JP4769487B2 - X-ray measuring device - Google Patents

X-ray measuring device Download PDF

Info

Publication number
JP4769487B2
JP4769487B2 JP2005147486A JP2005147486A JP4769487B2 JP 4769487 B2 JP4769487 B2 JP 4769487B2 JP 2005147486 A JP2005147486 A JP 2005147486A JP 2005147486 A JP2005147486 A JP 2005147486A JP 4769487 B2 JP4769487 B2 JP 4769487B2
Authority
JP
Japan
Prior art keywords
data
value
saturation
ray
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005147486A
Other languages
Japanese (ja)
Other versions
JP2006320591A (en
Inventor
理香 馬場
健 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005147486A priority Critical patent/JP4769487B2/en
Publication of JP2006320591A publication Critical patent/JP2006320591A/en
Application granted granted Critical
Publication of JP4769487B2 publication Critical patent/JP4769487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は,検出器において生じた飽和現象および被写体のはみ出し現象を補正し,値の均一性を向上した良好な3次元像を得ることが可能なX線計測装置に関する。   The present invention relates to an X-ray measurement apparatus capable of correcting a saturation phenomenon and a protrusion phenomenon of a subject that occur in a detector and obtaining a good three-dimensional image with improved value uniformity.

C字型の支柱(以下,Cアーム)の両端にX線源と2次元X線検出器を対向するように設置したX線計測装置がある。Cアームを天井から吊るす形状や,Cアームを床から支える形状がある。また,ガントリ上にX線源と2次元X線検出器を対向するように設置したX線計測装置がある。これらの装置において,Cアームあるいはガントリを移動させることにより,X線源と検出器を被写体の周囲で回転させながらX線計測を行うことが可能である。また,回転計測により得られた複数の計測データにそれぞれ補正処理を施して3次元再構成のための1組の投影データを得,得られた1組の投影データに対して3次元再構成アルゴリズムを用いて再構成処理を行い,3次元再構成像を得ることが可能である。   There is an X-ray measurement apparatus in which an X-ray source and a two-dimensional X-ray detector are installed at both ends of a C-shaped support (hereinafter referred to as C arm). There are shapes that suspend the C-arm from the ceiling and shapes that support the C-arm from the floor. In addition, there is an X-ray measurement device in which an X-ray source and a two-dimensional X-ray detector are installed on a gantry so as to face each other. In these apparatuses, by moving the C-arm or gantry, it is possible to perform X-ray measurement while rotating the X-ray source and detector around the subject. In addition, a plurality of measurement data obtained by rotational measurement are respectively corrected to obtain one set of projection data for three-dimensional reconstruction, and a three-dimensional reconstruction algorithm is obtained for the obtained one set of projection data. It is possible to obtain a three-dimensional reconstructed image by performing reconstruction processing using

これらの3次元計測装置において,計測時に検出器に飽和が生じたり,被写体が検出器の視野からはみ出していると,3次元再構成像において値の不均一が生じ,画質が低下する。被写体の投影データにおいて,はみ出した領域のデータを楕円関数で外挿して補う手法が特許文献1に記載されている。また,被写体の投影データにおいて,はみ出した領域のデータを境界付近のデータを用いて近似した関数で外挿して補う手法が特許文献2に記載されている。   In these three-dimensional measuring devices, if the detector is saturated at the time of measurement or if the subject protrudes from the field of view of the detector, non-uniform values occur in the three-dimensional reconstructed image, and the image quality deteriorates. Japanese Patent Application Laid-Open No. 2004-151867 describes a method of extrapolating extra area data with an elliptic function in projection data of a subject. Japanese Patent Application Laid-Open No. 2004-259542 describes a method of extrapolating extrapolated area data with a function approximated using data in the vicinity of the boundary in the projection data of the subject.

特開平09-066051JP 09-066051

特開2004-121853JP2004-121853

特許文献1に示す従来技術では,被写体の投影データにおいて,検出器の視野からはみ出した領域のデータを回転軸の位置を中心とする楕円関数で外挿して補う。被写体が回転軸を中心線とする楕円形で近似される場合,投影データのプロファイルは楕円関数となり,この近似は妥当である。しかし,特許文献1では楕円関数を,回転軸の位置を中心とし,外挿領域の開始位置の値を通り,始点から予め定められた一律の距離の位置で0となる関数として求めている。即ち,被写体を回転軸を中心とし,回転軸に沿って予め予測した同じ断面形状を持つ楕円柱としている。そのため,回転軸に沿って断面形状の異なる被写体に対しては,はみ出しの補正が良好に行われないと言う課題があった。また,個体差の大きい被写体を計測する場合には予め予測した基本形との乖離を生じるため,補正が任意の被写体に対応できないと言う課題があった。   In the prior art disclosed in Patent Document 1, the projection data of the subject is supplemented by extrapolating the data of the region protruding from the detector field of view with an elliptic function centered on the position of the rotation axis. When the object is approximated by an ellipse with the rotation axis as the centerline, the profile of the projection data is an elliptic function, and this approximation is valid. However, in Patent Document 1, the elliptic function is obtained as a function that becomes 0 at a predetermined distance from the start point through the value of the start position of the extrapolation area centered on the position of the rotation axis. That is, the subject is an elliptical cylinder having the same cross-sectional shape predicted in advance along the rotation axis with the rotation axis as the center. For this reason, there has been a problem that the correction of the protrusion is not satisfactorily performed on the subject having a different cross-sectional shape along the rotation axis. Further, when measuring a subject having a large individual difference, there is a problem that correction cannot be applied to an arbitrary subject because a deviation from a basic shape predicted in advance occurs.

特許文献2に示す従来技術では,被写体の投影データにおいて,検出器の視野からはみ出した領域のデータをはみ出しの開始位置付近のデータを用いて近似した関数で外挿して補う。この方法では、開始位置付近のみのデータを用い,これらを円弧上の点と仮定することによって関数の傾きを求めるため,被写体形状を復元するとは限らない。そのため,補正を良好に行うためには,はみ出しのないデータを用いてはみ出し量をスケーリングし直す必要があると言う課題があった。   In the prior art disclosed in Patent Document 2, the projection data of the subject is extrapolated by extrapolating the data of the region protruding from the detector field of view with the function approximated using the data in the vicinity of the protruding start position. In this method, the data of only the vicinity of the start position is used, and the inclination of the function is obtained by assuming these as points on the arc, so that the subject shape is not necessarily restored. For this reason, in order to perform the correction satisfactorily, there is a problem that it is necessary to rescale the amount of protrusion using data that does not protrude.

特許文献1および2に示す従来技術では,はみ出しの開始位置付近のデータが飽和を生じていると,良好な外挿関数を求めることができず,補正を良好に行うことができないと言う課題があった。   In the prior arts shown in Patent Documents 1 and 2, there is a problem that when the data near the start position of the protrusion is saturated, a good extrapolation function cannot be obtained and correction cannot be performed satisfactorily. there were.

本発明の目的は,検出器において生じた飽和現象および被写体のはみ出し現象を補正することにより3次元再構成像の値の不均一性を補正し,良好な3次元像を得ることが可能なX線計測装置を提供することにある。   An object of the present invention is to correct a non-uniformity in the value of a three-dimensional reconstructed image by correcting a saturation phenomenon and a protrusion phenomenon of a subject that occur in a detector, and an X that can obtain a good three-dimensional image. The object is to provide a line measuring device.

上記の目的は,検査対象に照射するX線を発生するX線源と,検査対象に関する計測データを検出するX線検出器と,X線源とX線検出器を対向させて保持する保持装置と,検査対象に対するX線源およびX線検出器の相対位置を変化させる回転装置と,計測データの演算処理を行う制御処理装置とを有するX線計測装置において,被写体を設置せずに撮影した感度データと被写体の計測データの除算演算を行う手段と,除算データを対数変換処理する手段と,対数変換データにおいて飽和領域を判別する手段と,飽和領域における値を飽和領域の境界点から外挿した値に変換する手段と,被写体のはみ出し領域における値を対数変換データの端から外挿した値に変換する手段と,値を変換した後の対数変換データを用いて再構成演算を行い3次元像を得る手段を有することを特徴とするX線計測装置により達成される。   The above-described object is to provide an X-ray source that generates X-rays to be irradiated on an inspection object, an X-ray detector that detects measurement data relating to the inspection object, and a holding device that holds the X-ray source and the X-ray detector facing each other. And an X-ray measurement apparatus having a rotation device that changes the relative positions of the X-ray source and the X-ray detector with respect to the inspection target and a control processing device that performs calculation processing of measurement data. Means for dividing the sensitivity data and subject measurement data, means for logarithmically transforming the divided data, means for determining the saturation area in the logarithmic transformation data, and extrapolating the value in the saturation area from the boundary point of the saturation area Means for converting the value in the protruding area of the subject into a value extrapolated from the end of the logarithmic conversion data, and performing reconstruction calculation using the logarithmic conversion data after the value conversion. It is achieved by X-ray measuring apparatus characterized by having a means for obtaining a dimension image.

本発明によれば,検出器において生じた飽和現象および被写体のはみ出し現象を補正し,値の均一性を向上した良好な3次元像を得ることができる。   According to the present invention, it is possible to correct a saturation phenomenon and an object protrusion phenomenon that occur in a detector, and obtain a good three-dimensional image with improved value uniformity.

以下,本発明の実施形態を説明する。
図2に,本発明に係るX線計測装置の側面図を示す。X線計測装置はX線源201,検出器202,支柱203,回転装置204,寝台205,制御処理装置206から成る。X線源201と検出器202は支柱203に設置されている。支柱203にはC字型のアームや,コ字型のアームや,ガントリ等が用いられる。図2では,C字型のアームを示す。支柱203を天井から吊るす形態や,支柱203を床から支える形態が考えられる。支柱203は回転装置204により,回転軸207を中心として寝台205上に横になった被写体208の周囲を回転する。図2では,最も一般的な形態として,回転軸207および寝台205が床に平行である場合を示した。支柱203および寝台205を移動させることにより,回転軸207を体軸に対して斜めに設定することも可能である。また,回転軸207が床に対して垂直であり,支柱203が椅子に座った被写体208の周囲を回転する形態も可能である。
Hereinafter, embodiments of the present invention will be described.
FIG. 2 shows a side view of the X-ray measuring apparatus according to the present invention. The X-ray measuring apparatus includes an X-ray source 201, a detector 202, a support 203, a rotating device 204, a bed 205, and a control processing device 206. The X-ray source 201 and the detector 202 are installed on the column 203. For the support 203, a C-shaped arm, a U-shaped arm, a gantry, or the like is used. FIG. 2 shows a C-shaped arm. The form which suspends the support | pillar 203 from a ceiling and the form which supports the support | pillar 203 from a floor can be considered. The support column 203 is rotated by the rotating device 204 around the subject 208 lying on the bed 205 around the rotation axis 207. In FIG. 2, the case where the rotating shaft 207 and the bed 205 are parallel to the floor is shown as the most general form. It is also possible to set the rotating shaft 207 obliquely with respect to the body axis by moving the column 203 and the bed 205. Further, a configuration in which the rotation shaft 207 is perpendicular to the floor and the column 203 rotates around the subject 208 sitting on a chair is also possible.

検出器202には平面型X線検出器,X線イメージインテンシファイアとCCDカメラの組み合わせ,イメージングプレート,CCD検出器,固体検出器等が用いられる。平面型X線検出器としては,アモルファスシリコンフォトダイオードとTFTを一対としてこれを正方マトリックス上に配置し,これと蛍光板を直接組み合わせたもの等がある。   As the detector 202, a planar X-ray detector, a combination of an X-ray image intensifier and a CCD camera, an imaging plate, a CCD detector, a solid state detector, or the like is used. As a flat type X-ray detector, there is one in which an amorphous silicon photodiode and a TFT are paired and arranged on a square matrix, and this is directly combined with a fluorescent plate.

X線源201から発生されたX線は被写体208を透過し,検出器202によりX線強度に応じた電気信号に変換され,制御処理装置206に計測データとして入力される。制御処理装置206は,X線源201におけるX線発生,検出器202におけるデータの取得,回転装置204における支柱203の回転を制御する。これにより,X線計測装置は,支柱203を回転しながらX線の発生と計測データの取得を行う回転計測が可能である。制御修理装置206は,計測データに対して,対数変換処理や再構成演算処理等を実行し,3次元データを取得することが可能である。
X線源201と検出器202の間にフィルタ210を設置することが可能である。フィルタ210はアルミニウム,銅,真鍮等の金属,セラミック,樹脂等から成る。フィルタ形状は任意であり、一般的には基本的な被写体形状に合わせたものが用いられる。
X-rays generated from the X-ray source 201 pass through the subject 208, are converted into electric signals corresponding to the X-ray intensity by the detector 202, and are input to the control processing device 206 as measurement data. The control processing device 206 controls the X-ray generation in the X-ray source 201, the acquisition of data in the detector 202, and the rotation of the column 203 in the rotating device 204. As a result, the X-ray measurement apparatus can perform rotation measurement for generating X-rays and acquiring measurement data while rotating the support column 203. The control / repair device 206 can perform logarithmic conversion processing, reconstruction calculation processing, and the like on the measurement data to acquire three-dimensional data.
A filter 210 can be installed between the X-ray source 201 and the detector 202. The filter 210 is made of a metal such as aluminum, copper, or brass, ceramic, resin, or the like. The filter shape is arbitrary, and generally a filter shape that matches the basic object shape is used.

制御処理装置206は,飽和およびはみ出しを補正する処理を実行する。制御処理装置206は,内部に記憶手段209を有し,補正処理に必要な関数,パラメータ,条件等を記憶する。入力手段としては,キーボードからのキー入力,ファイルからの読み込み,記憶チップの交換が考えられる。制御処理手段206は操作メニューとして補正処理の実行の有無を入力するモード,あるいは,スイッチ等を有する。   The control processing device 206 executes processing for correcting saturation and protrusion. The control processing device 206 has a storage means 209 inside, and stores functions, parameters, conditions, etc. necessary for correction processing. As input means, key input from a keyboard, reading from a file, and replacement of a storage chip can be considered. The control processing means 206 has a mode for inputting the presence / absence of execution of correction processing, a switch, or the like as an operation menu.

図1に,本実施例における処理の手順を示す。回転計測を実施し,一連の計測像を得る(101)。一連の計測像から任意の像を選択する(102)。選択した計測像において,任意の1行のデータを選択する(103)。選択した計測データにおいて飽和領域を抽出し,任意の値に変換し,飽和抽出データを得る(104)。検出器において検出素子毎に感度のばらつきがある場合,飽和抽出データにおいて画素毎に検出器の感度のばらつきを補正し,感度補正データを得る(105)。感度データと計測データの間に,X線強度等の撮影強度のずれがある場合には強度のずれを補正し,撮影強度補正データを得る(105)。撮影強度補正データにおいて対数変換を行い,対数変換データ(以下,投影データ)を得る(106)。投影データにおいて,飽和領域における値を飽和領域の境界点から外挿した値に変換し,飽和補正データを得る(107)。選択した計測像上の全ての行において,飽和補正データを得る。飽和補正データの飽和領域において列方向に不連続が見られる場合,飽和補正データを列方向に平滑化し,平滑化像を得る(108)。被写体が検出器の検出領域からはみ出している場合,平滑化像においてデータの端から値を外挿し,はみ出し補正像を得る(109)。全ての計測像に対して,はみ出し補正像を得る。はみ出し補正像を逆投影演算し,再構成像を得る(110)。   FIG. 1 shows a processing procedure in this embodiment. Rotational measurement is performed to obtain a series of measurement images (101). An arbitrary image is selected from the series of measurement images (102). In the selected measurement image, one row of data is selected (103). A saturation region is extracted from the selected measurement data and converted to an arbitrary value to obtain saturation extraction data (104). When there is a variation in sensitivity for each detection element in the detector, the variation in the sensitivity of the detector is corrected for each pixel in the saturation extraction data to obtain sensitivity correction data (105). If there is a difference in imaging intensity such as X-ray intensity between the sensitivity data and the measurement data, the intensity deviation is corrected to obtain imaging intensity correction data (105). Logarithmic conversion is performed on the photographing intensity correction data to obtain logarithmic conversion data (hereinafter, projection data) (106). In the projection data, the value in the saturation region is converted to a value extrapolated from the boundary point of the saturation region to obtain saturation correction data (107). Saturation correction data is obtained for all rows on the selected measurement image. When discontinuity is observed in the column direction in the saturation region of the saturation correction data, the saturation correction data is smoothed in the column direction to obtain a smoothed image (108). If the subject is protruding from the detection area of the detector, values are extrapolated from the end of the data in the smoothed image to obtain a protruding corrected image (109). Overflow correction images are obtained for all measurement images. The projected image is back-projected to obtain a reconstructed image (110).

感度補正処理および対数変換処理の手順を示す。被写体を設置しない状態でX線を照射して計測を行い,検出器の感度データを取得する。X線を照射しない状態で計測を行い,検出器のオフセットデータを取得する。被写体データからオフセットデータを減算し,オフセット補正後被写体データを得る。感度データからオフセットデータを減算し,オフセット補正後感度データを得る。オフセット補正後被写体データをオフセット補正後感度データで除算し,感度補正後被写体データを得る(感度補正処理)。感度補正後被写体データに対して対数変換処理を行い,−1倍し,投影データを得る(対数変換処理)。   A procedure of sensitivity correction processing and logarithmic conversion processing is shown. Measurement is performed by irradiating X-rays with no subject placed, and sensitivity data of the detector is acquired. Measurement is performed without X-ray irradiation, and detector offset data is acquired. The offset data is subtracted from the subject data to obtain subject data after offset correction. Subtract offset data from sensitivity data to obtain sensitivity data after offset correction. Subject data after offset correction is divided by sensitivity data after offset correction to obtain subject data after sensitivity correction (sensitivity correction processing). A logarithmic conversion process is performed on the subject data after sensitivity correction, and multiplied by −1 to obtain projection data (logarithmic conversion process).

計測データから飽和抽出データを得る手順について示す。任意の計測データにおいて,任意の画素を着目位置に設定する。着目位置の値がしきい値Sより小さく,かつ,その左側にしきい値Sより大きな値が連続してN点以上続く場合,着目位置を左側の境界点とする。左側の境界点より左側にあり,しきい値Sより大きな値を有する画素は飽和領域と判定し,特異的な数値,例えば-1000に置換する。同様に,着目位置の値がしきい値Sより小さく,かつ,その右側にしきい値Sより大きな値が連続してN点以上続く場合,着目位置を右側の境界点とする。右側の境界点より右側にあり,Sより大きな値を有する画素は飽和領域と判定し,特異的な数値,例えば-1000に置換する。   A procedure for obtaining saturation extraction data from measurement data will be described. In arbitrary measurement data, an arbitrary pixel is set as a target position. When the value of the target position is smaller than the threshold value S and a value greater than the threshold value S continues to the left side for N points or more, the target position is set as the left boundary point. A pixel that is on the left side of the left boundary point and has a value larger than the threshold value S is determined as a saturated region, and is replaced with a specific numerical value, for example, -1000. Similarly, when the value of the position of interest is smaller than the threshold value S and a value greater than the threshold value S continues on the right side for N points or more, the position of interest is set as the right boundary point. A pixel that is on the right side of the right boundary point and has a value larger than S is determined as a saturated region, and is replaced with a specific numerical value, for example, -1000.

飽和領域の画素は特異的な数値,例えば-1000を有するため,対数変換時に判別が可能である。対数変換時に,値が-1000である画素は変換後の値を特異的な数値,例えば0に設定する。これにより,投影データにおいて飽和領域の画素が判定可能となる。投影データにおいて飽和領域の画素値を0に設定することにより,被写体が存在しない場合の値,即ち,基準値に設定することができる。   Since the pixel in the saturation region has a specific numerical value, for example, -1000, it can be distinguished during logarithmic conversion. During logarithmic conversion, a pixel having a value of −1000 sets the converted value to a specific numerical value, for example, 0. This makes it possible to determine pixels in the saturation region in the projection data. By setting the pixel value of the saturated region to 0 in the projection data, it can be set to a value when no subject exists, that is, a reference value.

投影データから飽和補正データを得る手順について示す。飽和領域の境界点において画素値と,画素値の傾きを求める。画素値と傾きから外挿関数を決定する。画素値が特異数,例えば0の領域に対して外挿関数を用いて外挿値を算出し,画素値を外挿値に置換する。飽和領域の右側と左側の両方から外挿値を算出することが可能な場合,両者の外挿値の加算平均値を求め,画素値を加算平均値に置換する。   A procedure for obtaining saturation correction data from projection data will be described. The pixel value and the gradient of the pixel value are obtained at the boundary point of the saturation region. An extrapolation function is determined from the pixel value and the slope. An extrapolation value is calculated using an extrapolation function for a region where the pixel value is a singular number, for example, 0, and the pixel value is replaced with the extrapolation value. When the extrapolated value can be calculated from both the right and left sides of the saturation region, an average value of the extrapolated values is obtained, and the pixel value is replaced with the average value.

X線源と被写体の間に照射X線の強度を調整するフィルタが設置されている場合,フィルタの厚さが不均一であると,投影データにおける飽和値は位置に依存する。従って,飽和の検出を計測データ上において行う。一方,フィルタの厚さが均一の場合は,投影データにおいて飽和値は位置に依存しないで一定となるため,飽和の判定は対数変換後のデータを用いても可能となる。   When a filter for adjusting the intensity of irradiated X-rays is installed between the X-ray source and the subject, the saturation value in the projection data depends on the position if the filter thickness is not uniform. Therefore, saturation is detected on the measurement data. On the other hand, when the thickness of the filter is uniform, the saturation value in the projection data is constant without depending on the position, so the saturation can be determined using data after logarithmic conversion.

図3に,フィルタの厚さが一定の場合のデータ例を示す。(a)に示すように,飽和を生じない条件で被写体を設置しないで計測した感度データにおいて、空気を透過した画素の値(以下、エア値)は一定となる。(b)に示すように,被写体の計測データにおいて飽和がある場合,エア値Atのように飽和値Soより大きな値は飽和値Soに張り付く。この場合,(c)に示すように,対数変換データでは飽和値Sは式1となる。   FIG. 3 shows an example of data when the filter thickness is constant. As shown in (a), in sensitivity data measured without setting a subject under a condition that does not cause saturation, the value of a pixel that has passed air (hereinafter, air value) is constant. As shown in (b), when there is saturation in the measurement data of the subject, a value larger than the saturation value So such as the air value At sticks to the saturation value So. In this case, as shown in (c), the saturation value S is expressed by Equation 1 in logarithmically converted data.

Figure 0004769487
Figure 0004769487

対数変換データにおいて,画素値が飽和値近傍であれば飽和領域と判定する。具体的には,飽和値Sをしきい値に設定し,しきい値より小さな値を持つ画素は飽和領域であると判定する。あるいは,飽和値に例えば係数1.05を乗算した値をしきい値に設定することにより,データのゆらぎの影響を受け難くすることができる。 In the logarithm conversion data, if the pixel value is near the saturation value, it is determined as the saturation region. Specifically, the saturation value S is set as a threshold value, and a pixel having a value smaller than the threshold value is determined to be a saturation region. Alternatively, by setting a value obtained by multiplying the saturation value by, for example, a coefficient of 1.05 as the threshold value, it is possible to make it less susceptible to data fluctuations.

図4に,フィルタの厚さが不均一な場合のデータ例を示す。(a)に示すように,フィルタの断面が凹面形であり,被写体の断面が円形であり,被写体の中心がフィルタの中心からずれている場合を示す。(b)に示すように,感度データは飽和のない状態でのフィルタの計測データであり,点線で表される。被写体の計測データは,飽和がないX線条件で計測された場合には実線で表される。被写体の計測において,照射するX線の強度を強くすると計測データの値が飽和値を超え,例えば位置AからBの範囲が飽和領域となる。(c)に示すように,飽和領域では投影データが太線で表されるようになり,破線で表される真のデータから乖離する。   FIG. 4 shows an example of data when the filter thickness is not uniform. As shown in (a), the case where the cross section of the filter is concave, the cross section of the subject is circular, and the center of the subject is shifted from the center of the filter is shown. As shown in (b), the sensitivity data is measured data of the filter without saturation and is represented by a dotted line. Subject measurement data is represented by a solid line when measured under X-ray conditions without saturation. In the measurement of the subject, if the intensity of the irradiated X-ray is increased, the value of the measurement data exceeds the saturation value, for example, the range from position A to B is the saturation region. As shown in (c), the projection data is represented by a thick line in the saturation region, and deviates from the true data represented by the broken line.

図5に,投影データの外挿を示す。被写体のX線吸収係数がμであり,被写体の断面が半径aの円形であり,中心が位置cにあると仮定する。投影データyは位置xに対して,式2の楕円関数で表される。   FIG. 5 shows the extrapolation of projection data. Assume that the X-ray absorption coefficient of the subject is μ, the cross section of the subject is a circle with a radius a, and the center is at position c. The projection data y is expressed by the elliptic function of Equation 2 with respect to the position x.

Figure 0004769487
Figure 0004769487

従って,中心より大きい位置にある投影データは式3,小さい位置にある投影データは式4で近似する。 Therefore, projection data at a position larger than the center is approximated by Expression 3, and projection data at a small position is approximated by Expression 4.

Figure 0004769487
Figure 0004769487

Figure 0004769487
Figure 0004769487

具体的には,各投影データの各ライン毎に,外挿の開始点,即ち飽和領域の境界点である位置xoでの値yoと傾きy'(xo)からパラメータaとcを求め,楕円関数の式を決定する。この場合、式3の境界条件は式5、式6で表される。 Specifically, for each line of each projection data, parameters a and c are calculated from the value y o and the slope y ′ (x o ) at the position x o that is the start point of extrapolation, that is, the boundary point of the saturation region. Find the elliptic function formula. In this case, the boundary condition of Equation 3 is expressed by Equation 5 and Equation 6.

Figure 0004769487
Figure 0004769487

Figure 0004769487
Figure 0004769487

従って,パラメータaとcは式7、式8で求められる。 Therefore, the parameters a and c are obtained by Equation 7 and Equation 8.

Figure 0004769487
Figure 0004769487

Figure 0004769487
Figure 0004769487

式4の境界条件は式9、式10で表され、パラメータaとcは式3と同様にこれらの式を解くことによって求められる。 The boundary conditions of Equation 4 are expressed by Equations 9 and 10, and parameters a and c are obtained by solving these equations in the same manner as Equation 3.

Figure 0004769487
Figure 0004769487

Figure 0004769487
Figure 0004769487

外挿の開始点である位置xoにおける傾きの算出法を示す。投影データ上で開始点位置の画素値を求め,同様に外挿する方向と逆の方向に任意の画素だけ離れた位置の画素値を求める。この2点の値を結ぶ線分の傾きを求め,開始点の傾きとする。値を求める際に,外挿の開始点を中心にして任意の領域のデータを抽出し,加算平均値を求め,開始点の値とすることにより,データのゆらぎの影響を受け難くすることができる。具体的には,位置xoから外挿を行う方向と逆の方向に5画素,外挿方向と直交する方向に9画素のデータを抽出する。 A method of calculating the slope at the position x o that is the start point of extrapolation will be described. A pixel value at the start point position is obtained on the projection data, and similarly, a pixel value at a position separated by an arbitrary pixel in the direction opposite to the extrapolation direction is obtained. The slope of the line connecting the values of these two points is obtained and used as the slope of the starting point. When calculating the value, data of an arbitrary region is extracted centering on the extrapolation start point, and the addition average value is obtained and used as the start point value, thereby making it less susceptible to data fluctuations. it can. Specifically, data of 5 pixels is extracted from the position x o in the direction opposite to the extrapolation direction and 9 pixels in the direction orthogonal to the extrapolation direction.

外挿処理の後に,投影データに対して平滑化処理を行う。具体的には,行方向に外挿を行った投影データに対して,外挿の開始点を中心にして任意の領域のデータを抽出し,加算平均値を求め,開始点の画素値を置換する。例えば,行方向に5点,列方向に9点のデータを用いる。平滑化により,データのゆらぎの影響を受け難くし,特に列方向にデータ値の不連続が生じることを防ぐことができる。
平均値を求める際に、各データに重み付けを行う場合もある。例えば、外挿の開始点位置の画素値に対する重みを1.0とし、周囲の画素値に対する重みを0.5とすると、投影像の分解能の低下を防ぐことができる。
After the extrapolation process, the projection data is smoothed. Specifically, for projection data extrapolated in the row direction, data in an arbitrary area is extracted around the start point of the extrapolation, and the average value is obtained, and the pixel value at the start point is replaced. To do. For example, data of 5 points in the row direction and 9 points in the column direction are used. Smoothing makes it less susceptible to data fluctuations, and prevents data values from becoming discontinuous, particularly in the column direction.
When obtaining the average value, each data may be weighted. For example, when the weight for the pixel value at the extrapolation start point position is 1.0 and the weight for the surrounding pixel values is 0.5, it is possible to prevent the resolution of the projected image from being lowered.

図6に,投影データにおいて,飽和とはみ出しの両方がある場合のデータ例を示す。位置DからEの領域が計測された投影データとすると,位置CからDおよび位置EからFの領域がはみ出し領域となる。これらのはみ出し領域において,投影データを外挿する。外挿関数は飽和補正と同一とし,式(3)および(4)で求める。同一の関数を用いることにより,飽和とはみ出しの補正を一度に行うことができる。先に位置AからBの飽和領域において飽和を補正し、その後、位置CからDのはみ出し領域においてはみ出しを補正することも可能である。この場合、はみ出し補正用の外挿関数として、飽和補正用の外挿関数とは別の関数を用いることも可能である。   FIG. 6 shows an example of data when there are both saturation and protrusion in the projection data. Assuming that the projection data in which the region from the position D to E is measured, the region from the position C to D and the region from the position E to F are protruding regions. The projection data is extrapolated in these protruding areas. The extrapolation function is the same as that for saturation correction, and is calculated using equations (3) and (4). By using the same function, saturation and protrusion can be corrected at a time. It is also possible to first correct the saturation in the saturation region from the position A to B, and then correct the protrusion in the protrusion region from the position C to D. In this case, it is also possible to use a function different from the extrapolation function for saturation correction as the extrapolation function for protrusion correction.

上記した実施形態による効果をまとめると、以下の通りである。(1)検出器において生じた飽和現象および被写体のはみ出し現象を補正し,値の均一性を向上した良好な3次元像を得ることができる。(2)計測データにおいて飽和領域を判別し,対数変換データにおいて飽和を補正することにより,フィルタの形状が不均一な場合にも,飽和現象を補正することができる。(3)飽和領域において,飽和領域の右側と左側の両方から外挿値を求め,両者の平均値に置換することにより,補正の精度を向上することができる。(4)飽和補正およびはみ出し補正に用いる外挿関数を同一とすることにより,飽和とはみ出しの補正を一度に行うことができ,高速化が可能となる。(5)外挿処理の後に,外挿を行う方向と直交する方向に平滑化を行うことにより,データのゆらぎの影響を受け難くし,特に列方向にデータ値の不連続が生じることを防ぐことができる。   The effects of the above-described embodiment are summarized as follows. (1) It is possible to correct a saturation phenomenon and an object protrusion phenomenon that occur in the detector, and obtain a good three-dimensional image with improved value uniformity. (2) By determining the saturation region in the measurement data and correcting the saturation in the logarithmic conversion data, the saturation phenomenon can be corrected even when the filter shape is not uniform. (3) In the saturation region, the extrapolated value is obtained from both the right side and the left side of the saturation region and is replaced with the average value of both, thereby improving the correction accuracy. (4) By making the extrapolation functions used for the saturation correction and the protrusion correction the same, the saturation and the protrusion can be corrected at a time, and the speed can be increased. (5) By performing smoothing in the direction orthogonal to the direction of extrapolation after extrapolation processing, it is made less susceptible to data fluctuations, and in particular prevents discontinuity of data values in the column direction. be able to.

本発明に係る補正手順の説明図である。It is explanatory drawing of the correction | amendment procedure which concerns on this invention. 本発明に係る装置の側面図である。It is a side view of the apparatus which concerns on this invention. 本発明に係るデータ例である。It is an example of data concerning the present invention. 本発明に係るデータ例である。It is an example of data concerning the present invention. 本発明に係る外挿処理の説明図である。It is explanatory drawing of the extrapolation process which concerns on this invention. 本発明に係るデータ例である。It is an example of data concerning the present invention.

符号の説明Explanation of symbols

201:X線源,202:検出器,203:支柱,204:回転装置,205:寝台,206:制御処理装置,207:回転軸,208:被写体,209:記憶装置,210:フィルタ。 201: X-ray source, 202: detector, 203: support, 204: rotating device, 205: bed, 206: control processing device, 207: rotating shaft, 208: subject, 209: storage device, 210: filter.

Claims (4)

被写体にX線を照射するX線源と、このX線源に対向配置され前記被写体の透過X線を検出するX線検出器と、前記X線源と前記X線検出器とを支持し前記被写体の周囲を回転させる回転装置と、前記回転により多数の角度の被写体の透過X線を計測データとして得て、各得られた計測データから3次元画像を再構成する画像再構成手段と、を備えたX線計測装置において、
前記被写体の各計測データから飽和領域を抽出する手段と、前記抽出された飽和領域について前記X線検出器の感度データを計測する感度データ計測手段と、前記計測された感度データのばらつきを補正する感度データ補正手段と、前記補正された感度データと前記計測データとの撮影強度ずれを補正する撮影強度ずれ補正手段と、前記撮影強度ずれが補正された計測データを対数変換して投影データを算出する投影データ算出手段と、前記算出された投影データにおいて飽和領域の値をその飽和領域の境界点から、飽和補正データを得る外挿関数を用いて外挿値に変換し、飽和補正データを得る飽和補正データ算出手段と、前記被写体が前記X線検出器の検出領域からはみ出している場合、前記飽和補正データ算出手段によってはみ出し補正用の外挿関数を用いて変換された外挿値を用いて、はみ出していると判断されたデータの端からはみ出し補正像を得るはみ出し補正像算出手段とを備え、
前記画像再構成手段は、
前記得られたはみ出し補正像を逆投影演算し、3次元画像を再構成することを特徴とするX線計測装置。
An X-ray source that irradiates the subject with X-rays, an X-ray detector that is disposed opposite to the X-ray source and detects transmitted X-rays of the subject, and supports the X-ray source and the X-ray detector, A rotating device that rotates around the subject, and image reconstructing means that obtains transmission X-rays of the subject at multiple angles by the rotation as measurement data, and reconstructs a three-dimensional image from the obtained measurement data. In the X-ray measuring apparatus provided,
Means for extracting a saturation region from each measurement data of the subject, Sensitivity data measurement unit for measuring sensitivity data of the X-ray detector for the extracted saturation region, and correcting variations in the measured sensitivity data Sensitivity data correction means, photographing intensity deviation correcting means for correcting photographing intensity deviation between the corrected sensitivity data and the measurement data, and calculating projection data by logarithmically converting the measurement data with the photographing intensity deviation corrected. Projection data calculating means for converting the value of the saturation region in the calculated projection data from the boundary point of the saturation region into an extrapolated value using an extrapolation function for obtaining saturation correction data, and obtaining saturation correction data When the saturation correction data calculation means and the subject protrude from the detection area of the X-ray detector, the saturation correction data calculation means corrects the protrusion. Using the converted extrapolated value using the extrapolation function of use, protruding obtain a corrected image off the edge of the data it is determined that protrudes a correcting image calculating means,
The image reconstruction means includes
An X-ray measurement apparatus, wherein the obtained protrusion correction image is backprojected to reconstruct a three-dimensional image.
前記飽和補正データの飽和領域において所定の一次元方向に不連続が見られる場合、当該飽和補正データをその一次元方向に平滑化し、平滑化像を得る平滑化像算出手段をさらに備えたことを特徴とする請求項1に記載のX線計測装置。 When there is discontinuity in a predetermined one-dimensional direction in a saturation region of the saturation correction data, the saturation correction data is further smoothed in the one-dimensional direction, and further includes a smoothed image calculation unit that obtains a smoothed image. The X-ray measurement apparatus according to claim 1, wherein 前記はみ出し補正像算出手段は、投影データにおいてはみ出し領域の境界点において画素値を求め、その境界点からはみ出し領域とは反対の方向に任意の数の画素の値を抽出して前記境界点における画素値の傾きを求め、前記回転装置の回転軸位置を中心としてはみ出しの境界点位置において前記境界点と実質的に同等の画素値と傾きを有する楕円関数を求め、その求められた楕円関数を用いて前記はみ出し領域において外挿値を算出し、はみ出し領域の画素値を外挿値に設定することにより、前記投影データにおいてはみだしを補正することを特徴とする請求項1に記載のX線計測装置。 The protrusion correction image calculation means obtains a pixel value at the boundary point of the protrusion area in the projection data, extracts an arbitrary number of pixel values in the direction opposite to the protrusion area from the boundary point, and outputs the pixel at the boundary point. The slope of the value is obtained, and an elliptic function having a pixel value and a slope substantially equivalent to the boundary point at the boundary point position of the protrusion around the rotational axis position of the rotating device is obtained, and the obtained elliptic function is used. 2. The X-ray measurement apparatus according to claim 1, wherein an extrapolation value is calculated in the projection area, and a pixel value in the projection area is set to an extrapolation value, thereby correcting the projection in the projection data. . 前記飽和補正データおよびはみだし補正像は、同一の外挿関数を用いて算出されることを特徴とする請求項1乃至3のいずれかに記載のX線計測装置。 The X-ray measurement apparatus according to claim 1, wherein the saturation correction data and the overhang correction image are calculated using the same extrapolation function.
JP2005147486A 2005-05-20 2005-05-20 X-ray measuring device Expired - Fee Related JP4769487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147486A JP4769487B2 (en) 2005-05-20 2005-05-20 X-ray measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147486A JP4769487B2 (en) 2005-05-20 2005-05-20 X-ray measuring device

Publications (2)

Publication Number Publication Date
JP2006320591A JP2006320591A (en) 2006-11-30
JP4769487B2 true JP4769487B2 (en) 2011-09-07

Family

ID=37540687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147486A Expired - Fee Related JP4769487B2 (en) 2005-05-20 2005-05-20 X-ray measuring device

Country Status (1)

Country Link
JP (1) JP4769487B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080253515A1 (en) * 2005-02-01 2008-10-16 Koninklijke Philips Electronics, N.V. Apparatus and Method for Correction of Extension of X-Ray Projections
DE102008011301A1 (en) * 2008-02-27 2009-09-03 Siemens Aktiengesellschaft Method for initializing preparation of radiographs by radiograph angiography system, involves executing image recording by radiograph angiography system with object storage system in image field
JP2012024344A (en) * 2010-07-23 2012-02-09 Canon Inc X-ray imaging apparatus, x-ray imaging method, program, and computer storage medium
JP2013055971A (en) 2011-09-07 2013-03-28 Fujifilm Corp Tomographic image generating apparatus and tomographic image generating method
JP5971911B2 (en) * 2011-09-29 2016-08-17 株式会社日立製作所 X-ray CT system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165100A (en) * 1991-11-27 1992-11-17 General Electric Company Over-range image artifact reduction in tomographic imaging
JP3349004B2 (en) * 1995-02-01 2002-11-20 株式会社日立メディコ X-ray image measurement device
JP4033649B2 (en) * 2001-08-15 2008-01-16 株式会社日立メディコ X-ray inspection equipment

Also Published As

Publication number Publication date
JP2006320591A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4599392B2 (en) X-ray measuring device
JP5384521B2 (en) Radiation imaging device
JP4142482B2 (en) X-ray CT system
US20090161814A1 (en) Method for calibrating a dual -spectral computed tomography (ct) system
JP3802869B2 (en) Beam hardening post-processing method and X-ray CT apparatus
JP4769487B2 (en) X-ray measuring device
JP2005087592A (en) X-rays measuring instrument
JPWO2005011502A1 (en) Radiation tomography equipment
JP3527381B2 (en) X-ray CT system
JP5060862B2 (en) Tomography equipment
JP4584550B2 (en) X-ray measuring device
JP4033649B2 (en) X-ray inspection equipment
US6411671B2 (en) Method for reducing line artifacts in a CT image and device for implementing the method
JP3846576B2 (en) Computed tomography equipment
JP4703221B2 (en) X-ray CT system
JP5522925B2 (en) Radiation imaging apparatus and processing method
JP2016054796A (en) Radiographic imaging apparatus and automatic exposure control method of radiographic imaging apparatus
JP2002153454A (en) X-ray ct device
JP5386284B2 (en) Radiation imaging device
JP3989031B2 (en) X-ray CT scanner
JP4512187B2 (en) X-ray measuring device
JP2004229854A (en) Method for correcting ct image distortion photographed by cone beam ct apparatus
JP2004065287A (en) X-ray ct device
JP2008119095A (en) X-ray ct system and scattering correction method
JP4653351B2 (en) X-ray dose correction method and X-ray CT apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees