JP2009213563A - Component concentration measuring apparatus - Google Patents

Component concentration measuring apparatus Download PDF

Info

Publication number
JP2009213563A
JP2009213563A JP2008058250A JP2008058250A JP2009213563A JP 2009213563 A JP2009213563 A JP 2009213563A JP 2008058250 A JP2008058250 A JP 2008058250A JP 2008058250 A JP2008058250 A JP 2008058250A JP 2009213563 A JP2009213563 A JP 2009213563A
Authority
JP
Japan
Prior art keywords
wavelength
light
measurement
component
component concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008058250A
Other languages
Japanese (ja)
Other versions
JP4914388B2 (en
Inventor
Takuro Tajima
卓郎 田島
Junichi Shimada
純一 嶋田
Yuichi Okabe
勇一 岡部
Kazunori Naganuma
和則 長沼
Katsuyoshi Hayashi
勝義 林
Tsuneyuki Haga
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008058250A priority Critical patent/JP4914388B2/en
Publication of JP2009213563A publication Critical patent/JP2009213563A/en
Application granted granted Critical
Publication of JP4914388B2 publication Critical patent/JP4914388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the identification of component concentration of a target component when a background component and an article to be measured are in the state of a mixed composition in a component concentration measuring apparatus using a photoacoustic method. <P>SOLUTION: The component concentration measuring apparatus 91 using the photoacoustic method includes a wavelength sweeping light source 11 for sweeping a wavelength of a light emitted to the article to be measured 101. Specifically, the component concentration measuring apparatus is equipped with a reference light source 10 and a wavelength varying light source 11 as two light generating parts for measurement, the reference light source 10, the wavelength varying light source 11, driving circuits 12a, 12b, a delay adjustment device 13, and an oscillator 14 as a light modulating part, a multiplexer 15, a light emitting part 16, a sound wave detecting part 17, a preamplifier 18, a phase detection amplifier 19, and a photoacoustic signal output terminal 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光音響法を用いた対象成分の成分濃度測定装置に関し、特に、被測定物を人間又は動物とした非侵襲な成分濃度測定装置に関する。   The present invention relates to a component concentration measuring device for a target component using a photoacoustic method, and more particularly to a non-invasive component concentration measuring device in which an object to be measured is a human or an animal.

高齢化が進み、成人病に対する対応が大きな課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な成分濃度測定装置が注目されている。   With the aging of society, dealing with adult diseases is becoming a major issue. Since blood collection is necessary for examinations such as blood sugar levels, it is a heavy burden on the patient. Therefore, a non-invasive component concentration measurement apparatus that does not collect blood has attracted attention.

現在までに開発された非侵襲な成分濃度測定装置として、光音響法が注目されている。光音響法は、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、グルコース分子に吸収させ、グルコース分子からの熱の放射によって局所的に熱膨張を起こし、熱膨張によって生体内から発生した音波を観測する。しかし、グルコースと電磁波の相互作用は小さく、また生体に安全に照射しうる電磁波の強度には制限があり、生体の血糖値測定においては、十分な効果をあげるにいたっていない。   The photoacoustic method has attracted attention as a noninvasive component concentration measuring apparatus developed so far. The photoacoustic method irradiates the skin with electromagnetic waves, absorbs the blood component to be measured, for example, glucose molecules, causes local thermal expansion by the radiation of heat from the glucose molecules, and from the living body by thermal expansion. Observe the generated sound wave. However, the interaction between glucose and electromagnetic waves is small, and there is a limit to the intensity of electromagnetic waves that can be safely irradiated to a living body.

図6及び図7は、従来の光音響法による成分濃度測定装置を示す構成例である。被測定物101における血液中の血糖すなわちグルコースを対象成分としている。
図6に示す第1の従来例は、光パルスを電磁波として用いている(例えば、非特許文献1参照。)。図6において、駆動電源102はパルス上の励起電流をパルス光源103に供給し、パルス光源103はサブマイクロ秒の持続時間を有する光パルスを発生する。発生した光パルスは、被測定物101に照射される。光パルスは被測定物101の内部にパルス状の光音響信号と呼ばれる音波を発生させ、発生した音波は超音波検出器104により検出され、さらに音圧に比例した電気信号に変換される。
6 and 7 are configuration examples showing a conventional component concentration measuring apparatus using a photoacoustic method. Blood glucose in the blood to be measured 101, that is, glucose is used as a target component.
The first conventional example shown in FIG. 6 uses light pulses as electromagnetic waves (see, for example, Non-Patent Document 1). In FIG. 6, the driving power supply 102 supplies the excitation current on the pulse to the pulse light source 103, and the pulse light source 103 generates an optical pulse having a sub-microsecond duration. The generated light pulse is applied to the object to be measured 101. The light pulse generates a sound wave called a pulsed photoacoustic signal inside the object to be measured 101, and the generated sound wave is detected by the ultrasonic detector 104 and further converted into an electric signal proportional to the sound pressure.

変換された電気信号の波形は波形観測器105により観測される。この波形観測器105は上記励起電流に同期した信号によりトリガーされ、変換された電気信号は波形観測器105の管面上の一定位置に表示される。変換された電気信号の振幅を解析して、被測定物101に存在する血液におけるグルコースの量を測定する。
図6に示す例の場合はサブマイクロ秒のパルス幅の光パルスを最大1kHzの繰り返しで発生し、前記電気信号を測定しているが、十分な精度が得られていない。
The waveform of the converted electric signal is observed by the waveform observer 105. The waveform observer 105 is triggered by a signal synchronized with the excitation current, and the converted electric signal is displayed at a certain position on the tube surface of the waveform observer 105. The amplitude of the converted electric signal is analyzed, and the amount of glucose in the blood existing in the device under test 101 is measured.
In the case of the example shown in FIG. 6, an optical pulse having a sub-microsecond pulse width is repeatedly generated at a maximum of 1 kHz and the electric signal is measured, but sufficient accuracy is not obtained.

そこで、より精度を高める目的で、第2の従来例が開示されている(例えば、特許文献2参照。)。図7に示す第2の従来例は、連続的に強度変調した光源を用いている。本例も血糖を主な測定対象として、異なる波長の複数の光源を用いて、高精度化を試みている。説明の煩雑さを避けるため、図7により光源の数が2の場合の動作を説明する。図7において、異なる波長の光源、即ち第1の光源201及び第2の光源202はそれぞれ駆動電源203及び駆動電源204により駆動され、連続光を出力する。   Therefore, a second conventional example has been disclosed for the purpose of improving accuracy (see, for example, Patent Document 2). The second conventional example shown in FIG. 7 uses a light source that is continuously intensity modulated. In this example as well, blood sugar is the main measurement target, and high accuracy is attempted using a plurality of light sources having different wavelengths. In order to avoid complicated explanation, the operation when the number of light sources is 2 will be described with reference to FIG. In FIG. 7, light sources having different wavelengths, that is, a first light source 201 and a second light source 202 are driven by a driving power source 203 and a driving power source 204, respectively, and output continuous light.

第1の光源201及び第2の光源202が出力する光は、モータ214により駆動され一定回転数で回転するチョッパ板213により断続される。ここでチョッパ板213は不透明な材質により形成され、モータ214の軸を中心とする第1の光源201及び第2の光源202の光が通過する円周上に、互いに素な個数の開口部が形成されている。   The light output from the first light source 201 and the second light source 202 is intermittently driven by a chopper plate 213 that is driven by a motor 214 and rotates at a constant rotational speed. Here, the chopper plate 213 is formed of an opaque material, and a relatively small number of openings are formed on the circumference through which the light of the first light source 201 and the second light source 202 passes with the axis of the motor 214 as the center. Is formed.

上記構成により、第1の光源201及び第2の光源202の各々が出力する光は互いに素な変調周波数f1及び変調周波数f2で強度変調された後、合波器211により合波され、1の光束として被測定物101に照射される。   With the above-described configuration, the light output from each of the first light source 201 and the second light source 202 is intensity-modulated with the prime modulation frequency f1 and the modulation frequency f2, and then multiplexed by the multiplexer 211. The object to be measured 101 is irradiated as a light beam.

被測定物101の内部には、第1の光源201の光により変調周波数f1の光音響信号が発生し、第2の光源202の光により変調周波数f2の光音響信号が発生し、これらの光音響信号は、音響センサ212により検出され、音圧に比例した電気信号に変換され、その周波数スペクトルが、周波数解析器215により観測される。本例においては、複数の光源の波長はすべてグルコースの吸収波長に設定されており、各波長に対応する光音響信号の強度は、血液中に含まれるグルコースの量に対応した電気信号として測定される。   Inside the DUT 101, a photoacoustic signal having a modulation frequency f1 is generated by the light from the first light source 201, and a photoacoustic signal having a modulation frequency f2 is generated by the light from the second light source 202. The acoustic signal is detected by the acoustic sensor 212 and converted into an electrical signal proportional to the sound pressure, and the frequency spectrum is observed by the frequency analyzer 215. In this example, the wavelengths of the plurality of light sources are all set to the glucose absorption wavelength, and the intensity of the photoacoustic signal corresponding to each wavelength is measured as an electrical signal corresponding to the amount of glucose contained in the blood. The

ここで、予め光音響信号の測定値の強度と別途採血した血液によりグルコースの濃度を測定した値との関係を記憶しておいて、前記光音響信号の測定値からグルコースの量を測定している。
特開平10−189号公報 オウル大学(University of Oulu、Finland)学位論文「Pulse photoacoustic techniques and glucose determination in human blood and tissue」(IBS 951−42−6690−0、http://herkules.oulu.fi/isbn9514266900/、2002年)
Here, the relationship between the intensity of the measured value of the photoacoustic signal and the value obtained by measuring the glucose concentration by separately collected blood is stored, and the amount of glucose is measured from the measured value of the photoacoustic signal. Yes.
JP-A-10-189 University of Oulu (University of Oulu, Finland) thesis “Pulse photoacoustic techniques and glucodesistion in human blood and tissue” (IBS 951-42-6690-0, 2001/95.

実用に供する際には、背景成分及び被測定物が混合組成である場合がほとんどである。背景成分及び被測定物が混合組成である場合、従来の光音響法では、対象成分が著しく当該単一波長に対して吸収を呈する場合を除き、混合組成から対象成分のみを定量するのは困難であった。   In practical use, the background component and the object to be measured are mostly mixed compositions. When the background component and the object to be measured have a mixed composition, it is difficult to quantify only the target component from the mixed composition with the conventional photoacoustic method, unless the target component significantly absorbs the single wavelength. Met.

そこで、本発明は、光音響法を用いた成分濃度測定装置において、背景成分及び被測定物が混合組成の状態においても、対象成分の成分濃度を同定することを可能にすることを目的とする。   Therefore, an object of the present invention is to make it possible to identify the component concentration of a target component in a component concentration measurement device using a photoacoustic method even when the background component and the object to be measured are in a mixed composition state. .

上記目的を達成するため、本発明に係る成分濃度測定装置は、光音響法を用いた成分濃度測定装置において、被測定物に照射する光の波長を掃引することを特徴とする。   In order to achieve the above object, a component concentration measuring apparatus according to the present invention is characterized in that, in a component concentration measuring apparatus using a photoacoustic method, the wavelength of light irradiated on a measurement object is swept.

具体的には、本発明に係る成分濃度測定装置は、背景成分及び対象成分が混合されてなる被測定物における前記背景成分の呈する吸収が相等しい異なる波長の光を発生して出力する2つの測定用光発生部と、前記2つの測定用光発生部からの光を予め定められた一定周波数で互いに逆相に強度変調して出力する光変調部と、前記2つの測定用光発生部からの強度変調光を合成した測定用合成光を、前記溶液の存在する被測定物に向けて出射する光出射部と、前記光出射部の出射する測定用合成光によって前記被測定物から発生する測定用音波を検出する音波検出部と、前記2つの測定用光発生部のうちの一方からの光を一定波長範囲で波長掃引する波長掃引部と、を備えることを特徴とする。   Specifically, the component concentration measuring apparatus according to the present invention generates and outputs two light beams having different wavelengths with the same absorption of the background component in the object to be measured in which the background component and the target component are mixed. From the measurement light generation unit, the light modulation unit for modulating the intensity of light from the two measurement light generation units at a predetermined frequency in opposite phases to each other, and the two measurement light generation units The measurement synthesized light obtained by synthesizing the intensity-modulated light is generated from the measured object by the light emitting part that emits the measured light toward the measured object in which the solution exists and the measured synthetic light emitted by the light emitting part. A sound wave detection unit that detects a measurement sound wave, and a wavelength sweep unit that sweeps light from one of the two measurement light generation units in a certain wavelength range.

2つの測定用光発生部、光変調部、光出射部及び音波検出部を備える光音響法を用いた成分濃度測定装置において、測定用光発生部の一方からの波長可変光を対象成分の成分濃度の同定に用い、測定用光発生部の他方からの参照光を背景成分から発生する光音響信号との差分除去のために用いる。波長可変光の波長を対象成分の特徴的な吸収ピークが存在する一定波長範囲で掃引すれば、測定用音波から得られる光音響信号の振幅の推移には対象成分の特徴的な吸収ピークの形状が反映されるので、対象成分以外の吸収量が変化した場合であっても、多変量解析を行うことで対象成分による吸収量を特定することができる。これにより、光音響法を用いた成分濃度測定装置において、背景成分及び被測定物が混合組成の状態においても、対象成分の成分濃度を同定することを可能にすることができる。   In a component concentration measurement apparatus using a photoacoustic method including two measurement light generation units, a light modulation unit, a light emission unit, and a sound wave detection unit, the wavelength variable light from one of the measurement light generation units is a component of the target component It is used for density identification, and the reference light from the other of the measurement light generator is used to remove a difference from the photoacoustic signal generated from the background component. If the wavelength of the tunable light is swept within a certain wavelength range where the characteristic absorption peak of the target component exists, the transition of the amplitude of the photoacoustic signal obtained from the measurement sound wave has a shape of the characteristic absorption peak of the target component. Therefore, even when the amount of absorption other than the target component has changed, the amount of absorption by the target component can be specified by performing multivariate analysis. Thereby, in the component concentration measuring apparatus using the photoacoustic method, it is possible to identify the component concentration of the target component even when the background component and the measured object are in a mixed composition state.

本発明に係る成分濃度測定装置では、前記波長掃引部の掃引する波長範囲は、前記対象成分の呈する吸収が極大となる波長を含むことが好ましい。
波長可変光の波長を対象成分の特徴的な吸収ピークが存在する一定波長範囲で掃引するので、背景成分及び被測定物が混合組成の状態においても、対象成分の成分濃度を同定することを可能にすることができる。
In the component concentration measuring apparatus according to the present invention, it is preferable that the wavelength range swept by the wavelength sweeping unit includes a wavelength at which the absorption exhibited by the target component is maximized.
Since the wavelength of tunable light is swept within a certain wavelength range where the characteristic component has an absorption peak, the component concentration of the target component can be identified even when the background component and the measured object are in a mixed composition state. Can be.

本発明に係る成分濃度測定装置では、前記被測定物の温度を検出する温度検出部をさらに備えることが好ましい。
被測定物の温度から、背景成分や対象成分の吸光度の温度シフト量を見積もることができる。参照光の波長を液体から発生する光音響信号との差分除去を正確に行うことができるので、対象成分による吸収量を正確に特定することができる。
In the component concentration measuring apparatus according to the present invention, it is preferable that the apparatus further includes a temperature detecting unit that detects the temperature of the object to be measured.
The temperature shift amount of the absorbance of the background component or the target component can be estimated from the temperature of the object to be measured. Since the difference between the wavelength of the reference light and the photoacoustic signal generated from the liquid can be accurately removed, the amount of absorption by the target component can be accurately specified.

本発明に係る成分濃度測定装置では、前記音波検出部の検出する前記測定用音波を、前記光変調部が強度変調する周期と同期するように検波する第1位相同期検波部をさらに備えることが好ましい。
測定用音波の検波を測定用合成光のパルス周期と同期させることで、測定用音波以外の雑音を排除することができる。
The component concentration measurement apparatus according to the present invention may further include a first phase-locked detection unit that detects the measurement sound wave detected by the sound wave detection unit so as to be synchronized with a period of intensity modulation by the light modulation unit. preferable.
By synchronizing the detection of the measurement sound wave with the pulse period of the measurement combined light, noise other than the measurement sound wave can be eliminated.

本発明に係る成分濃度測定装置では、前記音波検出部の検出する前記測定用音波を、前記波長掃引部が波長を掃引する周期と同期するように検波する第2位相同期検波部をさらに備えることが好ましい。
測定用音波の検波を波長掃引の周期と同期させることで、波長掃引範囲においてスペクトル変化が生じる成分を抽出することができ、
The component concentration measurement apparatus according to the present invention further includes a second phase-synchronous detection unit that detects the measurement sound wave detected by the sound wave detection unit so as to be synchronized with a period in which the wavelength sweep unit sweeps the wavelength. Is preferred.
By synchronizing the detection of the sound wave for measurement with the wavelength sweep period, it is possible to extract the component that causes the spectrum change in the wavelength sweep range,

本発明に係る成分濃度測定装置では、前記波長掃引部の掃引する前記一定波長範囲は、前記測定用光発生部の他方からの光の波長を含むことが好ましい。
温度などの環境変化によって生じる背景成分の吸収の変化に対して、波長可変光と参照光の2波長が近接しているために両者の吸収が同様に変化する。このような状況であっても、参照光の波長が波長掃引範囲内の波長にあることで、被測定物における背景成分の吸収から発生する光音響信号を効率的に除去することができる。これにより、波長掃引範囲においてスペクトル変化が生じる成分のみを抽出することができ、対象成分の測定精度を高めることができる。
In the component concentration measuring apparatus according to the present invention, it is preferable that the constant wavelength range swept by the wavelength sweeping unit includes a wavelength of light from the other of the measurement light generating unit.
Since the two wavelengths of the wavelength tunable light and the reference light are close to the change in the absorption of the background component caused by the environmental change such as temperature, the absorption of both changes similarly. Even in such a situation, when the wavelength of the reference light is within the wavelength sweep range, the photoacoustic signal generated from the absorption of the background component in the object to be measured can be efficiently removed. As a result, it is possible to extract only components that cause a spectrum change in the wavelength sweep range, and to increase the measurement accuracy of the target component.

本発明に係る成分濃度測定装置では、前記測定用光発生部の他方からの光の波長は、前記測定用光発生部の他方からの光の波長は、前記背景成分の呈する吸収が相等しい異なる波長のうち、温度に対する吸光度変化係数が、前記測定用光発生部の一方からの光の波長と最も近いことが好ましい。背景成分から発生する光音響信号との差分除去において温度の影響を受けにくくすることができる。   In the component concentration measuring apparatus according to the present invention, the wavelength of the light from the other of the measurement light generation unit is different from the wavelength of the light from the other of the measurement light generation unit in the absorption exhibited by the background component. Among the wavelengths, it is preferable that an absorbance change coefficient with respect to temperature is closest to the wavelength of light from one of the measurement light generation units. In the difference removal from the photoacoustic signal generated from the background component, it can be made less susceptible to the influence of temperature.

本発明によれば、光音響法を用いた成分濃度測定装置において、背景成分及び被測定物が混合組成の状態においても、対象成分の成分濃度を同定することを可能にすることができる。   According to the present invention, in the component concentration measuring apparatus using the photoacoustic method, it is possible to identify the component concentration of the target component even when the background component and the object to be measured are in the mixed composition state.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。
図1は、本実施形態に係る成分濃度測定装置の第1例を示す概略構成図である。図1に示す成分濃度測定装置91は、被測定物101で発生する光音響信号を検出する。被測定物101には、溶液が存在する。被測定物101は、例えば生体、測定用試料又は果実である。溶液は、背景成分及び対象成分が混合されてなる。対象成分は、光を吸収して熱膨張する物質である。被測定物101が生体であれば、溶液は、例えば血液リンパ液及び涙である。溶液が血液であれば、対象成分は、例えば血液におけるコレステロール又はグルコースである。
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.
FIG. 1 is a schematic configuration diagram illustrating a first example of a component concentration measuring apparatus according to the present embodiment. A component concentration measuring device 91 shown in FIG. 1 detects a photoacoustic signal generated in the device under test 101. A solution exists in the DUT 101. The DUT 101 is, for example, a living body, a measurement sample, or a fruit. The solution is a mixture of background components and target components. The target component is a substance that absorbs light and thermally expands. If the DUT 101 is a living body, the solution is, for example, blood lymph fluid and tears. If the solution is blood, the target component is, for example, cholesterol or glucose in blood.

本実施形態に係る成分濃度測定装置91は、被測定物101に対して非侵襲で測定することができるが、生体から血液を採取して対象成分を測定することにも利用可能である。また、被測定物101を果実、対象成分を蔗糖や果糖とすれば、成分濃度測定装置91は、果実糖度計として機能する。このように本実施形態の精神を逸脱しない範囲で、本実施形態に係る測定装置を様々の対象に適用できる。   The component concentration measuring device 91 according to the present embodiment can measure non-invasively with respect to the measurement object 101, but can also be used to collect blood from a living body and measure a target component. Moreover, if the to-be-measured object 101 is a fruit and the target component is sucrose or fructose, the component concentration measuring device 91 functions as a fruit sugar content meter. Thus, the measurement apparatus according to the present embodiment can be applied to various objects without departing from the spirit of the present embodiment.

本実施形態に係る成分濃度測定装置91は、被測定物101で発生する光音響信号を検出するための構成を備える。例えば、成分濃度測定装置91は、2つの測定用光発生部としての参照光源10及び波長可変光源11と、光変調部としての参照光源10、波長可変光源11、駆動回路12a、12b、遅延調整器13及び発振器14と、合波器15と、光出射部16と、音波検出部17と、前置増幅器18と、位相検波増幅器19と、光音響信号出力端子20とを備える。さらに、成分濃度測定装置91は、温度伝達窓21と、温度検出部22と、温度信号出力端子23を備える。   The component concentration measuring apparatus 91 according to this embodiment includes a configuration for detecting a photoacoustic signal generated by the device under test 101. For example, the component concentration measurement apparatus 91 includes two reference light sources 10 and a wavelength variable light source 11 as measurement light generation units, a reference light source 10 as a light modulation unit, a wavelength variable light source 11, drive circuits 12a and 12b, and delay adjustment. And an oscillator 14, a multiplexer 15, a light emitting unit 16, a sound wave detecting unit 17, a preamplifier 18, a phase detection amplifier 19, and a photoacoustic signal output terminal 20. Further, the component concentration measuring device 91 includes a temperature transmission window 21, a temperature detection unit 22, and a temperature signal output terminal 23.

参照光源10、波長可変光源11、駆動回路12a、12b、遅延調整器13及び発振器14は、光変調部として、参照光源10及び波長可変光源11からの光を予め定められた一定周波数で互いに逆相に強度変調して出力する。具体的には、参照光源10及び波長可変光源11に電流を供給する駆動回路12a、12bが接続されている。駆動回路12a、12bには電圧を供給する発振器14が接続されている。発振器14は任意の周波数のパルス列を発生する機能をもつ。また、遅延調整器13は参照光源10と波長可変光源11を逆相で駆動するために周期のおよそ半分の遅延に調整する。参照光源10は、駆動回路12aの駆動によって、一定波長λの参照光を発生して出力する。波長可変光源11は、波長掃引部(不図示)を備え、駆動回路12bの駆動によって波長λを含む一定波長範囲Δλで波長掃引した波長可変光を出力する。波長掃引の始点は、短波長側と長波長側のどちらでもよい。 The reference light source 10, the wavelength tunable light source 11, the drive circuits 12a and 12b, the delay adjuster 13 and the oscillator 14 function as light modulators, which reverse the light from the reference light source 10 and the wavelength tunable light source 11 at a predetermined constant frequency. Output the intensity modulated to the phase. Specifically, drive circuits 12 a and 12 b that supply current to the reference light source 10 and the wavelength tunable light source 11 are connected. An oscillator 14 for supplying a voltage is connected to the drive circuits 12a and 12b. The oscillator 14 has a function of generating a pulse train having an arbitrary frequency. Further, the delay adjuster 13 adjusts the delay to approximately half of the cycle in order to drive the reference light source 10 and the variable wavelength light source 11 in opposite phases. The reference light source 10 generates and outputs reference light having a constant wavelength λ 2 by driving the drive circuit 12a. Variable wavelength light source 11 is provided with the wavelength sweeping unit (not shown), and outputs the wavelength-tunable light wavelength sweep at a constant wavelength range Δλ that includes a wavelength lambda 1 by the driving of the drive circuit 12b. The starting point of the wavelength sweep may be on either the short wavelength side or the long wavelength side.

波長可変光源11は色素レーザ、チタンサファイアレーザ、Erドープファイバレーザや半導体レーザなどのレーザ光源又は広帯域白色光源である。波長掃引部(不図示)は、例えば波長掃引回路又は波長可変フィルタである。半導体レーザであれば、波長掃引回路を用いて直接変調を行うことで、波長可変光を生成することができる。広帯域白色光源であれば、発生した光を波長可変フィルタに透過させることで波長可変光を生成することができる。   The wavelength tunable light source 11 is a laser light source such as a dye laser, a titanium sapphire laser, an Er-doped fiber laser, or a semiconductor laser, or a broadband white light source. The wavelength sweep unit (not shown) is, for example, a wavelength sweep circuit or a wavelength tunable filter. In the case of a semiconductor laser, variable wavelength light can be generated by performing direct modulation using a wavelength sweep circuit. If it is a broadband white light source, the wavelength tunable light can be generated by transmitting the generated light through the wavelength tunable filter.

参照光源10及び波長可変光源11で発生した光は、光伝達手段である光ファイバによって光合波器15の光入力端子に接続する。光合波器15の光出力端子から出力された測定用合成光は、光伝達手段である光ファイバによって被測定物101への光出射部16へ伝達される。光出射部16は、被測定物101の形状に合わせて、光ファイバの先端に直角プリズム、ファイバコリメータ、フェルールのいずれかを接着してもよい。   The light generated by the reference light source 10 and the wavelength tunable light source 11 is connected to the optical input terminal of the optical multiplexer 15 by an optical fiber that is a light transmission means. The combined light for measurement output from the light output terminal of the optical multiplexer 15 is transmitted to the light emitting part 16 to the device under test 101 by an optical fiber which is a light transmission means. The light emitting unit 16 may adhere any of a right-angle prism, a fiber collimator, and a ferrule to the tip of the optical fiber according to the shape of the device under test 101.

光出射部16は、参照光源10及び波長可変光源11からの強度変調光を合成した測定用合成光を、被測定物101に向けて出射する。光出射部16からの測定用合成光は、熱伝導窓21を通して被測定物101に到達する。音波検出部17は、光出射部16の出射する測定用合成光によって被測定物101から発生する測定用音波を検出する。測定用音波が電気信号に変換された光音響信号(s−s)は、前置増幅器18において増幅され、位相検波増幅器19によって駆動回路12a、12bの変調周波数と同一周波数成分の振幅及び位相が抽出され、音響信号出力20へ出力される。 The light emitting unit 16 emits the measurement combined light obtained by combining the intensity-modulated light from the reference light source 10 and the variable wavelength light source 11 toward the object to be measured 101. The synthetic light for measurement from the light emitting part 16 reaches the device under test 101 through the heat conduction window 21. The sound wave detection unit 17 detects the measurement sound wave generated from the measurement object 101 by the measurement combined light emitted from the light emission unit 16. The photoacoustic signal (s 1 -s 2 ) obtained by converting the measurement sound wave into an electrical signal is amplified by the preamplifier 18 and is amplified by the phase detection amplifier 19 with the amplitude of the same frequency component as the modulation frequency of the drive circuits 12a and 12b. The phase is extracted and output to the acoustic signal output 20.

さらに、成分濃度測定装置91は、参照光源10からの参照光を単独で被測定部101に照射して、参照光による光音響信号sを測定する。測定した光音響信号sは、音響信号出力20へ出力される。
成分濃度測定装置91は、光音響信号(s−s)及び光音響信号sを測定することで、被測定物における対象成分の濃度を測定することができる。
Furthermore, constituent concentration measuring device 91, the reference light from the reference light source 10 alone by irradiating the target subject 101, to measure the photoacoustic signal s 2 by the reference beam. The measured photoacoustic signal s 2 is output to the acoustic signal output 20.
The component concentration measuring device 91 can measure the concentration of the target component in the object to be measured by measuring the photoacoustic signal (s 1 -s 2 ) and the photoacoustic signal s 2 .

ここで、位相検波増幅器19は、第1位相同期検波部としての機能を備える。すなわち、位相検波増幅器19は、音波検出部17の検出する測定用音波を、駆動回路12a、12bが強度変調する位相と同期するように検波する。駆動回路12a、12bが強度変調する位相は、発振器14の出力信号から得ることができる。光音響信号は測定用合成光のパルス周期で発生するので、測定用音波を抽出することができる。   Here, the phase detection amplifier 19 has a function as a first phase-locked detection unit. That is, the phase detection amplifier 19 detects the measurement sound wave detected by the sound wave detection unit 17 so as to be synchronized with the phase whose intensity is modulated by the drive circuits 12a and 12b. The phase at which the drive circuits 12 a and 12 b modulate the intensity can be obtained from the output signal of the oscillator 14. Since the photoacoustic signal is generated in the pulse cycle of the synthetic light for measurement, the measurement sound wave can be extracted.

また、成分濃度測定装置91は、被測定物101の温度を検出する温度検出部22をさらに備えることが好ましい。例えば、被測定物101において光熱変換によって発生した熱を、温度伝達窓21を伝導して温度検出部22が検出し、温度信号出力端子23へ出力する。   In addition, the component concentration measuring device 91 preferably further includes a temperature detection unit 22 that detects the temperature of the object 101 to be measured. For example, heat generated by photothermal conversion in the DUT 101 is conducted through the temperature transmission window 21 and detected by the temperature detection unit 22 and output to the temperature signal output terminal 23.

次に、本実施形態に係る成分濃度測定装置の第2例について説明する。図2は、本実施形態に係る成分濃度測定装置の第2例を示す概略構成図である。図2に示す成分濃度測定装置92は、図1に示す位相検波増幅器19の後段に位相検波増幅器24を備える。
位相検波増幅器24は、第2位相同期検波部としての機能を備える。すなわち、位相検波増幅器24は、音波検出部17の検出する測定用音波を、波長可変光源11にて波長を掃引する位相と同期するように検波する。同一周波数成分の振幅及び位相が抽出され、光音響信号出力端子20へ出力される。
Next, a second example of the component concentration measuring apparatus according to this embodiment will be described. FIG. 2 is a schematic configuration diagram illustrating a second example of the component concentration measuring apparatus according to the present embodiment. The component concentration measuring apparatus 92 shown in FIG. 2 includes a phase detection amplifier 24 at the subsequent stage of the phase detection amplifier 19 shown in FIG.
The phase detection amplifier 24 has a function as a second phase-locked detection unit. That is, the phase detection amplifier 24 detects the measurement sound wave detected by the sound wave detection unit 17 so as to be synchronized with the phase in which the wavelength is swept by the wavelength variable light source 11. The amplitude and phase of the same frequency component are extracted and output to the photoacoustic signal output terminal 20.

次に、図3を用いて、本実施形態における参照光源10と波長可変光源11の波長設定について説明する。図3は、溶液の吸光度の一例であり、(a)グルコース水溶液の吸光度及び吸収係数、(b)は水に対するグルコースの吸光度差及び比吸光度を示す。ここでは、理解を容易にするため、背景成分及び対象成分が混合されてなる溶液が、水及びグルコースが混合されてなるグルコース水溶液である場合について説明する。   Next, wavelength setting of the reference light source 10 and the wavelength tunable light source 11 in this embodiment will be described with reference to FIG. FIG. 3 is an example of the absorbance of a solution, (a) the absorbance and absorption coefficient of an aqueous glucose solution, and (b) the absorbance difference and specific absorbance of glucose with respect to water. Here, for easy understanding, a case where the solution in which the background component and the target component are mixed is a glucose aqueous solution in which water and glucose are mixed will be described.

まず、波長掃引部の掃引する一定波長範囲Δλを、対象成分の呈する吸収が極大となる波長を含むように設定する。例えば、図3(b)に示すように、グルコース水溶液から水を差分したグルコースの吸光度差又は比吸光度は、波長1600nm近傍の波長λ1a及び波長2100nm近傍のλ1bで極大となっている。この場合、対象成分の呈する吸収が極大となる波長として、例えば、波長λ1aを選択する。 First, the constant wavelength range Δλ swept by the wavelength sweeping unit is set so as to include a wavelength at which the absorption exhibited by the target component is maximized. For example, as shown in FIG. 3B, the difference in absorbance or specific absorbance of glucose obtained by subtracting water from an aqueous glucose solution is maximized at a wavelength λ 1a in the vicinity of the wavelength 1600 nm and λ 1b in the vicinity of the wavelength 2100 nm. In this case, for example, the wavelength λ 1a is selected as the wavelength that maximizes the absorption exhibited by the target component.

次に、背景成分から発生する光音響信号との差分除去のために、図3(a)に示す水の吸収係数から、背景成分たる水の呈する吸収が波長λ1aと等しい異なる波長λ2a又は波長λ2bのいずれかを選択する。ここで、波長λ2a又は波長λ2bのうち、温度に対する吸光度変化係数が、波長λ1aと最も近い波長であることが好ましい。例えば、波長λ2a又は波長λ2bであれば、波長λ2bを選択することが好ましい。また、水の呈する吸収の傾斜の符号が波長λ1aと等しい波長があれば、その波長を選択することが好ましい。 Next, in order to eliminate the difference from the photoacoustic signal generated from the background component, from the water absorption coefficient shown in FIG. 3A, the absorption of the water as the background component is different from the wavelength λ 2a equal to the wavelength λ 1a or One of the wavelengths λ 2b is selected. Here, it is preferable that the absorbance change coefficient with respect to the temperature of the wavelength λ 2a or the wavelength λ 2b is the wavelength closest to the wavelength λ 1a . For example, if the wavelength lambda 2a or wavelength lambda 2b, it is preferable to select a wavelength lambda 2b. Further, if there is a wavelength where the sign of the absorption slope exhibited by water is equal to the wavelength λ 1a , it is preferable to select that wavelength.

次に、波長掃引部が波長掃引する一定波長範囲Δλを、対象成分の呈する吸収が極大となる波長λ1a又は波長λ1bを含むように選択する。例えば波長λ1aから前後50nm以上100nm以下に設定する。ここで、一定波長範囲Δλは、被測定物101が温度変化した場合にも対象成分の呈する吸収が極大となる波長λ1aが含まれるように選択することが好ましい。また、温度変化による波長シフトの影響が直接測定可能になるよう、波長可変光源の掃引する一定波長範囲Δλは、参照光の波長λ2a又は波長λ2bを含むことが好ましい。 Next, the fixed wavelength range Δλ in which the wavelength sweep unit sweeps the wavelength is selected so as to include the wavelength λ 1a or the wavelength λ 1b in which the absorption exhibited by the target component is maximized. For example, it is set to 50 nm or more and 100 nm or less from the wavelength λ 1a . Here, the fixed wavelength range Δλ is preferably selected so that the wavelength λ 1a at which the absorption exhibited by the target component is maximized even when the temperature of the object to be measured 101 changes is included. Further, it is preferable that the fixed wavelength range Δλ swept by the wavelength tunable light source includes the wavelength λ 2a or the wavelength λ 2b of the reference light so that the influence of the wavelength shift due to the temperature change can be directly measured.

グルコースの特徴的吸収は、1600nm付近と2100nm付近の2箇所存在する。このため、参照光源10を波長可変光源として、波長掃引する一定波長範囲Δλを1600nm付近と2100nm付近の2箇所同時に使用して、同様に解析してもよい。この場合、第1の掃引波長範囲内に、水の呈する吸収が波長λ1aと等しい波長λ2bが含まれるよう波長掃引する一定波長範囲Δλを設定することが好ましい。第2の掃引波長範囲内に、水の呈する吸収が波長λ1bと等しい波長λ2dが含まれるよう波長掃引する一定波長範囲を設定することが好ましい。そして、第1の掃引波長範囲内と第2の掃引波長範囲内のそれぞれについて、グルコースの吸光度を測定する。その場合、一方の掃引波長範囲内における吸収に不純物吸収が重なったとしても、もう一方の掃引波長範囲内における吸収を使用することで信頼性を確保することができる。 There are two characteristic absorptions of glucose, around 1600 nm and around 2100 nm. For this reason, the reference light source 10 may be used as a wavelength tunable light source, and a fixed wavelength range Δλ for wavelength sweeping may be used in the same manner by using two locations near 1600 nm and 2100 nm simultaneously. In this case, it is preferable to set a fixed wavelength range Δλ that sweeps the wavelength so that the absorption exhibited by water includes the wavelength λ 2b that is equal to the wavelength λ 1a in the first sweep wavelength range. It is preferable to set a certain wavelength range for wavelength sweeping so that the second sweep wavelength range includes a wavelength λ 2d in which the absorption exhibited by water is equal to the wavelength λ 1b . Then, the absorbance of glucose is measured for each of the first sweep wavelength range and the second sweep wavelength range. In that case, even if the impurity absorption overlaps the absorption in one sweep wavelength range, the reliability can be ensured by using the absorption in the other sweep wavelength range.

温度変化による波長シフトについて説明する。図4は、温度変化による波長シフトの説明図である。スペクトル31は温度Tでの水の吸光度スペクトルである。このときは、波長λの波長可変光及び波長λの参照光によって得られる光音響信号はいずれも光音響信号33のような波形となり、背景成分たる水の影響を除去することができる。
しかし、温度変化ΔTによって温度(T+ΔT)となった場合、水の吸光度スペクトル32はスペクトル31からシフトする。このとき、波長λの波長可変光によって得られる光音響信号35の信号振幅は減少するのに対し、波長λの参照光によって得られる光音響信号34の信号振幅は増加するので、背景成分たる水の影響を除去することはできなくなる。このため、波長可変光の波長λ及び参照光の波長λが、波長掃引する一定波長範囲Δλに含まれていることが好ましい。参照光の波長λを波長可変光の波長掃引範囲内に設定することで、光音響信号35と光音響信号34の信号振幅の変化量が測定できるので、温度T+ΔTに変化した場合であっても、背景成分たる水の影響を除去し、スペクトルの変化量のみを観測することができる。
The wavelength shift due to temperature change will be described. FIG. 4 is an explanatory diagram of wavelength shift due to temperature change. A spectrum 31 is an absorbance spectrum of water at the temperature T. In this case, both the photoacoustic signal obtained by the tunable optical and wavelength lambda 2 of the reference light of the wavelength lambda 1 has a waveform such as the photoacoustic signal 33, it is possible to eliminate the influence of the background component serving water.
However, when the temperature (T + ΔT) is reached due to the temperature change ΔT, the water absorbance spectrum 32 shifts from the spectrum 31. At this time, while reducing the signal amplitude of the photoacoustic signal 35 obtained by wavelength-tunable optical wavelength lambda 1, since the signal amplitude of the photoacoustic signal 34 obtained by the reference beam wavelength lambda 2 is increased, the background component The influence of dripping water cannot be removed. For this reason, it is preferable that the wavelength λ 1 of the wavelength tunable light and the wavelength λ 2 of the reference light are included in the constant wavelength range Δλ to be swept. By setting the wavelength λ 2 of the reference light within the wavelength sweep range of the wavelength tunable light, the amount of change in the signal amplitude of the photoacoustic signal 35 and the photoacoustic signal 34 can be measured. However, the influence of water as a background component can be removed and only the amount of change in the spectrum can be observed.

また、参照光の波長λをスペクトル31の極大ピークよりも短波長側の波長λに設定したとき、温度変化ΔTによって温度(T+ΔT)となったスペクトル32では、光音響信号35と光音響信号34に示すように光音響信号の差分信号が温度ΔTによって大きく変化する。光音響信号33から光音響信号34への変化は、光音響信号33から光音響信号35に示すように、波長掃引する一定波長範囲Δλ内でのスペクトル変化に比べても大きい。このことから、参照光の波長は、水の呈する吸収が相等しい参照光の波長λ2aと波長λ2bのうち、温度に対する吸光度変化係数が、波長可変光の波長λと最も近いことが好ましい。例えば、図3(a)で示す参照光の波長λ2aと波長λ2bのうち、波長可変光の波長λよりも長波長側に位置する波長λ2bを選択することが好ましい。温度変化ΔTの影響は、水の温度に対応した補正曲線を予め用意し、計測した水温から光音響信号を補正することができる。これにより、温度変化ΔTの影響を低減することができる。 Further, when the wavelength λ 2 of the reference light is set to a wavelength λ 2 shorter than the maximum peak of the spectrum 31, the photoacoustic signal 35 and the photoacoustics are obtained in the spectrum 32 that has become a temperature (T + ΔT) due to the temperature change ΔT. As shown by the signal 34, the differential signal of the photoacoustic signal varies greatly with the temperature ΔT. The change from the photoacoustic signal 33 to the photoacoustic signal 34 is larger than the spectral change within a certain wavelength range Δλ in which the wavelength is swept, as indicated by the photoacoustic signal 33 to the photoacoustic signal 35. For this reason, it is preferable that the wavelength of the reference light has an absorbance change coefficient with respect to temperature that is the closest to the wavelength λ 1 of the wavelength tunable light among the wavelengths λ 2a and λ 2b of the reference light having the same absorption exhibited by water. . For example, it is preferable to select the wavelength λ 2b located on the longer wavelength side than the wavelength λ 1 of the wavelength tunable light among the wavelengths λ 2a and λ 2b of the reference light shown in FIG. As for the influence of the temperature change ΔT, a correction curve corresponding to the water temperature is prepared in advance, and the photoacoustic signal can be corrected from the measured water temperature. Thereby, the influence of the temperature change ΔT can be reduced.

図5は、本実施形態に係る光音響信号の時間波形の一例であり、(a)は参照光による光音響信号、(b)は波長可変光による光音響信号、(c)は測定用合成光による光音響信号を示す。
図5(a)に示す参照光による光音響信号は、図1に示す駆動回路12aの変調周波数で発生する。そして、被測定物に照射する波長が一定なので、信号強度は一定である。
FIG. 5 is an example of a time waveform of the photoacoustic signal according to the present embodiment, where (a) is a photoacoustic signal based on reference light, (b) is a photoacoustic signal based on wavelength-tunable light, and (c) is a synthesis for measurement. The photoacoustic signal by light is shown.
The photoacoustic signal by the reference light shown in FIG. 5A is generated at the modulation frequency of the drive circuit 12a shown in FIG. And since the wavelength irradiated to a to-be-measured object is constant, signal intensity is constant.

図5(b)に示す波長可変光による光音響信号は、図1に示す駆動回路12bの変調周波数で発生する。そして、被測定物に照射する波長が一定波長範囲Δλ内で変化するので、信号強度は、波長掃引の位相に同期して変化する。一定の周期で繰り返される波長掃引時間におけるスペクトル変化は、被測定物の吸収スペクトルとなる。信号強度の変化には、背景成分の吸光度の変化と、対象成分の吸光度の変化が含まれている。   The photoacoustic signal by the wavelength tunable light shown in FIG. 5B is generated at the modulation frequency of the drive circuit 12b shown in FIG. Since the wavelength irradiated to the object to be measured changes within a certain wavelength range Δλ, the signal intensity changes in synchronization with the phase of the wavelength sweep. The spectrum change in the wavelength sweep time repeated at a constant period becomes the absorption spectrum of the object to be measured. The change in signal intensity includes a change in absorbance of the background component and a change in absorbance of the target component.

図5(c)に示す測定用合成光による光音響信号には、図1に示す駆動回路12a、12bの変調周波数で発生する。そして、参照光と波長可変光が逆相に強度変調されているので、参照光と波長可変光が逆相に強度変調されているので、対象成分の呈する吸収が極大となる波長λにおける背景成分の呈する吸収と等しい吸収によるスペクトルは、除去されている。測定用合成光による光音響信号には、対象成分であるグルコースの吸収ピークが含まれている。このため、時系列で取得した測定用合成光によって得られた差分吸収スペクトラムを逐次多変量解析することで、対象成分であるグルコースの濃度を定量することができる。また、波長掃引と同期して光音響信号出力を位相検波することで得た信号量からグルコース検線量を用いて濃度を定量してもよい。 The photoacoustic signal by the synthetic light for measurement shown in FIG. 5C is generated at the modulation frequency of the drive circuits 12a and 12b shown in FIG. Since the reference light and the wavelength tunable light are intensity-modulated in opposite phases, the reference light and the wavelength tunable light are intensity-modulated in opposite phases. Therefore, the background at the wavelength λ 1 where the absorption exhibited by the target component is maximized. The spectrum due to absorption equal to the absorption exhibited by the component has been eliminated. The photoacoustic signal by the synthetic light for measurement includes an absorption peak of glucose as a target component. Therefore, the concentration of glucose as the target component can be quantified by sequentially performing multivariate analysis on the differential absorption spectrum obtained by the synthetic light for measurement acquired in time series. Alternatively, the concentration may be quantified using glucose calibration from the amount of signal obtained by phase detection of the photoacoustic signal output in synchronization with the wavelength sweep.

本実施形態に係る成分濃度測定装置91は、等しい吸収係数を与える複数の波長の光を用いて測定するので、光音響信号の測定値に存在する非線形的な吸収係数依存性を解決できる。その原理を以下に説明する。   Since the component concentration measurement apparatus 91 according to the present embodiment performs measurement using light having a plurality of wavelengths that give the same absorption coefficient, it can solve the nonlinear absorption coefficient dependency existing in the measurement value of the photoacoustic signal. The principle will be described below.

波長λおよび波長λの各々光に対して、背景成分の吸収係数α (b)、α (b)及び測定対象とする血液成分のモル吸収α (0)、α (0)が既知の場合、各波長における光音響信号の測定値sおよびsを含む連立方程式は、次の数式(1)のように表される。

Figure 2009213563
数式(1)を解いて未知の血液成分濃度Mを求める。ここで、Cは、変化し制御或は予想困難な係数である。例えば、図1における、音響結合、音波検出部17の感度、光出射部16と被測定物101の間の距離(以下rと定義する)、被測定物101の比熱、被測定物101の熱膨張係数、被測定物101での音速、駆動回路12a、12bの変調周波数、更に、被測定物101の吸収係数にも依存する未知乗数である。 For each light of wavelength λ 1 and wavelength λ 2 , absorption coefficients α 1 (b) and α 2 (b) of the background component and molar absorption α 1 (0) and α 2 (0 ) Is known, the simultaneous equations including the measured values s 1 and s 2 of the photoacoustic signals at the respective wavelengths are expressed as the following formula (1).
Figure 2009213563
Equation (1) is solved to determine an unknown blood component concentration M. Here, C is a coefficient that varies and is difficult to control or predict. For example, in FIG. 1, acoustic coupling, sensitivity of the sound wave detection unit 17, distance between the light emitting unit 16 and the object to be measured 101 (hereinafter, defined as r), specific heat of the object to be measured 101, heat of the object to be measured 101. It is an unknown multiplier that depends on the expansion coefficient, the speed of sound at the device under test 101, the modulation frequency of the drive circuits 12a and 12b, and the absorption coefficient of the device under test 101.

数式(1)の1行目と2行目のCに差異が生ずるならば、それは、照射光に関係する量、即ち、吸収係数による差異以外にはあり得ない。ここで、数式(1)の各行の括弧の中、即ち吸収係数が互いに等しくなるように、波長λおよび波長λの組合せを選べば、吸収係数が等しくなり、1行目と2行目のCは等しい。しかしこれを厳密に行うと、波長λおよび波長λの組合せが、未知の血液成分濃度Mに依存することになるため、不便である。 If there is a difference between C in the first row and the second row of Equation (1), it can be other than the amount related to the irradiation light, that is, the difference due to the absorption coefficient. Here, if the combination of the wavelength λ 1 and the wavelength λ 2 is selected in parentheses in each row of the formula (1), that is, the absorption coefficients are equal to each other, the absorption coefficients become the same, and the first and second lines Are equal. However, strictly doing this is inconvenient because the combination of wavelength λ 1 and wavelength λ 2 will depend on the unknown blood component concentration M.

ここで、数式(1)の吸収係数(各行括弧中)に占める比率は、背景成分の吸収係数α (b)(ただし、i=1、2)の方が、血液成分濃度Mを含む項(Mα (0))よりも著しく大きい。そこで、各行の吸収係数を正確に等しくする代わりに、背景、α (b)の吸収係数を等しくすれば十分である。即ち、異なる波長λおよび波長λの2波の光は、各々における背景成分の吸収係数α (b)、α (b)が互いに等しくなるように選べば良い。このように1行目と2行目のCを等値できれば、それを未知定数として消去し、測定対象の血液成分濃度Mは数式(2)で表される。

Figure 2009213563
数式(2)の後段の変形にはs≒sという性質を用いている。 Here, the proportion of the absorption coefficient (in each parenthesis) of the formula (1) is a term in which the background component absorption coefficient α i (b) (where i = 1, 2) includes the blood component concentration M. It is significantly larger than (Mα i (0) ). Thus, it is sufficient to make the absorption coefficients of the background, α i (b) equal, instead of making the absorption coefficients of each row exactly equal. That is, the two light beams having different wavelengths λ 1 and λ 2 may be selected so that the absorption coefficients α 1 (b) and α 2 (b) of the background components are equal to each other. Thus, if C in the first and second lines can be equal, it is erased as an unknown constant, and the blood component concentration M to be measured is expressed by Equation (2).
Figure 2009213563
The property of s 1 ≈s 2 is used for the subsequent deformation of Equation (2).

ここで、数式(2)を見ると、分母に波長λおよび波長λにおける測定対象の血液成分の吸収係数の差が現れている。この差が大きい方が、光音響信号の差信号s−sが大きく、その測定が容易となる。この差を最大とするには、測定対象の成分の吸収係数α (0)が極大となる波長を波長λに選び、かつ、α (0)=0、即ち、測定対象の成分が吸収特性を示さない波長に波長λを選ぶのが良い。ここで、前の条件から、この参照光の波長λは、α (b)=α (b)、即ち、背景成分の吸収係数が波長可変光の波長λの吸収係数に等しくなければならない。 Here, looking at Equation (2), the difference in the absorption coefficient of the blood component to be measured at the wavelengths λ 1 and λ 2 appears in the denominator. When the difference is larger, the difference signal s 1 -s 2 of the photoacoustic signal is larger, and the measurement becomes easier. In order to maximize this difference, the wavelength at which the absorption coefficient α 1 (0) of the component to be measured is maximized is selected as the wavelength λ 1 and α 2 (0) = 0, that is, the component to be measured is It is preferable to select the wavelength λ 2 as a wavelength that does not show the absorption characteristics. Here, from the previous condition, the wavelength λ 2 of this reference light must be α 2 (b) = α 1 (b) , that is, the absorption coefficient of the background component should be equal to the absorption coefficient of the wavelength λ 1 of the tunable light. I must.

さらに、数式(2)において、光音響信号sは、光音響信号sとの差s−sの形でのみ登場している。今、測定対象の成分としてグルコースを例にとると、上述したように、2つの光音響信号sおよび光音響信号sの強度には、0.1%以下の差異しかない。 Furthermore, in Equation (2), the photoacoustic signal s 1 appears only in the form of a difference s 1 -s 2 from the photoacoustic signal s 2 . Now, taking as an example the glucose as a component to be measured, as described above, the two intensities of the photoacoustic signal s 1 and the photoacoustic signal s 2, only less than 0.1% difference.

しかし、数式(2)の分母の光音響信号sには5%程度の精度があれば十分である。従って、2つの光音響信号sおよび光音響信号sを逐次個別に測定するよりも、それらの差s−sを測定しこの測定値を、個別に測定した光音響信号sで除する方が、格段に容易に精度が保てる。従って、本実施形態に係る成分濃度測定装置においては、2つの波長λおよび波長λの光を、互いに逆相に強度変調して照射することにより、生体内で光音響信号sおよび光音響信号sが相互に重畳されて生じる光音響信号の差信号s−sを測定する。 However, it is sufficient that the photoacoustic signal s 2 in the denominator of the formula (2) has an accuracy of about 5%. Therefore, rather than sequentially measuring the two photoacoustic signals s 1 and the photoacoustic signal s 2 , the difference s 1 -s 2 between them is measured, and this measured value is determined by the individually measured photoacoustic signal s 2 . It is much easier to maintain accuracy. Therefore, in the component concentration measurement apparatus according to the present embodiment, the light of the two wavelengths λ 1 and λ 2 is irradiated with the intensity modulated in opposite phases to each other, so that the photoacoustic signal s 1 and the light are emitted in vivo. The difference signal s 1 -s 2 between the photoacoustic signals generated by superimposing the acoustic signals s 2 is measured.

以上説明したように、血液成分濃度を測定する場合、異なる特定の波長の2波の光を用いて、前記異なる特定の波長の2波の光が生体内に発生する光音響信号を各々個別に測定するよりも、前記光音響信号の差信号を測定し、さらに、所定の一方の光音響信号を零として、他方の光音響信号を測定して、これらを数式(2)により演算して、容易に血液成分濃度を測定できることが分かる。   As described above, when measuring blood component concentrations, using two waves of different specific wavelengths, the photoacoustic signals generated by the two waves of different specific wavelengths in the living body are individually provided. Rather than measuring, the difference signal of the photoacoustic signal is measured, and further, the predetermined one photoacoustic signal is set to zero, the other photoacoustic signal is measured, and these are calculated by Equation (2), It can be seen that the blood component concentration can be easily measured.

人間又は動物に存在する溶液の非侵襲な成分濃度測定装置、及び、人間又は動物から採取した溶液の成分濃度測定装置に関する。   The present invention relates to a noninvasive component concentration measuring device for a solution existing in a human or an animal, and a component concentration measuring device for a solution collected from a human or an animal.

本実施形態に係る成分濃度測定装置の第1例を示す概略構成図である。It is a schematic block diagram which shows the 1st example of the component concentration measuring apparatus which concerns on this embodiment. 本実施形態に係る成分濃度測定装置の第2例を示す概略構成図である。It is a schematic block diagram which shows the 2nd example of the component concentration measuring apparatus which concerns on this embodiment. 溶液の吸光度の一例であり、(a)グルコース水溶液の吸光度及び吸収係数、(b)は水に対するグルコースの吸光度差及び比吸光度を示す。It is an example of the light absorbency of a solution, (a) The light absorbency and absorption coefficient of glucose aqueous solution, (b) shows the light absorbency difference of glucose with respect to water, and a specific light absorbency. 温度変化による波長シフトの説明図である。It is explanatory drawing of the wavelength shift by a temperature change. 本実施形態に係る光音響信号の時間波形の一例であり、(a)は参照光による光音響信号、(b)は波長可変光による光音響信号、(c)は測定用合成光による光音響信号を示す。It is an example of the time waveform of the photoacoustic signal which concerns on this embodiment, (a) is a photoacoustic signal by reference light, (b) is a photoacoustic signal by wavelength-tunable light, (c) is photoacoustic by the synthetic light for a measurement. Signals are shown. 従来の光音響法による第1の成分濃度測定装置を示す構成例である。It is a structural example which shows the 1st component density | concentration measuring apparatus by the conventional photoacoustic method. 従来の光音響法による第2の成分濃度測定装置を示す構成例である。It is a structural example which shows the 2nd component density | concentration measuring apparatus by the conventional photoacoustic method.

符号の説明Explanation of symbols

10 参照光源
11 波長可変光源
12a、12b 駆動回路
13 遅延調整器
14 発振器
15 合波器
16 光出射部
17 音波検出部
18 前置増幅器
19、24 位相検波増幅器
20 光音響信号出力端子
21 温度伝達窓
22 温度検出部
23 温度信号出力端子
31、32 水の吸光度スペクトル
33、34、35 光音響信号
91、92 成分濃度測定装置
101 被測定物
102 駆動電源
103 パルス光源
104 超音波検出器
105 波形観測器
201 第1の光源
202 第2の光源
203、204 駆動電源
211 合波器
212 音響センサ
213 チョッパ板
214 モータ
215 周波数解析機
DESCRIPTION OF SYMBOLS 10 Reference light source 11 Wavelength variable light source 12a, 12b Drive circuit 13 Delay adjuster 14 Oscillator 15 Multiplexer 16 Light output part 17 Sound wave detection part 18 Preamplifier 19, 24 Phase detection amplifier 20 Photoacoustic signal output terminal 21 Temperature transmission window DESCRIPTION OF SYMBOLS 22 Temperature detection part 23 Temperature signal output terminal 31, 32 Water absorption spectrum 33, 34, 35 Photoacoustic signal 91, 92 Component density | concentration measuring apparatus 101 Measured object 102 Drive power supply 103 Pulse light source 104 Ultrasonic detector 105 Waveform detector DESCRIPTION OF SYMBOLS 201 1st light source 202 2nd light source 203,204 Drive power supply 211 Multiplexer 212 Acoustic sensor 213 Chopper board 214 Motor 215 Frequency analyzer

Claims (7)

背景成分及び対象成分が混合されてなる溶液における前記背景成分の呈する吸収が相等しい異なる波長の光を発生して出力する2つの測定用光発生部と、
前記2つの測定用光発生部からの光を予め定められた一定周波数で互いに逆相に強度変調して出力する光変調部と、
前記2つの測定用光発生部からの強度変調光を合成した測定用合成光を、前記溶液の存在する被測定物に向けて出射する光出射部と、
前記光出射部の出射する測定用合成光によって前記被測定物から発生する測定用音波を検出する音波検出部と、
前記2つの測定用光発生部のうちの一方からの光を一定波長範囲で波長掃引する波長掃引部と、
を備えることを特徴とする成分濃度測定装置。
Two measurement light generators for generating and outputting light of different wavelengths having the same absorption of the background component in a solution in which the background component and the target component are mixed; and
A light modulation unit for intensity-modulating and outputting light from the two measurement light generation units in a phase opposite to each other at a predetermined constant frequency;
A light emitting unit that emits the synthetic light for measurement, which is obtained by synthesizing the intensity-modulated light from the two measurement light generating units, toward the object to be measured in which the solution exists;
A sound wave detection unit for detecting a measurement sound wave generated from the object to be measured by the synthetic light for measurement emitted from the light emitting unit;
A wavelength sweeping unit that sweeps light from one of the two measurement light generation units in a certain wavelength range;
A component concentration measuring apparatus comprising:
前記波長掃引部の掃引する前記一定波長範囲は、前記対象成分の呈する吸収が極大となる波長を含むことを特徴とする請求項1に記載の成分濃度測定装置。   The component concentration measurement apparatus according to claim 1, wherein the constant wavelength range swept by the wavelength sweeping unit includes a wavelength at which absorption of the target component is maximized. 前記被測定物の温度を検出する温度検出部をさらに備えることを特徴とする請求項1又は2に記載の成分濃度測定装置。   The component concentration measuring apparatus according to claim 1, further comprising a temperature detecting unit that detects a temperature of the object to be measured. 前記音波検出部の検出する前記測定用音波を、前記光変調部が強度変調する位相と同期するように検波する第1位相同期検波部をさらに備えることを特徴とする請求項1から3のいずれかに記載の成分濃度測定装置。   4. The apparatus according to claim 1, further comprising a first phase-locked detection unit that detects the measurement sound wave detected by the sound wave detection unit so as to be synchronized with a phase whose intensity is modulated by the light modulation unit. A component concentration measuring apparatus according to claim 1. 前記音波検出部の検出する前記測定用音波を、前記波長掃引部が波長を掃引する位相と同期するように検波する第2位相同期検波部をさらに備えることを特徴とする請求項1から4のいずれかに記載の成分濃度測定装置。   5. The apparatus according to claim 1, further comprising a second phase-locked detection unit that detects the measurement sound wave detected by the sound wave detection unit so as to be synchronized with a phase in which the wavelength sweep unit sweeps the wavelength. The component concentration measuring apparatus in any one. 前記波長掃引部の掃引する前記一定波長範囲は、前記測定用光発生部の他方からの光の波長を含むことを特徴とする請求項1から5のいずれかに記載の成分濃度測定装置。   6. The component concentration measuring apparatus according to claim 1, wherein the fixed wavelength range swept by the wavelength sweeping unit includes a wavelength of light from the other of the measurement light generating unit. 前記測定用光発生部の他方からの光の波長は、前記背景成分の呈する吸収が相等しい異なる波長のうち、温度に対する吸光度変化係数が、前記測定用光発生部の一方からの光と最も近い波長であることを特徴とする請求項1から6のいずれかに記載の成分濃度測定装置。   The wavelength of light from the other side of the measurement light generation unit is the closest to the light from one side of the measurement light generation unit with respect to the temperature among the different wavelengths with the same absorption of the background component. The component concentration measuring device according to claim 1, wherein the component concentration measuring device has a wavelength.
JP2008058250A 2008-03-07 2008-03-07 Component concentration measuring device Active JP4914388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058250A JP4914388B2 (en) 2008-03-07 2008-03-07 Component concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058250A JP4914388B2 (en) 2008-03-07 2008-03-07 Component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2009213563A true JP2009213563A (en) 2009-09-24
JP4914388B2 JP4914388B2 (en) 2012-04-11

Family

ID=41186109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058250A Active JP4914388B2 (en) 2008-03-07 2008-03-07 Component concentration measuring device

Country Status (1)

Country Link
JP (1) JP4914388B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024300A (en) * 2010-07-22 2012-02-09 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method and device
JP2012179212A (en) * 2011-03-01 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method and device
JP2013064631A (en) * 2011-09-16 2013-04-11 Seiko Epson Corp Concentration measuring method and concentration measuring apparatus
JP2013106874A (en) * 2011-11-24 2013-06-06 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method and device
JP2015031670A (en) * 2013-08-07 2015-02-16 日本電信電話株式会社 Component concentration analyzer and component concentration analytic method
JP2018013417A (en) * 2016-07-21 2018-01-25 日本電信電話株式会社 Component concentration measuring device and method
WO2019181375A1 (en) * 2018-03-23 2019-09-26 日本電信電話株式会社 Component-concentration measuring apparatus and method
CN116138771A (en) * 2023-04-18 2023-05-23 江西科技师范大学 Energy correction method for multispectral blood glucose photoacoustic detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160711A (en) * 1996-12-02 1998-06-19 Kao Corp Photoacoustic signal measuring device
JPH11244243A (en) * 1998-03-04 1999-09-14 Fuji Photo Film Co Ltd Glucose concentration measuring method and device thereof
JP2003235832A (en) * 2002-02-11 2003-08-26 Bayer Corp Non-invasive system for determining analyte in body fluid
JP2004249025A (en) * 2003-02-17 2004-09-09 Hiroto Tateno Biological photoacoustic resonance noninvasive biochemical component analyzer and method of measuring blood component
WO2005107592A1 (en) * 2004-05-06 2005-11-17 Nippon Telegraph And Telephone Corporation Component concentration measuring device and method of controlling component concentration measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160711A (en) * 1996-12-02 1998-06-19 Kao Corp Photoacoustic signal measuring device
JPH11244243A (en) * 1998-03-04 1999-09-14 Fuji Photo Film Co Ltd Glucose concentration measuring method and device thereof
JP2003235832A (en) * 2002-02-11 2003-08-26 Bayer Corp Non-invasive system for determining analyte in body fluid
JP2004249025A (en) * 2003-02-17 2004-09-09 Hiroto Tateno Biological photoacoustic resonance noninvasive biochemical component analyzer and method of measuring blood component
WO2005107592A1 (en) * 2004-05-06 2005-11-17 Nippon Telegraph And Telephone Corporation Component concentration measuring device and method of controlling component concentration measuring device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024300A (en) * 2010-07-22 2012-02-09 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method and device
JP2012179212A (en) * 2011-03-01 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method and device
JP2013064631A (en) * 2011-09-16 2013-04-11 Seiko Epson Corp Concentration measuring method and concentration measuring apparatus
JP2013106874A (en) * 2011-11-24 2013-06-06 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method and device
JP2015031670A (en) * 2013-08-07 2015-02-16 日本電信電話株式会社 Component concentration analyzer and component concentration analytic method
JP2018013417A (en) * 2016-07-21 2018-01-25 日本電信電話株式会社 Component concentration measuring device and method
WO2019181375A1 (en) * 2018-03-23 2019-09-26 日本電信電話株式会社 Component-concentration measuring apparatus and method
JP2019165982A (en) * 2018-03-23 2019-10-03 日本電信電話株式会社 Component concentration measurement device and method
JP7010103B2 (en) 2018-03-23 2022-01-26 日本電信電話株式会社 Component concentration measuring device and method
CN116138771A (en) * 2023-04-18 2023-05-23 江西科技师范大学 Energy correction method for multispectral blood glucose photoacoustic detection
CN116138771B (en) * 2023-04-18 2023-06-30 江西科技师范大学 Energy correction method for multispectral blood glucose photoacoustic detection

Also Published As

Publication number Publication date
JP4914388B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4914388B2 (en) Component concentration measuring device
JP4963482B2 (en) Component concentration measuring apparatus and component concentration measuring method
US8143605B2 (en) System and method for non-invasively monitoring conditions of a object
US20090069674A1 (en) Measurement apparatus
JP5009058B2 (en) Sample information analyzer
US20130084649A1 (en) Fluorescence measurement
JP5647583B2 (en) Photoacoustic analyzer and photoacoustic analysis method
JP4441479B2 (en) Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method
JP4531632B2 (en) Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method
JP5186791B2 (en) Pore inspection device
JP2007051879A (en) Component concentration measuring instrument, and control method for same
JP4477568B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP2008125542A (en) Constituent concentration measuring apparatus and method for controlling constituent concentration measuring apparatus
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
JP2013195176A (en) Electromagnetic wave pulse measuring device, electromagnetic wave pulse measuring method, and application device using electromagnetic wave pulse measuring device
JP2007037871A (en) Component concentration measuring device and method of controlling the same
WO2019211993A1 (en) Component concentration measuring device
JP4412667B2 (en) Component concentration measuring device
JP2018013417A (en) Component concentration measuring device and method
JP4945422B2 (en) Component concentration measuring device
JP2014100456A (en) Photoacoustic imaging apparatus
JP5345439B2 (en) Component concentration analyzer and component concentration analysis method
JP4796042B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP4773390B2 (en) Component concentration measuring device
JP2007127516A (en) Component concentration measuring device, and component concentration measuring device control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Ref document number: 4914388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350