007009541A
Other languages
Japanese (ja)
Other versions
JP2008173298A (en
Inventor
禎治 西尾
尚 荻野
和弘 野村
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
National Cancer Center Japan
Original Assignee
Sumitomo Heavy Industries Ltd
National Cancer Center Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, National Cancer Center Japan filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2007009541A priority Critical patent/JP4774495B2/en
Publication of JP2008173298A publication Critical patent/JP2008173298A/en
Application granted granted Critical
Publication of JP4774495B2 publication Critical patent/JP4774495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Description

本発明は、荷電粒子線を照射目標物に照射する荷電粒子線照射装置に関するものである。   The present invention relates to a charged particle beam irradiation apparatus that irradiates an irradiation target with a charged particle beam.

従来、このような分野の技術として、患者体内の腫瘍に陽子線を照射して治療を施す陽子線照射装置が知られている(例えば、下記特許文献1参照。)。この装置は、陽子線ビームの照射野の形状を設定すべく、発生させた陽子線ビームを散乱体で照射方向に直交する方向に拡大し、ファインディグレーダで陽子線のエネルギーを調整することで照射野の深さを調整する。そして、リッジフィルタを通過させて陽子線のブラッグピークを調整し、コリメータ及びボーラスを通過させて陽子線ビームの照射野の形状を調整している。
特許第3532739号公報
Conventionally, as a technique in such a field, a proton beam irradiation apparatus that performs treatment by irradiating a tumor in a patient with a proton beam is known (for example, see Patent Document 1 below). In order to set the shape of the irradiation field of the proton beam, this device expands the generated proton beam in a direction perpendicular to the irradiation direction with a scatterer, and adjusts the energy of the proton beam with a fine degrader. Adjust the depth of the field. Then, the Bragg peak of the proton beam is adjusted through the ridge filter, and the shape of the irradiation field of the proton beam is adjusted through the collimator and the bolus.
Japanese Patent No. 3532739

このような腫瘍の治療においては、周辺の正常組織が回復不能な影響を受けないよう、腫瘍組織のみに致死的な線量を集中して照射することが理想であるので、この種の照射装置においては、更なる高い線量集中性が求められている。そこで、本発明は、線量集中性の向上を図ることができる荷電粒子線照射装置を提供することを目的とする。   In the treatment of such tumors, it is ideal to concentrate a lethal dose only on the tumor tissue so that the surrounding normal tissue is not affected irreversibly. Therefore, higher dose concentration is required. Then, an object of this invention is to provide the charged particle beam irradiation apparatus which can aim at the improvement of dose concentration.

本発明の荷電粒子線照射装置は、荷電粒子線を照射目標物に照射する荷電粒子線照射装置において、荷電粒子線のビームを照射方向に直交する方向に拡大するビーム拡大部と、荷電粒子線の拡大ブラッグピークを調整するピーク調整フィルタ部と、照射方向から見たビームの照射野の平面位置及び平面形状を調整する形状可変コリメータと、形状可変コリメータとピーク調整フィルタ部とを駆動し、それぞれ照射目標物の一部に重複すると共に荷電粒子線の照射方向から見て複数に分割された照射野を順次設定しながら、当該照射野の各々に荷電粒子線のビームを同一の照射方向から順次照射させる照射制御部と、を備え、照射制御部は、複数に分割された照射野それぞれに対応する照射目標物の一部の最大厚みを基準にして、複数の照射野それぞれにおける荷電粒子線の拡大ブラッグピーク幅を調整するようにピーク調整フィルタ部を駆動させることを特徴とする。
The charged particle beam irradiation apparatus of the present invention is a charged particle beam irradiation apparatus that irradiates an irradiation target with a charged particle beam, a beam expanding unit that expands a beam of the charged particle beam in a direction orthogonal to the irradiation direction, and a charged particle beam expansion and the peak adjustment filter unit for adjusting the Bragg peak, driven with variable shape collimator for adjusting the plane position and shape of the irradiation field of the beam as viewed from the irradiation direction, and a variable shape collimator and the peak adjustment filter section, each While sequentially setting a plurality of irradiation fields that overlap with a part of the irradiation target and viewed from the irradiation direction of the charged particle beam, a charged particle beam is sequentially applied to each of the irradiation fields from the same irradiation direction. and an irradiation control unit that irradiates the irradiation control unit, based on the portion of maximum thickness of the irradiation target object corresponding to the respective irradiation field which is divided into a plurality, the plurality of irradiation field Characterized in that to drive the peak adjustment filter unit to adjust the spread-out Bragg peak width of a charged particle beam in respectively.

この荷電粒子線照射装置では、荷電粒子線のビームがビーム拡大部により照射方向に直交する方向に拡大され、ピーク調整フィルタ部及び形状可変コリメータを通じて照射目標物に照射される。このとき、照射制御部の制御により形状可変コリメータが駆動され、照射野の平面位置及び平面形状が設定される。そして、照射制御部は、目標物マップを参照してピーク調整フィルタ部を駆動し、荷電粒子線の拡大ブラッグピークを調整する。このとき、ピーク調整フィルタ部の制御は、照射野の照射方向の長さが、設定された照射野の平面位置に対応する照射目標物の照射方向の長さに対応するように行われる。このように複数の照射野が順次設定され、照射が同一の照射方向から順次行われるので、各照射ごとに照射目標物の形状に合わせた最適の照射野を形成することができる。このように、照射目標物と照射野との形状を合わせた最適の照射を、平面位置を移動しながら繰り返すことで、照射野全体の形状と照射目標物の形状とを近づけることができ、その結果、荷電粒子線の線量集中性を向上することができる。   In this charged particle beam irradiation apparatus, the beam of the charged particle beam is expanded in a direction orthogonal to the irradiation direction by the beam expanding unit, and irradiated to the irradiation target through the peak adjustment filter unit and the shape variable collimator. At this time, the shape variable collimator is driven by the control of the irradiation control unit, and the plane position and the plane shape of the irradiation field are set. And an irradiation control part drives a peak adjustment filter part with reference to a target object map, and adjusts the expansion Bragg peak of a charged particle beam. At this time, the peak adjustment filter unit is controlled such that the length of the irradiation field in the irradiation direction corresponds to the length of the irradiation target in the irradiation direction corresponding to the set planar position of the irradiation field. As described above, since a plurality of irradiation fields are sequentially set and irradiation is performed sequentially from the same irradiation direction, an optimal irradiation field matching the shape of the irradiation target can be formed for each irradiation. In this way, it is possible to bring the shape of the entire irradiation field closer to the shape of the irradiation target by repeating optimal irradiation with the shape of the irradiation target and the irradiation field while moving the plane position. As a result, the dose concentration of the charged particle beam can be improved.

また、この場合、照射制御部は、形状可変コリメータを駆動して照射野の平面位置及び平面形状を設定すると共に、同一の照射方向から見た平面位置に対して、照射目標物の照射方向の配置が関連付けられた目標物マップを参照し、設定された照射野の平面位置に対応した照射目標物の照射方向の長さに、照射野の照射方向の長さを対応させるように、ピーク調整フィルタ部を駆動し荷電粒子線の拡大ブラッグピークを調整させ、目標物マップでは、同一の照射方向から見た平面位置に対して、更に、当該平面位置におけるビームの目標照射線量が関連づけられていることが好ましい。この構成によれば、目標物マップを参照しながら、各照射野に対してそれぞれ適切な線量の荷電粒子線を照射することができる。 In this case, the irradiation control unit drives the shape variable collimator to set the plane position and the plane shape of the irradiation field, and the irradiation direction of the irradiation target with respect to the plane position viewed from the same irradiation direction. Referring to the target map with which the arrangement is associated, adjust the peak so that the length of the irradiation direction of the irradiation field corresponds to the length of the irradiation target irradiation direction corresponding to the set planar position of the irradiation field. The filter unit is driven to adjust the enlarged Bragg peak of the charged particle beam, and in the target map, the target irradiation dose of the beam at the plane position is further associated with the plane position viewed from the same irradiation direction. It is preferable. According to this configuration, it is possible to irradiate each irradiation field with an appropriate dose of charged particle beam while referring to the target map.

また、本発明の荷電粒子線照射装置は、照射野の最遠部の形状を調整する補償フィルタを更に備えることが好ましい。この構成によれば、補償フィルタで照射野の最遠部の形状が調整されるので、照射目標物と照射野との形状を更に近づけるように調整することができ、その結果、荷電粒子線の線量集中性を更に向上することができる。   The charged particle beam irradiation apparatus of the present invention preferably further includes a compensation filter that adjusts the shape of the farthest part of the irradiation field. According to this configuration, since the shape of the farthest part of the irradiation field is adjusted by the compensation filter, the shape of the irradiation target and the irradiation field can be adjusted to be closer, and as a result, the charged particle beam The dose concentration can be further improved.

また、本発明の荷電粒子線照射装置は、荷電量子線のビームのエネルギーを調整するビームエネルギー調整部を更に備え、照射制御部は、目標物マップを参照し、形状可変コリメータで設定された照射野の平面位置に対応した照射目標物の照射方向の位置に、ビームのエネルギーを対応させるように、エネルギー調整部を制御することが好ましい。   In addition, the charged particle beam irradiation apparatus of the present invention further includes a beam energy adjusting unit that adjusts the energy of the beam of the charged quantum beam, and the irradiation control unit refers to the target map and is set by the shape variable collimator. It is preferable to control the energy adjusting unit so that the energy of the beam corresponds to the position in the irradiation direction of the irradiation target corresponding to the planar position of the field.

この構成によれば、ビームエネルギー調整部によって、ビームのエネルギーが、目標物マップを参照して調整され、照射野の照射方向の位置が照射目標物の位置に対応するように調整される。その結果、荷電粒子線の線量集中性を更に向上することができる。   According to this configuration, the beam energy adjusting unit adjusts the beam energy with reference to the target object map, and adjusts the position of the irradiation field in the irradiation direction to correspond to the position of the irradiation target object. As a result, the dose concentration of the charged particle beam can be further improved.

本発明によれば、荷電粒子線照射装置において、線量集中性の向上を図ることができる。   According to the present invention, dose concentration can be improved in a charged particle beam irradiation apparatus.

以下、図面を参照しつつ本発明に係る荷電粒子線照射装置の好適な実施形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a charged particle beam irradiation apparatus according to the present invention will be described in detail with reference to the drawings.

図1〜図3に示すように、陽子線照射装置(荷電粒子線照射装置)1は、陽子線治療装置100において、回転ガントリ103に取り付けられて治療台105の回りに回転可能とされ、治療台105上の患者51の体内の腫瘍(照射目標物)Pに対して治療のための陽子線(荷電粒子線)を照射する装置である。   As shown in FIGS. 1 to 3, a proton beam irradiation apparatus (charged particle beam irradiation apparatus) 1 is attached to a rotating gantry 103 in a proton beam therapy apparatus 100 and can be rotated around a treatment table 105 to treat the proton beam therapy apparatus 100. This is a device that irradiates a tumor (irradiation target) P in the body of a patient 51 on a table 105 with a proton beam (charged particle beam) for treatment.

図2及び図3に示すように、陽子線照射装置1は、陽子線の照射方向Aに順に配列され、陽子線ビームを順に通過させてビームを整形する散乱体5、リッジフィルタ部7、ファインディグレーダ9、ブロックコリメータ11、ボーラス13、及びマルチリーフコリメータ15と、装置各部の駆動を制御する照射制御部17と、を備えている。   As shown in FIGS. 2 and 3, the proton beam irradiation apparatus 1 is arranged in order in the proton beam irradiation direction A, and sequentially passes the proton beam and shapes the beam, the scatterer 5, the ridge filter unit 7, and the fine beam. A degrader 9, a block collimator 11, a bolus 13, a multi-leaf collimator 15, and an irradiation control unit 17 that controls driving of each part of the apparatus are provided.

この陽子線照射装置1には、陽子線発生部として機能するサイクロトロン3で発生した陽子線が輸送装置を通じて送り込まれる。そして、送り込まれた細い陽子線を、例えば厚さ数mmの鉛からなる散乱体(ビーム拡大部)5を通過させることによって、照射方向Aに直交する方向に広がりを持たせて、幅広いビームに拡大する。   A proton beam generated by the cyclotron 3 functioning as a proton beam generator is fed into the proton beam irradiation device 1 through a transport device. Then, by passing the thin proton beam that has been fed through, for example, a scatterer (beam expanding portion) 5 made of lead having a thickness of several millimeters, the beam is expanded in a direction perpendicular to the irradiation direction A, and a wide beam is obtained. Expanding.

上記散乱体5からの陽子線ビームは、患者51体内の腫瘍Pの厚み(照射方向Aの長さ)に対応して陽子線のエネルギー深さに分布を持たせるためのリッジフィルタ部(ピーク調整フィルタ部)7に入射される。このリッジフィルタ部7は、階段状に厚みの変化する金属棒が簾状に並べられてなるフィルタ7aを複数有しており、それら複数のフィルタ7aは、金属棒の形状の相違により互いに異なる陽子線の拡大ブラッグピーク(以下「SOBP」という)を形成させる。そして、リッジフィルタ部7は、照射制御部17の制御により駆動され、上記複数のフィルタ7aの中から適宜選択されたフィルタを陽子線の通過位置に挿入する機構を有している。この構成により、リッジフィルタ部7は、陽子線を通過させるフィルタ7aを選択的に変更可能であり、陽子線のSOBPのピークの幅を調整することができる。   The proton beam from the scatterer 5 has a ridge filter portion (peak adjustment) for distributing the proton beam energy depth corresponding to the thickness of the tumor P in the patient 51 (length in the irradiation direction A). The light is incident on the filter unit 7. The ridge filter portion 7 has a plurality of filters 7a in which metal rods whose thickness changes stepwise are arranged in a bowl shape, and the plurality of filters 7a have different protons due to differences in the shape of the metal rods. An extended Bragg peak (hereinafter referred to as “SOBP”) of the line is formed. The ridge filter unit 7 is driven by the control of the irradiation control unit 17 and has a mechanism for inserting a filter appropriately selected from the plurality of filters 7a into a proton beam passing position. With this configuration, the ridge filter unit 7 can selectively change the filter 7a that passes the proton beam, and can adjust the width of the SOBP peak of the proton beam.

このリッジフィルタ部7を通過した陽子線は、治療対象である患者体内51の腫瘍Pの深さに応じてビームのエネルギーを調整し、最大到達深さを調整するためのファインディグレーダ(ビームエネルギー調整部)9に入射される。このファインディグレーダ9は、例えば2個の楔型をした対向するアクリルブロック9a、9bから構成され、照射制御部17の制御により上記ブロック9a、9bの重なり方を調節することによって、陽子線が通過する部分の厚みを連続的に変化させることができる。陽子線は、通過した物質の厚みに応じてエネルギーを失い、患者51体内において到達する深さが変わるので、このファインディグレーダ9の調節により、陽子線のブラッグピークの位置を、患者51体内における腫瘍Pの深さ方向(照射方向A)の位置に合わせることができる。   The proton beam that has passed through the ridge filter unit 7 adjusts the beam energy in accordance with the depth of the tumor P in the patient body 51 to be treated, and a fine degrader (beam energy) for adjusting the maximum reachable depth. The light is incident on the adjusting unit 9. The fine degrader 9 is composed of, for example, two wedge-shaped opposing acrylic blocks 9a and 9b. By adjusting the overlapping of the blocks 9a and 9b under the control of the irradiation control unit 17, the proton beam is generated. The thickness of the passing part can be continuously changed. The proton beam loses energy in accordance with the thickness of the substance that has passed through, and the depth that the proton beam reaches within the patient 51 changes. Therefore, by adjusting the fine degrader 9, the position of the Bragg peak of the proton beam is changed within the patient 51. It can be adjusted to the position of the tumor P in the depth direction (irradiation direction A).

このファインディグレーダ9を通過した陽子線ビームは、陽子線の平面形状(照射方向Aから見た形状)を粗く整形するためのブロックコリメータ11に入射される。後述するマルチリーフコリメータ15に加えて、ここで、ブロックコリメータ11による整形を行っているのは、患者の近くでブロックコリメータ11による2次放射線が発生しないようにするためである。   The proton beam that has passed through the fine degrader 9 is incident on a block collimator 11 for roughly shaping the planar shape of the proton beam (the shape viewed from the irradiation direction A). The reason why the block collimator 11 performs shaping in addition to the multi-leaf collimator 15 described later is to prevent secondary radiation from being generated by the block collimator 11 near the patient.

このブロックコリメータ11を通過した陽子線は、例えば樹脂製の不整形フィルタであるボーラス(補償フィルタ)13に入力され、腫瘍Pの最大深さの断面形状と組織の不均一性に関する補正が行われる。このボーラス13の形状は、腫瘍の輪郭線と、例えばX線CTのデータから求められる周辺組織の電子密度とに基づいて、算出される。このようなボーラス13を用いることにより、陽子線ビームの最遠部(最大到達深さの部分)の立体形状が、腫瘍Pの最大深さ部分の形状に合わせて整形されるので腫瘍Pに対する線量集中性を更に高めることができる。   The proton beam that has passed through the block collimator 11 is input to a bolus (compensation filter) 13 that is, for example, a resin-made irregular filter, and correction is performed regarding the cross-sectional shape of the maximum depth of the tumor P and the tissue non-uniformity. . The shape of the bolus 13 is calculated based on the outline of the tumor and the electron density of the surrounding tissue obtained from, for example, X-ray CT data. By using such a bolus 13, the three-dimensional shape of the farthest part of the proton beam (the portion with the maximum reachable depth) is shaped according to the shape of the maximum depth portion of the tumor P. Concentration can be further enhanced.

このボーラス13を通過した陽子線ビームは、マルチリーフコリメータ(形状可変コリメータ)15に入射される。マルチリーフコリメータ15は、真鍮製で幅数mmの多数の櫛歯をもつ2つの遮線部15a,15bが、上記櫛歯の先端を中心で突き合わせるように配列されて構成されている。そして、照射制御部17の制御により、遮線部15a,15bが、多数の上記櫛歯のそれぞれを長手方向に進退させることで、マルチリーフコリメータ15は、陽子線ビームが通過する開口15cの位置及び形状を変化させることができる。   The proton beam passing through the bolus 13 is incident on a multi-leaf collimator (shape variable collimator) 15. The multi-leaf collimator 15 is configured by arranging two shielding portions 15a and 15b made of brass and having a large number of comb teeth with a width of several mm so that the tips of the comb teeth are abutted on the center. Then, under the control of the irradiation control unit 17, the shielding units 15 a and 15 b advance and retract each of the numerous comb teeth in the longitudinal direction, so that the multileaf collimator 15 is positioned at the opening 15 c through which the proton beam passes. And the shape can be changed.

マルチリーフコリメータ15を通過した陽子線ビームは、上記開口15cの形状に対応する輪郭に切り取られるので、マルチリーフコリメータ15は、開口15cの形状を変化させることで、入射する陽子線ビームの所望の平面位置及び平面形状を切り出すことができる。このように所望の平面位置において所望の平面形状に切り出された陽子線ビームは、治療用陽子線として患者51に照射される。そして、マルチコリメータ15の開口15cの平面位置及び平面形状を変化させて照射野の位置を順次水平方向(照射方向Aに直交する方向)に移動しながら照射を繰り返すことで、腫瘍P全体に陽子線ビームを照射する。   The proton beam beam that has passed through the multi-leaf collimator 15 is cut into a contour corresponding to the shape of the opening 15c. Therefore, the multi-leaf collimator 15 changes the shape of the opening 15c to change the desired shape of the incident proton beam. A plane position and a plane shape can be cut out. Thus, the proton beam cut out in a desired planar shape at a desired planar position is irradiated to the patient 51 as a therapeutic proton beam. Then, by changing the planar position and planar shape of the opening 15c of the multi-collimator 15 and repeating the irradiation while sequentially moving the irradiation field position in the horizontal direction (direction orthogonal to the irradiation direction A), the entire tumor P is protonated. Irradiate a line beam.

更に、この陽子線照射装置1は、照射野に照射された照射線量をモニタする手段として、線量モニタ23を備えている。線量モニタ23は、ファインディグレーダ9とブロックコリメータ11との間に設けられ、通過する陽子線の線量を検知する。線量モニタ23は、検知した線量をモニタ信号s1として照射制御部17に送信し、照射制御部17はモニタ信号s1に基づいて照射野に照射された照射線量を認識することができる。   Further, the proton beam irradiation apparatus 1 includes a dose monitor 23 as means for monitoring the irradiation dose irradiated to the irradiation field. The dose monitor 23 is provided between the fine degrader 9 and the block collimator 11 and detects the dose of the proton beam that passes therethrough. The dose monitor 23 transmits the detected dose as the monitor signal s1 to the irradiation control unit 17, and the irradiation control unit 17 can recognize the irradiation dose irradiated to the irradiation field based on the monitor signal s1.

続いて、上記のような照射動作を行うための照射制御部17の処理について、図3及び図4を参照し説明する。照射制御部17は、患者51の腫瘍Pの立体形状に基づいて作成された腫瘍マップ(目標物マップ)19に格納された情報を参照しながら、特に、リッジフィルタ部7、ファインディグレーダ9、及びマルチリーフコリメータ15の動作を制御する。また、ここでは、照射野の最遠部の形状が、腫瘍の最大深さ部分の複雑な形状に対応して整形されるように、予め準備されたボーラス13が、所定の位置にセットされている。   Next, processing of the irradiation control unit 17 for performing the irradiation operation as described above will be described with reference to FIGS. 3 and 4. The irradiation control unit 17 refers to the information stored in the tumor map (target object map) 19 created based on the three-dimensional shape of the tumor P of the patient 51, in particular, the ridge filter unit 7, the fine degrader 9, And the operation of the multi-leaf collimator 15 is controlled. Here, the bolus 13 prepared in advance is set at a predetermined position so that the shape of the farthest part of the irradiation field is shaped corresponding to the complicated shape of the maximum depth portion of the tumor. Yes.

上記腫瘍マップ19においては、腫瘍Pが1つの照射方向Aから見て複数ブロックに分割されており、分割された第1〜第n分割ブロックP1〜Pnの平面位置及び平面形状と、各分割ブロックP1〜Pnの深さ方向の配置と、各分割ブロックP1〜Pnに照射すべき陽子線の目標照射線量と、がn組関連づけられてデータ化されている。なお、各分割ブロックP1〜Pnの深さ方向の配置情報には、分割ブロックの最深部の深さ、最浅部の深さ、深さ方向の最大厚み等の情報が含まれる。なお、図4においては、分割ブロック数n=4の例を示しているが、nは任意の数に設定することができる。   In the tumor map 19, the tumor P is divided into a plurality of blocks as viewed from one irradiation direction A, and the planar positions and planar shapes of the divided first to n-th divided blocks P 1 to Pn, and each divided block The arrangement in the depth direction of P1 to Pn and the target irradiation dose of the proton beam to be irradiated to each of the divided blocks P1 to Pn are associated with each other and data-set. Note that the arrangement information in the depth direction of each of the divided blocks P1 to Pn includes information such as the depth of the deepest portion, the depth of the shallowest portion, and the maximum thickness in the depth direction of the divided blocks. Although FIG. 4 shows an example where the number of divided blocks n = 4, n can be set to an arbitrary number.

装置1の照射動作において、照射制御部17は、腫瘍マップ19に格納された第1分割ブロックP1の平面位置及び平面形状の情報を読み取り、マルチリーフコリメータ15を駆動して、第1分割ブロックP1に対応する平面位置及び平面形状でマルチリーフコリメータ15の開口15cを形成させる。このことにより、第1分割ブロックP1の輪郭からわずかに外側に広がった照射野の平面位置及び平面形状が設定される。更に、照射制御部17は、腫瘍マップ19から読み取られた第1分割ブロックP1の最深部P1aよりもわずかに深い位置まで、陽子線の最大到達深さが達するように、ファインディグレーダ9を駆動する。   In the irradiation operation of the apparatus 1, the irradiation control unit 17 reads information on the plane position and the plane shape of the first divided block P1 stored in the tumor map 19, drives the multi-leaf collimator 15, and drives the first divided block P1. The opening 15c of the multi-leaf collimator 15 is formed at a planar position and a planar shape corresponding to. Thus, the planar position and planar shape of the irradiation field that slightly spreads outward from the contour of the first divided block P1 are set. Furthermore, the irradiation control unit 17 drives the fine degrader 9 so that the maximum reachable depth of the proton beam reaches a position slightly deeper than the deepest part P1a of the first divided block P1 read from the tumor map 19. To do.

更に、照射制御部17は、腫瘍マップ19から、腫瘍Pの第1分割ブロックP1における深さ方向の最大厚みkの情報を読み取り、この最大厚みkよりも陽子線のSOBP幅がわずかに大きくなるように、リッジフィルタ部7を駆動しSOBPを調整する。以上のような各部の動作により、腫瘍Pの第1分割ブロックP1の立体形状を包含する形状をなす第1分割照射野R1が設定される。更に、照射制御部17は、腫瘍マップ19を参照し、第1分割ブロックP1に照射すべき目標照射線量を読み取る。   Further, the irradiation control unit 17 reads information on the maximum thickness k in the depth direction in the first divided block P1 of the tumor P from the tumor map 19, and the SOBP width of the proton beam is slightly larger than the maximum thickness k. As described above, the ridge filter unit 7 is driven to adjust the SOBP. By the operation of each part as described above, the first divided irradiation field R1 having a shape including the three-dimensional shape of the first divided block P1 of the tumor P is set. Furthermore, the irradiation control unit 17 refers to the tumor map 19 and reads the target irradiation dose to be irradiated to the first divided block P1.

この状態で、陽子線照射装置1にサイクロトロン3からの陽子線が送り込まれると、陽子線ビームが装置1の各要素5〜15を通過し、治療用陽子線として、設定された第1分割照射野R1に照射され、陽子線のエネルギーが腫瘍Pの第1分割ブロックP1に集中的に供給される。このとき、照射制御部17は、線量モニタ23からのモニタ信号s1を受信することで、第1分割照射野R1に照射された陽子線の線量をモニタすると共に、当該モニタ線量と上記目標照射線量との比較を行っている。そして、モニタしている陽子線の線量が目標照射線量に達したときに、照射制御部17はサイクロトロン3に対する電気信号s2を送信する。サイクロトロン3では、この電気信号s2に応じてイオン注入が停止され陽子線の送出が停止される。このような処理により、第1分割照射野R1には、予め規定されていた第1分割ブロックP1の目標照射線量の治療用陽子線が照射される。   In this state, when a proton beam from the cyclotron 3 is sent to the proton beam irradiation apparatus 1, the proton beam passes through the elements 5 to 15 of the apparatus 1, and is set as the first split irradiation set as a therapeutic proton beam. The field R1 is irradiated, and the proton beam energy is intensively supplied to the first divided block P1 of the tumor P. At this time, the irradiation control unit 17 receives the monitor signal s1 from the dose monitor 23, thereby monitoring the dose of the proton beam irradiated to the first divided irradiation field R1, and the monitor dose and the target irradiation dose. Comparison with Then, when the dose of the proton beam being monitored reaches the target irradiation dose, the irradiation control unit 17 transmits an electric signal s2 to the cyclotron 3. In the cyclotron 3, ion implantation is stopped in response to the electric signal s2, and proton beam transmission is stopped. By such processing, the first division irradiation field R1 is irradiated with the therapeutic proton beam having the target irradiation dose of the first division block P1 which is defined in advance.

照射制御部17による以上のような制御により、腫瘍Pの第1分割ブロックP1の立体形状に対応した形状の第1分割照射野R1に、第1分割ブロックP1への目標照射線量に相当する線量で陽子線ビームが照射される。そして、このような照射動作を、第1〜第nの各分割ブロックP1〜Pnについてn回繰り返すことで、各分割ブロックP1〜Pnの立体形状に対応する第1〜第n分割照射野R1〜Rnを順次設定しながら、腫瘍全体に陽子線ビームを照射することができる。   By the control as described above by the irradiation control unit 17, the dose corresponding to the target irradiation dose to the first divided block P1 is applied to the first divided irradiation field R1 having a shape corresponding to the three-dimensional shape of the first divided block P1 of the tumor P. A proton beam is irradiated. And by repeating such irradiation operation n times for each of the first to n-th divided blocks P1 to Pn, the first to n-th divided irradiation fields R1 to R3 corresponding to the three-dimensional shapes of the divided blocks P1 to Pn. While setting Rn sequentially, the whole tumor can be irradiated with a proton beam.

ここで、比較のため、図5には、従来の陽子線照射装置による照射野Qと患者51体内の腫瘍Pとの位置関係を示している。この照射装置では、腫瘍P全体を包含するような1つの照射野Qを設定して照射を行っている。この場合、陽子線のSOBP幅hは、照射方向Aにおける腫瘍Pの最大の厚みを基準として、腫瘍P全体について一律に設定されるので、例えば、腫瘍Pが薄い部分ではSOBP幅hが広すぎることになり、腫瘍P周囲の正常な組織にまで照射野Qが大きく広がってしまう。   Here, for comparison, FIG. 5 shows the positional relationship between the irradiation field Q by the conventional proton beam irradiation apparatus and the tumor P in the patient 51. In this irradiation apparatus, irradiation is performed by setting one irradiation field Q that encompasses the entire tumor P. In this case, since the SOBP width h of the proton beam is uniformly set for the entire tumor P on the basis of the maximum thickness of the tumor P in the irradiation direction A, for example, the SOBP width h is too wide in the portion where the tumor P is thin. As a result, the irradiation field Q greatly spreads to the normal tissue around the tumor P.

これに対し、上述の陽子線照射装置1によれば、照射方向Aから見て腫瘍Pを複数の分割ブロックP1〜Pnに分け、各分割ブロックP1〜Pnそれぞれにおける腫瘍Pの最大の厚みkを基準としながら、各分割照射野R1〜RnのSOBP幅がそれぞれ適切に設定される。従って、各分割ブロックP1〜Pn毎に最適の厚さの分割照射野R1〜Rnが設定されることになり、従来に比べて、これらの各分割照射野R1〜Rnを合わせてなる全体の照射野Rの立体形状を、腫瘍Pの立体形状に更に近づけることができる。その結果、腫瘍Pに対する陽子線照射の線量集中性を向上することができる。   On the other hand, according to the proton beam irradiation apparatus 1 described above, the tumor P is divided into a plurality of divided blocks P1 to Pn when viewed from the irradiation direction A, and the maximum thickness k of the tumor P in each of the divided blocks P1 to Pn is determined. The SOBP width of each of the divided irradiation fields R1 to Rn is appropriately set while using the reference. Therefore, the divided irradiation fields R1 to Rn having the optimum thickness are set for each of the divided blocks P1 to Pn, and the entire irradiation formed by combining these divided irradiation fields R1 to Rn as compared with the prior art. The three-dimensional shape of the field R can be made closer to the three-dimensional shape of the tumor P. As a result, the dose concentration of proton beam irradiation on the tumor P can be improved.

また、陽子線照射装置1によれば、分割ブロックP1〜Pnそれぞれにおける目標照射線量を参照しながら照射を行っているので、各分割ブロックP1〜Pnそれぞれに対して最適な線量で陽子線を照射することができる。また、この照射装置1においては、照射方向Aの一方向から見て腫瘍Pをブロック分けしているので、すべての分割ブロックP1〜Pnを1門で照射することができ、治療時間を短縮することができる。また1門での照射が可能であることから、各分割ブロックP1〜Pnの照射においてすべて同一のボーラス13を用いることができ、ボーラス13の作製の手間を軽減することができる。   Moreover, according to the proton beam irradiation apparatus 1, since irradiation is performed with reference to the target irradiation dose in each of the divided blocks P1 to Pn, the proton beam is irradiated to each of the divided blocks P1 to Pn with an optimum dose. can do. Moreover, in this irradiation apparatus 1, since the tumor P is divided into blocks as viewed from one direction of the irradiation direction A, all divided blocks P1 to Pn can be irradiated with one gate, and the treatment time is shortened. be able to. Further, since irradiation can be performed at one gate, the same bolus 13 can be used for irradiation of each of the divided blocks P1 to Pn, and the labor for manufacturing the bolus 13 can be reduced.

本発明は、上記実施形態に限定されるものではない。例えば、ビームを拡大するビーム拡大部として、上記実施形態では鉛製の散乱体5を用いているが、これに代えて、磁石を用いて磁力によりビームを拡大する拡大装置を用いてもよい。また、ピーク調整フィルタ部としては、上記実施形態におけるリッジフィルタ部7に代えて、レンジモジュレータを用いてもよい。また、上記実施形態では、腫瘍Pの分割ブロック数n=4としているが、更にnを大きくして腫瘍Pを細かく分割すれば、腫瘍Pの形状と照射野Rの形状を更に近づけることができ、線量集中性を向上することができる。また、nを大きくすることで、ボーラス13を省略することも可能である。またボーラス13を用いる場合には、ファインディグレーダ9を省略することも可能である。   The present invention is not limited to the above embodiment. For example, although the lead scatterer 5 is used as the beam expanding unit for expanding the beam, a magnifying device that expands the beam by magnetic force using a magnet may be used instead. Further, as the peak adjustment filter unit, a range modulator may be used instead of the ridge filter unit 7 in the above embodiment. In the above embodiment, the number of divided blocks n of the tumor P is n = 4. However, if the tumor P is further divided by increasing n, the shape of the tumor P and the shape of the irradiation field R can be made closer. , Dose concentration can be improved. Also, the bolus 13 can be omitted by increasing n. When the bolus 13 is used, the fine degrader 9 can be omitted.

また、装置1におけるビーム整形のための各要素5〜15の配列順は、上記実施形態には限られず、各要素の配置スペース等を考慮して適宜設計される。例えば、装置1のリッジフィルタ部7とファインディグレーダ9との配列を入れ替えてもよい。また、上記実施形態では、陽子線を照射する陽子線照射装置に本発明を適用しているが、本発明は、炭素線照射装置等の他の荷電粒子線照射装置にも適用が可能である。   Further, the arrangement order of the elements 5 to 15 for beam shaping in the apparatus 1 is not limited to the above embodiment, and is appropriately designed in consideration of the arrangement space of each element. For example, the arrangement of the ridge filter unit 7 and the fine degrader 9 of the device 1 may be exchanged. Moreover, in the said embodiment, although this invention is applied to the proton beam irradiation apparatus which irradiates a proton beam, this invention is applicable also to other charged particle beam irradiation apparatuses, such as a carbon beam irradiation apparatus. .

本発明に係る陽子線照射装置が適用される陽子線治療装置の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the proton beam treatment apparatus with which the proton beam irradiation apparatus which concerns on this invention is applied. 本発明に係る陽子線照射装置を示す斜視図である。It is a perspective view which shows the proton beam irradiation apparatus which concerns on this invention. 本発明に係る陽子線照射装置を構成する各要素を示す図である。It is a figure which shows each element which comprises the proton beam irradiation apparatus which concerns on this invention. 本発明に係る陽子線照射装置により設定される照射野と腫瘍との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the irradiation field set by the proton beam irradiation apparatus which concerns on this invention, and a tumor. 従来の陽子線照射装置により設定される照射野と腫瘍との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the irradiation field and tumor which are set with the conventional proton beam irradiation apparatus.

符号の説明Explanation of symbols

1…陽子線照射装置(荷電粒子線照射装置)、5…散乱体(ビーム拡大部)、7…リッジフィルタ部(ピーク調整フィルタ部)、9…ファインディグレーダ(ビームエネルギー調整部)、13…ボーラス(補償フィルタ)13、15…マルチリーフコリメータ(形状可変コリメータ)、17…照射制御部、19…腫瘍マップ(目標物マップ)、51…患者、P…腫瘍(照射目標物)。   DESCRIPTION OF SYMBOLS 1 ... Proton beam irradiation apparatus (charged particle beam irradiation apparatus), 5 ... Scattering body (beam expansion part), 7 ... Ridge filter part (peak adjustment filter part), 9 ... Fine degrader (beam energy adjustment part), 13 ... Bolus (compensation filter) 13, 15 ... multi-leaf collimator (shape variable collimator), 17 ... irradiation control unit, 19 ... tumor map (target map), 51 ... patient, P ... tumor (irradiation target).

Claims (4)

荷電粒子線を照射目標物に照射する荷電粒子線照射装置において、
前記荷電粒子線のビームを照射方向に直交する方向に拡大するビーム拡大部と、
前記荷電粒子線の拡大ブラッグピークを調整するピーク調整フィルタ部と、
前記照射方向から見た前記ビームの照射野の平面位置及び平面形状を調整する形状可変コリメータと、
前記形状可変コリメータと前記ピーク調整フィルタ部とを駆動し、それぞれ前記照射目標物の一部に重複すると共に前記荷電粒子線の照射方向から見て複数に分割された照射野を順次設定しながら、当該照射野の各々に前記荷電粒子線のビームを同一の照射方向から順次照射させる照射制御部と、を備え、
前記照射制御部は、
複数に分割された前記照射野それぞれに対応する前記照射目標物の一部の最大厚みを基準にして、前記複数の照射野それぞれにおける前記荷電粒子線の拡大ブラッグピーク幅を調整するように前記ピーク調整フィルタ部を駆動させる
ことを特徴とする荷電粒子線照射装置。
In a charged particle beam irradiation apparatus that irradiates an irradiation target with a charged particle beam,
A beam expanding unit that expands the beam of the charged particle beam in a direction orthogonal to an irradiation direction;
A peak adjustment filter unit for adjusting an enlarged Bragg peak of the charged particle beam;
A variable shape collimator that adjusts the planar position and planar shape of the irradiation field of the beam viewed from the irradiation direction;
While the deformable collimator and the drives and the peak adjustment filter unit, sequentially sets each irradiation field which is divided into a plurality as viewed from the irradiation direction of the charged particle beam with overlapping part of the irradiation target, An irradiation control unit for sequentially irradiating each of the irradiation fields with the beam of the charged particle beam from the same irradiation direction;
The irradiation control unit
The peak so as to adjust an enlarged Bragg peak width of the charged particle beam in each of the plurality of irradiation fields on the basis of a maximum thickness of a part of the irradiation target corresponding to each of the irradiation fields divided into a plurality of A charged particle beam irradiation apparatus, wherein the adjustment filter unit is driven .
前記照射制御部は、
前記形状可変コリメータを駆動して前記照射野の平面位置及び平面形状を設定すると共に、
前記同一の照射方向から見た平面位置に対して、前記照射目標物の前記照射方向の配置が関連付けられた目標物マップを参照し、
設定された前記照射野の平面位置に対応した前記照射目標物の前記照射方向の長さに、前記照射野の前記照射方向の長さを対応させるように、前記ピーク調整フィルタ部を駆動し前記荷電粒子線の拡大ブラッグピークを調整させ、
前記目標物マップでは、前記同一の照射方向から見た平面位置に対して、更に、当該平面位置における前記ビームの目標照射線量が関連づけられていることを特徴とする請求項1に記載の荷電粒子線照射装置。
The irradiation control unit
While driving the shape variable collimator to set the planar position and planar shape of the irradiation field,
With respect to the planar position viewed from the same irradiation direction, refer to the target map associated with the arrangement of the irradiation target in the irradiation direction,
The peak adjustment filter unit is driven so as to correspond the length of the irradiation direction of the irradiation field to the length of the irradiation direction of the irradiation target corresponding to the set planar position of the irradiation field. Adjust the enlarged Bragg peak of the charged particle beam,
2. The charged particle according to claim 1, wherein in the target map, a target irradiation dose of the beam at the planar position is further associated with the planar position viewed from the same irradiation direction. X-ray irradiation device.
前記照射野の最遠部の形状を調整する補償フィルタを更に備えたことを特徴とする請求項1又は2に記載の荷電粒子線照射装置。   The charged particle beam irradiation apparatus according to claim 1, further comprising a compensation filter that adjusts a shape of a farthest portion of the irradiation field. 前記荷電量子線のビームのエネルギーを調整するビームエネルギー調整部を更に備え、
前記照射制御部は、前記目標物マップを参照し、前記形状可変コリメータで設定された前記照射野の平面位置に対応した前記照射目標物の前記照射方向の位置に、前記ビームのエネルギーを対応させるように、前記エネルギー調整部を制御することを特徴とする請求項1〜3の何れか1項に記載の荷電粒子線照射装置。
A beam energy adjusting unit for adjusting the energy of the beam of the charged quantum beam;
The irradiation control unit refers to the target map, and associates the energy of the beam with a position in the irradiation direction of the irradiation target corresponding to the planar position of the irradiation field set by the shape variable collimator. The charged particle beam irradiation apparatus according to claim 1, wherein the energy adjustment unit is controlled as described above.
JP2007009541A 2007-01-18 2007-01-18 Charged particle beam irradiation equipment Active JP4774495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009541A JP4774495B2 (en) 2007-01-18 2007-01-18 Charged particle beam irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009541A JP4774495B2 (en) 2007-01-18 2007-01-18 Charged particle beam irradiation equipment

Publications (2)

Publication Number Publication Date
JP2008173298A JP2008173298A (en) 2008-07-31
JP4774495B2 true JP4774495B2 (en) 2011-09-14

Family

ID=39700798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009541A Active JP4774495B2 (en) 2007-01-18 2007-01-18 Charged particle beam irradiation equipment

Country Status (1)

Country Link
JP (1) JP4774495B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939964B1 (en) * 2008-12-17 2010-12-10 Eads Europ Aeronautic Defence INTEGRATED CIRCUIT TEST DEVICE AND METHOD FOR IMPLEMENTING THE SAME
KR101336830B1 (en) 2011-12-26 2013-12-04 한국원자력연구원 Proton Therapy Facility with Varying Cross-Section of the Proton Beams

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314323A (en) * 1997-05-20 1998-12-02 Mitsubishi Electric Corp Irradiation method
JP2000202047A (en) * 1999-01-13 2000-07-25 Hitachi Ltd Charged particle beam irradiation method and apparatus
US20060163496A1 (en) * 2005-01-24 2006-07-27 Kazuo Hiramoto Ion beam delivery equipment and an ion beam delivery method

Also Published As

Publication number Publication date
JP2008173298A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
CN109891525B (en) Device and method for magnetic control of a radiation electron beam
US8154001B2 (en) Ion radiation therapy system with variable beam resolution
JP5107113B2 (en) Charged particle beam irradiation equipment
KR101953350B1 (en) Beam modulation apparatus on build-up region of photon beam by transverse magnetic field and beam spoiler, radiotherapy apparatus using the depth dose modulation apparatus, and method for modulating dose transverse magnetic field and beam spoiler on build-up region of photon beam
JP4114590B2 (en) Particle beam therapy system
JP4072359B2 (en) Charged particle beam irradiation equipment
JP3643371B1 (en) Method of adjusting particle beam irradiation apparatus and irradiation field forming apparatus
JP5330253B2 (en) Particle beam irradiation equipment
JP5637055B2 (en) Particle beam therapy planning apparatus and particle beam therapy apparatus
US7977657B2 (en) Ion radiation therapy system with distal gradient tracking
US8269196B2 (en) Heavy ion radiation therapy system with stair-step modulation
EP1733757A2 (en) Charged particle beam extraction system and method
JP2007222433A (en) Charged particle beam irradiation system and charged particle beam emission method
JP2010029594A (en) Corpuscular beam irradiating apparatus and treatment planning device
JP2010253000A (en) Radiation irradiation system
JP4774495B2 (en) Charged particle beam irradiation equipment
JP4243973B2 (en) Charged particle beam irradiation equipment
US9144691B2 (en) Optimizing intensity maps for plural orientations using segmented radiation fields
JP4203208B2 (en) Radiation energy distribution adjustment mechanism and radiation irradiation apparatus using the same
JP5619462B2 (en) Treatment planning device and particle beam treatment device using treatment plan of treatment planning device
JP2010187900A (en) Particle beam irradiator and range shifter
JP4159229B2 (en) Radiation energy distribution adjusting mechanism and radiation irradiation apparatus using the same
US20130034211A1 (en) Radiotherapy
JP2008086762A (en) Particle-beam radiation therapy system and scanning method for particle-beam radiation therapy
JP5784808B2 (en) Particle beam therapy system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

R150 Certificate of patent or registration of utility model

Ref document number: 4774495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250