JP4774238B2 - Refrigeration cycle refrigerant distribution part connection structure - Google Patents

Refrigeration cycle refrigerant distribution part connection structure Download PDF

Info

Publication number
JP4774238B2
JP4774238B2 JP2005136887A JP2005136887A JP4774238B2 JP 4774238 B2 JP4774238 B2 JP 4774238B2 JP 2005136887 A JP2005136887 A JP 2005136887A JP 2005136887 A JP2005136887 A JP 2005136887A JP 4774238 B2 JP4774238 B2 JP 4774238B2
Authority
JP
Japan
Prior art keywords
flow path
path member
refrigerant
pipe
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005136887A
Other languages
Japanese (ja)
Other versions
JP2006003070A (en
Inventor
茂治 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005136887A priority Critical patent/JP4774238B2/en
Publication of JP2006003070A publication Critical patent/JP2006003070A/en
Application granted granted Critical
Publication of JP4774238B2 publication Critical patent/JP4774238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0256Arrangements for coupling connectors with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Description

この発明は、冷凍サイクルの冷媒流通部接続構造に関し、さらに詳しくは、たとえばCO(二酸化炭素)などの超臨界冷媒が用いられる超臨界冷凍サイクルにおいて、配管を構成するパイプどうしや、冷媒流通部どうしや、配管を構成するパイプと冷媒流通部とを接続する接続構造に関する。 The present invention relates to a refrigerant circulation part connection structure of a refrigeration cycle, and more specifically, in a supercritical refrigeration cycle in which a supercritical refrigerant such as CO 2 (carbon dioxide) is used, between pipes constituting a pipe, and a refrigerant circulation part It is related with the connection structure which connects the pipe which comprises piping, and a refrigerant | coolant distribution | circulation part.

この明細書および特許請求の範囲において、「冷媒流通部」という語には、熱交換器のヘッダ等のように、冷凍サイクルを構成する機器においてその内部を冷媒が流通するものの他に、冷凍サイクルの配管用のパイプを含むものとする。   In this specification and claims, the term “refrigerant circulation part” includes a refrigeration cycle in addition to the refrigerant circulating in the equipment constituting the refrigeration cycle, such as a header of a heat exchanger. It includes pipes for piping.

超臨界冷凍サイクルに用いられるガスクーラとして、互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に間隔をおいて並列状に配置されかつ両端部が両ヘッダタンクに接続された熱交換管と、隣接する熱交換管間の通風間隙に配置されかつ熱交換管にろう付されたフィンとよりなり、一方のヘッダタンクに圧縮機から伸びる配管用パイプが接続される接続ブロックが取り付けられるとともに、他方のヘッダタンクに膨張弁から伸びる配管用パイプが接続される接続ブロックが取り付けられたものが知られている(特許文献1、図1参照)。   As a gas cooler used in a supercritical refrigeration cycle, a pair of header tanks arranged at intervals from each other, and arranged in parallel with an interval between both header tanks, both ends are connected to both header tanks. There is a connection block comprising a heat exchange pipe and fins disposed in a ventilation gap between adjacent heat exchange pipes and brazed to the heat exchange pipe, and a pipe pipe extending from the compressor is connected to one header tank. It is known that a connection block to which a pipe for piping extending from an expansion valve is connected to the other header tank is attached (see Patent Document 1 and FIG. 1).

特許文献1記載のガスクーラにおいては、各接続ブロックの一端部に、パイプを介してヘッダタンク内に通じる流路が形成されるとともに、他端部にめねじ穴が形成されている。そして、特許文献1には記載されていないが、次のようなパイプ接続構造によって、ガスクーラ側接続ブロックに配管用パイプが接続されるようになっている。すなわち、ガスクーラ側接続ブロックと同形同大で、一端部に流路が形成されるとともに、他端部にボルト挿通穴が形成されたパイプ側接続ブロックを用意する。パイプ側接続ブロックにおける流路の一端開口の周囲には、ガスクーラ側接続ブロックの流路の端部内に挿入される雄パイプ部を形成しておく。また、パイプ側接続ブロックの流路における雄パイプ部が形成された側とは反対側の端部内に配管用パイプの端部を挿入して溶接により固定しておく。そして、両流路が合致するとともにパイプ側接続ブロックの雄パイプ部をガスクーラ側接続ブロックの流路内に挿入した状態で、ボルト挿通穴に通されたボルトをガスクーラ側接続ブロックのめねじ穴にねじ嵌めることにより、両接続ブロックが固定され、配管用パイプが接続されている。   In the gas cooler described in Patent Document 1, a flow path leading to the inside of the header tank via a pipe is formed at one end of each connection block, and a female screw hole is formed at the other end. And although not indicated in patent documents 1, a pipe for piping is connected to a gas cooler side connection block by the following pipe connection structure. That is, a pipe-side connection block having the same shape and the same size as the gas cooler-side connection block, a flow path formed at one end, and a bolt insertion hole formed at the other end is prepared. A male pipe portion to be inserted into an end portion of the flow path of the gas cooler side connection block is formed around one end opening of the flow path in the pipe side connection block. Further, the end of the pipe for piping is inserted into the end opposite to the side where the male pipe is formed in the flow path of the pipe side connection block, and is fixed by welding. Then, with both flow paths matched and the male pipe portion of the pipe side connection block inserted into the flow path of the gas cooler side connection block, the bolt passed through the bolt insertion hole is inserted into the female screw hole of the gas cooler side connection block. By fitting with screws, both connection blocks are fixed and piping pipes are connected.

しかしながら、特許文献1記載のガスクーラにおけるパイプ接続構造においては、次のような問題がある。   However, the pipe connection structure in the gas cooler described in Patent Document 1 has the following problems.

すなわち、超臨界冷凍サイクルにおいては、作動圧力がフロン系冷媒を使用した冷凍サイクルに比べて約10倍程度と非常に高くなるが、特許文献1記載のガスクーラにおけるパイプ接続構造によれば、両接続ブロックの一端部に流路が形成されるとともに、他端部においてボルトにより固定されているので、固定強度が不足して耐圧性が不足する。その結果、両接続ブロックにおける一端部側が離隔し、パイプ側接続ブロックの雄パイプ部がガスクーラ側接続ブロックの流路内から若干抜けて冷媒が洩れるおそれがある。   That is, in the supercritical refrigeration cycle, the operating pressure is about 10 times as high as that of the refrigeration cycle using the chlorofluorocarbon refrigerant. However, according to the pipe connection structure in the gas cooler described in Patent Document 1, both connections Since the flow path is formed at one end of the block and is fixed by a bolt at the other end, the fixing strength is insufficient and the pressure resistance is insufficient. As a result, the one end portions of both connection blocks are separated from each other, and the male pipe portion of the pipe-side connection block may slightly come out from the flow path of the gas cooler-side connection block, and the refrigerant may leak.

このような問題を解決するには、両接続ブロックの長さを長くし、流路を長さ方向の中央部に形成し、両端部においてボルトにより固定すればよいが、この場合、部品点数が多くなるとともに、接続の際の作業性が低下する。
特開平11−351783号公報
In order to solve such a problem, the length of both connection blocks may be increased, the flow path may be formed at the center in the length direction, and fixed with bolts at both ends. As the number increases, workability at the time of connection decreases.
JP-A-11-351788

この発明の目的は、上記問題を解決し、耐圧性の向上した冷凍サイクルの冷媒流通部接続構造を提供することにある。   An object of the present invention is to solve the above problems and provide a refrigerant circulation part connection structure of a refrigeration cycle with improved pressure resistance.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)一端開口を介して冷媒流通部に通じる冷媒流路を有する流路部材と、流路部材の冷媒流路の他端開口内に先端部が嵌め入れられた状態で流路部材に接続される冷媒流通部としてのパイプと、パイプを流路部材に固定する固定部材と、流路部材と固定部材とを固定する締結手段とを備えており、流路部材および固定部材のうちいずれか一方に、同他方の一部分に係合して流路部材と固定部材との離隔を防止する係合部が設けられ、パイプの先端寄りの部分に環状凸条が全周にわたって形成され、パイプにおける環状凸条よりも先端側の部分が流路部材の冷媒流路の上記他端開口内に嵌め入れられ、固定部材に、その一側縁部に開口し、かつパイプにおける環状凸条を挟んで冷媒流路内への嵌入部とは反対側の部分が嵌る切り欠きが形成され、先端部が流路部材の冷媒流路の上記他端開口内に嵌め入れられたパイプが、側方から固定部材の切り欠き内に嵌め入れられることにより、流路部材および固定部材のうちいずれか一方に設けられた係合部が同他方の一部分に係合するようになされている冷凍サイクルの冷媒流通部接続構造。 1) A flow path member having a refrigerant flow path that communicates with the refrigerant circulation section through one end opening, and a flow path member connected to the flow path member in a state where the tip end portion is fitted in the other end opening of the refrigerant flow path of the flow path member. A pipe as a refrigerant circulation part, a fixing member that fixes the pipe to the flow path member, and a fastening means that fixes the flow path member and the fixing member, and one of the flow path member and the fixing member In addition, an engaging portion that engages with the other part of the pipe to prevent separation between the flow path member and the fixing member is provided , and an annular ridge is formed over the entire circumference near the tip of the pipe. A portion on the front end side of the ridge is fitted into the other end opening of the refrigerant flow path of the flow path member, the fixed member opens at one side edge thereof, and the refrigerant is sandwiched between the annular ridges in the pipe. A notch into which the part opposite to the fitting part into the flow path fits is formed, A pipe whose end is fitted into the other end opening of the refrigerant flow path of the flow path member is fitted into the notch of the fixed member from the side, so that either the flow path member or the fixed member A refrigerant circulation part connection structure of a refrigeration cycle, wherein an engaging part provided on one side is engaged with a part of the other side.

2)流路部材における冷媒流路が形成された側の端部に固定部材側に突出しかつ固定部材の端面に沿う突出部が設けられ、突出部における固定部材の端面側を向いた面に、固定部材の切り欠きの深さ方向に伸びる凹溝が形成され、固定部材の端面に、凹溝内に嵌る外方に突出した凸部が設けられ、凹溝における突出部先端側の側壁が、凸部に係合する係合部となっている上記1)記載の冷凍サイクルの冷媒流通部接続構造。 2) Protruding portions are provided on the end portion of the flow path member on the side where the refrigerant flow path is formed and projecting toward the fixing member side and along the end surface of the fixing member, and on the surface facing the end surface side of the fixing member in the protruding portion, A concave groove extending in the depth direction of the notch of the fixing member is formed, and an outwardly protruding convex portion that fits into the concave groove is provided on the end surface of the fixing member, and the side wall on the distal end side of the protruding portion in the concave groove is The refrigerant circulation part connection structure of the refrigeration cycle according to the above 1), which is an engaging part that engages with a convex part.

3)流路部材の冷媒流路の上記一端開口内に冷媒流通部である流路部材側パイプの先端部が嵌め入れられ、流路部材側パイプが流路部材に接合されている上記1)または2)記載の冷凍サイクルの冷媒流通部接続構造 3) The above-mentioned 1), wherein the end of the flow path member side pipe, which is the refrigerant flow section, is fitted into the one end opening of the refrigerant flow path of the flow path member, and the flow path member side pipe is joined to the flow path member. Or the refrigerant | coolant distribution part connection structure of the refrigerating cycle of 2) description.

4)一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にめねじ穴が形成された第1流路部材と、一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にボルト挿通穴が形成された第2流路部材と、第2流路部材のボルト挿通穴に通されるとともに第1流路部材のめねじ穴にねじ嵌められるボルトとを用意すること、
第1流路部材における冷媒流路が形成された側の端部に第2流路部材側に突出しかつ第2流路部材の端面に沿う突出部を設けるとともに、突出部における第2流路部材の端面側を向いた面に、両流路部材の幅方向に伸びる凹溝を形成し、さらに第2流路部材の端面に、凹溝内に嵌る外方に突出した凸部を設けること、
第1流路部材の冷媒流路における第2流路部材側の端部に、内周面が円筒面状となされた挿入部を形成するとともに、第2流路部材の第1流路部材側を向いた面における冷媒流路の開口の周縁部に、外周面が円筒面状となされかつ第1流路部材の冷媒流路の挿入部内に挿入される雄パイプ部を設けること、
第1流路部材のめねじ穴と第2流路部材のボルト挿通穴がずれるように、第2流路部材の雄パイプ部を第1流路部材の冷媒流路の挿入部内に挿入すること、
第2流路部材を第1流路部材に対して雄パイプ部の中心線の周りに回転させることにより、めねじ穴とボルト挿通穴とを合致させるとともに、凸部を凹溝内に嵌めて凹溝の突出部先端側の側壁を凸部に係合させること、
ならびに第2流路部材のボルト挿通穴にボルトを通して第1流路部材のめねじ穴にねじ嵌めることを含む冷凍サイクルの冷媒流通部接続方法。
4) A first flow path member having a refrigerant flow path communicating with the refrigerant flow section at one end and a female thread hole formed at the other end, and a refrigerant flow path communicating with the refrigerant flow section at one end are formed. A second passage member having a bolt insertion hole formed at the other end, and a bolt that is passed through the bolt insertion hole of the second passage member and screwed into the female screw hole of the first passage member. To prepare,
In the first flow path member, the end of the refrigerant flow path on the side where the refrigerant flow path is formed is provided with a protrusion that protrudes toward the second flow path member and extends along the end surface of the second flow path member. Forming a concave groove extending in the width direction of both flow path members on the surface facing the end face side of the second flow path member, and further providing a convex portion projecting outward to fit in the concave groove on the end face of the second flow path member;
At the end of the first flow path member on the second flow path member side in the refrigerant flow path, an insertion portion having an inner peripheral surface formed into a cylindrical surface is formed, and the first flow path member side of the second flow path member A peripheral portion of the opening of the refrigerant flow path on the surface facing the surface is provided with a male pipe portion whose outer peripheral surface is cylindrical and inserted into the insertion portion of the refrigerant flow path of the first flow path member;
The male pipe portion of the second flow path member is inserted into the insertion portion of the refrigerant flow path of the first flow path member so that the female thread hole of the first flow path member and the bolt insertion hole of the second flow path member are displaced. ,
By rotating the second flow path member around the center line of the male pipe portion with respect to the first flow path member, the female screw hole and the bolt insertion hole are matched, and the convex portion is fitted in the concave groove. Engaging the side wall of the projecting portion tip side of the concave groove with the convex portion,
And the refrigerant | coolant distribution | circulation part connection method of a refrigerating cycle including screw-fitting in the internal thread hole of a 1st flow path member through a volt | bolt in the bolt insertion hole of a 2nd flow path member.

5)一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にボルト挿通穴が形成された第1流路部材と、一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にめねじ穴が形成された第2流路部材と、第1流路部材のボルト挿通穴に通されるとともに第2流路部材のめねじ穴にねじ嵌められるボルトとを用意すること、
第1流路部材における冷媒流路が形成された側の端部に第2流路部材側に突出しかつ第2流路部材の端面に沿う突出部を設けるとともに、突出部における第2流路部材の端面側を向いた面に、両流路部材の幅方向に伸びる凹溝を形成し、さらに第2流路部材の端面に、凹溝内に嵌る外方に突出した凸部を設けること、
第2流路部材の冷媒流路における第1流路部材側の端部に、内周面が円筒面状となされた挿入部を形成するとともに、第1流路部材の第2流路部材側を向いた面における冷媒流路の開口の周縁部に、外周面が円筒面状となされかつ第2流路部材の冷媒流路の挿入部内に挿入される雄パイプ部を設けること、
第2流路部材のめねじ穴と第1流路部材のボルト挿通穴がずれるように、第1流路部材の雄パイプ部を第2流路部材の冷媒流路の挿入部内に挿入すること、
第1流路部材を第2流路部材に対して雄パイプ部の中心線の周りに回転させることにより、めねじ穴とボルト挿通穴とを合致させるとともに、凸部を凹溝内に嵌めて凹溝の突出部先端側の側壁を凸部に係合させること、
ならびに第1流路部材のボルト挿通穴にボルトを通して第2流路部材のめねじ穴にねじ嵌めることを含む冷凍サイクルの冷媒流通部接続方法
5) A first flow path member having a refrigerant flow path communicating with the refrigerant circulation section at one end and a bolt insertion hole formed at the other end, and a refrigerant flow path communicating with the refrigerant circulation section at one end. A second flow path member having a female screw hole formed at the other end, and a bolt that is passed through the bolt insertion hole of the first flow path member and screwed into the female screw hole of the second flow path member. To prepare,
In the first flow path member, the end of the refrigerant flow path on the side where the refrigerant flow path is formed is provided with a protrusion that protrudes toward the second flow path member and extends along the end surface of the second flow path member. Forming a concave groove extending in the width direction of both flow path members on the surface facing the end face side of the second flow path member, and further providing a convex portion projecting outward to fit in the concave groove on the end face of the second flow path member;
At the end of the second flow path member on the first flow path member side in the refrigerant flow path, an insertion portion whose inner peripheral surface is formed into a cylindrical surface is formed, and the second flow path member side of the first flow path member A peripheral portion of the opening of the refrigerant flow path on the surface facing the surface is provided with a male pipe portion whose outer peripheral surface is cylindrical and inserted into the insertion portion of the refrigerant flow path of the second flow path member;
The male pipe portion of the first flow path member is inserted into the insertion portion of the refrigerant flow path of the second flow path member so that the female screw hole of the second flow path member and the bolt insertion hole of the first flow path member are displaced. ,
By rotating the first flow path member around the center line of the male pipe portion with respect to the second flow path member, the female screw hole and the bolt insertion hole are matched, and the convex portion is fitted in the concave groove. Engaging the side wall of the projecting portion tip side of the concave groove with the convex portion,
And the refrigerant | coolant distribution | circulation part connection method of a refrigerating cycle including screw-fitting in the internal thread hole of a 2nd flow path member through a volt | bolt in the bolt insertion hole of a 1st flow path member.

上記1)の冷媒流通部接続構造によれば、流路部材および固定部材のうちいずれか一方に、同他方の一部分に係合して流路部材と固定部材との離隔を防止する係合部が設けられているので、流路部材と固定部材との固定強度が増大して耐圧性が向上する。したがって、冷凍サイクルの作動圧力が高くなった場合にも、流路部材と固定部材とが離隔することはなく、その結果パイプの抜けおよびパイプの抜けに起因する冷媒の洩れが防止される。しかも、流路部材と固定部材との固定強度が増大するので、振動耐久性等も向上するAccording to the refrigerant flow part connection structure of 1) above, the engagement part that engages with one of the flow path member and the fixed member and prevents a separation between the flow path member and the fixed member Therefore, the fixing strength between the flow path member and the fixing member is increased, and the pressure resistance is improved. Therefore, even when the operating pressure of the refrigeration cycle becomes high, the flow path member and the fixing member are not separated from each other, and as a result, the leakage of the refrigerant due to the disconnection of the pipe and the disconnection of the pipe is prevented. Moreover, since the fixing strength between the channel member and the fixing member is increased, thereby improving the vibration resistance and the like.

また、上記1)の冷媒流通部接続構造によれば、流路部材および固定部材のうちいずれか一方に設けられた係合部を同他方の一部分に係合させる際の作業性が向上する In addition, according to the refrigerant circulation part connection structure of 1), the workability when engaging the engaging part provided on one of the flow path member and the fixing member with the other part is improved .

上記2)の冷媒流通部接続構造によれば、流路部材および固定部材のうちいずれか一方に設けられた係合部を同他方の一部分に係合させる際の作業性が向上するAccording to refrigerant flow section connection structure of the two), workability in engaging the engagement portion provided on either one of the flow channel member and the fixing member in the other of the portions is improved.

上記4)および5)の冷媒流通部接続方法によれば、比較的簡単に冷媒流通部どうしを接続することができるとともに、得られた冷媒流通部接続構造においては、両流路部材どうしの固定強度が増大して耐圧性が向上する。したがって、冷凍サイクルの作動圧力が高くなった場合にも、両流路部材どうしが離隔することはなく、その結果両流路部材間からの冷媒の洩れが防止される。しかも、両流路部材どうしの固定強度が増大するので、振動耐久性等も向上する。 According to the refrigerant circulation part connection method of 4) and 5) above , the refrigerant circulation parts can be connected relatively easily, and in the obtained refrigerant circulation part connection structure, the two flow path members are fixed to each other. Strength increases and pressure resistance improves. Therefore, even when the operating pressure of the refrigeration cycle increases, the two flow path members are not separated from each other, and as a result, leakage of the refrigerant from between the two flow path members is prevented. In addition, since the fixing strength between the two flow path members is increased, the vibration durability and the like are also improved.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

また、実施形態1〜3の説明において、図1、図2、図12および図13の上下、左右をそれぞれ上下、左右という。また、隣接する熱交換管どうしの間の通風間隙を流れる空気の下流側(図1および図12に矢印Xで示す方向)を前、これと反対側を後というものとする。   Moreover, in description of Embodiment 1-3, the upper and lower sides and right and left of FIG.1, FIG.2, FIG.12 and FIG. Further, the downstream side of the air flowing in the ventilation gap between adjacent heat exchange tubes (the direction indicated by the arrow X in FIGS. 1 and 12) is referred to as the front, and the opposite side is referred to as the rear.

実施形態1
この実施形態は図1〜図9に示すものであり、この発明を超臨界冷凍サイクルのガスクーラに適用したものである。
Embodiment 1
This embodiment is shown in FIGS. 1-9, and this invention is applied to the gas cooler of a supercritical refrigeration cycle.

図1および図2において、超臨界冷媒、たとえばCOを使用する超臨界冷凍サイクルのガスクーラ(1)は、左右方向に間隔をおいて配置されかつ上下方向にのびる2つのヘッダタンク(2)(3)と、両ヘッダタンク(2)(3)間に、上下方向に間隔をおいて並列状に配置された複数の偏平状熱交換管(4)と、隣接する熱交換管(4)どうしの間の通風間隙、および上下両端の熱交換管(4)の外側に配置されて熱交換管(4)にろう付されたコルゲートフィン(5)と、上下両端のコルゲートフィン(5)の外側にそれぞれ配置されてコルゲートフィン(5)にろう付されたアルミニウムベア材からなるサイドプレート(6)とを備えている。なお、この実施形態において、右側のヘッダタンク(2)を第1ヘッダタンク、左側のヘッダタンク(3)を第2ヘッダタンクというものとする。 1 and 2, a gas cooler (1) of a supercritical refrigeration cycle that uses a supercritical refrigerant, for example, CO 2 , is arranged with two header tanks (2) (2) that are spaced apart in the left-right direction and extend in the up-down direction. 3) and a plurality of flat heat exchange tubes (4) arranged in parallel with a space in the vertical direction between the header tanks (2) and (3), and adjacent heat exchange tubes (4) Between the upper and lower ends of the heat exchange pipe (4) and the corrugated fins (5) brazed to the heat exchange pipe (4) and the upper and lower ends of the corrugated fins (5) And a side plate (6) made of an aluminum bare material brazed to the corrugated fin (5). In this embodiment, the right header tank (2) is referred to as a first header tank, and the left header tank (3) is referred to as a second header tank.

図3および図4に示すように、第1ヘッダタンク(2)は、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシートから形成されたヘッダ形成用プレート(7)と、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシートから形成された管接続用プレート(8)と、金属ベア材、ここではアルミニウムベア材からなりかつヘッダ形成用プレート(7)と管接続用プレート(8)との間に介在させられた中間プレート(9)とが、積層されて互いにろう付されることにより構成されている。   As shown in FIGS. 3 and 4, the first header tank (2) includes a brazing sheet having a brazing material layer on both sides, here a header forming plate (7) formed from an aluminum brazing sheet, and brazing on both sides. A brazing sheet having a material layer, here a pipe connection plate (8) formed from an aluminum brazing sheet, and a metal bare material, here an aluminum bear material and a header forming plate (7) and a pipe connection plate ( The intermediate plate (9) interposed between them is laminated and brazed to each other.

ヘッダ形成用プレート(7)に、上下方向にのび、かつ膨出高さ、長さおよび幅の等しい複数、ここでは2つの外方膨出部(11A)(11B)が上下方向に間隔をおいて形成されている。各外方膨出部(11A)(11B)の左側を向いた開口は中間プレート(9)により塞がれている。ヘッダ形成用プレート(7)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施することにより形成されている。ヘッダ形成用プレート(7)の上側外方膨出部(11A)の頂部に冷媒入口(12)が形成され、下側外方膨出部(11B)の頂部に冷媒出口(13)が形成されている。   The header forming plate (7) extends in the vertical direction and has a plurality of equal bulging heights, lengths and widths, here two outward bulging portions (11A) and (11B) spaced apart in the vertical direction. Formed. The opening facing the left side of each outward bulge portion (11A) (11B) is closed by the intermediate plate (9). The header forming plate (7) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides. A refrigerant inlet (12) is formed at the top of the upper outer bulge (11A) of the header forming plate (7), and a refrigerant outlet (13) is formed at the top of the lower outer bulge (11B). ing.

管接続用プレート(8)に、前後方向に長い複数の貫通状管挿入穴(14)が、上下方向に間隔をおいて形成されている。上半部の複数の管挿入穴(14)は、ヘッダ形成用プレート(7)の上側外方膨出部(11A)の上下方向の範囲内に形成され、同じく下半部の複数の管挿入穴(14)は、下側外方膨出部(11B)の上下方向の範囲内に形成されている。また、管挿入穴(14)の前後方向の長さは、各外方膨出部(11A)(11B)の前後方向の幅よりも若干長く、管挿入穴(14)の前後両端部は外方膨出部(11A)(11B)の前後両側縁よりも外方に突出している(図5参照)。管接続用プレート(8)の前後両側縁部に、それぞれ右方に突出して先端がヘッダ形成用プレート(7)の外面まで至り、かつヘッダ形成用プレート(7)と中間プレート(9)との境界部分を全長にわたって覆う被覆壁(15)が一体に形成され、ヘッダ形成用プレート(7)および中間プレート(9)の前後両側面にろう付されている。各被覆壁(15)の突出端に、ヘッダ形成用プレート(7)の外面に係合する複数の係合部(16)が、上下方向に間隔をおいて一体に形成され、ヘッダ形成用プレート(7)にろう付されている。管接続用プレート(8)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されている。   A plurality of through-tube insertion holes (14) that are long in the front-rear direction are formed in the pipe connection plate (8) at intervals in the vertical direction. The plurality of tube insertion holes (14) in the upper half are formed in the vertical range of the upper outer bulge portion (11A) of the header forming plate (7), and the plurality of tube insertion holes in the lower half are also formed. The hole (14) is formed within the vertical range of the lower outward bulge portion (11B). The length in the front-rear direction of the tube insertion hole (14) is slightly longer than the width in the front-rear direction of each outward bulge (11A) (11B). It protrudes outward from the front and rear side edges of the side bulging portions (11A) and (11B) (see FIG. 5). It protrudes to the right and left side edges of the pipe connection plate (8) to the right, the tip reaches the outer surface of the header forming plate (7), and the header forming plate (7) and the intermediate plate (9) A covering wall (15) covering the entire length of the boundary portion is integrally formed and brazed to both the front and rear side surfaces of the header forming plate (7) and the intermediate plate (9). A plurality of engaging portions (16) that engage with the outer surface of the header forming plate (7) are integrally formed at the protruding end of each covering wall (15) at intervals in the vertical direction. It is brazed to (7). The pipe connection plate (8) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides.

中間プレート(9)に、管接続用プレート(8)の管挿入穴(14)をヘッダ形成用プレート(7)の外方膨出部(11A)(11B)内に通じさせる貫通状連通穴(17)が、管挿入穴(14)と同じ数だけ形成されている。連通穴(17)は管挿入穴(14)よりも一回り大きくなっている(図5参照)。各連通穴(17)は、管接続用プレート(8)の各管挿入穴(14)と対応する位置に形成されている。そして、管接続用プレート(8)の上半部の複数の管挿入穴(14)は、中間プレート(9)の上半部の複数の連通穴(17)を介して上側外方膨出部(11A)内に通じさせられ、同じく下半部の複数の管挿入穴(14)は、中間プレート(9)の下半部の複数の連通穴(17)を介して下側外方膨出部(11B)内に通じさせられている。上側外方膨出部(11A)内に通じるすべての連通穴(17)、および下側外方膨出部(11B)内に通じるすべての連通穴(17)は、それぞれ中間プレート(9)における隣り合う連通穴(17)間の部分を切除することにより形成された連通部(18)により連通させられている。中間プレート(9)は、アルミニウムベア材にプレス加工を施すことにより形成されている。   A through-hole communication hole (9) that allows the pipe insertion hole (14) of the pipe connection plate (8) to communicate with the intermediate plate (9) into the outward bulges (11A) (11B) of the header forming plate (7). 17) is formed in the same number as the tube insertion hole (14). The communication hole (17) is slightly larger than the pipe insertion hole (14) (see FIG. 5). Each communication hole (17) is formed at a position corresponding to each tube insertion hole (14) of the tube connection plate (8). The plurality of tube insertion holes (14) in the upper half of the pipe connection plate (8) are connected to the upper outer bulge portion via the plurality of communication holes (17) in the upper half of the intermediate plate (9). (11A), the plurality of tube insertion holes (14) in the lower half are also expanded outwardly through the plurality of communication holes (17) in the lower half of the intermediate plate (9). Part (11B) is connected. All the communication holes (17) that communicate with the upper outer bulge (11A) and all the communication holes (17) that communicate with the lower outer bulge (11B) are respectively in the intermediate plate (9). It is connected by the communication part (18) formed by excising the part between adjacent communication holes (17). The intermediate plate (9) is formed by pressing an aluminum bare material.

第2ヘッダタンク(3)は、第1ヘッダタンク(2)とほぼ同様な構成であり、同一物および同一部分に同一符号を付す(図6参照)。両ヘッダタンク(2)(3)は、管接続用プレート(8)どうしが対向するように配置されている。第2ヘッダタンク(3)における第1ヘッダタンク(2)との相違点は、ヘッダ形成用プレート(7)に、第1ヘッダタンク(2)の外方膨出部(11A)(11B)の数よりも1つ少ない数、ここでは1つの外方膨出部(19)が、第1ヘッダタンク(2)の両外方膨出部(11A)(11B)にまたがるようにヘッダ形成用プレート(7)の上端部から下端部にかけて形成されている点、外方膨出部(19)に冷媒入口および冷媒出口が形成されていない点、管接続用プレート(8)のすべての管挿入穴(14)が中間プレート(9)のすべての連通穴(17)を介して外方膨出部(19)内に通じている点、ならびに中間プレート(9)のすべての連通穴(17)が、隣り合う連通穴(17)間の部分を切除することにより形成された連通部(18)により連通させられている点である。   The second header tank (3) has substantially the same configuration as the first header tank (2), and the same components and the same parts are denoted by the same reference numerals (see FIG. 6). Both header tanks (2) and (3) are arranged so that the pipe connection plates (8) face each other. The difference between the second header tank (3) and the first header tank (2) is that the header forming plate (7) has an outward bulging portion (11A) (11B) of the first header tank (2). A plate for header formation so that one outer bulge (19), which is one less than the number, extends over both outer bulges (11A) (11B) of the first header tank (2). The point formed from the upper end to the lower end of (7), the point where the refrigerant inlet and the refrigerant outlet are not formed in the outward bulging part (19), and all the pipe insertion holes of the pipe connecting plate (8) (14) leads to the outward bulge (19) through all the communication holes (17) of the intermediate plate (9), as well as all the communication holes (17) of the intermediate plate (9). The point of being connected by the communication part (18) formed by excising the part between adjacent communication holes (17).

両ヘッダタンク(2)(3)は、外方膨出部(11A)(11B)(19)を有するヘッダ形成用プレート(7)と、管挿入穴(14)、被覆壁(15)および被覆壁(15)に真っ直ぐに連なった係合部形成用突片(16A)(図4および図6実線参照)を有する管接続用プレート(8)と、連通穴(17)および連通部(18)を有する中間プレート(9)とを形成した後、3つのプレート(7)(8)(9)を積層状に組み合わせた後、突片(16A)を曲げてヘッダ形成用プレート(7)に係合させて係合部(16)を形成し、ついでヘッダ形成用プレート(7)のろう材層および管接続用プレート(8)のろう材層を利用して3つのプレート(7)(8)(9)を相互にろう付するとともに、被覆壁(15)を中間プレート(9)およびヘッダ形成用プレート(7)の前後両側面にろう付し、さらに係合部(16)をヘッダ形成用プレート(7)にろう付することにより製造される。   Both header tanks (2) and (3) are composed of a header forming plate (7) having outward bulging portions (11A), (11B) and (19), a tube insertion hole (14), a covering wall (15) and a covering. A pipe connecting plate (8) having a projecting piece (16A) (see solid lines in FIGS. 4 and 6) straightly connected to the wall (15), a communication hole (17) and a communication part (18) After forming the intermediate plate (9) having three, the three plates (7), (8) and (9) are combined in a laminated form, and then the protrusion (16A) is bent to engage the header forming plate (7). Then, the engaging portion (16) is formed, and then the three plates (7) (8) are formed by using the brazing material layer of the header forming plate (7) and the brazing material layer of the pipe connecting plate (8). (9) is brazed to each other, the covering wall (15) is brazed to both the front and rear side surfaces of the intermediate plate (9) and the header forming plate (7), and the engaging portion (16) is further formed for the header Manufactured by brazing the plate (7).

熱交換管(4)は、金属、ここではアルミニウム製押出形材からなり、前後方向に幅広の偏平状で、その内部に長さ方向にのびる複数の冷媒通路(4a)が並列状に形成されている。熱交換管(4)の両端部は、それぞれ両ヘッダタンク(2)(3)の管挿入穴(14)に挿入された状態で、管接続用プレート(8)のろう材層を利用して管接続用プレート(8)にろう付されている。なお、熱交換管(4)の両端は中間プレート(9)の厚さ方向の中間部まで連通穴(17)内に入り込んでいる(図2参照)。上半分の複数の熱交換管(4)の右端部は上側外方膨出部(11A)内に通じるように第1ヘッダタンク(2)に接続され、左端部は外方膨出部(19)内に通じるように第2ヘッダタンク(3)に接続されている。また、下半分の複数の熱交換管(4)の右端部は下側外方膨出部(11B)内に通じるように第1ヘッダタンク(2)に接続され、左端部は外方膨出部(19)内に通じるように第2ヘッダタンク(3)に接続されている。   The heat exchange pipe (4) is made of an extruded shape made of metal, here aluminum, and has a wide and flat shape in the front-rear direction, and a plurality of refrigerant passages (4a) extending in the length direction are formed in parallel in the inside. ing. Both ends of the heat exchange pipe (4) are inserted into the pipe insertion holes (14) of both header tanks (2) and (3), and the brazing material layer of the pipe connection plate (8) is used. It is brazed to the pipe connection plate (8). Note that both ends of the heat exchange pipe (4) enter the communication hole (17) up to the middle part in the thickness direction of the intermediate plate (9) (see FIG. 2). The right end of the heat exchange pipes (4) in the upper half is connected to the first header tank (2) so as to communicate with the upper outer bulge (11A), and the left end is connected to the outer bulge (19 ) Is connected to the second header tank (3) so as to communicate with the inside. In addition, the right end of the heat exchange pipes (4) in the lower half is connected to the first header tank (2) so as to communicate with the lower outer bulge (11B), and the left end is bulged outward. It is connected to the second header tank (3) so as to communicate with the part (19).

コルゲートフィン(5)は両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシートを用いて波状に形成されたものである。   The corrugated fin (5) is formed in a wavy shape using a brazing sheet having a brazing filler metal layer on both sides, here an aluminum brazing sheet.

上述したガスクーラ(1)において、第1ヘッダタンク(2)の上側外方膨出部(11A)を含む上半部が冷媒流通部である冷媒入口ヘッダ(21)となり、同じく下側外方膨出部(11B)を含む下半部が冷媒流通部である冷媒出口ヘッダ(22)となる。また、すべての熱交換管(4)と第2ヘッダタンク(3)とにより、冷媒入口ヘッダ(21)と冷媒出口ヘッダ(22)とを通じさせる冷媒循環経路が形成されている。   In the gas cooler (1) described above, the upper half of the first header tank (2) including the upper outer bulge portion (11A) serves as the refrigerant inlet header (21), which is the refrigerant circulation portion, and also the lower outer bulge. The lower half including the outlet (11B) serves as a refrigerant outlet header (22) which is a refrigerant circulation part. Also, a refrigerant circulation path through which the refrigerant inlet header (21) and the refrigerant outlet header (22) are connected is formed by all the heat exchange pipes (4) and the second header tank (3).

そして、冷媒入口ヘッダ(21)および冷媒出口ヘッダ(22)に、それぞれ入口側および出口側の配管用パイプ(25)が、冷媒流通部接続構造(23)によって接続されている。両冷媒流通部接続構造(23)は同一の構成であり、出口側配管用パイプ(25)を接続する冷媒流通部接続構造(23)についてのみ詳細に図示する。   Then, a pipe for pipe (25) on the inlet side and the outlet side is connected to the refrigerant inlet header (21) and the refrigerant outlet header (22), respectively, by a refrigerant circulation part connection structure (23). Both refrigerant circulation part connection structures (23) have the same configuration, and only the refrigerant circulation part connection structure (23) for connecting the outlet side piping pipe (25) is illustrated in detail.

図7〜図9に示すように、冷媒流通部接続構造(23)は、第1ヘッダタンク(2)の下側外方膨出部(11B)外面、すなわち冷媒出口ヘッダ(22)に接合された流路部材(26)と、配管用パイプ(25)と、配管用パイプ(25)を流路部材(26)に固定する固定部材(27)と、流路部材(26)と固定部材(27)とを固定する締結手段とよりなる。   As shown in FIGS. 7-9, the refrigerant | coolant circulation part connection structure (23) is joined to the outer surface of the lower outward bulge part (11B) of the first header tank (2), that is, the refrigerant outlet header (22). A flow path member (26), a pipe for pipe (25), a fixing member (27) for fixing the pipe for pipe (25) to the flow path member (26), a flow path member (26) and a fixing member ( 27) and fastening means for fixing.

流路部材(26)は金属、ここではアルミニウムベア材により後方から見て縦長方形のブロック状に形成されたものであり、一端開口が冷媒入口(12)および冷媒出口(13)を介して冷媒入口ヘッダ(21)および冷媒出口ヘッダ(22)内に通じるとともに、他端が流路部材(26)後面の上端部に開口した冷媒流路(28)を有している。冷媒流路(28)の後端部に、内周面が円筒面状となされた挿入部(28a)が形成されている。流路部材(26)の上端面に、流路部材(26)後面よりも後方に突出しかつ固定部材(27)の上端面に沿う突出部(29)が一体に形成され、突出部(29)の下面に左右方向に伸びる凹溝(31)が形成されている。凹溝(31)の左右両端は突出部(29)の左右両側面に開口している。凹溝(31)における突出部(29)先端側の側壁が、後述する固定部材(27)の凸部(35)に係合する係合部(32)となっている。流路部材(26)は、ヘッダ形成用プレート(7)の外面のろう材を利用して冷媒入口ヘッダ(21)および冷媒出口ヘッダ(22)にろう付されている。   The flow path member (26) is formed of a metal, here an aluminum bare material, into a vertically rectangular block shape when viewed from the rear, and one end opening is formed into a refrigerant through the refrigerant inlet (12) and the refrigerant outlet (13). The refrigerant has a refrigerant flow path (28) that communicates with the inlet header (21) and the refrigerant outlet header (22) and has the other end opened at the upper end of the rear surface of the flow path member (26). An insertion portion (28a) having an inner peripheral surface of a cylindrical surface is formed at the rear end portion of the refrigerant flow path (28). The upper end surface of the flow path member (26) is integrally formed with a protrusion (29) that protrudes rearward from the rear surface of the flow path member (26) and extends along the upper end surface of the fixing member (27). A concave groove (31) extending in the left-right direction is formed on the lower surface of the substrate. The left and right ends of the groove (31) are open on the left and right sides of the protrusion (29). A side wall on the distal end side of the projecting portion (29) in the concave groove (31) serves as an engaging portion (32) that engages with a convex portion (35) of the fixing member (27) described later. The flow path member (26) is brazed to the refrigerant inlet header (21) and the refrigerant outlet header (22) using the brazing material on the outer surface of the header forming plate (7).

配管用パイプ(25)の先端寄りの部分に、環状ビード(25a)(環状凸条)が全周にわたって形成されている。配管用パイプ(25)の環状ビード(25a)よりも先端側の部分の外周面にOリング(33)が装着されている。   An annular bead (25a) (annular ridge) is formed over the entire circumference at a portion near the tip of the piping pipe (25). An O-ring (33) is attached to the outer peripheral surface of the pipe pipe (25) at the tip side of the annular bead (25a).

固定部材(27)は金属、ここではアルミニウムベア材により後方から見て縦長円形のブロック状に形成されたものである。固定部材(27)の上端部には、その左側縁部(左側面)に開口しかつ配管用パイプ(25)における環状ビード(25a)よりも後側の部分(長さ方向内側部分)が嵌る切り欠き(34)が形成されている。固定部材(27)の前面における切り欠き(34)の前端開口の周縁部には、配管用パイプ(25)の環状ビード(25a)が嵌る凹所(27a)が形成されている。固定部材(27)の上端面に、上方に突出しかつ流路部材(26)の凹溝(31)内に嵌る凸部(35)が一体に形成されている。凸部(35)の突出高さは凹溝(31)の深さと等しく、凸部(35)の前後方向の長さは凹溝(31)の前後方向の幅と等しくなっている。また、凸部(35)の上面は、後方から見て上方に突出した円弧状となっている。   The fixing member (27) is formed of a metal, here an aluminum bear material, in the shape of an oblong block as viewed from the rear. The upper end portion of the fixing member (27) is open to the left edge (left side surface) of the fixing member (27) and the rear portion (the inner portion in the length direction) of the pipe for pipe (25) from the annular bead (25a) is fitted. A notch (34) is formed. A recess (27a) into which the annular bead (25a) of the pipe for piping (25) is fitted is formed on the peripheral edge of the front end opening of the notch (34) on the front surface of the fixing member (27). On the upper end surface of the fixing member (27), a convex portion (35) protruding upward and fitting into the concave groove (31) of the flow path member (26) is integrally formed. The protruding height of the convex portion (35) is equal to the depth of the concave groove (31), and the length of the convex portion (35) in the front-rear direction is equal to the width of the concave groove (31) in the front-rear direction. Further, the upper surface of the convex portion (35) has an arc shape protruding upward as viewed from the rear.

締結手段は、流路部材(26)の後面下端部から前方に伸びるように形成されためねじ穴(36)と、固定部材(27)の下端部に前後方向に貫通状に形成されたボルト挿通穴(37)に前方から通され、かつ流路部材(26)のめねじ穴(36)にねじ嵌められるボルト(38)とよりなる。   The fastening means is formed so as to extend forward from the lower end of the rear surface of the flow path member (26), so that a screw hole (36) and a bolt inserted in the lower end of the fixing member (27) are formed penetrating in the front-rear direction. It comprises a bolt (38) that is passed through the hole (37) from the front and is screwed into the female screw hole (36) of the flow path member (26).

配管用パイプ(25)の冷媒入口ヘッダ(21)および冷媒出口ヘッダ(22)への接続は次のようにして行われる。   The piping pipe (25) is connected to the refrigerant inlet header (21) and the refrigerant outlet header (22) as follows.

まず、流路部材(26)の冷媒流路(28)の挿入部(28a)内に、配管用パイプ(25)における環状ビード(25a)よりも先端側の部分を挿入する。ついで、固定部材(27)を、流路部材(26)の右方から左方に移動させるように配置することにより、凸部(35)を流路部材(26)の凹溝(31)内に嵌め入れるとともに、切り欠き(34)内に配管用パイプ(25)における環状ビード(25a)よりも後側部分を嵌め入れ、さらにボルト挿通穴(37)とめねじ穴(36)とを合致させる。このとき、配管用パイプ(25)の環状ビード(25a)を固定部材(27)の凹所(27a)内に嵌め入れる。ついで、ボルト(38)を前方から固定部材(27)のボルト挿通穴(37)に通すとともに、流路部材(26)のめねじ穴(36)にねじ嵌める。こうして、配管用パイプ(25)が冷媒出口ヘッダ(22)に接続される。   First, a portion of the pipe pipe (25) on the tip side of the annular bead (25a) is inserted into the insertion portion (28a) of the refrigerant flow path (28) of the flow path member (26). Next, by arranging the fixing member (27) so as to move from the right side to the left side of the flow path member (26), the convex portion (35) is placed in the concave groove (31) of the flow path member (26). Is inserted into the notch (34) and the rear part of the pipe for pipe (25) from the annular bead (25a) is inserted, and the bolt insertion hole (37) and the female screw hole (36) are aligned with each other. . At this time, the annular bead (25a) of the piping pipe (25) is fitted into the recess (27a) of the fixing member (27). Next, the bolt (38) is passed from the front through the bolt insertion hole (37) of the fixing member (27) and is screwed into the female screw hole (36) of the flow path member (26). Thus, the piping pipe (25) is connected to the refrigerant outlet header (22).

ガスクーラ(1)は、圧縮機、エバポレータ、減圧器としての膨張弁、気液分離器としてのアキュムレータおよびガスクーラから出てきた冷媒とエバポレータから出て気液分離器を通過してきた冷媒とを熱交換させる中間熱交換器とともに超臨界冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。   The gas cooler (1) exchanges heat between the refrigerant coming out of the evaporator and the refrigerant coming out of the evaporator and the refrigerant coming out of the evaporator, the expansion valve as the compressor, the evaporator, the decompressor, the accumulator as the gas-liquid separator, and the gas cooler. A supercritical refrigeration cycle is configured together with the intermediate heat exchanger to be mounted on a vehicle such as an automobile as a car air conditioner.

上述したガスクーラ(1)において、圧縮機を通過したCOが、入口側配管用パイプ(25)から流路部材(26)の冷媒流路(28)を通って冷媒入口(12)から冷媒入口ヘッダ(21)内に入り、分流して上側外方膨出部(11A)内に通じているすべての熱交換管(4)の冷媒通路(4a)内に流入する。冷媒通路(4a)内に流入したCOは、冷媒通路(4a)内を左方に流れて第2ヘッダタンク(3)の外方膨出部(19)内に流入する。外方膨出部(19)内に流入したCOはその内部と連通穴(17)および連通部(18)を通って下方に流れ、分流して下側外方膨出部(11B)に通じているすべての熱交換管(4)の冷媒通路(4a)内に流入し、流れ方向を変えて冷媒通路(4a)内を右方に流れて冷媒出口ヘッダ(22)内に入る。その後、COは冷媒出口(13)および流路部材(26)の冷媒流路(28)を通り、出口側配管用パイプ(25)から排出される。そして、COが熱交換管(4)の冷媒通路(4a)内を流れる間に、通風間隙を図1に矢印Xで示す方向に流れる空気と熱交換し、冷却される。 In the gas cooler (1) described above, CO 2 that has passed through the compressor passes from the inlet pipe (25) through the refrigerant passage (28) of the passage member (26) to the refrigerant inlet (12). The refrigerant flows into the refrigerant passages (4a) of all the heat exchange pipes (4) that enter the header (21), diverge, and communicate with the upper outer bulge portion (11A). The CO 2 flowing into the refrigerant passage (4a) flows leftward in the refrigerant passage (4a) and then flows into the outward bulging portion (19) of the second header tank (3). The CO 2 that has flowed into the outward bulge (19) flows downward through the communication hole (17) and the communication portion (18) with the inside thereof, and is divided into the lower outward bulge (11B). The refrigerant flows into the refrigerant passages (4a) of all the heat exchange pipes (4) communicated, changes the flow direction, flows right in the refrigerant passages (4a), and enters the refrigerant outlet header (22). Thereafter, CO 2 passes through the refrigerant outlet (13) and the refrigerant flow path (28) of the flow path member (26) and is discharged from the outlet side piping pipe (25). Then, while CO 2 flows in the refrigerant passage (4a) of the heat exchange pipe (4), the ventilation gap is heat-exchanged with the air flowing in the direction indicated by the arrow X in FIG.

実施形態1においては、流路部材(26)に係合部(32)が設けられ、固定部材(27)に係合部(32)が係合する凸部(35)が設けられているが、これとは逆に、流路部材(26)に凸部(35)が設けられ、固定部材(27)に凸部(35)に係合する係合部(32)が設けられていてもよい。   In the first embodiment, the flow path member (26) is provided with the engaging portion (32), and the fixing member (27) is provided with the convex portion (35) with which the engaging portion (32) is engaged. On the other hand, the flow path member (26) may be provided with a convex portion (35), and the fixing member (27) may be provided with an engaging portion (32) that engages with the convex portion (35). Good.

実施形態2
この実施形態は図10および図11に示すものであり、この発明を超臨界冷凍サイクルのガスクーラに適用したものである。
Embodiment 2
This embodiment is shown in FIGS. 10 and 11, and the present invention is applied to a gas cooler of a supercritical refrigeration cycle.

実施形態2のガスクーラにおいては、冷媒入口ヘッダ(21)に入口側配管用パイプを接続する冷媒流通部接続構造、および冷媒出口ヘッダ(22)に出口側配管用パイプを接続する冷媒流通部接続構造が、実施形態1のガスクーラと異なっており、その他の構成は実施形態1のガスクーラと同じである。   In the gas cooler of the second embodiment, a refrigerant circulation part connection structure for connecting an inlet side piping pipe to the refrigerant inlet header (21), and a refrigerant circulation part connection structure for connecting an outlet side piping pipe to the refrigerant outlet header (22). However, it differs from the gas cooler of Embodiment 1, and the other structure is the same as the gas cooler of Embodiment 1.

実施形態2における両冷媒流通部接続構造(40)は同一の構成であり、出口側配管用パイプを接続する冷媒流通部接続構造(40)のみを図示する。   Both refrigerant circulation part connection structures (40) in Embodiment 2 have the same configuration, and only the refrigerant circulation part connection structure (40) for connecting the outlet side piping pipe is illustrated.

冷媒流通部接続構造(40)は、第1ヘッダタンク(2)の両外方膨出部(11A)(11B)外面、すなわち冷媒入口ヘッダ(21)および冷媒出口ヘッダ(22)に接合された第1流路部材(41)と、第1流路部材(41)に固定される第2流路部材(42)と、両流路部材(41)(42)を固定する締結手段とよりなる。   The refrigerant circulation part connection structure (40) is joined to the outer surfaces of both outwardly bulging parts (11A) and (11B) of the first header tank (2), that is, the refrigerant inlet header (21) and the refrigerant outlet header (22). The first flow path member (41), the second flow path member (42) fixed to the first flow path member (41), and fastening means for fixing both flow path members (41) (42). .

第1流路部材(41)は、実施形態1のガスクーラの流路部材(26)と同じ構成であり、同一部分には同一符号を付す。   The first flow path member (41) has the same configuration as the flow path member (26) of the gas cooler of Embodiment 1, and the same reference numerals are given to the same portions.

第2流路部材(42)は金属、ここではアルミニウムベア材により後方から見て縦長円形のブロック状に形成されたものである。第2流路部材(42)には、前後方向に貫通した冷媒流路(43)が形成されている。冷媒流路(43)の後端部には大径部(43a)が形成されており、この大径部(43a)内に冷媒流通部である配管用パイプ(44)の先端部が挿入されて第2流路部材(42)に溶接やろう付により接合されている。第2流路部材(42)の前面における冷媒流路(43)の前端開口の周縁部には、外周面が円筒面状となされた雄パイプ部(42a)が前方突出状に一体に形成されている。雄パイプ部(42a)の外周面にOリング(45)が装着されている。第2流路部材(42)の上端面に、上方に突出しかつ第1流路部材(41)の凹溝(31)内に嵌る凸部(46)が一体に形成されている。凸部(46)の突出高さは凹溝(31)の深さと等しく、凸部(46)の前後方向の長さは凹溝(31)の前後方向の幅と等しくなっている。また、凸部(46)の上面は、後方から見て上方に突出した円弧状となっている。ここで、雄パイプ部(42a)の外周面の中心線と凸部(46)の上端との距離は、第1流路部材(41)の冷媒流路(28)における挿入部(28a)の中心線と凹溝(31)の底面との距離と等しくなっている。   The second flow path member (42) is formed of a metal, here an aluminum bear material, in the shape of an oblong block as viewed from the rear. The second flow path member (42) is formed with a refrigerant flow path (43) penetrating in the front-rear direction. A large-diameter portion (43a) is formed at the rear end portion of the refrigerant flow path (43), and a leading end portion of a pipe for piping (44), which is a refrigerant circulation portion, is inserted into the large-diameter portion (43a). And joined to the second flow path member (42) by welding or brazing. A male pipe part (42a) whose outer peripheral surface is formed into a cylindrical surface is integrally formed in a forward projecting manner at the peripheral edge of the front end opening of the refrigerant flow path (43) on the front surface of the second flow path member (42). ing. An O-ring (45) is attached to the outer peripheral surface of the male pipe portion (42a). On the upper end surface of the second flow path member (42), a convex portion (46) protruding upward and fitting into the concave groove (31) of the first flow path member (41) is integrally formed. The protruding height of the convex portion (46) is equal to the depth of the concave groove (31), and the length of the convex portion (46) in the front-rear direction is equal to the width of the concave groove (31) in the front-rear direction. Further, the upper surface of the convex portion (46) has an arc shape protruding upward as viewed from the rear. Here, the distance between the center line of the outer peripheral surface of the male pipe part (42a) and the upper end of the convex part (46) is the distance between the insertion part (28a) in the refrigerant flow path (28) of the first flow path member (41). It is equal to the distance between the center line and the bottom surface of the groove (31).

締結手段は、実施形態1のガスクーラの締結手段と同じ構成であり、同一物には同一符号を付す。   A fastening means is the same structure as the fastening means of the gas cooler of Embodiment 1, and attaches | subjects the same code | symbol to the same thing.

配管用パイプ(44)の冷媒入口ヘッダ(21)および冷媒出口ヘッダ(22)への接続は次のようにして行われる。   The piping pipe (44) is connected to the refrigerant inlet header (21) and the refrigerant outlet header (22) as follows.

まず、第1流路部材(41)の冷媒流路(28)の挿入部(28a)内に、第2流路部材(42)の雄パイプ部(42a)を挿入する。このとき、第2流路部材(42)のボルト挿通穴(37)が第1流路部材(41)のめねじ穴(36)からずれるように、ここでは後方から見て反時計方向にずれるようにしておく。ついで、第2流路部材(42)を雄パイプ部(42a)の外周面における中心線の周りに回転させることにより、第2流路部材(42)の凸部(46)を第1流路部材(41)の凹溝(31)内に嵌め入れるとともに、ボルト挿通穴(37)とめねじ穴(36)とを合致させる。ついで、ボルト(38)を前方から固定部材(27)のボルト挿通穴(37)に通すとともに、第1流路部材(41)のめねじ穴(36)にねじ嵌める。こうして、出口側配管用パイプ(44)が冷媒出口ヘッダ(22)に接続される。   First, the male pipe part (42a) of the second flow path member (42) is inserted into the insertion part (28a) of the refrigerant flow path (28) of the first flow path member (41). At this time, the bolt insertion hole (37) of the second flow path member (42) is deviated counterclockwise as viewed from the rear so that the screw insertion hole (36) of the first flow path member (41) is displaced. Keep it like that. Next, by rotating the second flow path member (42) around the center line on the outer peripheral surface of the male pipe portion (42a), the convex portion (46) of the second flow path member (42) is moved to the first flow path. The bolt is inserted into the groove (31) of the member (41), and the bolt insertion hole (37) and the female screw hole (36) are matched. Next, the bolt (38) is passed from the front through the bolt insertion hole (37) of the fixing member (27) and is screwed into the female screw hole (36) of the first flow path member (41). Thus, the outlet side piping pipe (44) is connected to the refrigerant outlet header (22).

実施形態2においては、第1流路部材(41)に係合部(32)が設けられ、第2流路部材(42)に係合部(32)が係合する凸部(46)が設けられているが、これとは逆に、第1流路部材(41)に凸部が設けられ、第2流路部材(42)に凸部(46)に係合する係合部が設けられていてもよい。   In the second embodiment, the first flow path member (41) is provided with the engaging portion (32), and the second flow path member (42) is engaged with the convex portion (46). Contrary to this, the first flow path member (41) is provided with a convex portion, and the second flow path member (42) is provided with an engaging portion that engages with the convex portion (46). It may be done.

実施形態3
この実施形態は図12〜図20に示すものであり、この発明を超臨界冷凍サイクルのエバポレータに適用したものである。
Embodiment 3
This embodiment is shown in FIGS. 12 to 20, and the present invention is applied to an evaporator of a supercritical refrigeration cycle.

図12〜図14において、超臨界冷媒、たとえばCOを使用する超臨界冷凍サイクルのエバポレータ(50)は、上下方向に間隔をおいて配置されかつ左右方向にのびる2つのヘッダタンク(51)(52)と、両ヘッダタンク(51)(52)間に、左右方向に間隔をおいて並列状に配置された複数の偏平状熱交換管(53)と、隣接する熱交換管(53)どうしの間の通風間隙、および左右両端の熱交換管(53)の外側に配置されて熱交換管(53)にろう付されたコルゲートフィン(54)と、左右両端のコルゲートフィン(54)の外側にそれぞれ配置されてコルゲートフィン(54)にろう付されたアルミニウムベア製サイドプレート(55)とを備えている。なお、この実施形態において、上側のヘッダタンク(51)を第1ヘッダタンク、下側のヘッダタンク(52)を第2ヘッダタンクというものとする。 12 to 14, an evaporator (50) of a supercritical refrigeration cycle using a supercritical refrigerant, for example, CO 2 , has two header tanks (51) (51) ( 52) and a plurality of flat heat exchange pipes (53) arranged in parallel in the left-right direction between both header tanks (51) and (52), and adjacent heat exchange pipes (53). Between the left and right heat exchange pipes (53) and the corrugated fins (54) brazed to the heat exchange pipes (53) and the left and right ends of the corrugated fins (54) And an aluminum bear side plate (55) brazed to the corrugated fin (54). In this embodiment, the upper header tank (51) is referred to as a first header tank, and the lower header tank (52) is referred to as a second header tank.

第1ヘッダタンク(51)は、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシートから形成されたヘッダ形成用プレート(56)と、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシートから形成された管接続用プレート(57)と、金属ベア材、ここではアルミニウムベア材からなりかつヘッダ形成用プレート(56)と管接続用プレート(57)との間に介在させられた中間プレート(58)とが、積層されて互いにろう付されることにより構成されている。   The first header tank (51) includes a brazing sheet having a brazing material layer on both sides, here a header forming plate (56) formed from an aluminum brazing sheet, and a brazing sheet having a brazing material layer on both sides, here aluminum. The pipe connecting plate (57) formed from the brazing sheet and a metal bare material, here an aluminum bear material, and interposed between the header forming plate (56) and the pipe connecting plate (57) The intermediate plate (58) is laminated and brazed to each other.

第1ヘッダタンク(51)のヘッダ形成用プレート(56)の右側部分および左側部分に、それぞれ左右方向にのびる2つの外方膨出部(59A)(59B)(59C)(59D)が前後方向に間隔をおいて形成されている。以下、この実施形態において、右側前部分の外方膨出部(59A)を第1外方膨出部、右側後部分の外方膨出部(59B)を第2外方膨出部、左側前部分の外方膨出部(59C)を第3外方膨出部、左側後部分の外方膨出部(59D)を第4外方膨出部というものとする。各外方膨出部(59A)〜(59D)の下側を向いた開口は中間プレート(58)により塞がれている。各外方膨出部(59A)〜(59D)の膨出高さ、長さおよび幅は等しくなっている。ヘッダ形成用プレート(56)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施することにより形成されている。   Two outward bulges (59A) (59B) (59C) (59D) extending in the left-right direction on the right and left sides of the header forming plate (56) of the first header tank (51) Are formed at intervals. Hereinafter, in this embodiment, the outer bulging portion (59A) of the right front portion is the first outer bulging portion, the outer bulging portion (59B) of the right rear portion is the second outer bulging portion, and the left side. The outer bulging portion (59C) in the front portion is referred to as a third outer bulging portion, and the outer bulging portion (59D) in the left rear portion is referred to as a fourth outer bulging portion. The openings facing the lower side of the outward bulges (59A) to (59D) are closed by the intermediate plate (58). The bulge height, length, and width of each of the outward bulge portions (59A) to (59D) are equal. The header forming plate (56) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides.

図15に示すように、管接続用プレート(57)の前後両側部分に、それぞれ前後方向に長い複数の貫通状管挿入穴(61)が、左右方向に間隔をおいて形成されている。前側の右半部における複数の管挿入穴(61)は、ヘッダ形成用プレート(56)の第1外方膨出部(59A)の左右方向の範囲内に形成され、後側の右半部における複数の管挿入穴(61)は、第2外方膨出部(59B)の左右方向の範囲内に形成され、前側の左半部における複数の管挿入穴(61)は、第3外方膨出部(59C)の左右方向の範囲内に形成され、後側の左半部における複数の管挿入穴(61)は、第4外方膨出部(59D)の左右方向の範囲内に形成されている。また、各管挿入穴(61)の長さは、各外方膨出部(59A)〜(59D)の前後方向の幅よりも若干長く、管挿入穴(61)の前後両端部は各外方膨出部(59A)〜(59D)の前後両側縁よりも外方に突出している。管接続用プレート(57)の前後両側縁部に、それぞれ上方に突出して先端がヘッダ形成用プレート(56)の外面まで至り、かつヘッダ形成用プレート(56)と中間プレート(58)との境界部分を全長にわたって覆う被覆壁(62)が一体に形成され、ヘッダ形成用プレート(56)および中間プレート(58)の前後両側面にろう付されている。各被覆壁(62)の突出端に、ヘッダ形成用プレート(56)の外面に係合する複数の係合部(63)が、左右方向に間隔をおいて一体に形成され、ヘッダ形成用プレート(56)にろう付されている。管接続用プレート(57)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されている。   As shown in FIG. 15, a plurality of penetrating tube insertion holes (61) that are long in the front-rear direction are formed in the front-rear side portions of the pipe connection plate (57) at intervals in the left-right direction. The plurality of tube insertion holes (61) in the right half of the front side are formed in the left-right direction range of the first outward bulge portion (59A) of the header forming plate (56), and the right half of the rear side The plurality of tube insertion holes (61) are formed within the range of the second outer bulge portion (59B) in the left-right direction, and the plurality of tube insertion holes (61) in the front left half are A plurality of tube insertion holes (61) in the left half of the rear bulge (59C) are formed in the lateral direction of the lateral bulge (59C). Is formed. In addition, the length of each tube insertion hole (61) is slightly longer than the width in the front-rear direction of each outward bulge portion (59A) to (59D), and both front and rear end portions of the tube insertion hole (61) are It protrudes outward from the front and rear side edges of the side bulges (59A) to (59D). Projected upward at both front and rear edges of the pipe connection plate (57), leading to the outer surface of the header forming plate (56), and the boundary between the header forming plate (56) and the intermediate plate (58) A covering wall (62) covering the entire length of the portion is integrally formed and brazed to both front and rear side surfaces of the header forming plate (56) and the intermediate plate (58). A plurality of engaging portions (63) that engage with the outer surface of the header forming plate (56) are integrally formed at the protruding end of each covering wall (62) at intervals in the left-right direction. (56) is brazed. The pipe connecting plate (57) is formed by pressing an aluminum brazing sheet having a brazing material layer on both sides.

中間プレート(58)に、管接続用プレート(57)の管挿入穴(61)をヘッダ形成用プレート(56)の外方膨出部(59A)〜(59D)内に通じさせる貫通状連通穴(64)が、管挿入穴(61)と同じ数だけ形成されている。連通穴(64)は管挿入穴(61)よりも一回り大きくなっている(図17参照)。各連通穴(64)は、管接続用プレート(57)の各管挿入穴(61)と対応する位置に形成されている。そして、管接続用プレート(57)の前側の右半部における複数の管挿入穴(61)は、中間プレート(58)の前側の右半部における複数の連通穴(64)を介して第1外方膨出部(59A)内に通じさせられ、同じく後側の右半部における複数の管挿入穴(61)は、中間プレート(58)の後側の右半部における複数の連通穴(64)を介して第2外方膨出部(59B)内に通じさせられ、同じく前側の左半部における複数の管挿入穴(61)は、中間プレート(58)の前側の左半部における複数の連通穴(64)を介して第3外方膨出部(59C)内に通じさせられ、同じく後側の左半部における複数の管挿入穴(61)は、中間プレート(58)の後側の左半部における複数の連通穴(64)を介して第4外方膨出部(59D)内に通じさせられている。第1外方膨出部(59A)内に通じるすべての連通穴(64)および第2外方膨出部(59B)内に通じるすべての連通穴(64)は、それぞれ中間プレート(58)における左右方向に隣り合う連通穴(64)間の部分を切除することにより形成された第1の連通部(66)により連通させられている。第3外方膨出部(59C)に通じる各連通穴(64)と第4外方膨出部(59D)に通じる各連通穴(64)とは、中間プレート(58)における前後方向に隣り合う連通穴(64)間の部分を切除することにより形成された第2の連通部(65)により連通させられ、これにより第2外方膨出部(59C)内と第4外方膨出部(59D)内とは相互に通じ合っている。中間プレート(58)は、アルミニウムベア材にプレス加工を施すことにより形成されている。   A through-hole communication hole that allows the pipe insertion hole (61) of the pipe connection plate (57) to communicate with the intermediate plate (58) into the outward bulges (59A) to (59D) of the header forming plate (56). (64) is formed in the same number as the tube insertion hole (61). The communication hole (64) is slightly larger than the tube insertion hole (61) (see FIG. 17). Each communication hole (64) is formed at a position corresponding to each tube insertion hole (61) of the tube connection plate (57). The plurality of tube insertion holes (61) in the right half of the front side of the pipe connection plate (57) are first through the plurality of communication holes (64) in the right half of the front side of the intermediate plate (58). A plurality of tube insertion holes (61) in the right half of the rear side are also communicated in the outer bulge portion (59A), and a plurality of communication holes in the right half of the rear side of the intermediate plate (58) ( 64) through the second outer bulging portion (59B), and the plurality of tube insertion holes (61) in the left half of the front side are also formed in the left half of the front side of the intermediate plate (58). The plurality of tube insertion holes (61) in the left half of the rear side are connected to the third outer bulge portion (59C) through the plurality of communication holes (64). It is made to communicate in a 4th outward bulge part (59D) via the some communication hole (64) in the left half part of a rear side. All the communication holes (64) communicating with the first outer bulge portion (59A) and all the communication holes (64) communicating with the second outer bulge portion (59B) are respectively formed in the intermediate plate (58). The first communicating portion (66) formed by cutting a portion between the communicating holes (64) adjacent in the left-right direction is communicated. Each communication hole (64) communicating with the third outer bulge portion (59C) and each communication hole (64) communicating with the fourth outer bulge portion (59D) are adjacent to each other in the front-rear direction of the intermediate plate (58). The second communicating portion (65) formed by cutting out the portion between the matching communicating holes (64) is communicated, whereby the second outer bulging portion (59C) and the fourth outer bulging portion are communicated. The part (59D) communicates with each other. The intermediate plate (58) is formed by pressing an aluminum bare material.

3つのプレート(56)(57)(58)の右端部には、それぞれ前後方向に間隔をおいて2つの右方突出部(56a)(57a)(58a)が形成されている。中間プレート(58)には、2つの外方突出部(58a)の先端から右端部の連通穴(64)に通じる切り欠き(67)が形成されており、これにより第1ヘッダタンク(51)に、第1外方膨出部(59A)内に通じる冷媒入口(68)と、第2外方膨出部(59B)内に通じる冷媒出口(69)とが形成されている(図17参照)。   Two right protrusions (56a) (57a) (58a) are formed at the right ends of the three plates (56), (57), and (58) at intervals in the front-rear direction. The intermediate plate (58) is formed with a notch (67) that leads from the tip of the two outward projections (58a) to the communication hole (64) at the right end, thereby the first header tank (51). Further, a refrigerant inlet (68) communicating with the first outer bulging portion (59A) and a refrigerant outlet (69) communicating with the second outer bulging portion (59B) are formed (see FIG. 17). ).

第2ヘッダタンク(52)は、第1ヘッダタンク(51)とほぼ同様な構成であり、同一物および同一部分に同一符号を付す(図16参照)。両ヘッダタンク(51)(52)は、管接続用プレート(57)どうしが対向するように配置されている。第2ヘッダタンク(52)における第1ヘッダタンク(51)との相違点は、ヘッダ形成用プレート(56)に、前後方向に間隔をおいて2つの外方膨出部(71A)(71B)が、第1外方膨出部(59A)と第3外方膨出部(59C)、および第2外方膨出部(59B)と第4外方膨出部(59D)とにそれぞれまたがるようにヘッダ形成用プレート(56)の右端部から左端部にかけて形成されている点、各外方膨出部(71A)(71B)内に通じるすべての連通穴(64)が、中間プレート(58)における左右方向に隣り合う連通穴(64)間の部分を切除することによって形成された連通部(72)により連通させられている点、両外方膨出部(71A)(71B)が連通させられていない点、ならびに3つのプレート(56)(57)(58)の右端部に右方突出部が形成されていない点である。外方膨出部(71A)(71B)の膨出高さおよび幅は、第1ヘッダタンク(51)の外方膨出部(59A)〜(59D)の膨出高さおよび幅と等しくなっている。   The second header tank (52) has substantially the same configuration as the first header tank (51), and the same components and the same parts are denoted by the same reference numerals (see FIG. 16). Both header tanks (51) and (52) are arranged so that the pipe connecting plates (57) face each other. The difference between the first header tank (51) in the second header tank (52) is that the header forming plate (56) has two outwardly bulging portions (71A) (71B) spaced in the front-rear direction. Straddles the first outer bulging portion (59A) and the third outer bulging portion (59C), and the second outer bulging portion (59B) and the fourth outer bulging portion (59D), respectively. The header forming plate (56) is formed from the right end portion to the left end portion, and all the communication holes (64) communicating with the outer bulge portions (71A) (71B) are connected to the intermediate plate (58 ) In the left and right direction, the point of being communicated by the communicating part (72) formed by cutting away the part between the communicating holes (64), both outwardly bulging parts (71A) (71B) communicate The point which is not made into a thing and the point which the rightward protrusion part is not formed in the right end part of three plates (56) (57) (58) are the points. The bulge height and width of the outward bulges (71A) (71B) are equal to the bulge height and width of the outward bulges (59A) to (59D) of the first header tank (51). ing.

両ヘッダタンク(51)(52)は、外方膨出部(59A)(59B)(59C)(59D)(71A)(71B)を有するヘッダ形成用プレート(56)と、管挿入穴(61)、被覆壁(62)および被覆壁(62)に真っ直ぐに連なった係合部形成用突片(63A)(図15および図16実線参照)を有する管接続用プレート(57)と、連通穴(64)および連通部(65)(66)(72)を有する中間プレート(58)とを形成した後、3つのプレート(56)(57)(58)を積層状に組み合わせた後、突片(63A)を曲げて係合部(63)を形成し、ついでヘッダ形成用プレート(56)のろう材層および管接続用プレート(57)のろう材層を利用して3つのプレート(56)(57)(58)を相互にろう付するとともに、被覆壁(62)を中間プレート(58)およびヘッダ形成用プレート(56)の前後両側面にろう付し、さらに係合部(63)をヘッダ形成用プレート(56)にろう付することにより製造される。   Both header tanks (51) and (52) are provided with header forming plates (56) having outward bulges (59A) (59B) (59C) (59D) (71A) (71B) and pipe insertion holes (61 ), A pipe connecting plate (57) having a covering wall (62) and an engaging portion forming protrusion (63A) (see solid lines in FIGS. 15 and 16) straightly connected to the covering wall (62), and a communication hole (64) and the intermediate plate (58) having the communication portions (65), (66), and (72), and then the three plates (56), (57), and (58) are combined in a stack, (63A) is bent to form the engaging portion (63), and then the three plates (56) are utilized using the brazing filler metal layer of the header forming plate (56) and the brazing filler metal layer of the pipe connecting plate (57). (57) and (58) are brazed to each other, and the covering wall (62) is brazed to both the front and rear sides of the intermediate plate (58) and the header forming plate (56), and the engaging portion (63) is It is manufactured by brazing the header forming plate (56).

熱交換管(53)は、金属、ここではアルミニウム製押出形材からなり、前後方向に幅広の偏平状で、その内部に長さ方向にのびる複数の冷媒通路(53a)が並列状に形成されている。熱交換管(53)の両端部は、それぞれ両ヘッダタンク(51)(52)の管挿入穴(61)に挿入された状態で、管接続用プレート(57)のろう材層を利用して管接続用プレート(57)にろう付されている。なお、熱交換管(53)の両端は中間プレート(58)の厚さ方向の中間部まで連通穴(64)内に入り込んでいる(図13参照)。両ヘッダタンク(51)(52)間には、左右方向に間隔をおいて並列状に配置された複数の熱交換管(53)からなる熱交換管群(73)が、前後方向に並んで複数列、ここでは2列配置されている。前側熱交換管群(73)の右半部に位置する複数の熱交換管(53)の上下両端部は第1外方膨出部(59A)内および前側外方膨出部(71A)内に通じるように両ヘッダタンク(51)(52)に接続され、同じく左半部に位置する複数の熱交換管(53)の上下両端部は第3外方膨出部(59C)内および前側外方膨出部(71A)内に通じるように両ヘッダタンク(51)(52)に接続されている。また、後側熱交換管群(73)の右半部に位置する複数の熱交換管(53)の上下両端部は第2外方膨出部(59B)内および後側外方膨出部(71B)内に通じるように両ヘッダタンク(51)(52)に接続され、同じく左半部に位置する複数の熱交換管(53)の上下両端部は第4外方膨出部(59D)内および後側外方膨出部(71B)内に通じるように両ヘッダタンクに接続されている。   The heat exchange pipe (53) is made of an extruded shape made of metal, here aluminum, and has a wide and flat shape in the front-rear direction, and a plurality of refrigerant passages (53a) extending in the length direction are formed in parallel inside the heat exchange pipe (53). ing. Both ends of the heat exchange pipe (53) are inserted into the pipe insertion holes (61) of both header tanks (51) and (52), respectively, using the brazing material layer of the pipe connection plate (57). It is brazed to the pipe connection plate (57). Note that both ends of the heat exchange pipe (53) enter the communication hole (64) up to an intermediate portion in the thickness direction of the intermediate plate (58) (see FIG. 13). Between the header tanks (51) and (52), a heat exchange tube group (73) consisting of a plurality of heat exchange tubes (53) arranged in parallel at intervals in the left-right direction is arranged in the front-rear direction. Multiple rows, here two rows are arranged. The upper and lower ends of the plurality of heat exchange tubes (53) located in the right half of the front heat exchange tube group (73) are in the first outer bulge portion (59A) and in the front outer bulge portion (71A). Connected to both header tanks (51) and (52) so that the upper and lower ends of the plurality of heat exchange pipes (53), which are also located in the left half, are in the third outer bulge (59C) and on the front side. It is connected to both header tanks (51) and (52) so as to communicate with the outward bulge portion (71A). The upper and lower ends of the plurality of heat exchange tubes (53) located in the right half of the rear heat exchange tube group (73) are in the second outer bulge portion (59B) and the rear outer bulge portion. (71B) are connected to both header tanks (51) and (52) so as to communicate with each other, and the upper and lower ends of a plurality of heat exchange tubes (53) which are also located in the left half are provided with a fourth outer bulging portion (59D ) It is connected to both header tanks so as to communicate with the inside and the rear outward bulge portion (71B).

コルゲートフィン(54)は両面にろう材層を有するアルミニウムブレージングシートを用いて波状に形成されたものであり、その波頭部と波底部を連結する連結部に、前後方向に並列状に複数のルーバが形成されている。コルゲートフィン(54)は前後両熱交換管群(73)に共有されており、その前後方向の幅は前側熱交換管群(73)の熱交換管(53)の前側縁と後側熱交換管群(73)の熱交換管(53)の後側縁との間隔をほぼ等しくなっている。なお、1つのコルゲートフィン(54)が前後両熱交換管群(73)に共有される代わりに、両熱交換管群(73)の隣り合う熱交換管(53)どうしの間にそれぞれコルゲートフィンが配置されていてもよい。   The corrugated fin (54) is formed in a corrugated shape using an aluminum brazing sheet having a brazing filler metal layer on both sides, and a plurality of corrugated fins (54) connected in parallel in the front-rear direction to the connecting portion connecting the wave head and the wave bottom. A louver is formed. The corrugated fin (54) is shared by the front and rear heat exchange tube group (73), and the width in the front-rear direction is the front edge of the heat exchange tube (53) of the front heat exchange tube group (73) and the rear heat exchange. The distance between the rear edge of the heat exchanger tube (53) of the tube group (73) is substantially equal. Instead of sharing one corrugated fin (54) between the front and rear heat exchange tube groups (73), each corrugated fin is disposed between adjacent heat exchange tubes (53) of both heat exchange tube groups (73). May be arranged.

上述したエバポレータ(50)において、第1ヘッダタンク(51)における第1外方膨出部(59A)を含む右側前部分が冷媒流通部である冷媒入口ヘッダ(74)となり、同じく第2外方膨出部(59B)を含む右側後部分が冷媒流通部である冷媒出口ヘッダ(70)となる。また、すべての熱交換管(53)と、第1ヘッダタンク(51)の左側部分と、第2ヘッダタンク(52)とにより、冷媒入口ヘッダ(74)と冷媒出口ヘッダ(70)とを通じさせる冷媒循環経路が形成されている。   In the above-described evaporator (50), the right front portion including the first outer bulging portion (59A) in the first header tank (51) becomes the refrigerant inlet header (74) which is the refrigerant circulation portion, and is also the second outer side. The right rear part including the bulging part (59B) serves as a refrigerant outlet header (70) which is a refrigerant circulation part. Further, the refrigerant inlet header (74) and the refrigerant outlet header (70) are passed through all the heat exchange pipes (53), the left side portion of the first header tank (51), and the second header tank (52). A refrigerant circulation path is formed.

そして、冷媒入口ヘッダ(74)および冷媒出口ヘッダ(70)に、それぞれ入口側および出口側の配管用パイプ(75)が、冷媒流通部接続構造(76)によって接続されている。   Then, piping pipes (75) on the inlet side and the outlet side are connected to the refrigerant inlet header (74) and the refrigerant outlet header (70), respectively, by a refrigerant circulation part connection structure (76).

図17〜図20に示すように、冷媒流通部接続構造(76)は、第1ヘッダタンクの3つのプレート(56)(57)(58)の2つの右方突出部(56a)(57a)(58a)にまたがるように、冷媒入口ヘッダ(74)および冷媒出口ヘッダ(70)に接合された流路部材(77)と、入口側および出口側配管用パイプ(75)と、両パイプ(75)を流路部材(77)に固定する固定部材(78)と、流路部材(77)と固定部材(78)とを固定する締結手段とよりなる。   As shown in FIGS. 17-20, the refrigerant | coolant distribution part connection structure (76) has two right protrusions (56a) (57a) of the three plates (56) (57) (58) of the first header tank. (58a), the flow path member (77) joined to the refrigerant inlet header (74) and the refrigerant outlet header (70), the inlet side and outlet side piping pipe (75), and both pipes (75 ) To the flow path member (77), and fastening means for fixing the flow path member (77) and the fixation member (78).

流路部材(77)は金属、ここではアルミニウムベア材により右方から見て横長方形のブロック状に形成されたものであり、一端開口が冷媒入口(68)を介して冷媒入口ヘッダ(74)内に通じるとともに、他端が流路部材(77)右側面に開口した入口側冷媒流路(80)と、一端開口が冷媒出口(69)を介して冷媒出口ヘッダ(70)内に通じるとともに、他端が流路部材(77)右側面に開口した出口側冷媒流路(81)とを有している。各冷媒流路(80)(81)の右端部に、内周面が円筒面状となされた挿入部(80a)(81a)が形成されている。流路部材(77)の右側面の前後両端部に、右方に突出しかつ固定部材(78)の両端面に沿う突出部(82)がそれぞれ一体に形成され、両突出部(82)の前後方向内面にそれぞれ上下方向に伸びる凹溝(83)が形成されている。各凹溝(83)の上下両端は各突出部(82)の上下両面に開口している。各凹溝(83)における突出部(82)先端側の側壁が、後述する固定部材(78)の凸部(88)に係合する係合部(84)となっている。流路部材(77)は、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシート(85)により第1ヘッダタンク(51)にろう付されている。   The flow path member (77) is formed of a metal, here an aluminum bare material, into a block shape of a horizontal rectangle when viewed from the right, and one end opening is connected to the refrigerant inlet header (74) via the refrigerant inlet (68). The inlet side refrigerant flow path (80) with the other end opened to the right side surface of the flow path member (77) and the one end opening communicated with the refrigerant outlet header (70) through the refrigerant outlet (69). The other end has an outlet side refrigerant flow path (81) having an opening on the right side surface of the flow path member (77). An insertion portion (80a) (81a) having an inner peripheral surface formed into a cylindrical surface is formed at the right end of each refrigerant flow path (80) (81). Protruding portions (82) protruding rightward and extending along the both end surfaces of the fixing member (78) are integrally formed on the front and rear end portions of the right side surface of the flow path member (77), respectively. A concave groove (83) extending in the vertical direction is formed on the inner surface in the direction. The upper and lower ends of each concave groove (83) are opened on both upper and lower surfaces of each protrusion (82). The side wall on the distal end side of the protruding portion (82) in each concave groove (83) serves as an engaging portion (84) that engages with a convex portion (88) of a fixing member (78) described later. The flow path member (77) is brazed to the first header tank (51) by a brazing sheet having a brazing filler metal layer on both sides, here, an aluminum brazing sheet (85).

各配管用パイプ(75)の先端寄りの部分に、環状ビード(75a)(環状凸条)が全周にわたって形成されている。配管用パイプ(75)の環状ビード(75a)よりも先端側の部分の外周面にOリング(86)が装着されている。   An annular bead (75a) (annular ridge) is formed over the entire circumference at a portion near the tip of each piping pipe (75). An O-ring (86) is attached to the outer peripheral surface of the pipe pipe (75) on the tip side of the annular bead (75a).

固定部材(78)は金属、ここではアルミニウムベア材により右方から見て横長円形のブロック状に形成されたものである。固定部材(78)の前後両端部には、それぞれ下側縁部(下側面)に開口しかつ配管用パイプ(75)における環状ビード(75a)よりも右側の部分(長さ方向内側部分)が嵌る切り欠き(87)が形成されている。固定部材(78)の左側面における両切り欠き(87)の左端開口の周縁部には、それぞれ配管用パイプ(75)の環状ビード(75a)が嵌る凹所(78a)が形成されている。固定部材(78)の前後両端面に、それぞれ前後方向外方に突出しかつ流路部材(77)の両突出部(82)の凹溝(83)内に嵌る凸部(88)が一体に形成されている。凸部(88)の突出高さは凹溝(83)の深さと等しく、凸部(88)の左右方向の長さは凹溝(83)の左右方向の幅と等しくなっている。また、凸部(88)の前後方向外面は、右方から見て前後方向外方に突出した円弧状となっている。   The fixing member (78) is made of a metal, here an aluminum bear material, in the form of an oblong block as viewed from the right. At both front and rear ends of the fixing member (78), there are openings on the lower edge (lower side) and on the right side of the annular bead (75a) in the piping pipe (75) (lengthwise inner portion). A fitting notch (87) is formed. A recess (78a) into which the annular bead (75a) of the pipe for piping (75) is fitted is formed on the peripheral edge of the left end opening of both notches (87) on the left side surface of the fixing member (78). Convex portions (88) that protrude outward in the front-rear direction and fit into the concave grooves (83) of both projecting portions (82) of the flow path member (77) are integrally formed on both front and rear end faces of the fixing member (78). Has been. The protruding height of the convex portion (88) is equal to the depth of the concave groove (83), and the length of the convex portion (88) in the left-right direction is equal to the horizontal width of the concave groove (83). Further, the front-rear direction outer surface of the convex portion (88) has an arc shape protruding outward in the front-rear direction when viewed from the right.

締結手段は、流路部材(77)の右側面における前後方向の中央部から左方に伸びるように形成された1つのめねじ穴(90)と、固定部材(78)の前後方向の中央部に左右方向に貫通状に形成されたボルト挿通穴(91)に右方から通され、かつ流路部材(77)のめねじ穴(90)にねじ嵌められる1つのボルト(92)とよりなる。   The fastening means includes one female screw hole (90) formed to extend leftward from the central portion in the front-rear direction on the right side surface of the flow path member (77), and the central portion in the front-rear direction of the fixing member (78). And a bolt (92) that is passed from the right through a bolt insertion hole (91) formed in a penetrating manner in the left-right direction and is screwed into the female screw hole (90) of the flow path member (77). .

入口側および出口側配管用パイプ(75)の冷媒入口ヘッダ(74)および冷媒出口ヘッダ(70)への接続は次のようにして行われる。   Connection of the inlet side and outlet side piping pipes (75) to the refrigerant inlet header (74) and the refrigerant outlet header (70) is performed as follows.

まず、流路部材(77)の入口側冷媒流路(80)および出口側冷媒流路(81)の挿入部(80a)(81a)内に、それぞれ入口側および出口側配管用パイプ(75)における環状ビード(75a)よりも先端側の部分を挿入する。ついで、固定部材(78)を、流路部材(77)の上方から下方に移動させるように配置することにより、両凸部(88)をそれぞれ流路部材(77)の両突出部(82)の凹溝(83)内に嵌め入れるとともに、両切り欠き(87)内に入口側および出口側配管用パイプ(75)における環状ビード(75a)よりも右側部分をそれぞれ嵌め入れ、さらにボルト挿通穴(91)とめねじ穴(90)とを合致させる。このとき、両配管用パイプ(75)の環状ビード(75a)を固定部材(78)の凹所(78a)内に嵌め入れる。ついで、ボルト(92)を右方から固定部材(78)のボルト挿通穴(91)に通すとともに、流路部材(77)のめねじ穴(90)にねじ嵌める。こうして、入口側および出口側配管用パイプ(75)が冷媒入口ヘッダ(74)および冷媒出口ヘッダ(70)にそれぞれ接続される。   First, the inlet-side and outlet-side piping pipes (75) in the insertion portions (80a) (81a) of the inlet-side refrigerant channel (80) and the outlet-side refrigerant channel (81) of the channel member (77), respectively. The portion on the tip side of the annular bead (75a) is inserted. Next, by disposing the fixing member (78) so as to move downward from above the flow path member (77), both protrusions (88) are respectively connected to both protrusions (82) of the flow path member (77). Are inserted into the concave groove (83) of the inner pipe, and the right side of the annular bead (75a) of the inlet side and outlet side pipe pipe (75) is inserted into both notches (87), and bolt insertion holes ( 91) Align the female screw hole (90). At this time, the annular beads (75a) of both pipes (75) are fitted into the recesses (78a) of the fixing member (78). Next, the bolt (92) is passed from the right through the bolt insertion hole (91) of the fixing member (78) and is screwed into the female screw hole (90) of the flow path member (77). Thus, the inlet side and outlet side piping pipes (75) are connected to the refrigerant inlet header (74) and the refrigerant outlet header (70), respectively.

エバポレータ(50)は、圧縮機、ガスクーラ、減圧器としての膨張弁、気液分離器としてのアキュムレータおよびガスクーラから出てきた冷媒とエバポレータから出て気液分離器を通過してきた冷媒とを熱交換させる中間熱交換器とともに超臨界冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。   The evaporator (50) exchanges heat between the compressor, gas cooler, expansion valve as a pressure reducer, accumulator as a gas-liquid separator, and the refrigerant coming out of the gas cooler and the refrigerant coming out of the evaporator and passed through the gas-liquid separator. A supercritical refrigeration cycle is configured together with the intermediate heat exchanger to be mounted on a vehicle such as an automobile as a car air conditioner.

上述したエバポレータ(50)において、減圧器を通過して減圧されたCO が、入口側配管用パイプ(75)から流路部材(77)の入口側冷媒流路(80)および冷媒入口(68)を通って冷媒入口ヘッダ(74)内に入り、分流して第1外方膨出部(59A)内に通じているすべての熱交換管(53)の冷媒通路(53a)内に流入する。冷媒通路(53a)内に流入したCOは、冷媒通路(53a)内を下方に流れて第2ヘッダタンク(52)の前側外方膨出部(71A)内に流入する。前側外方膨出部(71A)内に流入したCOはその内部と連通穴(64)および連通部(72)を左方に流れ、分流して第3外方膨出部(59C)内に通じているすべての熱交換管(53)の冷媒通路(53a)内に流入し、流れ方向を変えて冷媒通路(53a)内を上方に流れて第1ヘッダタンク(51)の第3外方膨出部(59C)内に入る。第3外方膨出部(59C)内に流入したCOは、第1ヘッダタンク(51)の中間プレート(58)の第2連通部(65)を通って第4外方膨出部(59D)内に入り、分流して第4外方膨出部(59D)に接続されているすべての熱交換管(53)の冷媒通路(53a)内に流入し、流れ方向を変えて冷媒通路(53a)内を下方に流れて第2ヘッダタンク(52)の後側外方膨出部(71B)内に入る。後側外方膨出部(71B)内に流入したCOはその内部と連通穴(64)および連通部(72)を通って右方に流れ、分流して第2外方膨出部(59B)に接続されているすべての熱交換管(53)の冷媒通路(53a)内に流入し、流れ方向を変えて冷媒通路(53a)内を上方に流れて第1ヘッダタンク(51)の冷媒出口ヘッダ(70)内に入る。その後、COは冷媒出口(69)および流路部材(77)の出口側冷媒流路(81)を通り、出口側配管用パイプ(75)から排出される。そして、COが熱交換管(53)の冷媒通路(53a)内を流れる間に、通風間隙を図12に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。 In the evaporator (50) described above, the CO 2 that has been depressurized after passing through the decompressor passes from the inlet-side piping pipe (75) to the inlet-side refrigerant flow path (80) and the refrigerant inlet (68) of the flow path member (77). ) Enters the refrigerant inlet header (74), flows into the refrigerant passages (53a) of all the heat exchange pipes (53) communicating with the first outer bulge portion (59A). . The CO 2 flowing into the refrigerant passage (53a) flows downward in the refrigerant passage (53a) and flows into the front outward bulge portion (71A) of the second header tank (52). The CO 2 that has flowed into the front outward bulge (71A) flows to the left through the communication hole (64) and the communication part (72), and flows into the third outer bulge (59C). The refrigerant flows into the refrigerant passages (53a) of all the heat exchange pipes (53) communicating with the refrigerant, changes the flow direction, flows upward in the refrigerant passages (53a), and flows outside the third header tank (51). Enter the side bulge (59C). The CO 2 flowing into the third outer bulge portion (59C) passes through the second communication portion (65) of the intermediate plate (58) of the first header tank (51) and passes through the fourth outer bulge portion ( 59D), flows into the refrigerant passages (53a) of all the heat exchange pipes (53) connected to the fourth outer bulging portion (59D), changes the flow direction, and flows into the refrigerant passages. (53a) flows downward and enters the rear outward bulge portion (71B) of the second header tank (52). The CO 2 that has flowed into the rear outward bulge portion (71B) flows to the right through the communication hole (64) and the communication portion (72) with the inside thereof, and is divided into second and second bulge portions ( 59B) flows into the refrigerant passages (53a) of all the heat exchange pipes (53), changes the flow direction, flows upward in the refrigerant passages (53a), and flows into the first header tank (51). It enters the refrigerant outlet header (70). Thereafter, CO 2 passes through the refrigerant outlet (69) and the outlet side refrigerant flow path (81) of the flow path member (77) and is discharged from the outlet side piping pipe (75). Then, while CO 2 flows in the refrigerant passage (53a) of the heat exchange pipe (53), heat exchange with the air flowing in the direction indicated by the arrow X in FIG. .

実施形態3においては、流路部材(77)に係合部(84)が設けられ、固定部材(78)に係合部(84)が係合する凸部(88)が設けられているが、これとは逆に、流路部材(77)に凸部(88)が設けられ、固定部材(78)に凸部(88)に係合する係合部(84)が設けられていてもよい。   In Embodiment 3, the flow path member (77) is provided with the engaging portion (84), and the fixing member (78) is provided with the convex portion (88) with which the engaging portion (84) is engaged. On the contrary, the flow path member (77) may be provided with a convex portion (88), and the fixing member (78) may be provided with an engaging portion (84) that engages with the convex portion (88). Good.

上記実施形態1〜3においては、超臨界冷凍サイクルの超臨界冷媒として、COが使用されているが、これに限定されるものではなく、エチレン、エタン、酸化窒素などが使用される。 In the first to third embodiments, CO 2 is used as a supercritical refrigerant in the supercritical refrigeration cycle, but is not limited thereto, and ethylene, ethane, nitrogen oxide, and the like are used.

実施形態4
この実施形態は図21に示すものであり、この発明を超臨界冷凍サイクルの冷媒流通部である配管用パイプどうしの接続に適用したものである。なお、この実施形態の説明において、図21の上下、左右を上下、左右というものとする。
Embodiment 4
This embodiment is shown in FIG. 21, and this invention is applied to the connection of pipes for piping which are refrigerant circulation parts of a supercritical refrigeration cycle. In the description of this embodiment, the upper and lower sides and the left and right sides in FIG.

冷媒流通部接続構造(100)は、第1の配管用パイプ(101)の先端部に固定された第1流路部材(102)と、第2の配管用パイプ(103)の先端部に固定された第2流路部材(104)と、両流路部材(102)(104)を固定する締結手段とよりなる。   The refrigerant circulation part connection structure (100) is fixed to the first flow path member (102) fixed to the tip of the first piping pipe (101) and the tip of the second piping pipe (103). The second flow path member (104) and the fastening means for fixing both flow path members (102) and (104).

第1流路部材(102)は金属、ここではアルミニウムベア材によりブロック状に形成されたものであり、その上端部に左右方向に貫通した冷媒流路(105)が形成されている。冷媒流路(105)の左端部には大径部(105a)が形成されており、この大径部(105a)内に第1配管用パイプ(101)の先端部が挿入されて第1流路部材(102)に溶接やろう付により接合されている。第1流路部材(102)の右側面における冷媒流路(105)の右端開口の周縁部には、外周面が円筒面状となされた雄パイプ部(102a)が右方突出状に一体に形成されている。雄パイプ部(102a)の外周面にOリング(106)が装着されている。第1流路部材(102)の上端部に、右方に突出しかつ第2流路部材(104)の上端面に沿う突出部(107)が一体に形成され、突出部(107)の下面に前後方向に伸びる凹溝(108)が形成されている。凹溝(108)の前後両端は突出部(107)の前後両側面に開口している。凹溝(108)における突出部(107)先端側の側壁が、後述する第2流路部材(104)の凸部(112)に係合する係合部(109)となっている。   The first flow path member (102) is formed in a block shape from a metal, here, an aluminum bare material, and a refrigerant flow path (105) penetrating in the left-right direction is formed at an upper end portion of the first flow path member (102). A large-diameter portion (105a) is formed at the left end portion of the refrigerant flow path (105), and the first flow pipe (101) is inserted into the large-diameter portion (105a) to insert the first flow portion. It is joined to the road member (102) by welding or brazing. A male pipe portion (102a) whose outer peripheral surface is formed into a cylindrical surface is integrally formed in a right protruding manner at the peripheral edge portion of the right end opening of the refrigerant flow channel (105) on the right side surface of the first flow path member (102). Is formed. An O-ring (106) is attached to the outer peripheral surface of the male pipe portion (102a). A protrusion (107) protruding rightward and along the upper end surface of the second flow path member (104) is integrally formed at the upper end of the first flow path member (102), and is formed on the lower surface of the protrusion (107). A concave groove (108) extending in the front-rear direction is formed. Both front and rear ends of the groove (108) are open on both front and rear sides of the protrusion (107). A side wall on the distal end side of the protruding portion (107) in the concave groove (108) is an engaging portion (109) that engages with a convex portion (112) of the second flow path member (104) described later.

第2流路部材(104)は金属、ここではアルミニウムベア材により後方から見て縦長方形のブロック状に形成されたものであり、その上端部に左右方向に貫通しかつ第1流路部材(102)の冷媒流路(105)に通じる冷媒流路(111)が形成されている。冷媒流路(111)の左端部には内周面が円筒面状となされ、かつ第1流路部材(102)の雄パイプ部(102a)が挿入される挿入部(111a)が形成されている。また、冷媒流路(111)の右端部には大径部(111b)が形成され、この大径部(111b)内に第2配管用パイプ(103)の先端部が挿入されて第2流路部材(104)に溶接やろう付により接合されている。第2流路部材(104)の上端面に、上方に突出しかつ第1流路部材(102)の凹溝(108)内に嵌る凸部(112)が一体に形成されている。凸部(112)の突出高さは凹溝(108)の深さと等しく、凸部(112)の左右方向の長さは凹溝(108)の左右方向の幅と等しくなっている。また、図示は省略したが、凸部(112)の上面は左方から見て上方に突出した円弧状となっている。ここで、冷媒流路(111)における挿入部(111a)の中心線と凸部(112)の上端との距離は、第1流路部材(102)における雄パイプ部(102a)の外周面の中心線と凹溝(108)の底面との距離と等しくなっている。   The second flow path member (104) is formed in the shape of a vertically rectangular block when viewed from the rear with a metal, here an aluminum bear material, and penetrates the upper end of the second flow path member in the left-right direction and the first flow path member ( A refrigerant flow path (111) communicating with the refrigerant flow path (105) of 102) is formed. An insertion part (111a) into which the male pipe part (102a) of the first flow path member (102) is inserted is formed at the left end of the refrigerant flow path (111). Yes. A large-diameter portion (111b) is formed at the right end portion of the refrigerant flow path (111), and the tip of the second piping pipe (103) is inserted into the large-diameter portion (111b) so that the second flow It is joined to the road member (104) by welding or brazing. A convex portion (112) protruding upward and fitting into the concave groove (108) of the first flow path member (102) is integrally formed on the upper end surface of the second flow path member (104). The protruding height of the convex portion (112) is equal to the depth of the concave groove (108), and the length in the left-right direction of the convex portion (112) is equal to the width in the horizontal direction of the concave groove (108). Although not shown, the upper surface of the convex portion (112) has an arc shape protruding upward as viewed from the left. Here, the distance between the center line of the insertion part (111a) in the refrigerant flow path (111) and the upper end of the convex part (112) is the outer peripheral surface of the male pipe part (102a) in the first flow path member (102). It is equal to the distance between the center line and the bottom surface of the groove (108).

締結手段は、第2流路部材(104)の下端部に左右方向に貫通状に形成されためねじ穴(113)と、第1流路部材(102)の下端部に左右方向に貫通状に形成されたボルト挿通穴(114)に左方から通され、かつ第2流路部材(104)のめねじ穴(113)にねじ嵌められるボルト(115)とよりなる。   The fastening means is formed in a penetrating manner in the left-right direction at the lower end portion of the second flow path member (104), so that it is penetrating in the left-right direction at the lower end portion of the first flow path member (102). The bolt is inserted into the formed bolt insertion hole (114) from the left, and includes a bolt (115) that is screwed into the female screw hole (113) of the second flow path member (104).

第1配管用パイプ(101)と第2配管用パイプ(103)との接続は次のようにして行われる。   The first piping pipe (101) and the second piping pipe (103) are connected as follows.

まず、第2流路部材(104)の冷媒流路(111)の挿入部(111a)内に、第1流路部材(102)の雄パイプ部(102a)を挿入する。このとき、第1流路部材(102)のボルト挿通穴(114)が第2流路部材(104)のめねじ穴(113)からずれるように、ここでは図21の紙面表側にずれるようにしておく。ついで、第1流路部材(102)を雄パイプ部(102a)の外周面における中心線の周りに回転させることにより、第2流路部材(104)の凸部(112)を第1流路部材(102)の凹溝(108)内に嵌め入れるとともに、ボルト挿通穴(114)とめねじ穴(113)とを合致させる。ついで、ボルト(115)を左方から第1流路部材(102)のボルト挿通穴(114)に通すとともに、第2流路部材(104)のめねじ穴(113)にねじ嵌める。こうして、両配管用パイプ(101)(103)が接続される。   First, the male pipe part (102a) of the first flow path member (102) is inserted into the insertion part (111a) of the refrigerant flow path (111) of the second flow path member (104). At this time, the bolt insertion hole (114) of the first flow path member (102) is displaced from the female screw hole (113) of the second flow path member (104). Keep it. Next, by rotating the first flow path member (102) around the center line on the outer peripheral surface of the male pipe portion (102a), the convex portion (112) of the second flow path member (104) is moved to the first flow path. The bolt is inserted into the concave groove (108) of the member (102), and the bolt insertion hole (114) and the female screw hole (113) are matched. Next, the bolt (115) is passed from the left through the bolt insertion hole (114) of the first flow path member (102) and screwed into the female screw hole (113) of the second flow path member (104). In this way, both pipes (101) and (103) are connected.

実施形態4においては、第1流路部材(102)に係合部(109)が設けられ、第2流路部材(104)に係合部(109)が係合する凸部(112)が設けられているが、これとは逆に、第1流路部材(102)に凸部(112)が設けられ、第2流路部材(104)に凸部(112)に係合する係合部(109)が設けられていてもよい。   In the fourth embodiment, the first flow path member (102) is provided with the engaging portion (109), and the second flow path member (104) is engaged with the convex portion (112) where the engagement portion (109) is engaged. Contrary to this, the first flow path member (102) is provided with a convex portion (112), and the second flow path member (104) is engaged with the convex portion (112). A portion (109) may be provided.

上記実施形態1〜3の接続構造は、実施形態4の場合と同様に、冷凍サイクルの配管用パイプどうしの接続にも適用可能である。この場合、流路部材(26)(77)の冷媒流路(28)(80)(81)における挿入部(28a)(80a)(81a)が形成された側の端部に一方の配管用パイプの端部が挿入されて流路部材(26)(77)に接合される。そして、他方の配管用パイプが固定部材(27)(78)により固定される。   As in the case of the fourth embodiment, the connection structure of the first to third embodiments can be applied to the connection of pipes for the refrigeration cycle. In this case, one end of the flow path member (26) (77) is connected to one end of the refrigerant flow path (28) (80) (81) on the side where the insertion part (28a) (80a) (81a) is formed. The end of the pipe is inserted and joined to the flow path members (26) and (77). The other piping pipe is fixed by the fixing members (27) and (78).

この発明を適用したガスクーラの実施形態1の全体構成を示す斜視図である。1 is a perspective view showing an overall configuration of Embodiment 1 of a gas cooler to which the present invention is applied. 図1のガスクーラの後方から前方を見た一部省略垂直断面図である。FIG. 2 is a partially omitted vertical sectional view of the gas cooler of FIG. 図1のガスクーラの第1ヘッダタンクを示す斜視図である。It is a perspective view which shows the 1st header tank of the gas cooler of FIG. 図1のガスクーラの第1ヘッダタンクを示す分解斜視図である。It is a disassembled perspective view which shows the 1st header tank of the gas cooler of FIG. 図2のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図1のガスクーラの第2ヘッダタンクを示す分解斜視図である。It is a disassembled perspective view which shows the 2nd header tank of the gas cooler of FIG. 図2のB−B線拡大断面図である。FIG. 3 is an enlarged sectional view taken along line B-B in FIG. 2. 図2のC−C線拡大断面図である。FIG. 3 is an enlarged sectional view taken along the line CC in FIG. 2. 図1のガスクーラの冷媒出口に出口側配管用パイプを接続する接続構造を示す分解斜視図である。It is a disassembled perspective view which shows the connection structure which connects the pipe for outlet side piping to the refrigerant | coolant exit of the gas cooler of FIG. この発明を適用したガスクーラの実施形態2を示す図8相当の断面図である。It is sectional drawing equivalent to FIG. 8 which shows Embodiment 2 of the gas cooler to which this invention is applied. 図10のガスクーラの図9相当の分解斜視図である。It is a disassembled perspective view equivalent to FIG. 9 of the gas cooler of FIG. この発明を適用した実施形態3のエバポレータの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the evaporator of Embodiment 3 to which this invention is applied. 図12のエバポレータの後方から前方を見た一部省略垂直断面図である。FIG. 13 is a partially omitted vertical cross-sectional view of the evaporator of FIG. 図13のD−D線拡大断面図である。It is the DD sectional view taken on the line of FIG. 図12のエバポレータの第1ヘッダタンクを示す分解斜視図である。It is a disassembled perspective view which shows the 1st header tank of the evaporator of FIG. 図12のエバポレータの第2ヘッダタンクを示す分解斜視図である。It is a disassembled perspective view which shows the 2nd header tank of the evaporator of FIG. 図13のE−E線拡大断面図である。It is the EE line expanded sectional view of FIG. 図13の一部を切り欠いたF−F線拡大断面図である。It is the FF line expanded sectional view which notched a part of FIG. 図12のエバポレータにおける第1ヘッダタンクの右端部を示す分解斜視図である。It is a disassembled perspective view which shows the right end part of the 1st header tank in the evaporator of FIG. 図12のエバポレータの冷媒入口および冷媒出口に入口側配管用パイプおよび出口側配管用パイプを接続する接続構造を示す分解斜視図である。It is a disassembled perspective view which shows the connection structure which connects the pipe for inlet side piping, and the pipe for outlet side piping to the refrigerant inlet and refrigerant outlet of the evaporator of FIG. この発明を適用した実施形態4の配管用パイプどうしの接続構造を示す垂直断面図である。It is a vertical sectional view showing the connection structure of pipes for piping of Embodiment 4 to which the present invention is applied.

(1):ガスクーラ(熱交換器)
(12):冷媒入口
(13):冷媒出口
(21):冷媒入口ヘッダ(冷媒流通部)
(22):冷媒出口ヘッダ(冷媒流通部)
(23)(40):冷媒流通部接続構造
(25):配管用パイプ
(25a):環状ビード(環状凸条)
(26):流路部材
(27):固定部材
(28):冷媒流路
(29):突出部
(31):凹溝
(32):係合部
(34):切り欠き
(35):凸部
(36):めねじ穴
(37):ボルト挿通穴
(38):ボルト
(41):第1流路部材
(42):第2流路部材
(42a):雄パイプ部
(43):冷媒流路
(44):配管用パイプ
(50):エバポレータ(熱交換器)
(68):冷媒入口
(69):冷媒出口
(70):冷媒出口ヘッダ(冷媒流通部)
(74):冷媒入口ヘッダ(冷媒流通部)
(75):配管用パイプ
(75a):環状ビード(環状凸条)
(76):冷媒流通部接続構造
(77):流路部材
(78):固定部材
(80)(81):冷媒流路
(82):突出部
(83):凹溝
(84):係合部
(87):切り欠き
(88):凸部
(90):めねじ穴
(91):ボルト挿通穴
(92):ボルト
(100):冷媒流通部接続構造
(101)(103):配管用パイプ(冷媒流通部)
(102):第1流路部材
(102a):雄パイプ部
(104):第2流路部材
(105):冷媒流路
(107):突出部
(108):凹溝
(109):係合部
(111):冷媒流路
(111a):挿入部
(112):凸部
(113):めねじ穴
(114):ボルト挿通穴
(115):ボルト
(1): Gas cooler (heat exchanger)
(12): Refrigerant inlet
(13): Refrigerant outlet
(21): Refrigerant inlet header (refrigerant distribution part)
(22): Refrigerant outlet header (refrigerant distribution part)
(23) (40): Refrigerant distribution part connection structure
(25): Pipe for piping
(25a): Annular beads (annular ridges)
(26): Channel member
(27): Fixed member
(28): Refrigerant flow path
(29): Protruding part
(31): Groove
(32): Engagement part
(34): Notch
(35): Convex
(36): Female thread hole
(37): Bolt insertion hole
(38): Bolt
(41): First flow path member
(42): Second flow path member
(42a): Male pipe section
(43): Refrigerant flow path
(44): Pipe for piping
(50): Evaporator (heat exchanger)
(68): Refrigerant inlet
(69): Refrigerant outlet
(70): Refrigerant outlet header (refrigerant distribution part)
(74): Refrigerant inlet header (refrigerant distribution part)
(75): Pipe for piping
(75a): Annular beads (annular ridges)
(76): Refrigerant distribution part connection structure
(77): Channel member
(78): Fixed member
(80) (81): Refrigerant flow path
(82): Projection
(83): Groove
(84): Engagement part
(87): Notch
(88): Convex
(90): Female thread hole
(91): Bolt insertion hole
(92): Bolt
(100): Refrigerant distribution part connection structure
(101) (103): Pipe for piping (refrigerant distribution part)
(102): First flow path member
(102a): Male pipe
(104): Second flow path member
(105): Refrigerant flow path
(107): Projection
(108): Groove
(109): Engagement part
(111): Refrigerant flow path
(111a): Insertion section
(112): Convex part
(113): Female thread hole
(114): Bolt insertion hole
(115): Bolt

Claims (5)

一端開口を介して冷媒流通部に通じる冷媒流路を有する流路部材と、流路部材の冷媒流路の他端開口内に先端部が嵌め入れられた状態で流路部材に接続される冷媒流通部としてのパイプと、パイプを流路部材に固定する固定部材と、流路部材と固定部材とを固定する締結手段とを備えており、流路部材および固定部材のうちいずれか一方に、同他方の一部分に係合して流路部材と固定部材との離隔を防止する係合部が設けられ、パイプの先端寄りの部分に環状凸条が全周にわたって形成され、パイプにおける環状凸条よりも先端側の部分が流路部材の冷媒流路の上記他端開口内に嵌め入れられ、固定部材に、その一側縁部に開口し、かつパイプにおける環状凸条を挟んで冷媒流路内への嵌入部とは反対側の部分が嵌る切り欠きが形成され、先端部が流路部材の冷媒流路の上記他端開口内に嵌め入れられたパイプが、側方から固定部材の切り欠き内に嵌め入れられることにより、流路部材および固定部材のうちいずれか一方に設けられた係合部が同他方の一部分に係合するようになされている冷凍サイクルの冷媒流通部接続構造。 A flow path member having a refrigerant flow path leading to the refrigerant flow part through the one end opening, and a refrigerant connected to the flow path member in a state where the tip end is fitted in the other end opening of the refrigerant flow path of the flow path member A pipe as a circulation part, a fixing member for fixing the pipe to the flow path member, and a fastening means for fixing the flow path member and the fixing member, and either one of the flow path member and the fixing member, An engaging portion that engages with the other part of the pipe to prevent separation between the flow path member and the fixing member is provided , and an annular ridge is formed over the entire circumference near the tip of the pipe. The portion on the more distal end side is fitted into the other end opening of the refrigerant flow path of the flow path member, opens to one side edge of the fixing member, and the refrigerant flow path sandwiching the annular ridge in the pipe A notch into which the part on the opposite side to the inset part fits is formed, and the tip One of the flow path member and the fixing member is inserted into the notch of the fixing member from the side by the pipe having the portion inserted into the other end opening of the refrigerant flow path of the flow path member. The refrigerant | coolant circulation part connection structure of the refrigerating cycle by which the engaging part provided in 1 is made to engage with the other one part . 流路部材における冷媒流路が形成された側の端部に固定部材側に突出しかつ固定部材の端面に沿う突出部が設けられ、突出部における固定部材の端面側を向いた面に、固定部材の切り欠きの深さ方向に伸びる凹溝が形成され、固定部材の端面に、凹溝内に嵌る外方に突出した凸部が設けられ、凹溝における突出部先端側の側壁が、凸部に係合する係合部となっている請求項1記載の冷凍サイクルの冷媒流通部接続構造。 The end of the flow path member on the side where the refrigerant flow path is formed is provided with a protrusion that protrudes toward the fixing member and extends along the end surface of the fixing member. A recess groove extending in the depth direction of the notch is formed, and an end surface of the fixing member is provided with an outward projecting protrusion that fits into the recess groove. The refrigerant circulation part connection structure of the refrigeration cycle according to claim 1, wherein the refrigerant circulation part connection structure is an engaging part that engages with the refrigerant. 流路部材の冷媒流路の上記一端開口内に冷媒流通部である流路部材側パイプの先端部が嵌め入れられ、流路部材側パイプが流路部材に接合されている請求項1または2記載の冷凍サイクルの冷媒流通部接続構造。 The tip of a flow channel member side pipe, which is a refrigerant flow portion, is fitted into the one end opening of the refrigerant flow channel of the flow channel member, and the flow channel member side pipe is joined to the flow channel member. The refrigerant | coolant distribution part connection structure of the refrigerating cycle of description. 一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にめねじ穴が形成された第1流路部材と、一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にボルト挿通穴が形成された第2流路部材と、第2流路部材のボルト挿通穴に通されるとともに第1流路部材のめねじ穴にねじ嵌められるボルトとを用意すること、
第1流路部材における冷媒流路が形成された側の端部に第2流路部材側に突出しかつ第2流路部材の端面に沿う突出部を設けるとともに、突出部における第2流路部材の端面側を向いた面に、両流路部材の幅方向に伸びる凹溝を形成し、さらに第2流路部材の端面に、凹溝内に嵌る外方に突出した凸部を設けること、
第1流路部材の冷媒流路における第2流路部材側の端部に、内周面が円筒面状となされた挿入部を形成するとともに、第2流路部材の第1流路部材側を向いた面における冷媒流路の開口の周縁部に、外周面が円筒面状となされかつ第1流路部材の冷媒流路の挿入部内に挿入される雄パイプ部を設けること、
第1流路部材のめねじ穴と第2流路部材のボルト挿通穴がずれるように、第2流路部材の雄パイプ部を第1流路部材の冷媒流路の挿入部内に挿入すること、
第2流路部材を第1流路部材に対して雄パイプ部の中心線の周りに回転させることにより、めねじ穴とボルト挿通穴とを合致させるとともに、凸部を凹溝内に嵌めて凹溝の突出部先端側の側壁を凸部に係合させること、
ならびに第2流路部材のボルト挿通穴にボルトを通して第1流路部材のめねじ穴にねじ嵌めることを含む冷凍サイクルの冷媒流通部接続方法
A refrigerant flow path communicating with the refrigerant circulation section is formed at one end and a first flow path member formed with a female screw hole at the other end, and a refrigerant flow path communicating with the refrigerant circulation section is formed at one end. A second flow path member having a bolt insertion hole formed at the other end, and a bolt that is passed through the bolt insertion hole of the second flow path member and screwed into the female thread hole of the first flow path member are prepared. thing,
In the first flow path member, the end of the refrigerant flow path on the side where the refrigerant flow path is formed is provided with a protrusion that protrudes toward the second flow path member and extends along the end surface of the second flow path member. Forming a concave groove extending in the width direction of both flow path members on the surface facing the end face side of the second flow path member, and further providing a convex portion projecting outward to fit in the concave groove on the end face of the second flow path member;
At the end of the first flow path member on the second flow path member side in the refrigerant flow path, an insertion portion having an inner peripheral surface formed into a cylindrical surface is formed, and the first flow path member side of the second flow path member A peripheral portion of the opening of the refrigerant flow path on the surface facing the surface is provided with a male pipe portion whose outer peripheral surface is cylindrical and inserted into the insertion portion of the refrigerant flow path of the first flow path member;
The male pipe portion of the second flow path member is inserted into the insertion portion of the refrigerant flow path of the first flow path member so that the female thread hole of the first flow path member and the bolt insertion hole of the second flow path member are displaced. ,
By rotating the second flow path member around the center line of the male pipe portion with respect to the first flow path member, the female screw hole and the bolt insertion hole are matched, and the convex portion is fitted in the concave groove. Engaging the side wall of the projecting portion tip side of the concave groove with the convex portion,
And the refrigerant | coolant distribution | circulation part connection method of a refrigerating cycle including screw-fitting in the internal thread hole of a 1st flow path member through a volt | bolt in the bolt insertion hole of a 2nd flow path member .
一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にボルト挿通穴が形成された第1流路部材と、一端部に冷媒流通部に通じる冷媒流路が形成されるとともに他端部にめねじ穴が形成された第2流路部材と、第1流路部材のボルト挿通穴に通されるとともに第2流路部材のめねじ穴にねじ嵌められるボルトとを用意すること、
第1流路部材における冷媒流路が形成された側の端部に第2流路部材側に突出しかつ第2流路部材の端面に沿う突出部を設けるとともに、突出部における第2流路部材の端面側を向いた面に、両流路部材の幅方向に伸びる凹溝を形成し、さらに第2流路部材の端面に、凹溝内に嵌る外方に突出した凸部を設けること、
第2流路部材の冷媒流路における第1流路部材側の端部に、内周面が円筒面状となされた挿入部を形成するとともに、第1流路部材の第2流路部材側を向いた面における冷媒流路の開口の周縁部に、外周面が円筒面状となされかつ第2流路部材の冷媒流路の挿入部内に挿入される雄パイプ部を設けること、
第2流路部材のめねじ穴と第1流路部材のボルト挿通穴がずれるように、第1流路部材の雄パイプ部を第2流路部材の冷媒流路の挿入部内に挿入すること、
第1流路部材を第2流路部材に対して雄パイプ部の中心線の周りに回転させることにより、めねじ穴とボルト挿通穴とを合致させるとともに、凸部を凹溝内に嵌めて凹溝の突出部先端側の側壁を凸部に係合させること、
ならびに第1流路部材のボルト挿通穴にボルトを通して第2流路部材のめねじ穴にねじ嵌めることを含む冷凍サイクルの冷媒流通部接続方法
A refrigerant flow path leading to the refrigerant circulation section is formed at one end and a first flow path member having a bolt insertion hole formed at the other end, and a refrigerant flow path communicating with the refrigerant circulation section is formed at one end. A second flow path member having a female screw hole formed at the other end and a bolt that is passed through the bolt insertion hole of the first flow path member and screwed into the female screw hole of the second flow path member are prepared. thing,
In the first flow path member, the end of the refrigerant flow path on the side where the refrigerant flow path is formed is provided with a protrusion that protrudes toward the second flow path member and extends along the end surface of the second flow path member. Forming a concave groove extending in the width direction of both flow path members on the surface facing the end face side of the second flow path member, and further providing a convex portion projecting outward to fit in the concave groove on the end face of the second flow path member;
At the end of the second flow path member on the first flow path member side in the refrigerant flow path, an insertion portion whose inner peripheral surface is formed into a cylindrical surface is formed, and the second flow path member side of the first flow path member A peripheral portion of the opening of the refrigerant flow path on the surface facing the surface is provided with a male pipe portion whose outer peripheral surface is cylindrical and inserted into the insertion portion of the refrigerant flow path of the second flow path member;
The male pipe portion of the first flow path member is inserted into the insertion portion of the refrigerant flow path of the second flow path member so that the female screw hole of the second flow path member and the bolt insertion hole of the first flow path member are displaced. ,
By rotating the first flow path member around the center line of the male pipe portion with respect to the second flow path member, the female screw hole and the bolt insertion hole are matched, and the convex portion is fitted in the concave groove. Engaging the side wall of the projecting portion tip side of the concave groove with the convex portion,
And the refrigerant | coolant distribution | circulation part connection method of a refrigerating cycle including screw-fitting in the internal thread hole of a 2nd flow path member through a volt | bolt in the bolt insertion hole of a 1st flow path member .
JP2005136887A 2004-05-20 2005-05-10 Refrigeration cycle refrigerant distribution part connection structure Expired - Fee Related JP4774238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136887A JP4774238B2 (en) 2004-05-20 2005-05-10 Refrigeration cycle refrigerant distribution part connection structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004149909 2004-05-20
JP2004149909 2004-05-20
JP2005136887A JP4774238B2 (en) 2004-05-20 2005-05-10 Refrigeration cycle refrigerant distribution part connection structure

Publications (2)

Publication Number Publication Date
JP2006003070A JP2006003070A (en) 2006-01-05
JP4774238B2 true JP4774238B2 (en) 2011-09-14

Family

ID=38063722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136887A Expired - Fee Related JP4774238B2 (en) 2004-05-20 2005-05-10 Refrigeration cycle refrigerant distribution part connection structure

Country Status (5)

Country Link
US (1) US20070169508A1 (en)
JP (1) JP4774238B2 (en)
CN (1) CN1957223A (en)
DE (1) DE112005001151T5 (en)
WO (1) WO2005114085A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770474B2 (en) 2006-01-20 2011-09-14 株式会社デンソー Ejector type refrigeration cycle unit and method for manufacturing the same
JP4797998B2 (en) * 2006-02-17 2011-10-19 株式会社デンソー Heat exchanger piping joint structure and heat exchanger piping assembly method
JP2007333304A (en) * 2006-06-15 2007-12-27 Valeo Thermal Systems Japan Corp Heat exchanger
FR2978237B1 (en) * 2011-07-21 2013-12-20 Valeo Systemes Thermiques CONNECTING FLANGE, COLLECTOR BOX AND THERMAL EXCHANGER
JP6513427B2 (en) * 2015-02-27 2019-05-15 昭和電工株式会社 Liquid cooling system
CN106679209A (en) * 2015-11-10 2017-05-17 丹佛斯微通道换热器(嘉兴)有限公司 Refrigerating system
DE112018001423T5 (en) * 2017-03-17 2020-01-02 Valeo Systèmes Thermiques Arrangement of a connecting piece for the entry of a first phase and the exit of a second phase from the head of a heat exchanger, in particular the evaporator of an air conditioning circuit of a motor vehicle
JP6562096B2 (en) 2018-01-31 2019-08-21 ダイキン工業株式会社 Heat exchanger and air conditioner
EP4198441A1 (en) * 2021-12-14 2023-06-21 Valeo Vymeniky Tepla S.r.o. A heat exchanger
EP4198439A1 (en) * 2021-12-14 2023-06-21 Valeo Vymeniky Tepla S.r.o. A heat exchanger

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322078A (en) * 1965-10-24 1967-05-30 Allen And Macdonald Corp Intruder repeller for screened openings
JPS62174190A (en) * 1985-07-18 1987-07-30 Matsushita Electric Ind Co Ltd Image receiver for transfer type thermal recording
JPS63116785A (en) * 1986-11-04 1988-05-21 Honda Motor Co Ltd Method for separately coating body of automobile
JPH07104076B2 (en) * 1987-03-23 1995-11-13 日本電装株式会社 Evaporator
JPH07117354B2 (en) * 1988-01-13 1995-12-18 日本電装株式会社 Heat exchanger refrigerant coupling
US5163716A (en) * 1991-10-25 1992-11-17 General Motors Corporation Condenser connector assembly for connecting refrigerant line
JP3214588B2 (en) * 1993-09-30 2001-10-02 株式会社デンソー Piping fitting for refrigeration cycle
US6003905A (en) * 1995-08-30 1999-12-21 Ford Motor Company Refrigerant access manifold
JPH0989420A (en) * 1995-09-27 1997-04-04 Fuji Koki:Kk Receiver tank with expansion valve
US5685364A (en) * 1996-03-15 1997-11-11 Zexel Usa Corporation Snap-on bracket for a condenser header
JP2889174B2 (en) * 1996-03-27 1999-05-10 株式会社ゼクセル Heat exchanger and its airtightness inspection device
JP3912836B2 (en) * 1997-02-21 2007-05-09 サンデン株式会社 Heat exchanger
JPH1182850A (en) * 1997-09-08 1999-03-26 Matsushita Electric Ind Co Ltd Fluid passage connecting device
US6202438B1 (en) * 1999-11-23 2001-03-20 Scroll Technologies Compressor economizer circuit with check valve
US6474098B2 (en) * 2000-01-28 2002-11-05 Stanhope Products Company Integrated condenser-receiver desiccant bag and associated filter cap
US6401485B1 (en) * 2000-10-06 2002-06-11 American Standard Inc. Discharge refrigerant heater for inactive compressor line
US6449977B1 (en) * 2000-12-29 2002-09-17 Multisorb Technologies, Inc. Self-retaining elongated adsorbent unit
JP4688369B2 (en) * 2001-08-30 2011-05-25 株式会社日本クライメイトシステムズ Air conditioner for vehicles
US6513579B1 (en) * 2001-09-27 2003-02-04 Delphi Technologies, Inc. Post braze heat exchanger mounting and support brackets
US6578371B1 (en) * 2002-09-26 2003-06-17 Calsonickansei North America, Inc. Receiver dryer mounting bracket for a condenser system
US6904770B2 (en) * 2003-09-03 2005-06-14 Delphi Technologies, Inc. Multi-function condenser
US7007499B1 (en) * 2004-09-02 2006-03-07 Visteon Global Technologies, Inc. Condenser assembly having a mounting rib

Also Published As

Publication number Publication date
WO2005114085A1 (en) 2005-12-01
JP2006003070A (en) 2006-01-05
DE112005001151T5 (en) 2007-04-19
CN1957223A (en) 2007-05-02
US20070169508A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4774238B2 (en) Refrigeration cycle refrigerant distribution part connection structure
JP5114771B2 (en) Heat exchanger
JP2007298197A (en) Heat exchanger
JP2007147172A (en) Heat exchanger
JP2005300135A (en) Header tank for heat exchanger, and heat exchanger using the same
JP4122670B2 (en) Heat exchanger
JP5002798B2 (en) Heat exchanger
JP4898672B2 (en) Heat exchanger
JP4972488B2 (en) Heat exchanger
JP2009250518A (en) Heat exchanger
JP2010054066A (en) Heat exchanger
JP2007147173A (en) Heat exchanger and its manufacturing method
JP5002796B2 (en) Heat exchanger
JP5070144B2 (en) Heat exchanger
JP2008008603A (en) Heat exchanger
JP2005195318A (en) Evaporator
JP2008249241A (en) Heat exchanger
JP2009257719A (en) Heat exchanger
JP4931481B2 (en) Heat exchanger and manufacturing method thereof
JP2008089188A (en) Heat exchanger
JP2009287907A (en) Heat exchanger
JP2009113625A (en) Evaporator
JP2009008347A (en) Heat exchanger
JP2006064201A (en) Header tank of heat exchanger and connecting structure of header tank of heat exchanger and refrigerant circulating pipe
JP2010121794A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees