JP4773390B2 - Component concentration measuring device - Google Patents

Component concentration measuring device Download PDF

Info

Publication number
JP4773390B2
JP4773390B2 JP2007083897A JP2007083897A JP4773390B2 JP 4773390 B2 JP4773390 B2 JP 4773390B2 JP 2007083897 A JP2007083897 A JP 2007083897A JP 2007083897 A JP2007083897 A JP 2007083897A JP 4773390 B2 JP4773390 B2 JP 4773390B2
Authority
JP
Japan
Prior art keywords
light
sound wave
component concentration
modulated laser
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007083897A
Other languages
Japanese (ja)
Other versions
JP2008237655A (en
Inventor
卓郎 田島
和則 長沼
勇一 岡部
純一 嶋田
恒之 芳賀
勝義 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007083897A priority Critical patent/JP4773390B2/en
Publication of JP2008237655A publication Critical patent/JP2008237655A/en
Application granted granted Critical
Publication of JP4773390B2 publication Critical patent/JP4773390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Description

本発明は、被測定物に対して非侵襲な成分濃度測定を行う成分濃度測定装置に関する。   The present invention relates to a component concentration measuring apparatus that performs non-invasive component concentration measurement on an object to be measured.

高齢化が進み、成人病に対する対応が大きな課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な成分濃度測定装置が注目されている。現在までに開発された非侵襲な成分濃度測定装置としては、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、血糖値の場合はグルコース分子に吸収され、局所的に加熱して熱膨張を起こして生体内から発生する音波を観測する光音響分光法(以下、「光音響分光法」を「PAS」と略記する。)が注目されている(例えば、非特許文献1及び特許文献1を参照。)。   With the aging of society, dealing with adult diseases is becoming a major issue. In blood glucose level and other tests, blood collection is necessary, which places a heavy burden on the patient. Therefore, a non-invasive component concentration measurement apparatus that does not collect blood has attracted attention. As a non-invasive component concentration measuring device that has been developed so far, the skin is irradiated with electromagnetic waves and absorbed by blood molecules to be measured, for example, glucose molecules in the case of blood glucose levels, and heated locally. Photoacoustic spectroscopy (hereinafter, “photoacoustic spectroscopy” is abbreviated as “PAS”) that observes sound waves generated from the living body by causing thermal expansion has attracted attention (for example, Non-Patent Document 1 and Patents). See reference 1.)

図1は非特許文献1に記載されたPASによる成分濃度測定装置の概略図である。図1の血液成分濃度測定装置は光パルスを電磁波として用いている。本例では血液成分として血糖、すなわちグルコースを測定対象としている。図1の成分濃度測定装置において、駆動電源102はパルス状の励起電流をパルス光源103に供給する。パルス光源103はサブマイクロ秒の持続時間を有する光パルスを発生させ、該光パルスを生体被検部101に照射する。光パルスは生体被検部101の内部にパルス状の光音響信号と呼ばれる音波を発生させる。発生した光音響信号は超音波検出器104により検出され、さらに音圧に比例した電気信号に変換される。   FIG. 1 is a schematic diagram of a component concentration measuring apparatus using PAS described in Non-Patent Document 1. The blood component concentration measuring apparatus in FIG. 1 uses light pulses as electromagnetic waves. In this example, blood glucose, that is, glucose is the measurement target as the blood component. In the component concentration measurement apparatus of FIG. 1, the drive power supply 102 supplies a pulsed excitation current to the pulse light source 103. The pulse light source 103 generates a light pulse having a sub-microsecond duration, and irradiates the living body test part 101 with the light pulse. The light pulse generates a sound wave called a pulsed photoacoustic signal inside the living body test portion 101. The generated photoacoustic signal is detected by the ultrasonic detector 104 and further converted into an electric signal proportional to the sound pressure.

変換された電気信号の波形は波形観測器105により観測される。この波形観測器105は上記励起電流に同期した信号によりトリガされ、変換された電気信号を画面等に表示する。また、波形観測器105は変換された電気信号は積算及び平均して測定することができる。このようにして得られた電気信号の振幅を解析して、生体被検部101の内部の血糖値、すなわちグルコースの量が測定される。図1の成分濃度測定装置はサブマイクロ秒のパルス幅の光パルスを最大1kHzの繰り返しで発生し、1024個の光パルスを平均している。   The waveform of the converted electric signal is observed by the waveform observer 105. The waveform observer 105 is triggered by a signal synchronized with the excitation current, and displays the converted electric signal on a screen or the like. Further, the waveform observer 105 can measure the converted electric signals by integrating and averaging them. By analyzing the amplitude of the electrical signal thus obtained, the blood sugar level inside the living body test portion 101, that is, the amount of glucose is measured. The component concentration measuring apparatus shown in FIG. 1 generates light pulses having a sub-microsecond pulse width at a repetition of a maximum of 1 kHz, and averages 1024 light pulses.

しかし、グルコースと電磁波との相互作用は小さく、また生体に安全に照射し得る電磁波の強度には制限があり、生体の血糖値測定においては、十分な効果をあげるに至っていない。   However, the interaction between glucose and electromagnetic waves is small, and there is a limit to the intensity of electromagnetic waves that can be safely irradiated to a living body, so that a sufficient effect has not been achieved in measuring blood glucose levels in the living body.

そこで、測定精度を高める目的で連続的に強度変調した光源を用いる成分濃度測定装置が特許文献1に開示されている。図2は特許文献1に記載されたPASによる成分濃度測定装置の概略図である。本例も血糖を主な測定対象としている。測定精度を高めるため、異なる波長の複数の光源を用いている。説明の煩雑さを避けるために、光源の数が2の場合の動作を説明する。図2の成分濃度測定装置において、異なる波長の光源、即ち、第一の光源201及び第二の光源202は、それぞれ駆動電源203及び駆動電源204により駆動され、連続光を出力する。   Therefore, Patent Document 1 discloses a component concentration measuring apparatus that uses a light source that is continuously intensity-modulated for the purpose of improving measurement accuracy. FIG. 2 is a schematic view of a component concentration measuring apparatus using PAS described in Patent Document 1. In this example, blood glucose is the main measurement target. In order to improve measurement accuracy, a plurality of light sources having different wavelengths are used. In order to avoid complicated explanation, the operation when the number of light sources is two will be described. In the component concentration measurement apparatus of FIG. 2, light sources having different wavelengths, that is, a first light source 201 and a second light source 202 are driven by a driving power source 203 and a driving power source 204, respectively, and output continuous light.

第一の光源201及び第二の光源202が出力する光は、モータ214により駆動され一定回転数で回転するチョッパ板213により断続される。ここでチョッパ板213は不透明な材質により形成され、モータ214の軸を中心とする第一の光源201及び第二の光源202の光が通過する円周上に、互いに疎な個数の開口部が形成されている。   The light output from the first light source 201 and the second light source 202 is intermittently driven by a chopper plate 213 that is driven by a motor 214 and rotates at a constant rotational speed. Here, the chopper plate 213 is formed of an opaque material, and a sparse number of openings are formed on the circumference through which the light of the first light source 201 and the second light source 202 passes around the axis of the motor 214. Is formed.

上記の構成により、第一の光源201及び第二の光源202の各々が出力する光は互いに疎な変調周波数f、及び変調周波数fで強度変調される。合波器211は強度変調されたそれぞれの光を合波し、1の光束として生体被検部101に照射する。 With the above configuration, the light output from each of the first light source 201 and the second light source 202 is intensity-modulated at a modulation frequency f 1 and a modulation frequency f 2 that are sparse. The multiplexer 211 multiplexes the intensity-modulated lights and irradiates the living body test part 101 as one light beam.

生体被検部101の内部には第一の光源201の光により周波数fの光音響信号が発生し、第二の光源202の光により周波数fの光音響信号が発生する。音響センサ212は、これらの光音響信号を検出し、音圧に比例した電気信号に変換する。その周波数スペクトルは周波数解析器215で観測される。本例においては、複数の光源の波長は全てグルコースの吸収波長に設定されており、各波長に対応する光音響信号の強度は、血液中に含まれるグルコースの量に対応した電気信号として測定される。 A photoacoustic signal having a frequency f 1 is generated by light from the first light source 201 and a photoacoustic signal having a frequency f 2 is generated by light from the second light source 202 in the living body test part 101. The acoustic sensor 212 detects these photoacoustic signals and converts them into electrical signals proportional to the sound pressure. The frequency spectrum is observed by a frequency analyzer 215. In this example, the wavelengths of the plurality of light sources are all set to the absorption wavelength of glucose, and the intensity of the photoacoustic signal corresponding to each wavelength is measured as an electrical signal corresponding to the amount of glucose contained in the blood. The

ここで、予め光音響信号の測定値の強度と別途採血した血液によりグルコースの含有量を測定した値との関係を記憶しておき、前記光音響信号の測定値からグルコースの量を測定している。
特開平10−000189号公報 オウル大学(University of Oulu、Finland)学位論文「Pulsed photoacoustic techniqus and glucose determination in human blood and tissue」(IBS 951−42−6690−0、http://herkules.oulu.fi/isbn9514266900/、2002年)
Here, the relationship between the intensity of the measured value of the photoacoustic signal and the value obtained by measuring the glucose content by separately collected blood is stored in advance, and the amount of glucose is measured from the measured value of the photoacoustic signal. Yes.
JP-A-10-000189 University of Oulu (University of Ouru, Finland) dissertation "Pulsed photoacoustic techniques and glucose determination in human blood and tissue" (IBS 951-42-6690-0, 2001/95.

光照射で被測定物内へ進入した光はPASのために光吸収され、また散乱することにより被測定物内で減衰する。具体的には、光は被測定物に含まれる水分の吸光度から求まる減衰距離で概ね1/10に減衰する。しかし、被測定物の試料厚が有限であることや含有水分量の大小により、光の一部は吸収や散乱されず透過することになる。この透過した漏れ光は照射側と対向した音響検出器表面や周辺部に吸収され、これらからも光音響信号が発生する。音響検出器表面や周辺部からの光音響信号は、被測定物から発生する光音響信号の雑音となるため、被測定対象成分の測定精度に著しい影響を与えるという課題があった。以下の説明で、「音響検出器表面や周辺部からの光音響信号」を「音響雑音」と略記する。   The light that has entered the object to be measured by light irradiation is absorbed by the PAS, and is attenuated in the object by being scattered. Specifically, light is attenuated to approximately 1/10 at an attenuation distance obtained from the absorbance of moisture contained in the object to be measured. However, part of the light is transmitted without being absorbed or scattered due to the finite sample thickness of the object to be measured and the amount of water content. The transmitted leakage light is absorbed by the surface and peripheral portion of the acoustic detector facing the irradiation side, and a photoacoustic signal is also generated from these. Since the photoacoustic signal from the surface of the acoustic detector and the peripheral portion becomes noise of the photoacoustic signal generated from the object to be measured, there is a problem that the measurement accuracy of the component to be measured is significantly affected. In the following description, “photoacoustic signal from the surface of the acoustic detector and its peripheral portion” is abbreviated as “acoustic noise”.

本発明は上記課題を解決するためになされたもので、被測定物以外の場所で漏れ光によって生じる音響雑音を抑制し、被測定物の成分濃度を高精度に測定ができる成分濃度測定装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and provides a component concentration measuring apparatus that can suppress acoustic noise caused by leaked light at a place other than the object to be measured and can measure the component concentration of the object to be measured with high accuracy. The purpose is to provide.

前記目的を達成するために、本発明に係る成分濃度測定装置は、光源からの光を透過し、被測定物内で発生した光音響信号を反射する音波反射板を備えることとした。   In order to achieve the above object, the component concentration measuring apparatus according to the present invention includes a sound wave reflecting plate that transmits light from a light source and reflects a photoacoustic signal generated in the object to be measured.

具体的には、本発明に係る成分濃度測定装置は、レーザ光を所定周波数の変調信号で電気的に強度変調した変調レーザ光を被測定物に向けて照射する光照射手段と、前記変調レーザ光の光軸方向にあり、前記被測定物を透過した前記変調レーザ光を透過させ、前記変調レーザ光によって前記被測定物に発生する光音響信号を反射させる音波反射板と、前記音波反射板の前記光照射手段側にあり、前記変調レーザ光によって前記被測定物に発生する光音響信号及び前記音波反射板で反射された光音響信号を前記被測定物から検出する音波強度測定手段と、を備える。   Specifically, the component concentration measuring apparatus according to the present invention includes a light irradiating unit that irradiates a laser beam with a modulated laser beam that is electrically intensity-modulated with a modulation signal having a predetermined frequency, and the modulated laser. A sound wave reflecting plate that is in the optical axis direction of light, transmits the modulated laser light that has passed through the object to be measured, and reflects a photoacoustic signal generated on the object to be measured by the modulated laser light; and the sound wave reflecting plate A sound intensity measuring means for detecting a photoacoustic signal generated on the object to be measured by the modulated laser light and a photoacoustic signal reflected by the sound wave reflection plate from the object to be measured; Is provided.

音波反射板が漏れ光を透過させるため、被測定物以外の場所で漏れ光によって生じる音響雑音を抑制することができる。   Since the sound wave reflection plate transmits the leakage light, the acoustic noise caused by the leakage light at a place other than the object to be measured can be suppressed.

本発明に係る成分濃度測定装置は、前記光照射手段は、異なる2波長のレーザ光をそれぞれ同一周波数で逆位相の変調信号で強度変調することが好ましい。2光波の照射によって発生した音響信号の差分検出をすることができる。   In the component concentration measuring apparatus according to the present invention, it is preferable that the light irradiating means modulates the intensity of two different wavelength laser beams with the same frequency and opposite phase modulation signals. It is possible to detect a difference between acoustic signals generated by the irradiation of two light waves.

本発明に係る成分濃度測定装置は、前記光照射手段からの前記変調レーザ光の光軸と前記音波強度測定手段が光音響信号を検出する方向の中心である集音中心軸との交点は、前記音波反射板の前記光照射手段側の表面にあり、前記変調レーザ光の光軸が前記音波反射板の前記光照射手段側の表面と成す角度は、前記音波強度測定手段の集音中心軸が前記音波反射板の前記光照射手段側の表面と成す角度と等しいことが好ましい。被測定物の音源から音響検出器までの光音響信号伝達を効率よく行うことができる。   In the component concentration measurement apparatus according to the present invention, the intersection of the optical axis of the modulated laser beam from the light irradiation unit and the sound collection central axis, which is the center of the direction in which the sound wave intensity measurement unit detects a photoacoustic signal, The angle of the optical axis of the modulated laser beam with the surface of the sound wave reflecting plate on the light irradiating means side of the sound wave reflecting plate is the central axis of sound collection of the sound wave intensity measuring means. Is preferably equal to the angle formed with the surface of the sound wave reflecting plate on the light irradiation means side. Photoacoustic signal transmission from the sound source of the object to be measured to the acoustic detector can be performed efficiently.

本発明に係る成分濃度測定装置は、前記音波反射板の前記光照射手段側の表面に前記変調レーザ光を反射する誘電体ミラーをさらに備えることが好ましい。被測定物を透過した漏れ光を低減するため、音響雑音の発生量を低減する効果を奏する。   The component concentration measuring apparatus according to the present invention preferably further includes a dielectric mirror that reflects the modulated laser light on a surface of the sound wave reflecting plate on the light irradiation means side. In order to reduce the leaked light that has passed through the object to be measured, an effect of reducing the generation amount of acoustic noise is achieved.

本発明に係る成分濃度測定装置は、前記音波反射板の前記光照射手段側と反対側に前記音波反射板を透過した前記変調レーザ光を吸収する光吸収体をさらに備えることが好ましい。音波反射板を透過した漏れ光を吸収し、漏れ光の多重反射などによる音響雑音の発生を抑え、測定精度を高める効果を奏する。   The component concentration measuring apparatus according to the present invention preferably further includes a light absorber that absorbs the modulated laser light transmitted through the sound wave reflection plate on the side opposite to the light irradiation means side of the sound wave reflection plate. It absorbs leaked light that has passed through the sonic reflector, suppresses the generation of acoustic noise due to multiple reflections of leaked light, and has an effect of improving measurement accuracy.

本発明に係る成分濃度測定装置の前記光吸収体と前記音波反射板とは、前記音波反射板を透過した前記変調レーザ光を透過させ、前記光吸収体で発生する光音響信号を反射するスペーサを介して接続されていることが好ましい。光吸収体で発生した光音響信号がスペーサと光吸収体との界面で効率よく反射し、被測定物へ伝搬しないため、音響雑音を低減する効果を奏する。   The light absorber and the sound wave reflecting plate of the component concentration measuring apparatus according to the present invention transmit the modulated laser light transmitted through the sound wave reflecting plate and reflect a photoacoustic signal generated by the light absorber. It is preferable to be connected via Since the photoacoustic signal generated by the light absorber is efficiently reflected at the interface between the spacer and the light absorber and does not propagate to the object to be measured, an effect of reducing acoustic noise is achieved.

本発明に係る成分濃度測定装置の前記光吸収体と前記音波反射板とは、前記光吸収体と前記音波反射板との間に気体が入る間隙を形成する支柱で接続されることが好ましい。光吸収体で発生した光音響信号が空気と光吸収体の界面で効率よく反射し、被測定物へ伝搬しないため、音響雑音を低減する効果を奏する。   It is preferable that the light absorber and the sound wave reflecting plate of the component concentration measuring apparatus according to the present invention are connected by a support column that forms a gap into which gas enters between the light absorber and the sound wave reflecting plate. Since the photoacoustic signal generated in the light absorber is efficiently reflected at the interface between the air and the light absorber and does not propagate to the object to be measured, an effect of reducing acoustic noise is achieved.

本発明は、音波反射板が漏れ光を透過させるため、被測定物以外の場所で漏れ光によって生じる音響雑音を抑制し、被測定物の成分濃度を高精度に測定ができる成分濃度測定装置を提供することができる。   The present invention provides a component concentration measuring apparatus that can suppress the acoustic noise caused by the leaked light at a place other than the object to be measured and can accurately measure the component concentration of the object to be measured because the sound wave reflection plate transmits the leaked light. Can be provided.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。また、以下においては、被測定物として人や動物の被検体の成分濃度を測定する場合の成分濃度測定装置を説明するが、被測定物はこれらに限らない。なお、本明細書及び図面において符号が同じ構成要素は、それぞれ同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. In the following description, a component concentration measuring apparatus for measuring the component concentration of a human or animal subject as the object to be measured will be described, but the object to be measured is not limited to these. In addition, in this specification and drawing, the component with the same code | symbol shall show the same thing, respectively.

本実施形態は、レーザ光を所定周波数の変調信号で電気的に強度変調した変調レーザ光を被測定物に向けて照射する光照射手段と、前記変調レーザ光の光軸方向にあり、前記被測定物を透過した前記変調レーザ光を透過させ、前記変調レーザ光によって前記被測定物に発生する光音響信号を反射させる音波反射板と、前記音波反射板の前記光照射手段側にあり、前記変調レーザ光によって前記被測定物に発生する光音響信号及び前記音波反射板で反射された光音響信号を前記被測定物から検出する音波強度測定手段と、を備える。   In this embodiment, there is light irradiation means for irradiating the object to be measured with modulated laser light that is electrically intensity-modulated with a modulation signal of a predetermined frequency, and in the optical axis direction of the modulated laser light. A sound wave reflecting plate that transmits the modulated laser light transmitted through the object to be measured and reflects a photoacoustic signal generated in the object to be measured by the modulated laser light; and on the light irradiation means side of the sound wave reflecting plate, A sound intensity measuring means for detecting, from the object to be measured, a photoacoustic signal generated by the modulated laser beam on the object to be measured and a photoacoustic signal reflected by the sound wave reflection plate.

本実施形態の基本構成例として成分濃度測定装置1のブロック図を図3に示す。成分濃度測定装置1は、光照射手段301、音波強度測定手段302、音波反射板303、発振器309及び光音響信号出力端子315を備える。   As a basic configuration example of the present embodiment, a block diagram of a component concentration measuring apparatus 1 is shown in FIG. The component concentration measurement apparatus 1 includes a light irradiation unit 301, a sound wave intensity measurement unit 302, a sound wave reflection plate 303, an oscillator 309, and a photoacoustic signal output terminal 315.

光照射手段301は、レーザ光を所定周波数の変調信号で電気的に強度変調した変調レーザ光Lを被測定物900に向けて照射する。レーザ光は1波長でも複数の波長でもよい。光照射手段301は、異なる2波長のレーザ光をそれぞれ同一周波数で逆位相の変調信号で強度変調することが好ましい。成分濃度測定装置1は、2光波の照射によって発生した音響信号の差分検出をすることができ、高精度に被検出物900の成分濃度測定をすることができる。この場合、光照射手段301は図3のように、第1の光源31−1、第2の光源31−2、駆動回路32−1、駆動回路32−2、遅延調整器33、光ファイバ34−1、光ファイバ34−2、光合波器35、光ファイバ36及び光出射部37を有する。   The light irradiation means 301 irradiates the object 900 to be measured with a modulated laser light L obtained by electrically modulating the intensity of the laser light with a modulation signal having a predetermined frequency. The laser light may be one wavelength or a plurality of wavelengths. The light irradiation means 301 preferably modulates the intensity of two different wavelengths of laser light with the same frequency and opposite phase modulation signals. The component concentration measuring apparatus 1 can detect a difference between acoustic signals generated by the irradiation of two light waves, and can measure the component concentration of the detected object 900 with high accuracy. In this case, as shown in FIG. 3, the light irradiation means 301 includes a first light source 31-1, a second light source 31-2, a drive circuit 32-1, a drive circuit 32-2, a delay adjuster 33, and an optical fiber 34. -1, an optical fiber 34-2, an optical multiplexer 35, an optical fiber 36, and a light emitting portion 37.

駆動回路32−1及び駆動回路32−2は、それぞれ第2の光源31−1及び第2の光源31−2に電流を供給する。発振器309は駆動回路32−1及び駆動回路32−2に電圧を供給する。発振器309は任意の周波数のパルス列を発生する機能を持つ。また、遅延調整器33は第1の光源31−1と第2の光源31−2を逆相で駆動するために周期の半分の遅延に調整する。   The drive circuit 32-1 and the drive circuit 32-2 supply current to the second light source 31-1 and the second light source 31-2, respectively. The oscillator 309 supplies a voltage to the drive circuit 32-1 and the drive circuit 32-2. The oscillator 309 has a function of generating a pulse train having an arbitrary frequency. The delay adjuster 33 adjusts the delay to a half of the cycle in order to drive the first light source 31-1 and the second light source 31-2 in opposite phases.

第1の光源31−1及び第2の光源31−2で発生した変調レーザ光は、それぞれ光伝達手段である光ファイバ34−1及び光ファイバ34−2によって光合波器35の光入力端子に接続される。光合波器35は合波した変調レーザ光Lを光出力端子から出力し、光伝達手段である光ファイバ36を介して光出射部37へ供給する。光出射部37は被測定物900へ変調レーザ光Lを出射する。光出射部37は、光ファイバ36の先端でもよいが、効率よく変調レーザ光Lを被測定物900へ出射するため、被測定物900の形状に合わせた直角プリズム、ファイバコリメータ又はフェルールでもよい。   The modulated laser beams generated by the first light source 31-1 and the second light source 31-2 are respectively transmitted to the optical input terminal of the optical multiplexer 35 by the optical fiber 34-1 and the optical fiber 34-2 which are light transmission means. Connected. The optical multiplexer 35 outputs the combined modulated laser light L from the optical output terminal, and supplies it to the light emitting portion 37 via the optical fiber 36 that is an optical transmission means. The light emitting unit 37 emits the modulated laser light L to the object 900 to be measured. The light emitting portion 37 may be the tip of the optical fiber 36, but may be a right-angle prism, a fiber collimator, or a ferrule that matches the shape of the measured object 900 in order to efficiently emit the modulated laser light L to the measured object 900.

光照射手段301は、第1の光源31−1及び第2の光源31−2を制御することで、それぞれの光源からの光の波長が重畳した変調レーザ光Lや一方の光源からの光の波長のみからなる変調レーザ光Lを出射することができる。光出射部37から出射した変調レーザ光Lは、被測定物900の内部でPASによる光音響信号を発生させる。   The light irradiation unit 301 controls the first light source 31-1 and the second light source 31-2, so that the modulated laser light L on which the wavelength of light from each light source is superimposed or the light from one light source is superimposed. Modulated laser light L having only a wavelength can be emitted. The modulated laser light L emitted from the light emitting unit 37 generates a photoacoustic signal by PAS inside the object to be measured 900.

音波反射板303は、光照射手段301からの変調レーザ光Lの光軸方向にあり、被測定物900を透過した変調レーザ光Lを透過させ、変調レーザ光Lによって被測定物900に発生する光音響信号を反射させる。   The sound wave reflection plate 303 is in the optical axis direction of the modulated laser light L from the light irradiation means 301, transmits the modulated laser light L that has passed through the measured object 900, and is generated in the measured object 900 by the modulated laser light L. Reflect photoacoustic signals.

音波反射板303は、被測定物900を透過する変調レーザ光Lを透過させ、漏れ光として空中へ放出する。音波反射板303は、音響反射効率が高い材料というだけでなく、音波反射板303自身の音響雑音の発生を抑制する必要がある。そのため、音波反射板303は、第1の光源31−1及び第2の光源31−2の波長帯の光吸収が被測定物900に比べ無視できる程度に小さいことが必要である。さらに、音波反射板303は、第1の光源31−1及び第2の光源31−2の2波長の光が90%以上透過する材質が望ましい。音波反射板303は、例えば、ガラス板やサファイア板である。   The sound wave reflection plate 303 transmits the modulated laser light L that passes through the object to be measured 900 and emits it into the air as leakage light. The sound wave reflecting plate 303 is not only a material having high acoustic reflection efficiency, but also needs to suppress the generation of acoustic noise of the sound wave reflecting plate 303 itself. Therefore, the sound wave reflection plate 303 needs to be small enough that the light absorption in the wavelength band of the first light source 31-1 and the second light source 31-2 is negligible compared to the DUT 900. Furthermore, the sound wave reflection plate 303 is preferably made of a material that transmits 90% or more of the light having the two wavelengths of the first light source 31-1 and the second light source 31-2. The sound wave reflection plate 303 is, for example, a glass plate or a sapphire plate.

音波強度測定手段302は、音波検出部41、前置増幅器42及び位相検波増幅器43を有する。音波強度測定手段302は、音波反射板303の光照射手段301側にあり、変調レーザ光Lによって被測定物900に発生する光音響信号及び音波反射板303で反射された光音響信号を被測定物900から検出する。   The sound wave intensity measuring unit 302 includes a sound wave detection unit 41, a preamplifier 42, and a phase detection amplifier 43. The sound intensity measuring means 302 is located on the light irradiating means 301 side of the sound wave reflection plate 303, and measures the photoacoustic signal generated on the measurement object 900 by the modulated laser light L and the photoacoustic signal reflected by the sound wave reflection plate 303. Detect from the object 900.

音波検出部41は、被測定物900内で発生した光音響信号を直接的に又は音波反射板303での反射後に検出する。音波検出部41は検出した光音響信号を電気信号に変換する。前置増幅器42は、音波検出部41からの電気信号を増幅する。位相検波増幅器43は、発振器309からの電気信号に基づき、前置増幅器42からの電気信号から第1の光源31−1及び第2の光源31−2の変調周波数と同一周波数成分の振幅及び位相を抽出し、光音響信号出力端子315へ出力する。発振器309からの電気信号を利用することで高精度に変調レーザ光Lによる光音響信号の測定信号を出力することができる。   The sound wave detection unit 41 detects a photoacoustic signal generated in the measurement object 900 directly or after reflection by the sound wave reflection plate 303. The sound wave detection unit 41 converts the detected photoacoustic signal into an electrical signal. The preamplifier 42 amplifies the electric signal from the sound wave detection unit 41. The phase detection amplifier 43 is based on the electrical signal from the oscillator 309, and the amplitude and phase of the same frequency component as the modulation frequency of the first light source 31-1 and the second light source 31-2 from the electrical signal from the preamplifier 42. Is extracted and output to the photoacoustic signal output terminal 315. By using an electrical signal from the oscillator 309, a photoacoustic signal measurement signal based on the modulated laser beam L can be output with high accuracy.

光音響信号出力端子315には、2波長が重畳する変調レーザ光Lによる光音響信号の測定信号(s−s)と1波長のみの変調レーザ光Lによる光音響信号の測定信号sが出力される。以下に出力された測定信号を用いて、濃度Mを求める算定法を説明する。 The photoacoustic signal output terminal 315 has a photoacoustic signal measurement signal (s 1 -s 2 ) based on the modulated laser light L on which two wavelengths are superimposed and a photoacoustic signal measurement signal s 2 based on the modulated laser light L of only one wavelength. Is output. A calculation method for obtaining the concentration M using the measurement signal output below will be described.

ここで、第1の光源の出力する光の波長をλ、第2の光源の出力する光の波長をλとする。波長λ、λの各々に対して、背景の吸収係数α (w)、α (w)及び測定対象成分のモル吸収係数α (g)、α (g)を知る時、各波長で測定した測定信号s、sを含む連立方程式は数式(1)で表せる。背景の吸収係数とは、例えば、水の吸収係数である。

Figure 0004773390
Here, it is assumed that the wavelength of light output from the first light source is λ 1 and the wavelength of light output from the second light source is λ 2 . For each of the wavelengths λ 1 and λ 2 , when knowing the background absorption coefficients α 1 (w) and α 2 (w) and the molar absorption coefficients α 1 (g) and α 2 (g) of the components to be measured, The simultaneous equations including the measurement signals s 1 and s 2 measured at each wavelength can be expressed by Equation (1). The background absorption coefficient is, for example, the absorption coefficient of water.
Figure 0004773390

ここで、Cは変化し制御或は予想困難な係数である。例えば、音響結合、超音波検出器の感度、照射部から接触部の距離r、比熱、熱膨張係数、音速、変調周波数及び吸収係数にも依存する未知乗数である。ここで、二つの波長λとλを背景の吸収係数がほぼ等しい波長に設定すれば、α (w)=α (w)であるから、数式(1)からCを消去し、数式(2)のように濃度Mを導くことができる。

Figure 0004773390
Here, C is a coefficient that varies and is difficult to control or predict. For example, the unknown multiplier also depends on the acoustic coupling, the sensitivity of the ultrasonic detector, the distance r from the irradiation part to the contact part, the specific heat, the thermal expansion coefficient, the sound speed, the modulation frequency, and the absorption coefficient. Here, if the two wavelengths λ 1 and λ 2 are set to wavelengths with substantially the same background absorption coefficient, α 1 (w) = α 2 (w) , so C is deleted from Equation (1), The concentration M can be derived as shown in Equation (2).
Figure 0004773390

測定信号s及び測定信号sは測定結果であり、波長λ、λの各々に対する背景の吸収係数α (w)、α (w)及び対象成分のモル吸収係数α (g)、α (g)は既知の値である。従って、濃度Mは、測定した光音響信号及び既知値から算出できる。 The measurement signal s 1 and the measurement signal s 2 are measurement results, and the background absorption coefficients α 1 (w) and α 2 (w) for each of the wavelengths λ 1 and λ 2 and the molar absorption coefficient α 1 (g ) And α 2 (g) are known values. Therefore, the concentration M can be calculated from the measured photoacoustic signal and a known value.

次に、図3の成分濃度測定装置1に関して図4を用いて詳細に説明する。図4は成分濃度測定装置1の断面を示した概略図である。図4には、図3には図示していない支柱434、光吸収体435及び光変調信号入力端子409を示している。   Next, the component concentration measuring apparatus 1 in FIG. 3 will be described in detail with reference to FIG. FIG. 4 is a schematic view showing a cross section of the component concentration measuring apparatus 1. FIG. 4 shows a column 434, a light absorber 435, and an optical modulation signal input terminal 409 not shown in FIG.

光照射手段301と音波強度測定手段302は等しい角度で被測定物900の境界に接し、光照射手段301と音波強度測定手段302の中心軸が音波反射板303の表面で交差する距離に配置する。具体的には、光照射手段301からの変調レーザ光Lの光軸と音波強度測定手段302が光音響信号を検出する方向の中心である集音中心軸との交点は、音波反射板303の光照射手段301側の表面にあり、変調レーザ光Lの光軸が音波反射板303の光照射手段301側の表面と成す角度は、音波強度測定手段302の集音中心軸が音波反射板303の光照射手段301側の表面と成す角度と等しい。被測定物の音源から音響検出器までの光音響信号伝達を効率よく行うことができる。   The light irradiation means 301 and the sound wave intensity measuring means 302 are in contact with the boundary of the measurement object 900 at an equal angle, and are arranged at a distance where the central axes of the light irradiation means 301 and the sound wave intensity measuring means 302 intersect on the surface of the sound wave reflection plate 303. . Specifically, the intersection of the optical axis of the modulated laser light L from the light irradiation means 301 and the sound collection central axis that is the center of the direction in which the sound wave intensity measurement means 302 detects the photoacoustic signal is The angle formed by the optical axis of the modulated laser beam L and the surface of the sound wave reflection plate 303 on the light irradiation unit 301 side is on the surface of the light irradiation unit 301 side. Is equal to the angle formed with the surface on the light irradiation means 301 side. Photoacoustic signal transmission from the sound source of the object to be measured to the acoustic detector can be performed efficiently.

光吸収体435は、音波反射板303の光照射手段301側と反対側にあり、変調レーザ光Lのうち音波反射板303を透過した漏れ光Tを吸収する。音波反射板を透過した漏れ光を吸収し、漏れ光の多重反射などによる音響雑音の発生を抑え、測定精度を高める効果を奏する。光吸収体435は、吸音効果のある発泡性がある材質が望ましく、例えば、発泡ウレタンや黒色ゴムが挙げられる。   The light absorber 435 is on the opposite side of the sound wave reflection plate 303 from the light irradiation means 301 side, and absorbs the leaked light T transmitted through the sound wave reflection plate 303 in the modulated laser light L. It absorbs leaked light that has passed through the sonic reflector, suppresses the generation of acoustic noise due to multiple reflections of leaked light, and has an effect of improving measurement accuracy. The light absorber 435 is desirably a foaming material having a sound absorbing effect, and examples thereof include foamed urethane and black rubber.

支柱434は、光吸収体435と音波反射板303との間に気体が入る間隙を形成するように光吸収体435と音波反射板303とを接続する。支柱434の材質は、例えば、金属、セラミクス又はプラスチックである。通常使用では、光吸収体435と音波反射板303との間の気体は空気である。光吸収体435で発生した光音響信号が空気と光吸収体の界面を高効率で反射し、被測定物900へ伝搬しないため、音響雑音を低減する効果を奏する。   The column 434 connects the light absorber 435 and the sound wave reflection plate 303 so as to form a gap for gas to enter between the light absorber 435 and the sound wave reflection plate 303. The material of the column 434 is, for example, metal, ceramics, or plastic. In normal use, the gas between the light absorber 435 and the sound wave reflector 303 is air. Since the photoacoustic signal generated by the light absorber 435 reflects the interface between the air and the light absorber with high efficiency and does not propagate to the device under test 900, there is an effect of reducing acoustic noise.

また、光吸収体435と音波反射板303との間は、支柱434ではなく、スペーサを介して接続されていてもよい。具体的には、図4の光吸収体435と音波反射板303との間にスペーサとなる固体や液体が充填されていてもよい。スペーサは、漏れ光Tを透過させるとともに、光吸収体435で発生した光音響信号を光吸収体900との界面で効率よく反射するものが好ましい。スペーサは、例えば、シリコーンゴムやアクリル板である。   Further, the light absorber 435 and the sound wave reflection plate 303 may be connected via a spacer instead of the support column 434. Specifically, a solid or liquid serving as a spacer may be filled between the light absorber 435 and the sound wave reflection plate 303 in FIG. The spacer is preferably one that transmits the leakage light T and efficiently reflects the photoacoustic signal generated by the light absorber 435 at the interface with the light absorber 900. The spacer is, for example, silicone rubber or an acrylic plate.

次に、音波反射板303に関して説明する。光音響信号の波長に比し音波反射板303の厚みが大きい場合は、被測定物900の固有音響インピーダンスをZ、音波反射板303の固有音響インピーダンスをZとすれば、反射率Rを数式(3)で求めることができる。

Figure 0004773390
従って、被測定物900と音波反射板303の音響インピーダンスの比(Z/Z,Z<Zの場合)が小さいほど反射効率が良い。被測定物900が水や生体の場合、音波反射板303の部材として音響インピーダンスが高い金属やガラスが好適である。 Next, the sound wave reflection plate 303 will be described. When the thickness of the sound wave reflection plate 303 is larger than the wavelength of the photoacoustic signal, the reflectance R can be obtained by setting the specific acoustic impedance of the DUT 900 to Z 1 and the specific sound impedance of the sound wave reflection plate 303 to Z 2. It can obtain | require by Numerical formula (3).
Figure 0004773390
Therefore, the smaller the ratio of the acoustic impedance of the DUT 900 and the sound wave reflector 303 (in the case of Z 1 / Z 2 , Z 1 <Z 2 ), the better the reflection efficiency. When the measurement object 900 is water or a living body, a metal or glass with high acoustic impedance is suitable as a member of the sound wave reflection plate 303.

また、光音響信号の波長λ(波数k=2π/λ)に対して音波反射板303の厚みが同程度以下の場合、音波反射板303の厚みdとすれば、反射率Rは数式(4)のようになる。

Figure 0004773390
ここで、Zは空隙の音響インピーダンスである。従って、Z<<Zの場合、反射効率Rを高くするために、音波反射板303の厚みdとしてkdがπの整数倍となるdを避ける必要がある。 In addition, when the thickness of the sound wave reflection plate 303 is equal to or less than the wavelength λ (wave number k = 2π / λ) of the photoacoustic signal, the reflectance R is expressed by the equation (4) if the thickness d of the sound wave reflection plate 303 is set. )become that way.
Figure 0004773390
Here, Z 3 is the acoustic impedance of the air gap. Therefore, in the case of Z 1 << Z 2 , it is necessary to avoid d where kd is an integral multiple of π as the thickness d of the sound wave reflection plate 303 in order to increase the reflection efficiency R.

成分濃度測定装置1は、光照射手段301及び音波強度測定手段302と音波反射板303とで被測定物900を挟み、成分濃度測定を行う。具体的には、光変調信号入力端子409に入力された変調信号により光照射手段301は、変調レーザ光Lを被測定物900へ照射する。被測定物900内部ではPASにより光音響信号Aが発生する。光音響信号Aは直接音波強度測定手段302へ向かうものもあるが、音波反射板303で反射されて音波強度測定手段302へ向かうものもある。光音響信号Aの発生に寄与しなかった変調レーザ光Lは音波反射板303を透過して光吸収体435に吸収される。音波強度測定手段302は図3で説明したように被測定物900の表面から光音響信号を検出して光音響信号出力端子315へ出力する。   The component concentration measuring apparatus 1 measures the component concentration by sandwiching the measurement object 900 between the light irradiation means 301, the sound wave intensity measuring means 302 and the sound wave reflection plate 303. Specifically, the light irradiation means 301 irradiates the device under test 900 with the modulated laser light L based on the modulation signal input to the light modulation signal input terminal 409. A photoacoustic signal A is generated inside the device under test 900 by PAS. Some of the photoacoustic signals A go directly to the sound wave intensity measuring means 302, but some of them are reflected by the sound wave reflection plate 303 and go to the sound wave intensity measuring means 302. The modulated laser light L that has not contributed to the generation of the photoacoustic signal A passes through the sound wave reflection plate 303 and is absorbed by the light absorber 435. The sound wave intensity measuring means 302 detects the photoacoustic signal from the surface of the measurement object 900 and outputs it to the photoacoustic signal output terminal 315 as described with reference to FIG.

(実施例)
次に実施例を挙げて本発明をより具体的に説明するが、本発明はこれによって限定されるものではない。図5は本実施例で用いた成分濃度測定装置2の断面図の概略である。成分濃度測定装置2は図4の成分濃度測定装置1に台11、支柱12、測定物固定機構13、誘電体ミラー51、アルミ板52、光アタッチメント53及び音響アタッチメント54をさらに備える。本実施例では、被測定物900は人体であり、成分濃度測定装置2は血液中のグルコース濃度を測定する。
(Example)
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this invention is not limited by this. FIG. 5 is a schematic cross-sectional view of the component concentration measuring apparatus 2 used in this example. The component concentration measuring apparatus 2 further includes a table 11, a support column 12, a measured object fixing mechanism 13, a dielectric mirror 51, an aluminum plate 52, an optical attachment 53, and an acoustic attachment 54 in the component concentration measuring apparatus 1 of FIG. In the present embodiment, the measurement object 900 is a human body, and the component concentration measuring device 2 measures the glucose concentration in the blood.

アルミ板52は、光照射手段301、音波強度測定手段302、光アタッチメント53及び音響アタッチメント54を搭載する。ここでアルミ板52の材質はアルミ以外の金属やセラミクスでもよい。音波反射板303はガラス板を利用する。支柱434の材質はアルミである。光吸収体435は黒色ゴムを利用する。   The aluminum plate 52 mounts a light irradiation means 301, a sound wave intensity measurement means 302, a light attachment 53, and an acoustic attachment 54. Here, the material of the aluminum plate 52 may be a metal other than aluminum or ceramics. The sound wave reflection plate 303 uses a glass plate. The material of the column 434 is aluminum. The light absorber 435 uses black rubber.

光照射手段301には、第1の光源31−1及び第2の光源31−2としてそれぞれ1.38μm帯DFB−LD及び1.61μm帯DFB−LDが内蔵されている。それぞれのLDはペルチエ素子によって適切な温度管理がなされている。図5には記述を省略しているが、図3で説明した発振器309からの信号が光変調信号入力端子409に入力される。それぞれのLDからは互いに逆位相の変調レーザ光が出射される。平均光パワーは10mW程度、変調周波数は350kHzに設定した。2つのLDからの変調レーザ光はボールレンズによって平行光にコリメートされ、図3で説明した光合波器35によって合波される。光照射手段301は、合波された変調レーザ光Lを光出射窓から光アタッチメント53を経由して、被測定物900への光照射する。光アタッチメント53はプリズムやレンズを含み、光路の変更や照射スポット径の設定を行う。本実施例では、被測定物900の表面に対して入射角30度、半径2mmの照射スポットを形成した。   The light irradiation means 301 incorporates a 1.38 μm band DFB-LD and a 1.61 μm band DFB-LD as the first light source 31-1 and the second light source 31-2, respectively. Each LD is appropriately temperature-controlled by a Peltier element. Although not shown in FIG. 5, the signal from the oscillator 309 described in FIG. 3 is input to the optical modulation signal input terminal 409. Each LD emits modulated laser beams having opposite phases. The average optical power was set to about 10 mW and the modulation frequency was set to 350 kHz. The modulated laser beams from the two LDs are collimated into parallel light by the ball lens and are multiplexed by the optical multiplexer 35 described with reference to FIG. The light irradiation means 301 irradiates the object 900 to be measured with the combined modulated laser light L from the light exit window via the light attachment 53. The optical attachment 53 includes a prism and a lens, and changes an optical path and sets an irradiation spot diameter. In this example, an irradiation spot having an incident angle of 30 degrees and a radius of 2 mm was formed on the surface of the measurement object 900.

音波反射板303の光照射手段301側の表面に変調レーザ光Lを反射する誘電体ミラー51をさらに備える。音波反射板303の上部には、1.38μm帯と1.61μm帯の光を反射する誘電体ミラー51が蒸着されている。誘電体ミラー51には、屈折率の異なるSiOやTiOを単層もしくは多層に蒸着する。被測定物を透過した漏れ光を低減するため、音響雑音の発生量を低減する効果を奏する。 A dielectric mirror 51 that reflects the modulated laser light L is further provided on the surface of the sound wave reflection plate 303 on the light irradiation means 301 side. A dielectric mirror 51 that reflects light in the 1.38 μm band and the 1.61 μm band is deposited on the sound wave reflection plate 303. On the dielectric mirror 51, SiO 2 and TiO 2 having different refractive indexes are deposited in a single layer or multiple layers. In order to reduce the leaked light that has passed through the object to be measured, an effect of reducing the generation amount of acoustic noise is achieved.

音響アタッチメント54は、音波強度測定手段302と被測定物900との間の音響インピーダンスを整合する。音響アタッチメント54の材質や厚みは数式(2)に基づき、被測定物と整合する材質としてシリコーンゴムとした。シリコーンゴムの厚みは1mmとした。また、音波強度測定手段302の集音中心軸が被測定物900の表面と成す角を30度とした。   The acoustic attachment 54 matches the acoustic impedance between the sound intensity measuring means 302 and the object 900 to be measured. The material and thickness of the acoustic attachment 54 are based on the mathematical formula (2), and silicone rubber is used as a material that matches the object to be measured. The thickness of the silicone rubber was 1 mm. In addition, the angle formed by the sound collection center axis of the sound intensity measuring means 302 and the surface of the object 900 is 30 degrees.

被測定物900はアルミ板52と音波反射板303としてのガラス板で挟むことで固定される。アルミ板52やガラス板と被測定物900の境界には空気が侵入しないように密着させるために、表面を平滑にするとよい。測定物固定機構13は、アルミ板52と音波反射板303との距離を調節するモータを内蔵する。測定物固定機構13は、適切な圧力を制御しつつ被測定物900を繰返し挟むことができる。測定物固定機構13は支柱12によって台11に固定される。   The object to be measured 900 is fixed by being sandwiched between the aluminum plate 52 and the glass plate as the sound wave reflection plate 303. The surface may be smoothed so that the air does not enter the boundary between the aluminum plate 52 or the glass plate and the object 900 to be measured. The measured object fixing mechanism 13 includes a motor that adjusts the distance between the aluminum plate 52 and the sound wave reflecting plate 303. The measured object fixing mechanism 13 can repeatedly pinch the measured object 900 while controlling an appropriate pressure. The measured object fixing mechanism 13 is fixed to the table 11 by the support 12.

図6は、従来の成分濃度測定装置で人体の血液中のグルコース濃度を測定した結果である。図7は、図5の成分濃度測定装置2で人体の血液中のグルコース濃度を測定した結果である。光音響信号は、パワーや吸光度に対して線形であるため、パワーと吸収媒質が一定の場合、波長λの音響信号および波長λとλを差分した音響信号(図中の破線)は周波数領域で或る一定の比を保つ。図6のように、従来の成分濃度測定装置で測定した場合、不特定の音響雑音が発生し、波長λの音響信号および波長λとλを差分した音響信号は一定の比例関係になかった。一方図7のように、成分濃度測定装置2で測定した場合、波長λの音響信号および波長λとλを差分した音響信号を30倍を比較すると周波数領域にわたって一致し、音響雑音は混入していなかった。以上の測定結果のように、成分濃度測定装置2は、数式(2)における音響信号値s、sに不特定音響雑音が混入することなく、被測定物の成分濃度Mを算定することができた。 FIG. 6 shows the result of measuring the glucose concentration in the blood of the human body with a conventional component concentration measuring apparatus. FIG. 7 shows the result of measuring the glucose concentration in the blood of the human body with the component concentration measuring apparatus 2 of FIG. Photoacoustic signal are the linear to power and absorbance, when power and absorbing medium is constant, the wavelength lambda 1 of the acoustic signal and the wavelength lambda 1 and lambda 2 acoustic signal obtained by subtracting the (broken line in the figure) Maintain a certain ratio in the frequency domain. As shown in FIG. 6, when measured by conventional constituent concentration measuring apparatus, unspecified acoustic noise is generated, the acoustic signal and the wavelength lambda 1 and the acoustic signal obtained by subtracting the lambda 2 wavelength lambda 1 is a constant proportional relationship There wasn't. On the other hand, as shown in Figure 7, when measured at constituent concentration measuring apparatus 2, consistent across the frequency domain when the acoustic signal and the wavelength lambda 1 and lambda 2 wavelength lambda 1 compares the 30-fold acoustic signals difference, acoustic noise It was not mixed. As shown in the above measurement results, the component concentration measuring apparatus 2 calculates the component concentration M of the object to be measured without mixing unspecified acoustic noise in the acoustic signal values s 1 and s 2 in the formula (2). I was able to.

本発明の成分濃度測定装置は、非侵襲で人間の血液成分を高精度に測定することができる。さらに、本発明の成分濃度測定装置は、液体中の成分濃度を測定することができるため、例えば果実の糖度測定にも適用することができる。   The component concentration measuring apparatus of the present invention can measure a human blood component with high accuracy in a non-invasive manner. Furthermore, since the component concentration measuring apparatus of this invention can measure the component density | concentration in a liquid, it can be applied also to the sugar content measurement of a fruit, for example.

従来の成分濃度検出装置の概略図である。It is the schematic of the conventional component concentration detection apparatus. 従来の成分濃度検出装置の概略図である。It is the schematic of the conventional component concentration detection apparatus. 本発明に係る成分濃度検出装置の概略図である。It is the schematic of the component concentration detection apparatus which concerns on this invention. 本発明に係る成分濃度検出装置の概略図である。It is the schematic of the component concentration detection apparatus which concerns on this invention. 本発明に係る成分濃度検出装置の概略図である。It is the schematic of the component concentration detection apparatus which concerns on this invention. 成分濃度検出装置で人体の血液中のグルコース濃度を測定した結果である。It is the result of having measured the glucose concentration in the blood of a human body with the component concentration detection apparatus. 本発明に係る成分濃度検出装置で人体の血液中のグルコース濃度を測定した結果である。It is the result of having measured the glucose concentration in the blood of a human body with the component concentration detection apparatus which concerns on this invention.

符号の説明Explanation of symbols

1、2 成分濃度検出装置
101 生体被検部
102 駆動電源
103 パルス光源
104 超音波検出器
105 波形観測器
201 第一の光源
202 第二の光源
203、204 駆動電源
211 合波器
212 音響センサ
213 チョッパ板
214 モータ
215 周波数解析器
11 台
12 支柱
13 測定物固定機構
301 光照射手段
31−1 第1の光源
31−2 第2の光源
32−1、32−2 駆動回路
33 遅延調整器
34−1、34−2、36 光ファイバ
35 光合波器
37 光出射部
302 音波強度測定手段
41 音波検出部
42 前置増幅器
43 位相検波増幅器
303 音波反射板
309 発振器
315 光音響信号出力端子
409 光変調信号入力端子
434 支柱
435 光吸収体
51 誘電体ミラー
52 アルミ板
53 光アタッチメント
54 音響アタッチメント
900 被測定物
L 変調レーザ光
A 光音響信号
T 漏れ光
DESCRIPTION OF SYMBOLS 1, 2 Component density | concentration detection apparatus 101 Living body test part 102 Drive power supply 103 Pulse light source 104 Ultrasonic detector 105 Waveform observer 201 1st light source 202 2nd light source 203,204 Drive power supply 211 Multiplexer 212 Acoustic sensor 213 Chopper plate 214 Motor 215 Frequency analyzer 11 Stand 12 Support 13 Measurement object fixing mechanism 301 Light irradiation means 31-1 First light source 31-2 Second light source 32-1, 32-2 Drive circuit 33 Delay adjuster 34- 1, 34-2, 36 Optical fiber 35 Optical multiplexer 37 Light emitting unit 302 Sound wave intensity measuring means 41 Sound wave detecting unit 42 Preamplifier 43 Phase detection amplifier 303 Sound wave reflector 309 Oscillator 315 Photoacoustic signal output terminal 409 Optical modulation signal Input terminal 434 Support column 435 Light absorber 51 Dielectric mirror 52 Aluminum plate 53 Optical attachment 54 Acoustic attachment Chimento 900 DUT L modulated laser beam A photoacoustic signal T leakage light

Claims (7)

レーザ光を所定周波数の変調信号で電気的に強度変調した変調レーザ光を被測定物に向けて照射する光照射手段と、
前記変調レーザ光の光軸方向にあり、前記被測定物を透過した前記変調レーザ光を透過させ、前記変調レーザ光によって前記被測定物に発生する光音響信号を反射させる音波反射板と、
前記音波反射板の前記光照射手段側にあり、前記変調レーザ光によって前記被測定物に発生する光音響信号及び前記音波反射板で反射された光音響信号を前記被測定物から検出する音波強度測定手段と、
を備える成分濃度測定装置。
A light irradiating means for irradiating the object to be measured with modulated laser light obtained by electrically modulating the intensity of the laser light with a modulation signal of a predetermined frequency;
A sound wave reflector that is in the optical axis direction of the modulated laser light, transmits the modulated laser light transmitted through the object to be measured, and reflects a photoacoustic signal generated on the object to be measured by the modulated laser light;
The sound wave intensity that is on the light irradiation means side of the sound wave reflector and detects the photoacoustic signal generated on the object to be measured by the modulated laser light and the photoacoustic signal reflected on the sound wave reflector from the object to be measured. Measuring means;
A component concentration measuring device.
前記光照射手段は、異なる2波長のレーザ光をそれぞれ同一周波数で逆位相の変調信号で強度変調することを特徴とする請求項1に記載の成分濃度測定装置。   2. The component concentration measuring apparatus according to claim 1, wherein the light irradiating means modulates the intensity of two different wavelengths of laser light with modulated signals having the same frequency and opposite phases. 前記光照射手段からの前記変調レーザ光の光軸と前記音波強度測定手段が光音響信号を検出する方向の中心である集音中心軸との交点は、前記音波反射板の前記光照射手段側の表面にあり、前記変調レーザ光の光軸が前記音波反射板の前記光照射手段側の表面と成す角度は、前記音波強度測定手段の集音中心軸が前記音波反射板の前記光照射手段側の表面と成す角度と等しいことを特徴とする請求項1又は2に記載の成分濃度測定装置。   The intersection of the optical axis of the modulated laser light from the light irradiating means and the sound collecting central axis that is the center of the direction in which the sound intensity measuring means detects the photoacoustic signal is the light irradiating means side of the sound wave reflector. The angle formed by the optical axis of the modulated laser beam and the surface of the sound wave reflecting plate on the light irradiating means side is such that the sound collecting central axis of the sound wave intensity measuring means is the light irradiating means of the sound wave reflecting plate. The component concentration measuring apparatus according to claim 1, wherein the component concentration measuring apparatus is equal to an angle formed with a side surface. 前記音波反射板の前記光照射手段側の表面に前記変調レーザ光を反射する誘電体ミラーをさらに備えることを特徴とする請求項1から3に記載のいずれかの成分濃度測定装置。   4. The component concentration measuring apparatus according to claim 1, further comprising a dielectric mirror that reflects the modulated laser light on a surface of the sound wave reflecting plate on the light irradiation unit side. 5. 前記音波反射板の前記光照射手段側と反対側に前記音波反射板を透過した前記変調レーザ光を吸収する光吸収体をさらに備えることを特徴とする請求項1から4に記載のいずれかの成分濃度測定装置。   5. The light absorber according to claim 1, further comprising a light absorber that absorbs the modulated laser light transmitted through the sound wave reflection plate on a side opposite to the light irradiation unit side of the sound wave reflection plate. Component concentration measuring device. 前記光吸収体と前記音波反射板とは、前記音波反射板を透過した前記変調レーザ光を透過させ、前記光吸収体で発生する光音響信号を反射するスペーサを介して接続されていることを特徴とする請求項5に記載の成分濃度測定装置。   The light absorber and the sound wave reflection plate are connected via a spacer that transmits the modulated laser light transmitted through the sound wave reflection plate and reflects a photoacoustic signal generated by the light absorber. The component concentration measuring apparatus according to claim 5, wherein: 前記光吸収体と前記音波反射板とは、前記光吸収体と前記音波反射板との間に気体が入る間隙を形成する支柱で接続されることを特徴とする請求項5に記載の成分濃度測定装置。   6. The component concentration according to claim 5, wherein the light absorber and the sound wave reflecting plate are connected by a support column that forms a gap into which a gas enters between the light absorber and the sound wave reflecting plate. measuring device.
JP2007083897A 2007-03-28 2007-03-28 Component concentration measuring device Expired - Fee Related JP4773390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083897A JP4773390B2 (en) 2007-03-28 2007-03-28 Component concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083897A JP4773390B2 (en) 2007-03-28 2007-03-28 Component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2008237655A JP2008237655A (en) 2008-10-09
JP4773390B2 true JP4773390B2 (en) 2011-09-14

Family

ID=39909692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083897A Expired - Fee Related JP4773390B2 (en) 2007-03-28 2007-03-28 Component concentration measuring device

Country Status (1)

Country Link
JP (1) JP4773390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025345B2 (en) * 2012-03-02 2016-11-16 キヤノン株式会社 Subject information acquisition device
CN110637229B (en) * 2017-03-15 2022-11-11 福瑞托-雷北美有限公司 Apparatus and method for quantitatively measuring texture of liquid

Also Published As

Publication number Publication date
JP2008237655A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
EP2299897B1 (en) Photoacoustic measurement apparatus
EP1346684B1 (en) Apparatus and method for non-invasively measuring bio-fluid concentrations by using photoacoustic spectroscopy
RU2681260C2 (en) Non-invasive analysis of material
JP4104456B2 (en) Photoacoustic investigation and imaging system
JP4901432B2 (en) Component concentration measuring device
JP4441479B2 (en) Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method
JP4444227B2 (en) Component concentration measuring apparatus and component concentration measuring method
JP4412666B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
WO2011152747A1 (en) Photoacoustic material analysis
JP2009213563A (en) Component concentration measuring apparatus
JP4531632B2 (en) Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method
JP4773390B2 (en) Component concentration measuring device
JP2021167808A (en) Device for detecting analyte via photoacoustic detection
JP4914330B2 (en) Component concentration measuring device
JP4477568B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
WO2019211993A1 (en) Component concentration measuring device
JP6871197B2 (en) Component concentration measuring device
JP4902508B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP4412667B2 (en) Component concentration measuring device
Laufer et al. Pulsed near-infrared photoacoustic spectroscopy of blood
JP4945415B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP2008125543A (en) Constituent concentration measuring apparatus
Myllylä et al. Pulsed photoacoustic techniques and glucose determination in human blood and tissue
JP5345439B2 (en) Component concentration analyzer and component concentration analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4773390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees