JP4770758B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4770758B2
JP4770758B2 JP2007057792A JP2007057792A JP4770758B2 JP 4770758 B2 JP4770758 B2 JP 4770758B2 JP 2007057792 A JP2007057792 A JP 2007057792A JP 2007057792 A JP2007057792 A JP 2007057792A JP 4770758 B2 JP4770758 B2 JP 4770758B2
Authority
JP
Japan
Prior art keywords
temperature
internal combustion
combustion engine
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007057792A
Other languages
Japanese (ja)
Other versions
JP2008215318A (en
Inventor
幸一 星
尚吾 須田
亮 冨松
芳彦 鈴木
誠 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007057792A priority Critical patent/JP4770758B2/en
Priority to PCT/JP2008/054556 priority patent/WO2008108502A1/en
Priority to US12/530,292 priority patent/US8000886B2/en
Priority to DE112008000617.2T priority patent/DE112008000617B4/en
Publication of JP2008215318A publication Critical patent/JP2008215318A/en
Application granted granted Critical
Publication of JP4770758B2 publication Critical patent/JP4770758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/01Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は内燃機関の制御装置に関し、特に内燃機関の始動時における排気弁の開閉時期を制御する装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a device for controlling the opening / closing timing of an exhaust valve when the internal combustion engine is started.

内燃機関においては、排気通路内に空燃比センサ(例えば酸素濃度センサ)を臨ませて、排気ガスの成分(例えば酸素濃度)を検出することにより、空燃比フィードバック制御を行う場合がある。   In an internal combustion engine, air-fuel ratio feedback control may be performed by detecting an exhaust gas component (for example, oxygen concentration) by placing an air-fuel ratio sensor (for example, oxygen concentration sensor) in the exhaust passage.

この場合、空燃比センサに備わったセンサ素子は、一般に、所定温度以上に加熱された状態で活性化し、排気ガスの成分の検出が可能となる。従って、空燃比センサにはセンサ素子加熱用のセンサヒータが配設されていることが多い。   In this case, the sensor element provided in the air-fuel ratio sensor is generally activated while being heated to a predetermined temperature or higher, and the exhaust gas component can be detected. Accordingly, the air-fuel ratio sensor is often provided with a sensor heater for heating the sensor element.

上記のような空燃比センサを備えた内燃機関においては、始動時において内燃機関から排出される排気中に、燃焼時に発生した水分が含まれており、この水分が水滴となって上述の空燃比センサに接触する場合があった。また、前回の機関停止後に、排気通路に残された排気が冷却されることにより凝縮水が発生し、この凝縮水が内燃機関の始動時に飛散して、空燃比センサに接触する場合もあった。   In the internal combustion engine provided with the air-fuel ratio sensor as described above, the exhaust gas discharged from the internal combustion engine at the time of start-up contains moisture generated during combustion, and the moisture becomes water droplets as described above. There was a case of touching the sensor. Further, after the previous engine stop, the exhaust gas left in the exhaust passage is cooled, so that condensed water is generated, and this condensed water may be scattered when the internal combustion engine is started and may contact the air-fuel ratio sensor. .

そうすると、センサヒータの加熱によって高温になったセンサ素子において、水滴が接触した部分が急激に冷却される熱衝撃により、素子割れなどの破損が発生することがあった。   Then, in the sensor element that has become high temperature due to the heating of the sensor heater, damage such as element cracking may occur due to a thermal shock that rapidly cools a portion in contact with water droplets.

これに対し、実際には排気通路における空燃比センサ近傍の温度が充分に上昇するまでセンサヒータへの通電を制限する制御が行なわれる場合が多い。例えば、機関始動時の外気温が外気温閾値より低い時には、ヒータを作動開始する設定温度を高く変更し、機関始動時の機関冷却水温と外気温との温度差が温度差閾値より大きい時には前記設定温度をさらに高くする技術(特許文献1を参照。)などが公知である。しかし、これらの従来技術においては、空燃比フィードバック制御の開始が遅れ、内燃機関の始動時におけるエミッションが悪化するおそれがあった。   On the other hand, in practice, in many cases, control for restricting energization to the sensor heater is performed until the temperature in the vicinity of the air-fuel ratio sensor in the exhaust passage sufficiently increases. For example, when the outside air temperature at the time of engine start is lower than the outside air temperature threshold, the set temperature for starting the heater is changed to be high, and when the temperature difference between the engine cooling water temperature at the time of engine start and the outside air temperature is larger than the temperature difference threshold A technique (see Patent Document 1) for further increasing the set temperature is known. However, in these prior arts, the start of the air-fuel ratio feedback control is delayed, and there is a possibility that the emission at the start of the internal combustion engine is deteriorated.

一方、内燃機関の始動時において、排気弁の開閉時期を進角させて吸気弁開弁時の筒内圧を上昇させることにより、吸気系への圧縮ガスの噴き返しを促進し、噴射燃料の微粒化を図り、冷間始動時における燃焼を安定させる技術が知られている。この場合、別の効果として、内燃機関で燃焼中または燃焼直後の比較的高温のガスが排気として排出されるので排気温度を上昇させることができる(例えば、特許文献2を参照。)ことが分かっている。従って、この効果を利用して排気通路における空燃比センサ近傍の温度を早期に上昇させることが考えられる。しかし、従来、この技術については、内燃機関の冷却水温が所定値になると、可変動弁機構によって排気弁の開閉時期を運転状態に応じた時期に変更する制御を開始することが多かった。そのため、上述の排気弁の開閉弁時期の進角制御を早期に解除してしまい、排気通路の温度を効率的に上昇させることが困難となる場合があった。
特開2005−105960号公報 特開2002−227630号公報 特開2004−353495号公報
On the other hand, at the start of the internal combustion engine, the opening / closing timing of the exhaust valve is advanced to increase the in-cylinder pressure when the intake valve is opened, thereby facilitating the return of compressed gas to the intake system. There is known a technique for stabilizing the combustion during cold start. In this case, as another effect, it is understood that the relatively high temperature gas during or immediately after combustion in the internal combustion engine is discharged as exhaust gas, so that the exhaust temperature can be increased (see, for example, Patent Document 2). ing. Therefore, it can be considered that the temperature in the vicinity of the air-fuel ratio sensor in the exhaust passage is raised early by using this effect. However, conventionally, with this technique, when the cooling water temperature of the internal combustion engine reaches a predetermined value, the variable valve mechanism often starts control to change the opening / closing timing of the exhaust valve to the timing according to the operating state. For this reason, the advance control of the opening / closing valve timing of the exhaust valve is canceled early, and it may be difficult to efficiently raise the temperature of the exhaust passage.
JP 2005-105960 A JP 2002-227630 A JP 2004-353495 A

本発明の目的とするところは、排気通路に配置され加熱された状態で空燃比の検出が可能となる空燃比センサを備えた内燃機関において、始動時における排気通路での水滴の飛散を早期に解消し、空燃比センサの加熱時期を早めることにより、内燃機関の始動時におけるエミッションを向上できる技術を提供することである。   An object of the present invention is to quickly disperse water droplets in an exhaust passage at the start-up in an internal combustion engine provided with an air-fuel ratio sensor that is disposed in the exhaust passage and is capable of detecting an air-fuel ratio in a heated state. The object is to provide a technology that can improve the emission at the start of the internal combustion engine by eliminating the air-fuel ratio sensor and accelerating the heating timing of the air-fuel ratio sensor.

上記目的を達成するための本発明は以下のことを最大の特徴とする。すなわち、内燃機関の始動時において排気弁の開閉時期を、暖機終了後における排気弁の開閉時期の基準である基準開閉時期より進角側である始動時開閉時期に設定する。そして、その状態を、排気通路における空燃比センサの近傍の温度が、水滴が消滅する露点温度以上となるまで継続する。その後に、可変動弁機構による運転状態に応じた排気弁の開閉時期の変更を開始する。 In order to achieve the above object, the present invention has the following features. That is, when the internal combustion engine is started, the opening / closing timing of the exhaust valve is set to a starting opening / closing timing that is an advance side of the reference opening / closing timing that is the reference of the opening / closing timing of the exhaust valve after the warm-up is completed. Then, this state is continued until the temperature near the air-fuel ratio sensor in the exhaust passage becomes equal to or higher than the dew point temperature at which the water droplets disappear. Thereafter, the change of the opening / closing timing of the exhaust valve according to the operation state by the variable valve mechanism is started.

より詳しくは、内燃機関の排気通路に設けられ、加熱により活性化された状態で排気の空燃比を検出可能な空燃比センサと、
前記内燃機関の始動時において排気弁の開閉時期を、暖機終了後における排気弁の開閉時期の基準である基準開閉時期より進角側の始動時開閉時期に設定する始動時進角手段と、
前記排気弁の開閉時期を変更可能な可変動弁機構と、
前記内燃機関の運転状態に応じて、前記可変動弁機構によって前記排気弁の開閉時期を変更させる運転状態対応制御を行う運転状態対応制御手段と、
前記排気通路における前記空燃比センサ近傍の温度を取得する温度取得手段と、を備え、
前記内燃機関の始動時において前記温度取得手段によって取得された前記空燃比センサ近傍の温度が、前記排気通路における水滴が消滅する露点温度より低い場合には、前記排気弁の開閉時期を前記始動時開閉時期に維持し、
前記空燃比センサ近傍の温度が、前記露点温度以上となった後に、前記運転状態対応制御手段が前記運転状態対応制御を開始することを特徴とする。
More specifically, an air-fuel ratio sensor provided in the exhaust passage of the internal combustion engine and capable of detecting the air-fuel ratio of exhaust in a state activated by heating,
A start time advance means for setting the open / close timing of the exhaust valve at the start of the internal combustion engine to a start time open / close timing that is an advance side of a reference open / close timing that is a reference of the open / close timing of the exhaust valve after completion of warm-up;
A variable valve mechanism capable of changing the opening and closing timing of the exhaust valve;
An operating state corresponding control means for performing an operating state corresponding control for changing the opening and closing timing of the exhaust valve by the variable valve mechanism according to the operating state of the internal combustion engine;
Temperature obtaining means for obtaining a temperature in the vicinity of the air-fuel ratio sensor in the exhaust passage,
When the temperature in the vicinity of the air-fuel ratio sensor acquired by the temperature acquisition means at the time of starting the internal combustion engine is lower than the dew point temperature at which water drops in the exhaust passage disappear, the opening / closing timing of the exhaust valve is set at the time of starting. Maintained at the opening and closing time,
The operating state corresponding control means starts the operating state corresponding control after the temperature in the vicinity of the air-fuel ratio sensor becomes equal to or higher than the dew point temperature .

これによれば、内燃機関の始動時において、排気弁の開閉時期が基準開閉時期より進角した状態が、排気通路における空燃比センサ近傍の温度が露点温度以上となるまで継続する。そうすると、燃焼直後の高温の排気が排出されることにより排気の温度が比較的高くなる状態を、空燃比センサ近傍の温度が露点温度以上となるまで継続させることができる。従って、空燃比センサ近傍の温度が露点温度以上となるまでの期間を短縮することができる。 According to this, when the internal combustion engine is started, the state in which the opening / closing timing of the exhaust valve is advanced from the reference opening / closing timing continues until the temperature in the exhaust passage near the air-fuel ratio sensor becomes equal to or higher than the dew point temperature . Then, it is possible to continue the state in which the temperature of the exhaust gas becomes relatively high by discharging the high-temperature exhaust gas immediately after combustion until the temperature in the vicinity of the air-fuel ratio sensor becomes equal to or higher than the dew point temperature . Therefore, the period until the temperature near the air-fuel ratio sensor becomes equal to or higher than the dew point temperature can be shortened.

その結果、空燃比センサによる空燃比フィードバック制御の開始時期を早めることができ、内燃機関の始動時におけるエミッションを向上させることができる。   As a result, the start timing of the air-fuel ratio feedback control by the air-fuel ratio sensor can be advanced, and the emission at the start of the internal combustion engine can be improved.

また、本発明においては、前記始動時進角手段は、前記内燃機関の始動時において、さらに吸気弁の開閉時期を、暖機終了後における吸気弁の開閉時期の基準である吸気側基準開閉時期より進角側の吸気側始動時開閉時期に設定し、
前記可変動弁機構は、前記排気弁及び吸気弁の開閉時期を変更可能であり、
前記運転状態対応制御手段は前記運転状態対応制御において、前記内燃機関の運転状態に応じて、前記可変動弁機構によって前記排気弁及び前記吸気弁の開閉時期を変更させ、
前記内燃機関の始動時において前記温度取得手段によって取得された前記空燃比センサ近傍の温度が前記露点温度より低い場合には、前記排気弁の開閉時期を前記始動時開閉時期に維持するとともに前記吸気弁の開閉時期を前記吸気側始動時開閉時期に維持するようにしてもよい。
Further, in the present invention, the start time advance means further sets the opening / closing timing of the intake valve at the start of the internal combustion engine as an intake side reference opening / closing timing which is a reference for the opening / closing timing of the intake valve after the warm-up is completed. Set the opening / closing timing at the intake side start on the more advanced side,
The variable valve mechanism can change the opening and closing timing of the exhaust valve and the intake valve,
In the operating state corresponding control, the operating state corresponding control means changes the opening and closing timings of the exhaust valve and the intake valve by the variable valve mechanism according to the operating state of the internal combustion engine,
When the temperature in the vicinity of the air-fuel ratio sensor acquired by the temperature acquisition means at the time of starting the internal combustion engine is lower than the dew point temperature , the opening / closing timing of the exhaust valve is maintained at the opening / closing timing at startup and the intake air The opening / closing timing of the valve may be maintained at the opening / closing timing at the intake side start.

そうすれば、内燃機関の始動時において、吸気弁及び排気弁の開閉時期を暖機後の基準値より進角させて噴射燃料の微粒化を図るとともに、吸気弁及び排気弁の開閉時期を運転状態に応じて最適化する内燃機関において、排気通路における空燃比センサ近傍の温度が露点温度以上となるまでの期間を短縮することができる。その結果、空燃比センサによる空燃比フィードバック制御の開始時期を早めることができ、内燃機関の始動時におけるエミッションを向上させることができる。 Then, when starting the internal combustion engine, the opening and closing timing of the intake valve and the exhaust valve is advanced from the reference value after warming up to atomize the injected fuel, and the opening and closing timing of the intake valve and the exhaust valve is operated. In an internal combustion engine that is optimized according to the state, it is possible to shorten the period until the temperature near the air-fuel ratio sensor in the exhaust passage becomes equal to or higher than the dew point temperature . As a result, the start timing of the air-fuel ratio feedback control by the air-fuel ratio sensor can be advanced, and the emission at the start of the internal combustion engine can be improved.

なお、本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。   The means for solving the problems in the present invention can be used in combination as much as possible.

本発明にあっては、排気通路に配置され加熱された状態で空燃比の検出が可能となる空燃比センサを備えた内燃機関において、始動時における排気通路での水滴の飛散を早期に解消し、空燃比センサの加熱時期を早めることができる。その結果、内燃機関の始動時におけるエミッションを向上させることができる。   In the present invention, in an internal combustion engine provided with an air-fuel ratio sensor that is disposed in the exhaust passage and can be heated, the scattering of water droplets in the exhaust passage at the time of starting can be eliminated at an early stage. The heating time of the air-fuel ratio sensor can be advanced. As a result, it is possible to improve the emission at the start of the internal combustion engine.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings.

図1は、本実施例における内燃機関1とその吸排気系及び制御系の概略構成を示す図である。図1に示す内燃機関1は、吸入行程、圧縮行程、爆発行程(膨張行程)及び排気行程の4サイクルを繰り返して出力を得る。内燃機関1は、その内部に気筒2を形成する。気筒2内で発生する燃料の爆発力は、ピストン3及びコンロッド4を介してクランクシャフト(図示略)の回転力に変換される。また、気筒2には、吸気通路5の最下流部をなす吸気ポート11と、排気通路6の最上流部をなす排気ポート8とが接続されている。吸気ポート11には、燃焼のための燃料を噴射する燃料噴射弁10が設けられている。吸気ポート11と気筒2との境界は吸気弁12によって開閉される。また、排気ポート8と気筒2との境界は排気弁9によって開閉される。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 and its intake / exhaust system and control system in the present embodiment. The internal combustion engine 1 shown in FIG. 1 obtains output by repeating four cycles of an intake stroke, a compression stroke, an explosion stroke (expansion stroke), and an exhaust stroke. The internal combustion engine 1 forms a cylinder 2 therein. The explosive force of the fuel generated in the cylinder 2 is converted into a rotational force of a crankshaft (not shown) through the piston 3 and the connecting rod 4. The cylinder 2 is connected to an intake port 11 that forms the most downstream portion of the intake passage 5 and an exhaust port 8 that forms the most upstream portion of the exhaust passage 6. The intake port 11 is provided with a fuel injection valve 10 that injects fuel for combustion. The boundary between the intake port 11 and the cylinder 2 is opened and closed by an intake valve 12. The boundary between the exhaust port 8 and the cylinder 2 is opened and closed by an exhaust valve 9.

吸気弁12および排気弁9には、それぞれ吸気側の可変動弁機構(以下、吸気側VVT)17および排気側の可変動弁機構(以下、排気側VVT)16が併設されている。吸気側VVT17および排気側VVT16は、それぞれ、電子制御ユニット(Electronic Control Unit:ECU)20からの指令により吸気弁12および排気弁9の位相角を所定範囲内で変更可能とする。このような構成によれば、吸気弁12及び排気弁9の少なくとも一方の開弁位相を適当に調整することにより、運転状態に応じた運転性能や燃費の向上を図ることができる。   The intake valve 12 and the exhaust valve 9 are respectively provided with an intake side variable valve mechanism (hereinafter referred to as an intake side VVT) 17 and an exhaust side variable valve mechanism (hereinafter referred to as an exhaust side VVT) 16. The intake side VVT 17 and the exhaust side VVT 16 can change the phase angles of the intake valve 12 and the exhaust valve 9 within a predetermined range, respectively, by a command from an electronic control unit (ECU) 20. According to such a configuration, by appropriately adjusting the opening phase of at least one of the intake valve 12 and the exhaust valve 9, it is possible to improve driving performance and fuel consumption according to the driving state.

また、排気通路6には排気浄化のための排気浄化触媒7の他、排気通路6を通過する排気の空燃比を検出し、空燃比をフィードバック制御するための空燃比センサ18が設けられている。   In addition to the exhaust purification catalyst 7 for exhaust purification, the exhaust passage 6 is provided with an air-fuel ratio sensor 18 for detecting the air-fuel ratio of exhaust passing through the exhaust passage 6 and performing feedback control of the air-fuel ratio. .

この空燃比センサ18におけるセンサ素子(不図示)は、ジルコニア管等から形成されており、加熱されて例えば400℃以上に昇温することにより活性化し、排気ガスの酸素濃度検出が可能な状態になる。   A sensor element (not shown) in the air-fuel ratio sensor 18 is formed of a zirconia tube or the like, and is activated by being heated to a temperature of, for example, 400 ° C. or higher, so that the oxygen concentration of the exhaust gas can be detected. Become.

また、センサ素子の内部には、センサヒータ(不図示)が備えられている。排気中の空燃比を検出して空燃比のフィードバック制御が開始される前には、ECU20からの指令
によりセンサヒータに通電され、センサ素子が加熱される。
A sensor heater (not shown) is provided inside the sensor element. Before the air-fuel ratio feedback control is started by detecting the air-fuel ratio in the exhaust, the sensor heater is energized by a command from the ECU 20 to heat the sensor element.

一方、吸気通路5には、吸気の量を制御可能なスロットル弁14が設けられている。また、吸気通路5には、導入される吸気の量を検出するエアフローメータ13が設けられている。   On the other hand, the intake passage 5 is provided with a throttle valve 14 capable of controlling the amount of intake air. The intake passage 5 is provided with an air flow meter 13 for detecting the amount of intake air introduced.

内燃機関1においては、前述の空燃比センサ18、エアフローメータ13の他にもクランクポジションセンサやアクセルポジションセンサ(不図示)などの各種センサを備える。これら各種センサの信号は、ECU20に入力される。   The internal combustion engine 1 includes various sensors such as a crank position sensor and an accelerator position sensor (not shown) in addition to the air-fuel ratio sensor 18 and the air flow meter 13 described above. Signals from these various sensors are input to the ECU 20.

ECU20は、中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及びバックアップRAM等からなる論理演算回路を備え、各種センサの信号に基づいて内燃機関1の燃料噴射弁10の他、吸気側VVT17、排気側VVT16、スロットル弁14などの各種構成要素を統括制御する。   The ECU 20 includes a logical operation circuit including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a backup RAM, and the like, and the fuel injection valve 10 of the internal combustion engine 1 based on signals from various sensors. In addition, various components such as the intake side VVT 17, the exhaust side VVT 16, and the throttle valve 14 are collectively controlled.

ここで、図2を用いて、内燃機関1の始動時における吸気弁12及び排気弁9の制御について説明する。図2(a)には、暖機終了後における内燃機関1の一般的な吸気弁12と排気弁9の開閉時期について示す。ここに示すように、一般的には、暖機終了後には吸気弁12は例えば、TDCに対して−3度からBDCに対して67度の範囲で開弁する。一方、排気弁9はBDCに対して56度からTDCに対して4度までの範囲で開弁する。ここで示される吸気弁12及び排気弁9の開閉弁時期は、本実施例における基準開閉時期に相当する。   Here, the control of the intake valve 12 and the exhaust valve 9 when the internal combustion engine 1 is started will be described with reference to FIG. FIG. 2 (a) shows the opening / closing timing of a general intake valve 12 and exhaust valve 9 of the internal combustion engine 1 after the warm-up is completed. As shown here, generally, after the warm-up is completed, the intake valve 12 is opened in a range of, for example, -3 degrees with respect to TDC to 67 degrees with respect to BDC. On the other hand, the exhaust valve 9 opens in a range from 56 degrees to BDC to 4 degrees to TDC. The opening / closing valve timings of the intake valve 12 and the exhaust valve 9 shown here correspond to the reference opening / closing timing in this embodiment.

これに対し、内燃機関1の始動時においては、図2(b)に示すように、暖機終了後と比較して吸気弁12及び排気弁9の開閉時期が進角した状態にされる(以下、この状態を「始動時進角状態」ともいう。)。具体的には、本実施例においては、吸気弁12は例えば、TDCに対して3度からBDCに対して61度までの範囲で開弁する。一方、排気弁9はBDCに対して76度からTDCに対して−16度までの範囲で開弁する。ここで示される吸気弁12及び排気弁9の開閉弁時期は、本実施例における始動時開閉時期に相当する。   On the other hand, when the internal combustion engine 1 is started, as shown in FIG. 2B, the opening / closing timings of the intake valve 12 and the exhaust valve 9 are advanced as compared to after the warm-up is completed (see FIG. 2B). Hereinafter, this state is also referred to as “start-up advance state”). Specifically, in the present embodiment, the intake valve 12 opens, for example, in a range from 3 degrees to TDC to 61 degrees to BDC. On the other hand, the exhaust valve 9 opens in a range from 76 degrees to BDC to -16 degrees to TDC. The opening / closing valve timings of the intake valve 12 and the exhaust valve 9 shown here correspond to the opening / closing timing at start in this embodiment.

また、本実施例においては、吸気側VVT17及び排気側VVT16の初期状態(ECU20からの指令により作動していない状態)において上記の始動時進角状態が実現されるように、初期の吸気弁12及び排気弁9の開閉弁時期が設定されており、このように初期設定されたシステムが、本実施例における始動時進角手段に相当する。   Further, in the present embodiment, the initial intake valve 12 is set so that the above-mentioned start-up advance state is realized in the initial state of the intake side VVT 17 and the exhaust side VVT 16 (the state in which the intake side VVT 16 is not operated by a command from the ECU 20). The opening / closing valve timing of the exhaust valve 9 is set, and the system initially set in this way corresponds to the start time advance means in this embodiment.

このような始動進角状態においては、TDC付近において気筒2内の圧力を上昇させることができ、吸気弁12が開弁する際に吸気ポート11側により高圧の圧縮ガスを吹き戻すことができるので、燃料噴射弁10からの噴射燃料の微粒化を促進し、始動時における燃焼安定性を向上させることができる効果がある。   In such a starting advance state, the pressure in the cylinder 2 can be increased in the vicinity of TDC, and high-pressure compressed gas can be blown back to the intake port 11 side when the intake valve 12 is opened. There is an effect that the atomization of the fuel injected from the fuel injection valve 10 can be promoted and the combustion stability at the start can be improved.

そして、従来の内燃機関の制御では、内燃機関の始動時において上記の始動時進角状態を維持することにより燃焼安定性を確保し、内燃機関の冷却水温が所定温度以上となり暖機が終了すると、今度は吸気側VVT17、排気側VVT16を用いて、吸気弁12及び排気弁9の開閉時期を、運転状態に応じて適切な運転性能及び燃費が得られるタイミングに制御されていた。この暖機終了後の制御は本実施例における運転状態対応制御に相当し、その際に吸気側VVT17及び排気側VVT16に指令を与えるECU20は運転状態対応制御手段に相当する。   In the control of the conventional internal combustion engine, when the internal combustion engine is started, combustion stability is ensured by maintaining the above-mentioned advance state at the time of start, and when the cooling water temperature of the internal combustion engine becomes equal to or higher than a predetermined temperature and the warm-up ends. In this case, using the intake side VVT 17 and the exhaust side VVT 16, the opening / closing timing of the intake valve 12 and the exhaust valve 9 is controlled to a timing at which appropriate driving performance and fuel consumption can be obtained according to the driving state. The control after the warm-up is completed corresponds to the operation state corresponding control in this embodiment, and the ECU 20 that gives commands to the intake side VVT 17 and the exhaust side VVT 16 at this time corresponds to the operation state corresponding control means.

ところで、内燃機関1の始動時において上記の始動時進角状態とされた場合には、燃焼
した直後の、充分に膨張していない高温の燃焼ガスを排気系に排出することができるので、上記の燃焼安定性を向上させる効果の他に、排気の温度を上昇させることができるという副次的な効果があることが分かっている。
By the way, when the internal combustion engine 1 is in the above-described advance state at the time of start-up, high-temperature combustion gas that has not been sufficiently expanded immediately after combustion can be discharged to the exhaust system. In addition to the effect of improving the combustion stability, it has been found that there is a secondary effect that the temperature of the exhaust can be raised.

そこで、本実施例においては、始動時進角状態の上記の副次的な効果を用いて排気の温度を上昇させることにより、排気通路6における空燃比センサ18近傍の温度の上昇を促進し、空燃比センサ18近傍の水滴が始動後のより早い時期に蒸発して消滅するようにした。   Therefore, in the present embodiment, the temperature of the exhaust gas is increased by using the above-mentioned secondary effect in the starting advance angle state, thereby promoting the temperature increase in the vicinity of the air-fuel ratio sensor 18 in the exhaust passage 6, The water droplets in the vicinity of the air-fuel ratio sensor 18 evaporate and disappear at an earlier time after starting.

すなわち本実施例においては、内燃機関1の冷却水温が前述した所定温度以上となっても吸気側VVT17及び排気側VVT16を作動させずに、排気通路6における空燃比センサ18近傍の温度が、水滴が消滅する水滴消滅温度(=露点温度)Tw以上となるまで
、始動時進角状態を継続することとした。
That is, in the present embodiment, even if the cooling water temperature of the internal combustion engine 1 is equal to or higher than the predetermined temperature described above, the temperature in the vicinity of the air-fuel ratio sensor 18 in the exhaust passage 6 is reduced by water droplets without operating the intake side VVT 17 and the exhaust side VVT 16. The water advance extinction temperature (= dew point temperature) at which the water vapor disappears is determined to continue the advance angle state at the start until the temperature becomes equal to or higher than Tw.

図3には、本実施例におけるVVT作動時期制御ルーチンのフローチャートを示す。本ルーチンは、ECU20のROMに記憶されたプログラムであり、内燃機関1の電源投入中は所定期間毎に実行されるルーチンである。   FIG. 3 shows a flowchart of a VVT operation timing control routine in the present embodiment. This routine is a program stored in the ROM of the ECU 20 and is executed every predetermined period while the internal combustion engine 1 is powered on.

本ルーチンが実行されると、まずS101において内燃機関1が始動したかどうかが判定される。ここで、内燃機関1が始動されていないと判定された場合には、そのまま本ルーチンを一旦終了する。一方、内燃機関1が始動したと判定された場合には、S102に進む。   When this routine is executed, it is first determined in S101 whether the internal combustion engine 1 has been started. Here, when it is determined that the internal combustion engine 1 has not been started, this routine is temporarily terminated. On the other hand, if it is determined that the internal combustion engine 1 has started, the process proceeds to S102.

S102においては、空燃比センサ18近傍における排気通路6の壁面温度Tssrを推
定する。具体的には、内燃機関1の始動開始からの積算吸入空気量から所定の実験式を用いて推定するが、詳細は後述する。S102の処理が終了するとS103に進む。
In S102, the wall surface temperature Tssr of the exhaust passage 6 in the vicinity of the air-fuel ratio sensor 18 is estimated. Specifically, it is estimated from a cumulative intake air amount from the start of the internal combustion engine 1 using a predetermined empirical formula, which will be described in detail later. When the process of S102 ends, the process proceeds to S103.

S103においては、推定された排気通路6の壁面温度Tssrが、水滴消滅温度Tw以上かどうかが判定される。ここで、温度Tssrが水滴消滅温度Tw以上と判定された場合には、S104に進む。一方、温度Tssrが水滴消滅温度Twより低いと判定された場合には、S105に進む。   In S103, it is determined whether the estimated wall surface temperature Tssr of the exhaust passage 6 is equal to or higher than the water droplet extinction temperature Tw. Here, if it is determined that the temperature Tssr is equal to or higher than the water droplet extinction temperature Tw, the process proceeds to S104. On the other hand, if it is determined that the temperature Tssr is lower than the water drop extinction temperature Tw, the process proceeds to S105.

S104においては、吸気側VVT17及び排気側VVT16の作動を開始し、内燃機関1の運転状態に応じて吸気弁12及び排気弁9の開閉時期を変更する制御を開始する。また、S105においては、吸気側VVT17及び排気側VVT16の作動を停止し、または停止状態を継続する。これにより始動時進角状態を継続する。S104またはS105の処理が終了すると本ルーチンを一旦終了する。   In S104, the operation of the intake side VVT 17 and the exhaust side VVT 16 is started, and control for changing the opening / closing timings of the intake valve 12 and the exhaust valve 9 according to the operating state of the internal combustion engine 1 is started. In S105, the operation of the intake side VVT 17 and the exhaust side VVT 16 is stopped or the stopped state is continued. As a result, the advance angle state at the start is continued. When the process of S104 or S105 ends, this routine is temporarily ended.

以上説明したように、本実施例においては、内燃機関1の始動時に、空燃比センサ18近傍の温度として、空燃比センサ18近傍における排気通路6の壁面温度Tssrを推定し
た。そして、壁面温度Tssrが、排気通路6における空燃比センサ18近傍から水滴が消
滅する水滴消滅温度Twより低い間は、吸気側VVT17及び排気側VVT16の作動を
開始せずに始動時進角状態を継続させた。一方、排気通路6の壁面温度Tssrが水滴消滅
温度Tw以上となった場合には、吸気側VVT17及び排気側VVT16の作動を開始し
て、内燃機関1の運転状態に応じて吸気弁12及び排気弁9の開閉時期を最適化し、運転性能及び燃費を向上させることにした。
As described above, in this embodiment, when the internal combustion engine 1 is started, the wall surface temperature Tssr of the exhaust passage 6 near the air-fuel ratio sensor 18 is estimated as the temperature near the air-fuel ratio sensor 18. Then, while the wall surface temperature Tssr is lower than the water droplet extinction temperature Tw at which water droplets disappear from the vicinity of the air-fuel ratio sensor 18 in the exhaust passage 6, the intake side VVT 17 and the exhaust side VVT 16 are not started and the start-up advance state is established. Continued. On the other hand, when the wall surface temperature Tssr of the exhaust passage 6 becomes equal to or higher than the water droplet extinction temperature Tw, the operation of the intake side VVT 17 and the exhaust side VVT 16 is started, and the intake valve 12 and the exhaust gas are exhausted according to the operating state of the internal combustion engine 1. The opening and closing timing of the valve 9 was optimized to improve driving performance and fuel consumption.

これによれば、内燃機関1の始動時においてより積極的に排気の温度を上昇させ、空燃比センサ18のセンサヒータへの通電開始時期を早期化することができる。その結果、内燃機関1の始動時において空燃比フィードバック制御を早期に開始することができ、エミ
ッションを向上させることができる。
According to this, the temperature of the exhaust gas can be more positively raised at the start of the internal combustion engine 1 and the energization start timing of the air-fuel ratio sensor 18 to the sensor heater can be advanced. As a result, the air-fuel ratio feedback control can be started early when the internal combustion engine 1 is started, and the emission can be improved.

なお、上記の制御においては、壁面温度Tssrが、排気通路6における空燃比センサ1
8近傍から水滴が消滅する水滴消滅温度Twより低い間は、吸気側VVT17及び排気側
VVT16両方の作動を開始せずに、吸気弁12及び排気弁9の両方について始動時進角状態を継続させた。しかし、少なくとも、排気弁9の開閉時期についてのみ、始動時の進角状態を継続させれば、本発明において充分な効果が得られるので、上記の制御を排気弁9についてのみ適用しても構わない。
In the above control, the wall surface temperature Tssr is determined by the air-fuel ratio sensor 1 in the exhaust passage 6.
As long as the temperature is lower than the water droplet extinction temperature Tw at which the water droplets disappear from the vicinity of 8, the operation of both the intake side VVT 17 and the exhaust side VVT 16 is not started, and both the intake valve 12 and the exhaust valve 9 are kept in the advanced state at the start. It was. However, if at least the opening / closing timing of the exhaust valve 9 is continued, the advancement state at the time of starting is continued, so that a sufficient effect can be obtained in the present invention. Therefore, the above control may be applied only to the exhaust valve 9. Absent.

次に、図4から図6を用いて、上記のVVT作動時期制御ルーチンのS102において空燃比センサ18近傍における排気通路6の壁面温度Tssrを推定する方法について説明
する。図4には、本実施例における始動時の積算吸入空気量と空燃比センサ18近傍の排気通路6の壁面温度Tssrとの関係を示したグラフを示す。このグラフは実験によって求
められたものである。図4に示すように、壁面温度Tssrが第1閾温度T1未満のA領域
と、壁面温度Tssrが第1閾温度T1以上で第2閾温度T2未満のB領域と、壁面温度Tssrが第2閾温度T2以上のC領域では、積算吸入空気量と、壁面温度Tssrとの関係が異
なる。
Next, a method for estimating the wall surface temperature Tssr of the exhaust passage 6 in the vicinity of the air-fuel ratio sensor 18 in S102 of the VVT operation timing control routine will be described with reference to FIGS. FIG. 4 is a graph showing the relationship between the integrated intake air amount at start-up and the wall surface temperature Tssr of the exhaust passage 6 in the vicinity of the air-fuel ratio sensor 18 in this embodiment. This graph was obtained by experiment. As shown in FIG. 4, the A region where the wall surface temperature Tssr is less than the first threshold temperature T1, the B region where the wall surface temperature Tssr is equal to or higher than the first threshold temperature T1 and less than the second threshold temperature T2, and the wall surface temperature Tssr is the second. In the C region that is equal to or higher than the threshold temperature T2, the relationship between the integrated intake air amount and the wall surface temperature Tssr is different.

A領域、B領域、C領域のそれぞれにおける壁面温度Tssrと積算吸入空気量との関係
は、以下の式で表される。
A領域においては、
Tssr=ega1sum×ΔA×kTHW・・・・・・・・(1)
B領域においては、
Tssr=ega1sum×ΔB×kGAS×kTHW・・・・・(2)
C領域においては、
Tssr=ega1sum×ΔC×kTHW・・・・・・・・(3)
ここで、ega1sumは、内燃機関1の排気量1Lあたりの積算吸入空気量である。ΔA、Δ
B、ΔCは各領域に対して実験によって求められた比例定数である。kGASは、特にB領域において用いられる補正係数である。kTHWは、始動時の冷却水温によって定められる補正係数である。また、第1閾温度は、空燃比センサ18近傍の露点温度(例えば54℃)としてもよい。第2閾温度は、例えば60℃としてもよい。
The relationship between the wall surface temperature Tssr and the integrated intake air amount in each of the A region, the B region, and the C region is expressed by the following equation.
In area A,
Tssr = ega1sum × ΔA × kTHW (1)
In region B,
Tssr = ega1sum × ΔB × kGAS × kTHW (2)
In region C,
Tssr = ega1sum × ΔC × kTHW (3)
Here, ega1sum is an integrated intake air amount per 1 L of the exhaust amount of the internal combustion engine 1. ΔA, Δ
B and ΔC are proportionality constants obtained by experiments for each region. kGAS is a correction coefficient used particularly in the B region. kTHW is a correction coefficient determined by the cooling water temperature at the start. Further, the first threshold temperature may be a dew point temperature in the vicinity of the air-fuel ratio sensor 18 (for example, 54 ° C.). The second threshold temperature may be 60 ° C., for example.

なお、図5には、補正係数kGASと吸入空気量(100msあたりのega1sum更新量)と
の関係及び、kTHWと始動時水温との関係の例について示す。
FIG. 5 shows an example of the relationship between the correction coefficient kGAS and the intake air amount (ega1sum update amount per 100 ms) and the relationship between kTHW and the starting water temperature.

次に、図6には、本実施例における壁面温度推定ルーチンのフローチャートを示す。本ルーチンは、ECU20のROMに記憶されたプログラムであり、内燃機関1の電源投入中は所定期間毎に実行されるルーチンである。   Next, FIG. 6 shows a flowchart of a wall surface temperature estimation routine in the present embodiment. This routine is a program stored in the ROM of the ECU 20 and is executed every predetermined period while the internal combustion engine 1 is powered on.

本ルーチンが実行されるとまず、S201において内燃機関1が始動したかどうかが判定される。ここで内燃機関1が始動していないと判定された場合には、そのまま本ルーチンを一旦終了する。一方、内燃機関1が始動していると判定された場合にはS202に進む。   When this routine is executed, it is first determined in S201 whether the internal combustion engine 1 has been started. Here, if it is determined that the internal combustion engine 1 has not been started, the present routine is immediately terminated. On the other hand, if it is determined that the internal combustion engine 1 has been started, the routine proceeds to S202.

S202においては、吸入空気量が取得される。具体的には、エアフローメータ13の出力信号をECU20に読み込むことによって取得される。S202の処理が終了すればS203に進む。   In S202, the intake air amount is acquired. Specifically, it is acquired by reading the output signal of the air flow meter 13 into the ECU 20. If the process of S202 ends, the process proceeds to S203.

S203においては、内燃機関1の始動後1回目の本ルーチンの実行かどうかが判定される。具体的には、例えば内燃機関1の停止時に所定のフラグを0にしておき、内燃機関
1の始動後1回目の本ルーチンの実行後に該フラグを1にするようにしておく。そして、この処理において当該フラグの値をECU20に読み込むことにより判定してもよい。ここで、内燃機関1の始動後1回目の実行であると判定された場合にはS204に進む。一方、始動後1回目の実行ではないと判定された場合にはS205に進む。
In S203, it is determined whether this routine is executed for the first time after the internal combustion engine 1 is started. Specifically, for example, a predetermined flag is set to 0 when the internal combustion engine 1 is stopped, and the flag is set to 1 after execution of the first routine after the internal combustion engine 1 is started. And in this process, you may determine by reading the value of the said flag into ECU20. Here, if it is determined that this is the first execution after the internal combustion engine 1 is started, the process proceeds to S204. On the other hand, if it is determined that it is not the first execution after the start, the process proceeds to S205.

S204においては、現在の排気通路6の壁面温度Tssrが推定される。この場合、内
燃機関1の始動後1回目の実行であるので一旦、領域Aの場合の式(1)を用いて壁面温度Tssrが推定される。S204の処理が終了するとS205に進む。
In S204, the current wall surface temperature Tssr of the exhaust passage 6 is estimated. In this case, since it is the first execution after the internal combustion engine 1 is started, the wall surface temperature Tssr is once estimated using the expression (1) in the case of the region A. When the process of S204 ends, the process proceeds to S205.

S205においては、推定による現在の排気通路6の壁面温度Tssrが第1閾温度T1
以上かどうかが判定される。ここで否定判定された場合には、S206に進む。一方、肯定判定された場合にはS207に進む。
In S205, the estimated current wall surface temperature Tssr of the exhaust passage 6 is the first threshold temperature T1.
It is determined whether or not this is the case. If a negative determination is made here, the process proceeds to S206. On the other hand, if a positive determination is made, the process proceeds to S207.

S207においては、推定による現在の排気通路6の壁面温度Tssrが第2閾温度T2
以上かどうかが判定される。ここで否定判定された場合には、S208に進む。一方、肯定判定された場合にはS209に進む。
In S207, the current estimated wall surface temperature Tssr of the exhaust passage 6 is the second threshold temperature T2.
It is determined whether or not this is the case. If a negative determination is made here, the process proceeds to S208. On the other hand, if a positive determination is made, the process proceeds to S209.

そして、S206、S208、S209の各処理においては、各々式(1)、(2)、(3)を用いて、排気通路6の壁面温度Tssrの値が算出される。なお、積算吸入空気量
の値は、本ルーチンの毎回の実行時において、S202で取得される吸入空気量の値を積算していくことで得られる。S206、S208、S209の各処理が終了すると本ルーチンを一旦終了する。
And in each process of S206, S208, and S209, the value of wall surface temperature Tssr of the exhaust passage 6 is calculated using Formula (1), (2), (3), respectively. Note that the value of the integrated intake air amount is obtained by integrating the intake air amount value acquired in S202 at each execution of this routine. When the processes of S206, S208, and S209 are completed, this routine is temporarily ended.

このように、本実施例においては、予め求められた、空燃比センサ18近傍の排気通路6の壁面温度Tssrを、積算吸入吸気量から予め求められた実験式を用いて求めることに
したので、温度センサなどを用いずにより正確に、空燃比センサ18近傍の温度を取得することができる。
As described above, in the present embodiment, the wall temperature Tssr of the exhaust passage 6 near the air-fuel ratio sensor 18 obtained in advance is obtained using the experimental formula obtained in advance from the integrated intake air amount. The temperature near the air-fuel ratio sensor 18 can be obtained more accurately without using a temperature sensor or the like.

なお、上記の実施例においては、空燃費センサ18近傍の温度として、排気通路6の壁面温度Tssrを推定したが、空燃費センサ18近傍の温度としては、空燃費センサ18近
傍における排気自体の温度など、他の温度を採用しても構わない。また、温度センサを用いて空燃費センサ18近傍の実際の温度を検出するようにしても構わない。
In the above embodiment, the wall surface temperature Tssr of the exhaust passage 6 is estimated as the temperature in the vicinity of the air fuel consumption sensor 18, but the temperature in the vicinity of the air fuel consumption sensor 18 is the temperature of the exhaust itself in the vicinity of the air fuel consumption sensor 18. Other temperatures may be employed. Moreover, you may make it detect the actual temperature of the air-fuel-consumption sensor 18 vicinity using a temperature sensor.

本発明の実施例における内燃機関と、その吸排気系及び制御系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine in the Example of this invention, its intake / exhaust system, and a control system. 従来の始動時進角状態における、吸気弁及び排気弁の開閉時期について説明するための図である。It is a figure for demonstrating the opening-and-closing timing of an intake valve and an exhaust valve in the conventional starting advance angle state. 本発明の実施例におけるVVT作動時期制御ルーチンについてのフローチャートである。It is a flowchart about the VVT operation timing control routine in the Example of this invention. 本発明の実施例における積算吸入空気量と空燃比センサ近傍の排気通路の壁面温度推定値との関係を示す図である。It is a figure which shows the relationship between the integrated intake air amount in the Example of this invention, and the wall surface temperature estimated value of the exhaust passage near an air fuel ratio sensor. 本発明の実施例における排気通路の壁面温度の推定式における各補正係数の変化について示すグラフである。It is a graph shown about the change of each correction coefficient in the estimation formula of the wall surface temperature of the exhaust passage in the Example of the present invention. 本発明の実施例における壁面温度推定ルーチンについてのフローチャートである。It is a flowchart about the wall surface temperature estimation routine in the Example of this invention.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・気筒
3・・・ピストン
4・・・コンロッド
5・・・吸気通路
6・・・排気通路
7・・・排気浄化装置
8・・・排気ポート
9・・・排気弁
10・・・燃料噴射弁
11・・・吸気ポート
12・・・吸気弁
13・・・エアフローメータ
14・・・スロットル弁
16・・・排気側VVT
17・・・吸気側VVT
20・・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 3 ... Piston 4 ... Connecting rod 5 ... Intake passage 6 ... Exhaust passage 7 ... Exhaust gas purification device 8 ... Exhaust port 9 ... Exhaust valve 10 ... Fuel injection valve 11 ... Intake port 12 ... Intake valve 13 ... Air flow meter 14 ... Throttle valve 16 ... Exhaust side VVT
17 ... Intake side VVT
20 ... ECU

Claims (4)

内燃機関の排気通路に設けられ、加熱により活性化された状態で排気の空燃比を検出可能な空燃比センサと、
前記内燃機関の始動時において排気弁の開閉時期を、暖機終了後における排気弁の開閉時期の基準である基準開閉時期より進角側の始動時開閉時期に設定する始動時進角手段と、
前記排気弁の開閉時期を変更可能な可変動弁機構と、
前記内燃機関の運転状態に応じて、前記可変動弁機構によって前記排気弁の開閉時期を変更させる運転状態対応制御を行う運転状態対応制御手段と、
前記排気通路における前記空燃比センサ近傍の温度を取得する温度取得手段と、を備え、
前記内燃機関の始動時において前記温度取得手段によって取得された前記空燃比センサ近傍の温度が、前記排気通路における水滴が消滅する露点温度より低い場合には、前記排気弁の開閉時期を前記始動時開閉時期に維持し、
前記空燃比センサ近傍の温度が、前記露点温度以上となった後に、前記運転状態対応制御手段が前記運転状態対応制御を開始することを特徴とする内燃機関の制御装置。
An air-fuel ratio sensor provided in an exhaust passage of the internal combustion engine and capable of detecting an air-fuel ratio of exhaust in a state activated by heating;
A start time advance means for setting the open / close timing of the exhaust valve at the start of the internal combustion engine to a start time open / close timing that is an advance side of a reference open / close timing that is a reference of the open / close timing of the exhaust valve after completion of warm-up;
A variable valve mechanism capable of changing the opening and closing timing of the exhaust valve;
An operating state corresponding control means for performing an operating state corresponding control for changing the opening and closing timing of the exhaust valve by the variable valve mechanism according to the operating state of the internal combustion engine;
Temperature obtaining means for obtaining a temperature in the vicinity of the air-fuel ratio sensor in the exhaust passage,
When the temperature in the vicinity of the air-fuel ratio sensor acquired by the temperature acquisition means at the time of starting the internal combustion engine is lower than the dew point temperature at which water drops in the exhaust passage disappear, the opening / closing timing of the exhaust valve is set at the time of starting. Maintained at the opening and closing time,
The control apparatus for an internal combustion engine, wherein the operation state correspondence control unit starts the operation state correspondence control after the temperature in the vicinity of the air-fuel ratio sensor becomes equal to or higher than the dew point temperature .
前記空燃比センサ近傍の温度が、前記露点温度以上となった後に、前記空燃比センサのセンサヒータへの通電を開始することを特徴とする請求項1に記載の内燃機関の制御装置。 2. The control device for an internal combustion engine according to claim 1, wherein energization of the sensor heater of the air-fuel ratio sensor is started after the temperature in the vicinity of the air-fuel ratio sensor becomes equal to or higher than the dew point temperature . 前記温度取得手段は、前記内燃機関の積算吸入空気量から前記排気通路における前記空燃比センサ近傍の温度を推定することを特徴とする請求項1または2に記載の内燃機関の制御装置。   3. The control device for an internal combustion engine according to claim 1, wherein the temperature acquisition unit estimates a temperature in the vicinity of the air-fuel ratio sensor in the exhaust passage from an integrated intake air amount of the internal combustion engine. 前記温度取得手段は、前記内燃機関の積算吸入空気量及び前記内燃機関の始動時における冷却水温から前記排気通路における前記空燃比センサ近傍の温度を推定することを特徴とする請求項1または2に記載の内燃機関の制御装置。   The temperature acquisition means estimates the temperature in the vicinity of the air-fuel ratio sensor in the exhaust passage from the integrated intake air amount of the internal combustion engine and the cooling water temperature at the start of the internal combustion engine. The internal combustion engine control device described.
JP2007057792A 2007-03-07 2007-03-07 Control device for internal combustion engine Expired - Fee Related JP4770758B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007057792A JP4770758B2 (en) 2007-03-07 2007-03-07 Control device for internal combustion engine
PCT/JP2008/054556 WO2008108502A1 (en) 2007-03-07 2008-03-06 Control device for internal combustion engine
US12/530,292 US8000886B2 (en) 2007-03-07 2008-03-06 Control device for internal combustion engine
DE112008000617.2T DE112008000617B4 (en) 2007-03-07 2008-03-06 Control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057792A JP4770758B2 (en) 2007-03-07 2007-03-07 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008215318A JP2008215318A (en) 2008-09-18
JP4770758B2 true JP4770758B2 (en) 2011-09-14

Family

ID=39738364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057792A Expired - Fee Related JP4770758B2 (en) 2007-03-07 2007-03-07 Control device for internal combustion engine

Country Status (4)

Country Link
US (1) US8000886B2 (en)
JP (1) JP4770758B2 (en)
DE (1) DE112008000617B4 (en)
WO (1) WO2008108502A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246792A (en) * 2011-05-25 2012-12-13 Toyota Motor Corp Exhaust recirculation control device and exhaust recirculation system of internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992935B2 (en) * 2009-05-21 2012-08-08 株式会社デンソー Exhaust gas sensor activation control device
JP5143170B2 (en) * 2010-03-17 2013-02-13 日立オートモティブシステムズ株式会社 Control method for internal combustion engine
JP6493281B2 (en) * 2016-04-11 2019-04-03 トヨタ自動車株式会社 Exhaust sensor control device
JP6821944B2 (en) * 2016-04-27 2021-01-27 いすゞ自動車株式会社 Internal combustion engine control device and internal combustion engine system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4338342C2 (en) * 1993-11-10 2003-07-31 Bosch Gmbh Robert Method and device for forming a simulated signal with respect to the exhaust gas, the exhaust gas probe or the catalyst temperature
JP3347950B2 (en) * 1996-08-28 2002-11-20 株式会社ユニシアジェックス Exhaust valve timing controller
DE10065125B4 (en) * 2000-12-28 2010-07-08 Robert Bosch Gmbh Method and apparatus for modeling a temperature in the exhaust system of a combustion process
JP3772675B2 (en) 2001-01-30 2006-05-10 トヨタ自動車株式会社 Exhaust particulate removal device for internal combustion engine
JP4394318B2 (en) 2001-10-12 2010-01-06 株式会社デンソー Valve timing control device for internal combustion engine
JP4300794B2 (en) * 2002-12-20 2009-07-22 マツダ株式会社 Fuel injection control device for direct injection engine
JP2004353495A (en) 2003-05-27 2004-12-16 Toyota Motor Corp Sensor protective device for detecting internal combustion engine exhaust gas component
JP4151547B2 (en) 2003-09-30 2008-09-17 トヨタ自動車株式会社 Exhaust gas sensor heater control device
JP4225303B2 (en) * 2005-07-29 2009-02-18 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
EP1910654B1 (en) 2005-07-29 2010-01-27 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2010038053A (en) * 2008-08-06 2010-02-18 Denso Corp Valve antifreeze device and sensor element failure suppressing device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246792A (en) * 2011-05-25 2012-12-13 Toyota Motor Corp Exhaust recirculation control device and exhaust recirculation system of internal combustion engine

Also Published As

Publication number Publication date
DE112008000617T5 (en) 2010-01-28
US20100059029A1 (en) 2010-03-11
JP2008215318A (en) 2008-09-18
DE112008000617B4 (en) 2017-01-05
US8000886B2 (en) 2011-08-16
WO2008108502A1 (en) 2008-09-12

Similar Documents

Publication Publication Date Title
JP6094599B2 (en) Control device and control method for internal combustion engine
JP2008286116A (en) Heater control device of exhaust gas sensor
JP4770758B2 (en) Control device for internal combustion engine
WO2020085031A1 (en) Heater energization control device
JP5692135B2 (en) In-cylinder moisture detection device for internal combustion engine, control device for internal combustion engine
JP2007016710A (en) Valve control system for internal combustion engine
JP4706928B2 (en) Exhaust gas sensor heater control device
JP2018071485A (en) Device for controlling internal combustion engine
US20140338625A1 (en) Enhanced glow plug control
JP2011179406A (en) Abnormality determining device of water temperature sensor
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP2016109014A (en) Control device of engine
JP4621984B2 (en) Exhaust gas sensor heater control device
JP4993314B2 (en) Exhaust gas sensor heater control device
JP2009091949A (en) Gas sensor controlling device
JP4692204B2 (en) Control device for compression ignition type internal combustion engine
JP2008196311A (en) Exhaust gas recirculation device for internal combustion engine
JP5630135B2 (en) Air-fuel ratio detection device
JP3990902B2 (en) Control device for internal combustion engine
JP6264272B2 (en) Engine control device
JP2016125458A (en) Engine control device
JP2009168759A (en) Heater control device of exhaust gas sensor
JP2007002685A (en) Ignition timing control device for internal combustion engine
JP2013238125A (en) Control device of internal combustion engine
JP6065857B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4770758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees