JP2008119095A - X-ray ct system and scattering correction method - Google Patents

X-ray ct system and scattering correction method Download PDF

Info

Publication number
JP2008119095A
JP2008119095A JP2006304074A JP2006304074A JP2008119095A JP 2008119095 A JP2008119095 A JP 2008119095A JP 2006304074 A JP2006304074 A JP 2006304074A JP 2006304074 A JP2006304074 A JP 2006304074A JP 2008119095 A JP2008119095 A JP 2008119095A
Authority
JP
Japan
Prior art keywords
ray
scattering
transmitted
projection data
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006304074A
Other languages
Japanese (ja)
Other versions
JP5097384B2 (en
Inventor
Akira Hagiwara
明 萩原
Masayasu Nukui
正健 貫井
Akihiko Nishide
明彦 西出
Makoto Gono
誠 郷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP2006304074A priority Critical patent/JP5097384B2/en
Publication of JP2008119095A publication Critical patent/JP2008119095A/en
Application granted granted Critical
Publication of JP5097384B2 publication Critical patent/JP5097384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the correction of a high-precision scattering according to the size of a specimen or the like. <P>SOLUTION: An X-ray tube and an X-ray detector are arranged facing each other sandwiching the specimen to reconstruct a CT image from a projection data obtained by scanning the subject. The X-ray CT system is provided with a means for determining the transmission length of X rays transmitted from the projection data, a means which determines the angle of scattering of scattered rays entering respective X-ray detection surfaces from the transmission length previously determined and the positional relationship with the X-ray detector, a means which determines differentiated sectional areas of the respective scattered rays from information by which the relationship is previously regulated between the angle of scattering determined and the differentiated sectional areas of scattering according to the angle of scattering, a means which determines a scattering coefficient indicating the ratio of the intensity of the scattered rays with respect to the intensity of the X rays transmitted from the differentiated sectional areas determined and a means which carries out the correction of scattering in the projection data from the intensities of X rays detected on the respective X-ray detection surfaces and the scattering coefficients determined corresponding to the respective X rays transmitted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はX線CT装置及び散乱補正方法に関し、更に詳しくは、被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置及びそのX線散乱補正方法に関する。   The present invention relates to an X-ray CT apparatus and a scatter correction method. More specifically, the present invention includes an X-ray tube and an X-ray detector facing each other with a subject interposed therebetween, and a CT tomogram is reproduced based on projection data obtained by scanning the subject. The present invention relates to an X-ray CT apparatus and an X-ray scattering correction method thereof.

X線は被検体を透過する際にあらゆる方向に散乱するが、この散乱線によりX線検出器は透過線(直接線)以外の方向からのX線も観測することになり、このような散乱線はCT画像を劣化させるため、散乱線の影響を除去する必要がある。   X-rays are scattered in all directions when passing through the subject, and the X-ray detector also observes X-rays from directions other than the transmission lines (direct lines) due to the scattered lines. Since the line deteriorates the CT image, it is necessary to remove the influence of the scattered radiation.

従来は、多列検出器の1列毎に順次X線(直接線)が入射するようにコリメータを調整して所定の基準ファントムをスキャンし、得られた投影データに基づき散乱線補正用データを作成すると共に、該補正用データを用いて、被検体のスキャンにより得られた投影データの散乱線補正を行うX線CTシステムが知られている(特許文献1)。
特開2005−46199
Conventionally, a predetermined reference phantom is scanned by adjusting a collimator so that X-rays (direct rays) are sequentially incident on each row of a multi-row detector, and scattered ray correction data is obtained based on the obtained projection data. There is known an X-ray CT system that creates and corrects scattered radiation of projection data obtained by scanning a subject using the correction data (Patent Document 1).
JP 2005-46199 A

しかし、実際上、被検体のサイズ(体格,部位)や内部組織は様々であるため、散乱線の種類、量や方向も被検体毎に様々となる。従って、基準ファントムで求めた散乱線補正係数をそのまま使用する従来方法では、より精度の高い散乱線補正を行えない。   However, in practice, since the size (physique, site) and internal tissue of the subject vary, the type, amount, and direction of scattered radiation also vary from subject to subject. Therefore, with the conventional method using the scattered radiation correction coefficient obtained with the reference phantom as it is, more accurate scattered radiation correction cannot be performed.

本発明は上記従来技術の問題点に鑑みなされたもので、その目的とする所は、被検体サイス等に応じてより精度の高い散乱補正を効率よく行えるX線CT装置及び散乱補正方法を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an X-ray CT apparatus and a scatter correction method capable of efficiently performing scatter correction with higher accuracy according to the subject size and the like. There is to do.

本発明の第1の態様によるX線CT装置は、被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置において、前記投影データに基づき透過X線の透過長を求める透過長演算手段と、前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求める散乱角演算手段と、前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を規定した情報に基づき各散乱線の微分断面積を求める微分断面積演算手段と、前記求めた微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求める散乱係数演算手段と、各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正手段とを備えるものである。   An X-ray CT apparatus according to a first aspect of the present invention includes an X-ray tube and an X-ray detector facing each other with a subject interposed therebetween, and reconstructs a CT tomogram based on projection data obtained by scanning the subject. In the line CT apparatus, the transmission length calculation means for determining the transmission length of transmitted X-rays based on the projection data, and the scattered radiation incident on each X-ray detection surface based on the positional relationship between the determined transmission length and the X-ray detector A scattering angle calculating means for obtaining the scattering angle of the differential angle, and a differential cross-sectional area calculating means for obtaining a differential cross-sectional area of each scattered ray based on information that preliminarily defines a relationship between the scattering angle and the differential cross-sectional area of the scattering by the obtained scattering angle Scattering coefficient calculation means for obtaining a scattering coefficient representing the ratio of scattered radiation intensity to transmitted X-ray intensity based on the obtained differential cross-sectional area, X-ray intensity detected on each X-ray detection surface, and corresponding to each transmitted X-ray Based on the scattering coefficient In which and a correcting means for performing scatter correction of the shadow data.

本発明においては、被検体の投影データに基づき透過X線の透過長を求める構成により、被検体サイズや内部組織を反映した透過長が得られる。また、被検体を反映した透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求める構成により、実際の投影に即した散乱角(散乱線)を抽出できる。また、この散乱角で散乱の微分断面積(散乱係数)を求める構成により、被検体サイズ(体格,部位)や内部組織に応じてより精度の高い散乱線を抽出でき、きめ細かい散乱補正を行える。   In the present invention, the transmission length reflecting the subject size and the internal tissue can be obtained by the configuration for obtaining the transmission length of the transmitted X-ray based on the projection data of the subject. In addition, the scattering angle (scattering ray) according to the actual projection is obtained by obtaining the scattering angle of the scattered radiation incident on each X-ray detection surface based on the positional relationship between the transmission length reflecting the subject and the X-ray detector. Can be extracted. In addition, with the configuration for obtaining the differential cross-sectional area (scattering coefficient) of scattering at this scattering angle, more accurate scattered radiation can be extracted according to the subject size (physique, site) and internal tissue, and fine scattering correction can be performed.

本発明の第2の態様によるX線CT装置は、被検体を挟んで相対向するX線管及びX線
検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置において、前記投影データに基づき透過X線の透過長を求める透過長演算手段と、前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求める散乱角演算手段と、前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を散乱のタイプ別に規定した情報に基づき各散乱線のタイプ別微分断面積を求める微分断面積演算手段と、前記求めた透過長により予めX線透過長と当該区間を透過するX線の光子エネルギーの関係を規定した情報に基づき透過X線の光子エネルギーを求める光子エネルギー演算手段と、前記求めた光子エネルギーにより予め光子エネルギーと散乱断面積の関係を散乱のタイプ別に規定した情報に基づき当該透過で生じるタイプ別散乱断面積の割合を求める散乱割合演算手段と、前記求めたタイプ別微分断面積を前記求めたタイプ別散乱断面積の割合で合成した微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求める散乱係数演算手段と、各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正手段とを備えるものである。
An X-ray CT apparatus according to a second aspect of the present invention includes an X-ray tube and an X-ray detector facing each other with a subject interposed therebetween, and reconstructs a CT tomogram based on projection data obtained by scanning the subject. In the line CT apparatus, the transmission length calculation means for determining the transmission length of transmitted X-rays based on the projection data, and the scattered radiation incident on each X-ray detection surface based on the positional relationship between the determined transmission length and the X-ray detector The scattering angle calculation means for obtaining the scattering angle of the light source, and the differential for obtaining the differential cross-sectional area for each type of scattered radiation based on the information defining the relationship between the scattering angle and the differential cross-sectional area of the scattering for each scattering type in advance by the obtained scattering angle A cross-sectional area calculating means, a photon energy calculating means for obtaining a photon energy of transmitted X-rays based on information that preliminarily defines a relationship between an X-ray transmission length and an X-ray photon energy transmitted through the section by the determined transmission length; Above Scattering ratio calculation means for obtaining the ratio of the scattering cross section for each type generated in the transmission based on the information preliminarily defining the relationship between the photon energy and the scattering cross section for each type of scattering based on the calculated photon energy; Scattering coefficient calculation means for obtaining a scattering coefficient representing the ratio of the scattered radiation intensity to the transmitted X-ray intensity based on the differential sectional area synthesized by the ratio of the scattering sectional area for each type obtained above, and detected by each X-ray detection surface Correction means for correcting the scattering of the projection data based on the X-ray intensity and the scattering coefficient obtained corresponding to each transmitted X-ray.

本発明においては、求めた散乱角により散乱のタイプ別微分断面積を求める構成によい、干渉性(レーリー)散乱や非干渉性(コンプトン)散乱等の散乱の性質をタイプ別に抽出できる。また、実際のスキャンに即した透過X線の光子エネルギーに基づき求めたタイプ別散乱断面積の割合で、タイプ別微分断面積を合成する構成により、実際の散乱の状況(性質)をより忠実に反映した散乱係数を求めることができる。   In the present invention, it is possible to extract the scattering properties such as coherent (Rayleigh) scattering and incoherent (Compton) scattering, which are suitable for obtaining a differential sectional area for each type of scattering based on the obtained scattering angle. In addition, the actual scattering situation (property) is more faithfully constructed by combining the differential cross sections by type with the ratio of the cross sections by type determined based on the photon energy of transmitted X-rays in line with the actual scan. The reflected scattering coefficient can be obtained.

本発明の第3の態様では、補正手段は、被検体体軸方向に並ぶ各X線検出列で検出されたX線強度と、体軸方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきX線検出列方向の投影データの散乱補正を行う。本発明は、被検体体軸方向の散乱補正に適用して好適である。   In the third aspect of the present invention, the correction means is obtained corresponding to the X-ray intensity detected in each X-ray detection row arranged in the body axis direction of the subject and the transmitted X-rays arranged in the body axis direction. Based on each scattering coefficient, scattering correction of projection data in the X-ray detection row direction is performed. The present invention is suitable for application to scattering correction in the direction of the subject body axis.

本発明の第4の態様では、補正手段は、チャネル方向に並ぶ各X線検出面で検出されたX線強度と、チャネル方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきチャネル方向の投影データの散乱補正を行う。本発明は、X線検出器のチャネル方向の散乱補正に適用して好適である。   In the fourth aspect of the present invention, the correcting means includes the X-ray intensity detected on each X-ray detection surface arranged in the channel direction, and each scattering coefficient obtained corresponding to each transmitted X-ray arranged in the channel direction. Based on the above, scatter correction of projection data in the channel direction is performed. The present invention is suitable for application to scatter correction in the channel direction of an X-ray detector.

本発明の第5の態様による散乱補正方法は、被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置の散乱補正方法であって、前記投影データに基づき透過X線の透過長を求めるステップと、前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求めるステップと、前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を規定した情報に基づき各散乱線の微分断面積を求めるステップと、前記求めた微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求めるステップと、各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正ステップとを備えるものである。   A scattering correction method according to a fifth aspect of the present invention includes an X-ray tube and an X-ray detector facing each other with a subject interposed therebetween, and reconstructs a CT tomographic image based on projection data obtained by scanning the subject. A method of correcting a scattering of a CT apparatus, wherein a transmission length of transmitted X-rays is obtained based on the projection data, and is incident on each X-ray detection surface based on a positional relationship between the obtained transmission length and the X-ray detector. A step of obtaining a scattering angle of the scattered radiation, a step of obtaining a differential sectional area of each scattered radiation based on information in which a relationship between the scattering angle and the differential sectional area of the scattering is previously defined by the obtained scattering angle, and the obtained differential breaking A step of obtaining a scattering coefficient representing a ratio of the scattered radiation intensity to the transmitted X-ray intensity based on the area; an X-ray intensity detected on each X-ray detection surface; and a scattering coefficient determined corresponding to each transmitted X-ray Projection data scattering based on In which and a correcting step of performing positive.

本発明の第6の態様による散乱補正方法は、被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置の散乱補正方法であって、前記投影データに基づき透過X線の透過長を求めるステップと、前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求めるステップと、前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を散乱のタイプ別に規定した情報に基づき各散乱線のタイプ別微分断面積を求めるステップと、前記求めた透過長により予めX線透過長と当該区間を透過するX線の光子エネルギーの関係を規定した情報に基づき透過X線の光子エネルギーを求めるステップと、前記求めた光子エネルギーにより予め光子エネルギーと散乱断面積の関係を散乱のタイ
プ別に規定した情報に基づき当該透過で生じるタイプ別散乱断面積の割合を求めるステップと、前記求めたタイプ別微分断面積を前記求めたタイプ別散乱断面積の割合で合成した微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求めるステップと、各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正ステップとを備えるものである。
A scatter correction method according to a sixth aspect of the present invention includes an X-ray tube and an X-ray detector facing each other with a subject interposed therebetween, and reconstructs a CT tomogram based on projection data obtained by scanning the subject. A method of correcting a scattering of a CT apparatus, wherein a transmission length of transmitted X-rays is obtained based on the projection data, and is incident on each X-ray detection surface based on a positional relationship between the obtained transmission length and the X-ray detector. A step of obtaining a scattering angle of the scattered radiation, and a step of obtaining a differential sectional area for each type of scattered radiation based on information in which the relationship between the scattering angle and the differential sectional area of the scattering is defined in advance for each scattering type based on the obtained scattering angle; Determining the photon energy of transmitted X-rays based on information that preliminarily defines the relationship between the X-ray transmission length and the photon energy of X-rays transmitted through the section based on the determined transmission length; A step of obtaining a ratio of a scattering cross section by type generated by the transmission based on information preliminarily defining a relationship between a photon energy and a scattering cross section for each type of scattering, and the obtained differential cross section by type according to the obtained type. A step of obtaining a scattering coefficient representing the ratio of the scattered radiation intensity to the transmitted X-ray intensity based on the differential sectional area synthesized by the ratio of the scattering sectional area, the X-ray intensity detected on each X-ray detection surface, and each transmitted X-ray And a correction step for correcting the scatter of the projection data based on the scattering coefficient obtained corresponding to the above.

本発明の第7の態様では、補正ステップは、被検体体軸方向に並ぶ各X線検出列で検出されたX線強度と、体軸方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきX線検出列方向の投影データの散乱補正を行う。   In the seventh aspect of the present invention, the correction step is obtained corresponding to the X-ray intensity detected in each X-ray detection row arranged in the body axis direction of the subject and each transmitted X-ray arranged in the body axis direction. Based on each scattering coefficient, scattering correction of projection data in the X-ray detection row direction is performed.

本発明の第8の態様では、補正ステップは、チャネル方向に並ぶ各X線検出面で検出されたX線強度と、チャネル方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきチャネル方向の投影データの散乱補正を行う。   In the eighth aspect of the present invention, the correction step includes the X-ray intensity detected on each X-ray detection surface arranged in the channel direction, and each scattering coefficient obtained corresponding to each transmitted X-ray arranged in the channel direction. Based on the above, scatter correction of projection data in the channel direction is performed.

以上述べた如く本発明によれば、被検体に応じてより精度の高い散乱線補正を行うことが可能となり、X線CT撮影の性能及び信頼性向上に寄与するところが極めて大きい。   As described above, according to the present invention, it is possible to perform more accurate correction of scattered radiation according to the subject, which greatly contributes to improving the performance and reliability of X-ray CT imaging.

以下、添付図面に従って本発明に好適なる実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。図1は実施の形態によるX線CT装置200の構成図で、このX線CT装置は、被検体を載せて体(z)軸方向に移動させる撮影テーブル10と、X線コーンビームによる被検体のアキシャル/ヘリカルスキャンによるデータ収集を行う走査ガントリ20と、撮影テーブル10及び走査ガントリ20の遠隔制御を行うと共に、操作者が各種の設定操作を行う操作コンソール1と備える。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings. FIG. 1 is a configuration diagram of an X-ray CT apparatus 200 according to an embodiment. This X-ray CT apparatus has an imaging table 10 on which an object is placed and moved in the body (z) axis direction, and an object using an X-ray cone beam. A scanning gantry 20 that collects data by the axial / helical scan of the above, and an operation console 1 that performs remote control of the imaging table 10 and the scanning gantry 20 and that allows the operator to perform various setting operations.

操作コンソール1は、操作者の入力を受け付ける入力装置2と、本発明による散乱補正処理及び画像再構成処理等を行う中央処理装置(CPU)3と、走査ガントリ20で取得した投影データを収集するデータ収集バッファ5と、投影データに基づき再構成したCT断層像を表示するモニタ6と、本装置の機能を実現するための各種プログラム、データやX線CT画像を記憶する記憶装置7とを備える。また、撮影テーブル10は、被検体を乗せて走査ガントリ20のボア(空洞部)内に入れ出しする駆動機構部及び天板(クレードル)12を備える。   An operation console 1 collects projection data acquired by an input device 2 that receives an input from an operator, a central processing unit (CPU) 3 that performs scattering correction processing and image reconstruction processing according to the present invention, and a scanning gantry 20. A data acquisition buffer 5, a monitor 6 that displays a CT tomogram reconstructed based on projection data, and a storage device 7 that stores various programs, data, and X-ray CT images for realizing the functions of the apparatus. . In addition, the imaging table 10 includes a drive mechanism unit and a top plate (cradle) 12 on which a subject is placed and put into and out of a bore (cavity) of the scanning gantry 20.

更に、走査ガントリ20は、X線管21と、X線管21の管電圧・管電流等を制御するX線コントローラ22と、X線ビームのz軸方向の厚さ(スライス厚)を制御するコリメータ23と、複数列分のX線投影データを同時に取得可能な多列検出器24と、各列の投影データを収集するデータ収集装置DAS(Data Acquisition System)25と、X線管21や多列検出器24等を被検体体軸の回りに回転自在に支持する回転部15と、その制御を行う回転部コントローラ26と、操作コンソール1や撮影テーブル10との間で制御信号のやり取りを行う制御コントローラ29とを備えている。   Further, the scanning gantry 20 controls the X-ray tube 21, the X-ray controller 22 that controls the tube voltage and tube current of the X-ray tube 21, and the thickness (slice thickness) of the X-ray beam in the z-axis direction. A collimator 23, a multi-row detector 24 that can simultaneously acquire X-ray projection data for a plurality of rows, a data acquisition device DAS (Data Acquisition System) 25 that collects projection data for each row, an X-ray tube 21 and a multi-row Control signals are exchanged between the operation console 1 and the imaging table 10, the rotation unit 15 that supports the row detector 24 and the like so as to be rotatable around the subject body axis, the rotation unit controller 26 that controls the rotation unit 15. And a controller 29.

図2は実施の形態によるX線撮影系を説明する外観斜視図である。X線管21と多列検出器24とが相対向して設けられ、これらは被検体体軸(z軸)の回りに回転自在に支持されている。多列検出器24はチャネル(x軸)方向に1000程度のX線検出素子を備え、これらが列R(z軸)方向に複数列(図の例では8列)併設されている。   FIG. 2 is an external perspective view illustrating an X-ray imaging system according to the embodiment. The X-ray tube 21 and the multi-row detector 24 are provided opposite to each other, and these are supported so as to be rotatable around the subject body axis (z axis). The multi-row detector 24 includes about 1000 X-ray detection elements in the channel (x-axis) direction, and these are arranged in a plurality of rows (eight rows in the illustrated example) in the row R (z-axis) direction.

係る構成による投影データの収集は次のように行われる 被検体を走査ガントリ20の空洞部内に位置させた状態で、X線管21からのX線ビームを被検体に照射する。この状態で、X線管21からのX線ビームは被検体を透過して多列検出器24の各検出器列に一
斉に入射する。データ収集部25は多列検出器24の各検出器列に対応する投影データを生成し、これらをデータ収集バッファ5に格納する。更に、ガントリ15が僅かに回転した各ビュー角iで上記同様のX線投影を行い、こうしてガントリ1回転分の投影データを収集・蓄積する。また同時に、アキシャル/ヘリカルスキャン方式に従って撮影テーブル10を体軸方向に間欠的/連続的に移動させ、こうして被検体の所要撮影領域についての全投影データを収集・蓄積する。そして、CPU3は、上記全スキャンの終了後、又はスキャンと並行して得られた投影データに基づき後述の散乱補正を行って被検体のCT断層像を再構成し、これをモニタ6に表示する。
Collection of projection data by such a configuration is performed as follows. With the subject positioned in the cavity of the scanning gantry 20, the subject is irradiated with the X-ray beam from the X-ray tube 21. In this state, the X-ray beam from the X-ray tube 21 passes through the subject and enters the detector rows of the multi-row detector 24 all at once. The data collection unit 25 generates projection data corresponding to each detector row of the multi-row detector 24 and stores these in the data collection buffer 5. Further, the same X-ray projection is performed at each view angle i where the gantry 15 is slightly rotated, and thus projection data for one rotation of the gantry is collected and accumulated. At the same time, the imaging table 10 is moved intermittently / continuously in the direction of the body axis according to the axial / helical scan method, thus collecting and accumulating all projection data for the required imaging area of the subject. Then, the CPU 3 reconstructs a CT tomogram of the subject by performing scatter correction described later based on projection data obtained in parallel with the scan after the completion of all the scans, and displays this on the monitor 6. .

図3,図4は実施の形態による各種テーブルを説明する図(1),(2)で、後述のX線散乱補正で使用する各種テーブルの物理的な関係が示されている。図3(A)は被検体(例えば水で代表)を透過するX線の光子エネルギーと散乱断面積(光子が散乱する確率の面積表示)σの関係を示している。医療用X線は0.1〜数MeV程度のエネルギー分布を有する多色X線であるが、そのエネルギー分布が分かれれば、それに対応して生じる各タイプの散乱の確率(断面積)が算出される。このエネルギー領域で観察される主な散乱には、光電効果(光電吸収)と、レーリー散乱(干渉性散乱)と、コンプトン散乱(非干渉性散乱)とがある。一般に、0.1MeV以下の低エネルギー光子に対しては光電吸収の断面積が支配的であり、これは透過X線の減弱と、線質硬化に深く関係する。また、この低エネルギー光子に対しては干渉性散乱が支配的であると共に、エネルギーが上昇するにつれて干渉性散乱は急速に低下する。その後のエネルギー領域(0.1<hν<1MeV)では非干渉性のコンプトン散乱が支配的となり、該散乱はエネルギーの上昇につれて緩やかに減じていく。   FIGS. 3 and 4 are diagrams (1) and (2) for explaining various tables according to the embodiment, and show physical relationships between various tables used in X-ray scattering correction described later. FIG. 3A shows the relationship between the photon energy of X-rays transmitted through the subject (eg, representative of water) and the scattering cross-section (area display of the probability that the photons are scattered) σ. Medical X-rays are polychromatic X-rays having an energy distribution of about 0.1 to several MeV. If the energy distribution is divided, the probability (cross-sectional area) of each type of scattering that occurs correspondingly is calculated. Is done. The main scattering observed in this energy region includes photoelectric effect (photoelectric absorption), Rayleigh scattering (coherent scattering), and Compton scattering (incoherent scattering). In general, the cross-sectional area of photoelectric absorption is dominant for low energy photons of 0.1 MeV or less, and this is deeply related to attenuation of transmitted X-rays and hardening of the radiation. In addition, coherent scattering is dominant for the low energy photons, and the coherent scattering rapidly decreases as the energy increases. In the subsequent energy region (0.1 <hν <1 MeV), incoherent Compton scattering becomes dominant, and the scattering gradually decreases as the energy increases.

本実施の形態では、事前に多数の散乱実験を行い、又は公知の豊富な実験データを利用し、これらを統計的に処理することで、予め光子エネルギーと各タイプの散乱断面積との関係を規定した光子エネルギー−散乱断面積のテーブルを作成すると共に、光子エネルギーで本テーブルを参照することによりタイプ別の散乱断面積σを求めることが可能である。   In this embodiment, a large number of scattering experiments are performed in advance, or a large amount of well-known experimental data is used, and these are statistically processed, so that the relationship between the photon energy and each type of scattering cross section is determined in advance. It is possible to determine a scattering cross section σ for each type by creating a table of prescribed photon energy-scattering cross sections and referring to this table by photon energy.

図3(B)は被検体を透過した透過X線の透過長と光子エネルギーの関係を示している。被検体サイズが小さく、透過長が短い場合は、光子エネルギーの減衰も比較的ゆるやかであるが、被検体サイズが大きく、透過長が長くなると、当該区間で生じた光子エネルギーの減少と共に、光電吸収効果も増加し、光子エネルギーは急速に減衰する。本実施の形態では、上記同様にして、予め透過長−光子エネルギーのテーブルを作成すると共に、被検体を透過したX線の透過長で本テーブルを参照することにより、当該区間における散乱のタイプと割合を特徴付ける光子エネルギーを求めることが可能である。   FIG. 3B shows the relationship between the transmission length of transmitted X-rays transmitted through the subject and the photon energy. When the specimen size is small and the transmission length is short, the attenuation of photon energy is relatively gradual. However, when the specimen size is large and the transmission length is long, the photon energy generated in the section decreases and photoelectric absorption occurs. The effect also increases and the photon energy decays rapidly. In the present embodiment, in the same manner as described above, a transmission length-photon energy table is created in advance, and by referring to this table by the transmission length of the X-rays transmitted through the subject, the type of scattering in the section can be determined. It is possible to determine the photon energy that characterizes the proportion.

図4は被検体を透過するX線の散乱角と微分断面積(散乱角当たりの散乱の確率)の関係を散乱のタイプ別に示している。なお、本実施の形態における散乱角は、透過線(直接線)の進行方向に対する散乱線の角度θを表す。一般に、散乱角が小さいエリアではレーリー等の干渉性散乱の微分断面積が支配的であり、散乱角が大きくなるエリアではコンプトン等の非干渉性散乱の微分断面積が支配的である。なお、図は各タイプの散乱につき最大の微分断面積を1に正規化して示しているため、実際の散乱補正では、光子エネルギーにより図3(A)の特性からタイプ別散乱の割合を求めることで、各微分断面積をこの割合で合成することになる。本実施の形態では、上記同様にして、予め散乱角−微分断面積のテーブルを作成すると共に、X線の散乱角で本テーブルを参照することによりタイプ別の微分断面積を求めることが可能である。   FIG. 4 shows the relationship between the scattering angle of X-rays transmitted through the subject and the differential cross section (the probability of scattering per scattering angle) for each type of scattering. In addition, the scattering angle in this Embodiment represents angle (theta) of the scattered radiation with respect to the advancing direction of a transmission line (direct line). In general, the differential cross section of coherent scattering such as Rayleigh is dominant in areas where the scattering angle is small, and the differential cross section of incoherent scattering such as Compton is dominant in areas where the scattering angle is large. Since the figure shows the maximum differential cross section normalized to 1 for each type of scattering, in actual scattering correction, the proportion of type-specific scattering is obtained from the characteristics of FIG. 3A by photon energy. Thus, the differential cross sections are synthesized at this ratio. In the present embodiment, in the same manner as described above, a table of scattering angle-differential cross-sectional area is created in advance, and a differential cross-sectional area for each type can be obtained by referring to this table with the X-ray scattering angle. is there.

図5は実施の形態によるX線CT撮影処理のフローチャートで、被検体をスキャンして得た投影データに後述の散乱補正を行って画像再構成する場合を示している。好ましくは
、事前に被検体のスカウトスキャンを行った後、この処理に入る。ステップS11では、被検体のアキシャル/ヘリカルスキャンのための各種スキャンパラメータを設定する。コリメータ23のスキャン幅はX線の全検出器列R1〜R8に透過線(直接線)が入射するように設定される。ステップS12では設定確認(CONFIRM)の入力を待つ。やがて、入力されると、ステップS13で被検体のスキャンを行う。ステップS14では投影データを収集し、メモリに蓄積する。ステップS15では所要撮影領域についての全スキャンを完了したか否かを判別し、完了でない場合はステップS13に戻る。
FIG. 5 is a flowchart of X-ray CT imaging processing according to the embodiment, and shows a case where image reconstruction is performed by performing scatter correction described later on projection data obtained by scanning a subject. Preferably, this process is performed after a scout scan of the subject is performed in advance. In step S11, various scan parameters for the axial / helical scan of the subject are set. The scan width of the collimator 23 is set so that transmission lines (direct lines) are incident on all X-ray detector rows R1 to R8. In step S12, input of setting confirmation (CONFIRM) is awaited. Eventually, when input, the subject is scanned in step S13. In step S14, projection data is collected and stored in a memory. In step S15, it is determined whether or not all scans for the required imaging area have been completed. If not, the process returns to step S13.

こうして、やがて全スキャンを完了すると、ステップS16では投影データに対する前処理を行う。この前処理にはリファレンス補正、チャネル感度補正等が含まれる。ステップS17では前処理後の投影データに基づき後述のX線透過長推定処理を行い、被検体のサイズ(体格)等に応じた各透過X線の透過長を求める。ステップS18ではX線の透過長データに基づき後述のX線散乱係数演算処理を行い、被検体サイズに応じたX線の散乱係数を求める。ステップS19では求めた散乱係数を使用して各投影データに含まれる散乱成分を補正する。   Thus, when all the scans are completed, the preprocessing for the projection data is performed in step S16. This preprocessing includes reference correction, channel sensitivity correction, and the like. In step S17, an X-ray transmission length estimation process, which will be described later, is performed based on the projection data after the preprocessing, and the transmission length of each transmission X-ray according to the size (physique) of the subject is obtained. In step S18, an X-ray scattering coefficient calculation process described later is performed based on the X-ray transmission length data, and an X-ray scattering coefficient corresponding to the subject size is obtained. In step S19, the scattering component included in each projection data is corrected using the obtained scattering coefficient.

例えば、検出器列R1のチャネルjに入射する散乱線の強度scatR1(j)は、他の検出器列R2〜R8に入射した各X線強度p(R2,j)〜p(R8,j)を、検出列間の関係を特定する散乱係数αでそれぞれ重み付けした値の和によって求められる。即ち、各検出器列R1〜R8のチャネルjに入射する散乱線量scatR1(j)〜scatR8(j)は次式によって求められる。 For example, the intensity scatter R1 (j) of the scattered radiation incident on the channel j of the detector array R1 is the X-ray intensity p (R2, j) -p (R8, j incident on the other detector arrays R2 to R8. ) By the sum of values weighted by the scattering coefficient α that specifies the relationship between the detection rows. That is, the scattered doses scat R1 (j) to scat R8 (j) incident on the channel j of each detector row R1 to R8 are obtained by the following equations.

Figure 2008119095
Figure 2008119095

ここで、p(R1,j)は第1の検出列R1のチャネルjに入射したX線強度(投影データ)、散乱係数αR12(R1,j)は、第1列検出器のチャネルjに入射した透過線(直接線)により引き起こされた散乱線が第2列検出器のチャネルjに入射する割合を表す。他も同様である。そして、例えば検出器列R1の投影データp(R1, j)から散乱線の強度scatR1(j)を減算することにより散乱線補償された投影データp’(
R1,j)を得る。他の検出器列R2〜R8についても同様である。
Here, p (R1, j) is the X-ray intensity (projection data) incident on the channel j of the first detection row R1, and the scattering coefficient α R12 (R1, j) is the channel j of the first row detector. It represents the rate at which scattered radiation caused by incident transmitted lines (direct lines) is incident on channel j of the second row detector. Others are the same. Then, for example, the projection data p ′ (scattered ray compensated by subtracting the scattered ray intensity scatR1 (j) from the projection data p (R1, j) of the detector array R1.
R1, j) is obtained. The same applies to the other detector rows R2 to R8.

Figure 2008119095
Figure 2008119095

テップS20では散乱補正後の投影データを使用して逆投影処理を行い、CT断層像を再構成する。ステップS21では得られたCT断層像を画面に表示する。   In step S20, back projection processing is performed using the projection data after scattering correction, and a CT tomographic image is reconstructed. In step S21, the obtained CT tomographic image is displayed on the screen.

図6は実施の形態によるX線透過長推定処理のフローチャートで、被検体をスキャンして投影データから直接に透過X線の透過長を求める場合を示している。図7にX線透過長推定処理のイメージを示す。この図は、ビュー角i(θ=0°),i45(θ=45°)及びi90(θ=90°)につき、ある検出列のチャネル方向jの投影データを示している。ステップS31ではあるビュー角の対応に被検体の投影データを読み出す。ステップS32では所定閾値THを超える部分の投影データI(j=1〜m)を抽出する。ここで、jは所定閾値THを超えた部分の投影データに付した相対チャネル番号を表す。好ましくは、ステップS33で複数チャネル分の投影データを平均化し、ノイズ成分による影響を軽減する。ステップS34では上記平均化した投影データに基づき各チャネルの対応に透過X線の透過長tを求め、メモリに格納する。 FIG. 6 is a flowchart of the X-ray transmission length estimation processing according to the embodiment, and shows a case where the subject is scanned and the transmission length of the transmission X-ray is obtained directly from the projection data. FIG. 7 shows an image of X-ray transmission length estimation processing. This figure shows projection data in the channel direction j of a certain detection row with respect to view angles i 0 (θ = 0 °), i 45 (θ = 45 °), and i 90 (θ = 90 °). In step S31, the projection data of the subject is read corresponding to a certain view angle. In step S32, projection data I j (j = 1 to m ) of a portion exceeding a predetermined threshold TH is extracted. Here, j represents the relative channel number assigned to the projection data of the portion exceeding the predetermined threshold value TH. Preferably, in step S33, projection data for a plurality of channels are averaged to reduce the influence of noise components. At step S34 obtains the transmission length t j corresponding to the transmission X-ray of each channel on the basis of the projection data said averaged and stored in the memory.

即ち、一般に、被検体のj番目の投影データIは次式、 That is, in general, the j-th projection data I j of the subject is given by

Figure 2008119095
Figure 2008119095

ここで、
:X線の射出強度(リファレンスデータ)
μ:被検体を代表するX線減弱計数
:X線の透過長
で表される。この式をX線の透過長tについて解くと、次式、
here,
I 0 : X-ray emission intensity (reference data)
μ b : X-ray attenuation count representing the subject t j : Expressed by X-ray transmission length. Solving this equation for the transmission length t j of X-ray,

Figure 2008119095
Figure 2008119095

が得られる。なお、被検体を代表するX線減弱計数μについては、アクリルなどと同様のデフォルト値を使用するが、被検体の外形サイズや、撮影部位に応じて、予め操作者が
設定するように構成しても良い。
Is obtained. Note that the X-ray attenuation count μ b representing the subject uses the same default value as that of acrylic or the like, but is configured to be set in advance by the operator according to the outer size of the subject and the imaging region. You may do it.

図7に各ビュー角におけるX線透過長のプロフィールを示す。ビュー角0°の場合は、X線が被検体をその表面から裏面の比較的短い距離を透過するため、その透過長は相対的に短くなっている。一方、ビュー角90°の場合は、X線が被検体をその左側面から右側面の比較的長い距離を透過するため、その透過長は相対的に長くなっている。ビュー角45°の場合は、これらの中間である。   FIG. 7 shows a profile of X-ray transmission length at each view angle. When the view angle is 0 °, X-rays pass through the subject through a relatively short distance from the front surface to the back surface, so that the transmission length is relatively short. On the other hand, when the view angle is 90 °, X-rays pass through the subject through a relatively long distance from the left side surface to the right side surface, so that the transmission length is relatively long. When the view angle is 45 °, it is between these.

ステップS35では被検体の全投影データについての透過長を求めたか否かを判別し、NOの場合はステップS31に戻り、YESの場合はこの処理を抜ける。こうして、被検体のサイズ(体格)等を反映した全透過長が得られる。   In step S35, it is determined whether or not the transmission length for all projection data of the subject has been obtained. If NO, the process returns to step S31, and if YES, the process is exited. Thus, the total transmission length reflecting the size (physique) of the subject is obtained.

図8は実施の形態によるX線散乱係数演算処理のフローチャートで、被検体のX線透過長とX線検出器との位置関係に基づき、実際の散乱状態に忠実な、より精密なX線散乱係数を求める場合を示している。図9にX線散乱係数演算処理のイメージを示す。ステップS41では、あるビュー角の対応に被検体の透過長データを読み出す。ステップS42では透過長データで透過長−光子エネルギーテーブルを参照し、当該透過長における散乱を特徴付けるような光子エネルギーを求める。X線の透過長が短い場合は光子エネルギーは相対的に大きく、またX線透過長が長い場合は光子エネルギーは相対的に小さくなる。   FIG. 8 is a flowchart of the X-ray scattering coefficient calculation process according to the embodiment. Based on the positional relationship between the X-ray transmission length of the subject and the X-ray detector, more accurate X-ray scattering faithful to the actual scattering state. The case where the coefficient is obtained is shown. FIG. 9 shows an image of the X-ray scattering coefficient calculation process. In step S41, the transmission length data of the subject is read corresponding to a certain view angle. In step S42, the transmission length-photon energy table is referred to by the transmission length data, and the photon energy that characterizes the scattering in the transmission length is obtained. When the X-ray transmission length is short, the photon energy is relatively large, and when the X-ray transmission length is long, the photon energy is relatively small.

ステップS43では前記求めた光子エネルギーで光子エネルギー−散乱断面積テーブルを参照し、当該光子エネルギーで発生する干渉性散乱と非干渉性散乱の割合を求める。図3(A)において、X線透過長が短く、この区間を透過する光子エネルギー(平均の光子エネルギー)が大きい場合には、非干渉性(コンプトン)散乱が支配的であるが、X線透過長が長く、この区間を透過する光子エネルギー(平均の光子エネルギー)が小さくなると、干渉性(レーリー)散乱の割合が大きくなる。   In step S43, the photon energy-scattering cross section table is referred to with the obtained photon energy, and the ratio of coherent scattering and incoherent scattering generated with the photon energy is obtained. In FIG. 3A, when the X-ray transmission length is short and the photon energy (average photon energy) transmitted through this section is large, incoherent (Compton) scattering is dominant. When the length is long and the photon energy (average photon energy) transmitted through this section is small, the ratio of coherent (Rayleigh) scattering is large.

ステップS44では被検体の搭載位置(天板の高さ等)やサイズ(体格)の情報に基づき、各X線検出列R1〜R8の対応に散乱線の散乱角データを求める。図9(a)はビュー角iについて、X線が被検体を表面から背面に透過する場合の側断面図を示している。散乱の中心(起点)は例えば被検体体軸CLbの上に設定できる。被検体の体軸CLbはスキャン開始前のパラメータ設定により、又は上記スキャン後に求めた各X線の透過長に基づいて自動的に設定可能である。今、X線の検出器列R1に直接線が入射した状態を想定すると、体軸CLb上の起点から各検出列R2〜R8の検出面に向けてこの透過区間tR1における全散乱を代表するような各散乱線が発生する。これらの幾何学的寸法については被検体の搬送位置やX線検出器の位置等からCPU3において既知であるから、各散乱角データθR12〜θR18が演算により求まる。なお、被検体サイズが大きい場合は、体軸CLbがCLb’野位置に移動するが、これに応じて適切な散乱角データを求めることが可能である。ビュー角i45,i90についても同様である。 In step S44, the scattering angle data of the scattered radiation is obtained corresponding to each of the X-ray detection rows R1 to R8 based on the information on the mounting position (top height, etc.) and size (physique) of the subject. FIG. 9A shows a side cross-sectional view of the view angle i 0 when X-rays pass through the subject from the front surface to the back surface. The center (starting point) of scattering can be set on the subject body axis CLb, for example. The body axis CLb of the subject can be automatically set by parameter setting before the start of scanning or based on the transmission length of each X-ray obtained after the scanning. Now, direct radiation to the detector row R1 of the X-ray is assumed a state in which the incident direction from the starting point of the body axis CLb the detection surface of the detection column R2~R8, representative of all the scattering in the transmission interval t R1 Such scattered rays are generated. Since these geometric dimensions are known in the CPU 3 from the transport position of the subject, the position of the X-ray detector, etc., the respective scattering angle data θ R12 to θ R18 are obtained by calculation. When the subject size is large, the body axis CLb moves to the CLb ′ field position, and appropriate scattering angle data can be obtained according to this. The same applies to the view angles i 45 and i 90 .

ステップS45では上記求めた散乱角データで散乱角−微分断面積テーブルを参照し、各散乱角θR12〜θR18に対応する散乱の微分断面積を散乱尾タイプ別に求める。ステップS46では前記求めた各微分断面積を上記ステップS43で求めたタイプの割合で合成し、散乱係数αR12〜αR18を求める。ステップS47では全散乱係数を求めたか否かを判別し、NOならステップS41に戻る。またYESの場合はこの処理を抜ける。これらの散乱係数は上記ステップS19の散乱補正処理で使用される。 In step S45, the scattering angle-differential cross-sectional area table is referred to with the obtained scattering angle data, and the differential cross-sectional area of scattering corresponding to each of the scattering angles θ R12 to θ R18 is determined for each scattering tail type. In step S46, the obtained differential cross-sectional areas are synthesized at the ratio of the type obtained in step S43, and the scattering coefficients α R12 to α R18 are obtained. In step S47, it is determined whether or not the total scattering coefficient has been obtained. If NO, the process returns to step S41. If YES, the process is exited. These scattering coefficients are used in the scattering correction process in step S19.

なお、上記実施の形態では被検体体軸(z軸)方向の散乱線補正処理を述べたが、これに限らない。本発明はX線検出器のチャネル方向の散乱線補正にも適用できることは明らかである。   In the above embodiment, the scattered radiation correction processing in the direction of the subject body axis (z axis) has been described, but the present invention is not limited to this. It is clear that the present invention can be applied to correction of scattered radiation in the channel direction of the X-ray detector.

また、上記実施の形態では被検体をスキャンした投影データに基づき透過X線の透過長(被検体サイズ)を求めたが、これに限らない。例えば、予め被検体を少なくとも直交する2方向(例えばビュー角i,i90)からスカウトスキャンし、得られた投影データに基づき被検体の大まかなサイズ(X線透過長)を求めても、本発明を実現できる。 In the above embodiment, the transmission length (subject size) of transmitted X-rays is obtained based on projection data obtained by scanning the subject. However, the present invention is not limited to this. For example, even if the subject is scanned in advance from at least two orthogonal directions (for example, view angles i 0 , i 90 ) and the approximate size (X-ray transmission length) of the subject is obtained based on the obtained projection data, The present invention can be realized.

また、上記実施の形態では、本発明を具体的数値を伴って説明したが、本発明はこれらの数値に限定されない。   Moreover, in the said embodiment, although this invention was demonstrated with the specific numerical value, this invention is not limited to these numerical values.

また、上記本発明に好適なる実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組み合わせの様々な変更が行えることは言うまでも無い。   Moreover, although the preferred embodiment of the present invention has been described, it goes without saying that various changes in the configuration, control, processing, and combination of each part can be made without departing from the spirit of the present invention.

実施の形態によるX線CT装置の構成図である。1 is a configuration diagram of an X-ray CT apparatus according to an embodiment. 実施の形態によるX線撮影系を説明する図である。It is a figure explaining the X-ray imaging system by embodiment. 実施の形態による各種テーブルを説明する図(1)である。It is FIG. (1) explaining the various tables by embodiment. 実施の形態による各種テーブルを説明する図(2)である。It is FIG. (2) explaining the various tables by embodiment. 実施の形態によるX線CT撮影処理のフローチャートである。It is a flowchart of the X-ray CT imaging process by embodiment. 実施の形態によるX線透過長推定処理のフローチャートである。It is a flowchart of the X-ray transmission length estimation process by embodiment. 実施の形態によるX線透過長推定処理のイメージ図である。It is an image figure of the X-ray transmission length estimation process by embodiment. 実施の形態によるX線散乱係数演算処理のフローチャートである。It is a flowchart of the X-ray scattering coefficient calculation process by embodiment. 実施の形態によるX線散乱係数演算処理のイメージ図である。It is an image figure of the X-ray-scattering-coefficient calculation process by embodiment.

符号の説明Explanation of symbols

1 操作コンソール
2 入力装置
3 中央処理装置(CPU)
5 データ収集バッファ
6 モニタ
7 記憶装置
10 撮影テーブル
12 天板(クレードル)
15 回転部
20 走査ガントリ
21 X線管
23 コリメータ
24 多列検出器
25 データ収集装置
1 Operation console 2 Input device 3 Central processing unit (CPU)
5 Data collection buffer 6 Monitor 7 Storage device 10 Shooting table 12 Top plate (cradle)
DESCRIPTION OF SYMBOLS 15 Rotation part 20 Scanning gantry 21 X-ray tube 23 Collimator 24 Multi-row detector 25 Data acquisition device

Claims (8)

被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置において、
前記投影データに基づき透過X線の透過長を求める透過長演算手段と、
前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求める散乱角演算手段と、
前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を規定した情報に基づき各散乱線の微分断面積を求める微分断面積演算手段と、
前記求めた微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求める散乱係数演算手段と、
各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正手段とを備えることを特徴とするX線CT装置。
In an X-ray CT apparatus comprising an X-ray tube and an X-ray detector facing each other with a subject interposed therebetween, and reconstructing a CT tomogram based on projection data obtained by scanning the subject,
A transmission length calculating means for determining a transmission length of transmitted X-rays based on the projection data;
A scattering angle calculating means for obtaining a scattering angle of scattered radiation incident on each X-ray detection surface based on the positional relationship between the obtained transmission length and the X-ray detector;
Differential cross-sectional area calculating means for obtaining a differential cross-sectional area of each scattered ray based on information that preliminarily defines the relationship between the scattering angle and the differential cross-sectional area of scattering by the obtained scattering angle;
A scattering coefficient computing means for obtaining a scattering coefficient representing a ratio of scattered radiation intensity to transmitted X-ray intensity based on the obtained differential cross-sectional area;
X-ray CT comprising correction means for correcting scattering of projection data based on the X-ray intensity detected on each X-ray detection surface and the scattering coefficient obtained corresponding to each transmitted X-ray apparatus.
被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置において、
前記投影データに基づき透過X線の透過長を求める透過長演算手段と、
前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求める散乱角演算手段と、
前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を散乱のタイプ別に規定した情報に基づき各散乱線のタイプ別微分断面積を求める微分断面積演算手段と、
前記求めた透過長により予めX線透過長と当該区間を透過するX線の光子エネルギーの関係を規定した情報に基づき透過X線の光子エネルギーを求める光子エネルギー演算手段と、
前記求めた光子エネルギーにより予め光子エネルギーと散乱断面積の関係を散乱のタイプ別に規定した情報に基づき当該透過で生じるタイプ別散乱断面積の割合を求める散乱割合演算手段と、
前記求めたタイプ別微分断面積を前記求めたタイプ別散乱断面積の割合で合成した微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求める散乱係数演算手段と、
各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正手段とを備えることを特徴とするX線CT装置。
In an X-ray CT apparatus comprising an X-ray tube and an X-ray detector facing each other with a subject interposed therebetween, and reconstructing a CT tomogram based on projection data obtained by scanning the subject,
Transmission length calculation means for determining the transmission length of transmitted X-rays based on the projection data;
A scattering angle calculating means for determining a scattering angle of scattered radiation incident on each X-ray detection surface based on the positional relationship between the obtained transmission length and the X-ray detector;
Differential cross-sectional area calculating means for obtaining a differential cross-sectional area for each type of scattered radiation based on information that preliminarily defines the relationship between the scattering angle and the differential cross-sectional area of the scattering for each type of scattering by the obtained scattering angle;
A photon energy calculating means for obtaining a photon energy of a transmitted X-ray based on information that preliminarily defines a relationship between an X-ray transmission length and a photon energy of the X-ray transmitted through the section by the determined transmission length;
Scattering ratio calculation means for obtaining a ratio of the scattering cross section by type that occurs in the transmission based on information that prescribes the relationship between the photon energy and the scattering cross section by the type of scattering in advance by the obtained photon energy,
A scattering coefficient calculating means for obtaining a scattering coefficient representing a ratio of scattered radiation intensity to transmitted X-ray intensity based on a differential sectional area obtained by combining the determined differential sectional area by type at a ratio of the determined scattering sectional area by type;
X-ray CT comprising correction means for correcting scattering of projection data based on the X-ray intensity detected on each X-ray detection surface and the scattering coefficient obtained corresponding to each transmitted X-ray apparatus.
補正手段は、被検体体軸方向に並ぶ各X線検出列で検出されたX線強度と、体軸方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきX線検出列方向の投影データの散乱補正を行うことを特徴とする請求項1又は2記載のX線CT装置。 The correcting means detects X-rays based on the X-ray intensity detected in each X-ray detection row arranged in the body axis direction of the subject and each scattering coefficient obtained corresponding to each transmitted X-ray arranged in the body axis direction. The X-ray CT apparatus according to claim 1, wherein scattering correction is performed on projection data in a column direction. 補正手段は、チャネル方向に並ぶ各X線検出面で検出されたX線強度と、チャネル方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきチャネル方向の投影データの散乱補正を行うことを特徴とする請求項1又は2記載のX線CT装置。 The correcting means scatters projection data in the channel direction based on the X-ray intensity detected on each X-ray detection surface arranged in the channel direction and each scattering coefficient obtained corresponding to each transmitted X-ray arranged in the channel direction. The X-ray CT apparatus according to claim 1, wherein correction is performed. 被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置の散乱補正方法であって、
前記投影データに基づき透過X線の透過長を求めるステップと、
前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求めるステップと、
前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を規定した情報に基づき各散乱線の微分断面積を求めるステップと、
前記求めた微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求めるステップと、
各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正ステップとを備えることを特徴とする散乱補正方
法。
A scatter correction method for an X-ray CT apparatus comprising an X-ray tube and an X-ray detector facing each other across a subject, and reconstructing a CT tomogram based on projection data obtained by scanning the subject,
Obtaining a transmission length of transmitted X-rays based on the projection data;
Obtaining a scattering angle of scattered radiation incident on each X-ray detection surface based on the positional relationship between the obtained transmission length and the X-ray detector;
Obtaining a differential cross-sectional area of each scattered ray based on information that preliminarily defines the relationship between the scattering angle and the differential cross-sectional area of scattering by the obtained scattering angle;
Obtaining a scattering coefficient representing a ratio of scattered radiation intensity to transmitted X-ray intensity based on the obtained differential cross-sectional area;
A scatter correction method comprising: a correction step of performing scatter correction of projection data based on the X-ray intensity detected on each X-ray detection surface and a scattering coefficient obtained corresponding to each transmitted X-ray .
被検体を挟んで相対向するX線管及びX線検出器を備え、被検体をスキャンした投影データに基づきCT断層像を再構成するX線CT装置の散乱補正方法であって、
前記投影データに基づき透過X線の透過長を求めるステップと、
前記求めた透過長とX線検出器との位置関係に基づき各X線検出面に入射する散乱線の散乱角を求めるステップと、
前記求めた散乱角により予め散乱角と散乱の微分断面積の関係を散乱のタイプ別に規定した情報に基づき各散乱線のタイプ別微分断面積を求めるステップと、
前記求めた透過長により予めX線透過長と当該区間を透過するX線の光子エネルギーの関係を規定した情報に基づき透過X線の光子エネルギーを求めるステップと、
前記求めた光子エネルギーにより予め光子エネルギーと散乱断面積の関係を散乱のタイプ別に規定した情報に基づき当該透過で生じるタイプ別散乱断面積の割合を求めるステップと、
前記求めたタイプ別微分断面積を前記求めたタイプ別散乱断面積の割合で合成した微分断面積に基づき透過X線強度に対する散乱線強度の割合を表す散乱係数を求めるステップと、
各X線検出面で検出されたX線強度と、各透過X線に対応して求められた散乱係数とに基づき投影データの散乱補正を行う補正ステップとを備えることを特徴とする散乱補正方法。
A scatter correction method for an X-ray CT apparatus comprising an X-ray tube and an X-ray detector facing each other across a subject, and reconstructing a CT tomogram based on projection data obtained by scanning the subject,
Obtaining a transmission length of transmitted X-rays based on the projection data;
Obtaining a scattering angle of scattered radiation incident on each X-ray detection surface based on the positional relationship between the obtained transmission length and the X-ray detector;
Obtaining a differential cross-sectional area for each type of scattered radiation based on information that prescribes the relationship between the scattering angle and the differential cross-sectional area of scattering according to the scattering angle determined in advance according to the scattering angle;
Obtaining the photon energy of transmitted X-rays based on information defining the relationship between the X-ray transmission length and the photon energy of X-rays transmitted through the section in advance by the determined transmission length;
Determining the ratio of the type-specific scattering cross-section generated by the transmission based on the information that prescribes the relationship between the photon energy and the scattering cross-section in advance for each type of scattering by the obtained photon energy;
Obtaining a scattering coefficient representing a ratio of scattered radiation intensity to transmitted X-ray intensity based on a differential sectional area obtained by synthesizing the obtained differential sectional area by type at a ratio of the obtained scattering sectional area by type;
A scatter correction method comprising: a correction step of performing scatter correction of projection data based on the X-ray intensity detected on each X-ray detection surface and a scattering coefficient obtained corresponding to each transmitted X-ray .
補正ステップは、被検体体軸方向に並ぶ各X線検出列で検出されたX線強度と、体軸方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきX線検出列方向の投影データの散乱補正を行うことを特徴とする請求項5又は6記載の散乱補正方法。 In the correction step, X-ray detection is performed based on the X-ray intensity detected in each X-ray detection row arranged in the body axis direction of the subject and each scattering coefficient obtained corresponding to each transmitted X-ray arranged in the body axis direction. 7. The scatter correction method according to claim 5, wherein scatter correction is performed on projection data in the column direction. 補正ステップは、チャネル方向に並ぶ各X線検出面で検出されたX線強度と、チャネル方向に並ぶ各透過X線に対応して求められた各散乱係数とに基づきチャネル方向の投影データの散乱補正を行うことを特徴とする請求項5又は6記載の散乱補正方法。 The correction step scatters projection data in the channel direction based on the X-ray intensity detected on each X-ray detection surface arranged in the channel direction and each scattering coefficient obtained corresponding to each transmitted X-ray arranged in the channel direction. The scattering correction method according to claim 5 or 6, wherein correction is performed.
JP2006304074A 2006-11-09 2006-11-09 X-ray CT apparatus and scatter correction method Active JP5097384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304074A JP5097384B2 (en) 2006-11-09 2006-11-09 X-ray CT apparatus and scatter correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304074A JP5097384B2 (en) 2006-11-09 2006-11-09 X-ray CT apparatus and scatter correction method

Publications (2)

Publication Number Publication Date
JP2008119095A true JP2008119095A (en) 2008-05-29
JP5097384B2 JP5097384B2 (en) 2012-12-12

Family

ID=39504508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304074A Active JP5097384B2 (en) 2006-11-09 2006-11-09 X-ray CT apparatus and scatter correction method

Country Status (1)

Country Link
JP (1) JP5097384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470222A (en) * 2019-08-30 2019-11-19 佛山市顺德区美的饮水机制造有限公司 For measuring the device and drinking equipment of the physical size of object
CN113237903A (en) * 2021-06-15 2021-08-10 清华大学 Double-layer flat panel detector cone-beam CT-based scattering correction method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131431A (en) * 1994-11-08 1996-05-28 Hitachi Medical Corp X-ray ct system
JP2005046199A (en) * 2003-07-29 2005-02-24 Ge Medical Systems Global Technology Co Llc X-ray ct system
JP2005095397A (en) * 2003-09-25 2005-04-14 Ge Medical Systems Global Technology Co Llc Method of correcting scattered x-ray component, program therefor, and x-ray ct system
WO2006082557A2 (en) * 2005-02-01 2006-08-10 Koninklijke Philips Electronics N.V. Apparatus and method for correction or extension of x-ray projections
JP2006239003A (en) * 2005-03-01 2006-09-14 Ge Medical Systems Global Technology Co Llc Scattering correcting method, scattering measuring method, and x-ray ct apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131431A (en) * 1994-11-08 1996-05-28 Hitachi Medical Corp X-ray ct system
JP2005046199A (en) * 2003-07-29 2005-02-24 Ge Medical Systems Global Technology Co Llc X-ray ct system
JP2005095397A (en) * 2003-09-25 2005-04-14 Ge Medical Systems Global Technology Co Llc Method of correcting scattered x-ray component, program therefor, and x-ray ct system
WO2006082557A2 (en) * 2005-02-01 2006-08-10 Koninklijke Philips Electronics N.V. Apparatus and method for correction or extension of x-ray projections
JP2006239003A (en) * 2005-03-01 2006-09-14 Ge Medical Systems Global Technology Co Llc Scattering correcting method, scattering measuring method, and x-ray ct apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470222A (en) * 2019-08-30 2019-11-19 佛山市顺德区美的饮水机制造有限公司 For measuring the device and drinking equipment of the physical size of object
CN113237903A (en) * 2021-06-15 2021-08-10 清华大学 Double-layer flat panel detector cone-beam CT-based scattering correction method and device
CN113237903B (en) * 2021-06-15 2022-06-10 清华大学 Double-layer flat panel detector cone-beam CT-based scattering correction method and device

Also Published As

Publication number Publication date
JP5097384B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US6421411B1 (en) Methods and apparatus for helical image artifact reduction
US8483363B2 (en) Movable wedge for improved image quality in 3D X-ray imaging
US7920672B2 (en) X-ray detector gain calibration depending on the fraction of scattered radiation
US20190180482A1 (en) Image reconstruction device, x-ray ct device, and image reconstruction method
JP2005312970A (en) Reconstruction method of projection data set during dose reduced partial spiral scanning of reduced radiation dosage in computerized tomography
JP2007054372A (en) X-ray ct apparatus
JP2007181623A (en) X-ray ct apparatus
EP1151322B1 (en) X-ray imaging apparatus and method with scatter correction
JP2007144134A (en) Scattered radiation correction method of computerized tomography system and computerized tomography system
JP2002345808A (en) Method and system for process of scouting ct images
JP2007105467A (en) Scattered radiation correction method for computer tomography system, and computer tomography system
JP2008104761A (en) Tomographic x-ray apparatus and method of reducing artifact
US9125286B2 (en) X-ray dose estimation technique
KR100685561B1 (en) X-ray ct apparatus and imaging method
KR20050028824A (en) Radiation computed tomography apparatus and tomographic image data generating method
US20170202532A1 (en) Data processing method, data processing device, and x-ray ct apparatus
US20230263499A1 (en) Counting response and beam hardening calibration method for a full size photon-counting ct system
US7269244B2 (en) Methods and apparatus for generating thick images in cone beam volumetric CT
JP2004073397A (en) X-ray ct apparatus
JP4316335B2 (en) X-ray scattered ray component correction method and program, and X-ray CT apparatus
JP2002034970A (en) Method and device for spiral reconstitution in multi-slice ct scan
JP5097384B2 (en) X-ray CT apparatus and scatter correction method
JP2006239118A (en) X-ray ct system
JP2006102299A (en) X-ray dose correcting method and x-ray ct apparatus
JP3685551B2 (en) Difference image imaging method and X-ray CT apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5097384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250