JP4768726B2 - Method for structurally filling contact tubes of a contact tube bundle - Google Patents

Method for structurally filling contact tubes of a contact tube bundle Download PDF

Info

Publication number
JP4768726B2
JP4768726B2 JP2007511930A JP2007511930A JP4768726B2 JP 4768726 B2 JP4768726 B2 JP 4768726B2 JP 2007511930 A JP2007511930 A JP 2007511930A JP 2007511930 A JP2007511930 A JP 2007511930A JP 4768726 B2 JP4768726 B2 JP 4768726B2
Authority
JP
Japan
Prior art keywords
catalyst
contact
compact
tubes
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007511930A
Other languages
Japanese (ja)
Other versions
JP2007536078A5 (en
JP2007536078A (en
Inventor
ディーテルレ マーティン
エーガー クヌート
ヨアヒム ミュラー−エンゲル クラウス
ハモン ウルリヒ
シュリープハーケ フォルカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority claimed from PCT/EP2005/004351 external-priority patent/WO2005113123A1/en
Publication of JP2007536078A publication Critical patent/JP2007536078A/en
Publication of JP2007536078A5 publication Critical patent/JP2007536078A5/ja
Application granted granted Critical
Publication of JP4768726B2 publication Critical patent/JP4768726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00805Details of the particulate material
    • B01J2208/00814Details of the particulate material the particulate material being provides in prefilled containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/308Details relating to random packing elements filling or discharging the elements into or from packed columns
    • B01J2219/3086Filling of the packing elements into the column or vessel, e.g. using a tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/19
    • B01J35/50

Description

本発明は接触管束の個々の接触管を均一な方法で下から上に段階的に触媒成形体からなる互いに識別できる組成物で充填する、接触管束の接触管を構造的に充填する方法に関する。   The present invention relates to a method for structurally filling the contact tubes of a contact tube bundle, in which the individual contact tubes of the contact tube bundle are filled in a uniform manner from bottom to top with a composition which can be distinguished from one another stepwise.

管束反応器(反応容器に含まれる接触管の束を有する反応器)の多くの場合に垂直に配置された管に存在する触媒固定床に接触して不均一接触気相反応を実施する方法がこのために必要な管束反応器と同様に知られている(例えばドイツ特許第4431949号、欧州特許第700714号参照)。これらは吸熱気相反応または発熱気相反応であってもよい。両方の場合に反応混合物を、管束反応器のいわゆる接触管に存在する触媒固定床を通過させ、触媒表面に反応物質が滞留する時間の間に反応物質が部分的にまたは完全に反応する。接触管内の反応温度は、エネルギーを反応装置に導入するかまたは反応装置からエネルギーを除去するために、液状熱媒体(熱交換手段)を容器に収容された管束の接触管の周りを通過することにより調節される。その際熱媒体および反応ガス混合物が管束反応器を順流でまたは向流で通過することができる。   In many cases of tube bundle reactors (reactors having a bundle of contact tubes contained in a reaction vessel), a method for carrying out a heterogeneous contact gas phase reaction by contacting a catalyst fixed bed existing in a vertically arranged tube The tube bundle reactors necessary for this are known as well (see, for example, German Patent No. 4431949, European Patent No. 7000071). These may be endothermic gas phase reactions or exothermic gas phase reactions. In both cases, the reaction mixture is passed through a fixed catalyst bed present in a so-called contact tube of a tube bundle reactor, and the reactants react partially or completely during the time that the reactants stay on the catalyst surface. The reaction temperature in the contact tube is such that the liquid heat medium (heat exchange means) passes around the contact tube of the tube bundle contained in the container in order to introduce energy into the reactor or to remove energy from the reactor. Adjusted by. In this case, the heating medium and the reaction gas mixture can pass through the tube bundle reactor in the forward or countercurrent manner.

その際熱交換手段を簡単なやり方で実質的に直接接触管に対して縦方向に供給する可能性のほかに、この縦方向の供給を反応容器全体にわたり実現できるか、または連続する偏向板により反応容器内部でこの縦方向の流れに重ねることができ、偏向板は横断面の部分を離れ、接触管に沿って配置され、管束の縦断面に熱媒体のメアンダー状の流れが生じる(例えばドイツ特許第4431949号、欧州特許第700714号、ドイツ特許第2830765号、ドイツ特許第2201528号、ドイツ特許第2231557号およびドイツ特許第2310517号参照)。   In this case, in addition to the possibility of supplying the heat exchange means in a simple manner substantially longitudinally directly to the contact tube, this longitudinal feed can be realized throughout the reaction vessel or by means of a continuous deflection plate. This longitudinal flow can be superposed inside the reaction vessel, the deflector plate leaving the cross section and being arranged along the contact tube, resulting in a meandering flow of the heat medium in the longitudinal section of the tube bundle (eg Germany) No. 4,431,949, European Patent No. 7,00714, German Patent No. 2,830,765, German Patent No. 2,201,528, German Patent No. 2231557 and German Patent No. 2310517).

必要により、実質的に空間で互いに分離される熱媒体を、接触管の周りに、管に沿って種々の位置に配置された管部分に通過することができる。特定の熱媒体が延びる管部分は一般に分離反応帯域を表す。この多帯域管束反応器の1つの有利な変形は、例えばドイツ特許第2830765号、ドイツ特許第2513405号、米国特許第3147084号、ドイツ特許第2201528号、欧州特許第383224号、およびドイツ特許第2903582号に記載される2帯域管束反応器である。   If necessary, heat media that are substantially separated from one another in space can be passed around the contact tube and into tube sections arranged at various positions along the tube. The tube portion through which a particular heat medium extends generally represents a separation reaction zone. One advantageous variant of this multi-zone tube bundle reactor is for example German Patent No. 2830765, German Patent No. 2513405, US Pat. No. 3,147,084, German Patent No. 2121528, European Patent No. 383224, and German Patent No. 2903582. 2 zone tube bundle reactor.

適当な熱媒体は例えば硝酸カリウム、亜硝酸カリウム、亜硝酸ナトリウムおよび/または硝酸ナトリウムのような塩の溶融物、ナトリウム、水銀および種々の金属の合金のような低溶融金属、イオン液(少なくとも1種の反対に荷電されたイオンが少なくとも1種の炭素原子を有するイオン液)であるが、水または高沸点有機溶剤(例えばDiphylとジメチルフタレートの混合物)のような一般的な液体も該当する。   Suitable heat media are, for example, molten salts of salts such as potassium nitrate, potassium nitrite, sodium nitrite and / or sodium nitrate, low melting metals such as alloys of sodium, mercury and various metals, ionic liquids (at least one kind of Oppositely charged ions are ionic liquids having at least one carbon atom), but common liquids such as water or high-boiling organic solvents (eg mixtures of Diphyl and dimethyl phthalate) are also applicable.

接触管は一般にフェライト鋼またはステンレス鋼から形成され、しばしば数mm、例えば1〜3mmの壁厚を有する。その直径は一般に数cm、例えば10〜50mm、しばしば20〜30mmである。管の長さは通常は数mの範囲である(接触管の長さは典型的に1〜8m、しばしば2〜6m、しばしば2〜4mである)。容器に収容される接触管(作業管)の数は作業の観点から有利に少なくとも1000、しばしば少なくとも3000または5000、しばしば少なくとも10000である。反応器容器に収容される接触管の数はしばしば15000〜30000または40000または50000である。50000より多くの接触管を有する管束反応器は排除する傾向にある。接触管は通常は容器内に実質的に均一に分配され、最も近い隣の接触管の中心内部軸の間の距離(接触管距離)が25〜55mm、しばしば35〜45mmであるように有利に分配される(例えば欧州特許第468290号参照)。   Contact tubes are generally formed from ferritic or stainless steel and often have a wall thickness of a few mm, for example 1 to 3 mm. Its diameter is generally a few centimeters, for example 10-50 mm, often 20-30 mm. The length of the tube is usually in the range of a few meters (contact tube length is typically 1-8 m, often 2-6 m, often 2-4 m). The number of contact tubes (work tubes) accommodated in the container is preferably at least 1000, often at least 3000 or 5000, often at least 10,000, from a work point of view. The number of contact tubes contained in the reactor vessel is often 15000-30000 or 40000 or 50000. Tube bundle reactors with more than 50000 contact tubes tend to be eliminated. The contact tubes are usually distributed substantially evenly in the container, advantageously such that the distance between the central inner axes of the nearest adjacent contact tubes (contact tube distance) is 25-55 mm, often 35-45 mm. Distributed (see for example EP 468290).

一般に管束反応器の少なくとも一部の接触管(作業管)は作業の観点から有利に全体の長さにわたり均一であり(製造の精度の限界内で)、すなわちその内径、壁厚および長さが狭い許容誤差内で同じである(WO03/059857号参照)。   In general, at least some of the contact tubes (work tubes) of the tube bundle reactor are advantageously uniform over the entire length (within the limits of production accuracy), ie from the point of view of operation, i.e. their inner diameter, wall thickness and length. Same within narrow tolerances (see WO 03/059857).

前記の必要な特性は、管束反応器の最適な、実質的に問題のない運転を保証するために、しばしば均一に製造された接触管への触媒成形体の充填に該当する(例えばWO03/057653号参照)。特に管束反応器で実施される反応の最適な収率および選択率を達成するために、有利に反応器のすべての作業管が触媒床でできるだけ均一に充填されることが重要である。   Said necessary properties often correspond to the filling of the catalyst compacts into uniformly manufactured contact tubes in order to ensure optimal and substantially problem-free operation of the tube bundle reactor (eg WO 03/057653). Issue). In order to achieve an optimum yield and selectivity of the reaction carried out in particular in the tube bundle reactor, it is important that all working tubes of the reactor are advantageously packed as uniformly as possible in the catalyst bed.

作業管と例えば欧州特許第873783号に記載されるサーモ管は区別される。作業管は実施すべき化学反応を実際に行う接触管であるが、サーモ管は第1に接触管で反応温度を監視し、調節するために使用する。この目的のために、サーモ管は一般に触媒の固定床のほかに、中心に配置された熱電対の覆いを有し、覆いは温度センサーのみが備えられ、サーモ管を縦方向に進行する。一般に管束反応器のサーモ管の数は作業管の数よりきわめて少ない。サーモ管の数は一般に20以下である。   A distinction is made between working tubes and the thermotubes described, for example, in EP 837783. The working tube is a contact tube that actually performs the chemical reaction to be performed, but the thermo tube is first used to monitor and adjust the reaction temperature in the contact tube. For this purpose, the thermopipe generally has a fixed thermocouple cover in addition to the fixed bed of the catalyst, the cover being provided only with a temperature sensor, and traveling vertically through the thermopipe. In general, the number of thermo tubes in the tube bundle reactor is much smaller than the number of working tubes. The number of thermo tubes is generally 20 or less.

前記のことは特に管束反応器で行われ、この間にかなり多くの量の熱が放出する、少なくとも1種の有機化合物の不均一接触気相部分酸化に該当する。   This applies in particular to the heterogeneous catalytic gas phase partial oxidation of at least one organic compound, which takes place in a tube bundle reactor during which a considerable amount of heat is released.

記載できる例はプロペンのアクロレインおよび/またはアクリル酸への変換(例えばドイツ特許第2351151号参照)、t−ブタノール、イソブテン、イソブタン、イソブチルアルデヒド、またはt−ブタノールのメチルエーテルのメタクロレインおよび/またはメタクリル酸への変換(例えばドイツ特許第2526238号、欧州特許第92097号、欧州特許第58927号、ドイツ特許第4132263号、ドイツ特許第4132684号、およびドイツ特許第4022212号参照)、アクロレインのアクリル酸への変換、メタクロレインのメタクリル酸への変換(例えばドイツ特許第2526238号)、o−キシレンまたはナフタレンの無水フタル酸への変換(例えばドイツ特許第522871号参照)およびブタジエンの無水マレイン酸への変換(例えばドイツ特許第2106796号およびドイツ特許第1624921号)、n−ブタンの無水マレイン酸への変換(例えば英国特許第1464198号および英国特許第1292354号)、インダンの例えばアントラキノンへの変換(例えばドイツ特許第2025430号)、エチレンのエチレンオキシドへのまたはプロピレンのプロピレンオキシドへの変換(例えばドイツ特許第1254137号、ドイツ特許第2159346号、欧州特許第372972号、WO89/0710号、ドイツ特許第4311608号)、プロピレンおよび/またはアクロレインのアクリロニトリルへの変換(例えばドイツ特許第2351151号)、イソブテンおよび/またはメタクロレインのメタクリロニトリルへの変換(すなわち部分酸化の用語は本発明の目的のために、部分的アンモ酸化、すなわちアンモニアの存在での部分酸化を含む)、炭化水素の酸化による脱水素(例えばドイツ特許第2351151号)、プロパンのアクリロニトリルまたはアクロレインおよび/またはアクリル酸への変換(例えばドイツ特許第101031297号、欧州特許第1090684号、欧州特許第608838号、ドイツ特許第10046672号、欧州特許第529853号、WO01/96270号およびドイツ特許第10028582号等参照)である。   Examples which may be mentioned are the conversion of propene to acrolein and / or acrylic acid (see, for example, German Patent 2,351,151), t-butanol, isobutene, isobutane, isobutyraldehyde, or methacrolein and / or methacrylic of methyl ether of t-butanol Conversion to acid (see, for example, German Patent No. 2526238, European Patent No. 92097, European Patent No. 58927, German Patent No. 4132263, German Patent No. 4132684, and German Patent No. 4022212), acrolein to acrylic acid Conversion of methacrolein to methacrylic acid (eg German Patent No. 2526238), conversion of o-xylene or naphthalene to phthalic anhydride (see eg German Patent No. 522871) and butadiene Conversion to hydromaleic acid (for example German Patent No. 2106796 and German Patent No. 1624921), conversion of n-butane to maleic anhydride (for example British Patent No. 1464198 and British Patent No. 1292354), Indan for example anthraquinone Conversion (e.g. German Patent No. 2025430), conversion of ethylene to ethylene oxide or propylene to propylene oxide (e.g. German Patent 1254137, German Patent 2159346, European Patent 372972, WO89 / 0710, DE 4311608), conversion of propylene and / or acrolein to acrylonitrile (eg German Patent 2351151), conversion of isobutene and / or methacrolein to methacrylonitrile. (Ie the term partial oxidation for the purposes of the present invention includes partial ammoxidation, ie partial oxidation in the presence of ammonia), dehydrogenation by oxidation of hydrocarbons (eg German Patent 2,351,151), Conversion to acrylonitrile or acrolein and / or acrylic acid (eg German Patent No. 101031297, European Patent No. 1090684, European Patent No. 608838, German Patent No. 10046672, European Patent No. 529853, WO 01/96270 and German Patents) No. 10028582).

管束反応器および管形反応器に配置された触媒の固定床上で不均一接触気相反応を実施するために使用される触媒は一般に種々の形状の成形体を製造するために成形できる活性材料である(触媒成形体と呼ばれる)。これらの成形体の例は球、ペレット、押出品、リング、らせん、角錐、円筒、プリズム、立方形、立方体等である。   Catalysts used to carry out heterogeneous catalytic gas phase reactions on a fixed bed of catalysts located in tube bundle reactors and tubular reactors are generally active materials that can be shaped to produce shaped bodies of various shapes. Yes (called a catalyst compact). Examples of these shaped bodies are spheres, pellets, extrudates, rings, spirals, pyramids, cylinders, prisms, cubes, cubes and the like.

成形体は最も簡単な場合は触媒活性材料のみからなり、前記材料は場合により不活性材料で希釈されてもよい。これらの成形体は一般に全活性触媒と呼ばれる。   In the simplest case, the shaped body consists only of catalytically active material, which may optionally be diluted with an inert material. These shaped bodies are generally called fully active catalysts.

全活性触媒の場合は、成形は、例えば触媒活性粉末(例えば粉末状活性多成分酸化物組成物)を圧縮し、所望の触媒形状を製造する(例えばタブレット形成、焼結、スクリュー押出またはラム押出により)ことにより行うことができる。   In the case of a fully active catalyst, the shaping can be performed, for example, by compressing a catalytically active powder (eg a powdered active multicomponent oxide composition) to produce the desired catalyst shape (eg tableting, sintering, screw extrusion or ram extrusion). )).

選択的に、触媒不活性材料(不活性材料)を活性材料で被覆することにより成形を達成できる。全活性触媒成形体と同様に、この不活性担体は規則的なまたは不規則的な形状を有することができる。最も簡単な場合は、例えば不活性担体の表面を、液体結合剤を使用して湿らせ、引き続き粉末状活性材料を湿らせた表面に塗布し、結合剤が表面に付着することにより被覆を行うことができる。得られた触媒は被覆触媒と呼ばれる。   Alternatively, molding can be achieved by coating a catalyst inert material (inert material) with an active material. As with all active catalyst compacts, the inert support can have a regular or irregular shape. In the simplest case, for example, the surface of an inert carrier is moistened using a liquid binder, followed by application of the powdered active material to the moistened surface, and the binder is applied to the surface for coating. be able to. The resulting catalyst is called a coated catalyst.

多くの不均一接触気相反応に適した不活性担体は多孔質または非孔質酸化アルミニウム、二酸化珪素、二酸化トリウム、二酸化ジルコニウム、炭化珪素または珪酸塩、例えば珪酸マグネシウムまたは珪酸アルミニウム(例えばタイプC220CeramTecのステアタイト)およびステンレス鋼またはアルミニウムのような金属である。   Inert supports suitable for many heterogeneous catalytic gas phase reactions are porous or non-porous aluminum oxide, silicon dioxide, thorium dioxide, zirconium dioxide, silicon carbide or silicates such as magnesium silicate or aluminum silicate (eg of type C220 CeramTec). Steatite) and metals such as stainless steel or aluminum.

幾何学的不活性(本発明の範囲で、不活性は一般に反応ガス混合物が反応条件下で希薄な成形体のみを含有する充填物を通過する場合に、反応物質の変換率が5モル%以下、一般に2モル%以下であることを意味する)担体に活性材料を被覆する代わりに、担体は多くの場合に触媒活性物質の溶液を含浸させ、引き続き溶剤を蒸発することもできる。この方法から生じる触媒成形体は一般に担持されたまたは含浸された触媒と呼ばれる。   Geometrically inert (in the context of the present invention, inertness is generally less than 5 mol% of the reactant conversion rate when the reaction gas mixture passes through a packing containing only dilute shaped bodies under the reaction conditions. Instead of coating the support with the active material (which generally means less than 2 mol%), the support can often be impregnated with a solution of the catalytically active substance and subsequently evaporate the solvent. The catalyst compact resulting from this process is commonly referred to as a supported or impregnated catalyst.

触媒成形体の最も長い直径(触媒成形体表面の2点間の最も長い可能な直接接触する線)は一般に1〜20mm、しばしば2〜15mm、しばしば3または4〜10または8または6mmである。リングの場合は壁厚は一般に0.5〜6mm、しばしば1〜4または3または2mmである。   The longest diameter of the catalyst compact (the longest possible direct contact line between two points on the surface of the catalyst compact) is generally 1-20 mm, often 2-15 mm, often 3 or 4-10 or 8 or 6 mm. In the case of rings, the wall thickness is generally 0.5 to 6 mm, often 1 to 4 or 3 or 2 mm.

使用される活性材料は特にしばしば貴金属(例えばAg)または1種または1種より多くの他の元素といっしょに酸化物を含有する酸化物材料(多元素酸化物材料、例えば多金属酸化物材料)である。   The active materials used are particularly often noble metals (eg Ag) or oxide materials containing oxides together with one or more other elements (multi-element oxide materials, eg multi-metal oxide materials) It is.

管束反応器の管に存在する触媒の固定床上のきわめて少ない不均一接触気相反応においてのみ触媒の固定床は個々の接触管に沿って均一であり、接触管を完全に充填する触媒成形体の1つの床からなる。   Only in very few heterogeneous catalytic gas phase reactions on the fixed bed of catalyst present in the tubes of the tube bundle reactor, the fixed bed of the catalyst is uniform along the individual contact tubes and the catalyst compact that completely fills the contact tubes. It consists of one floor.

むしろ大部分の場合に接触管充填物は互いの上に配置された触媒充填物の多種の部分からなる。それぞれの個々の床部分は触媒成形体の均一床からなる。しかしその組成は一般に1つの床部分から次の床部分に移行する場合に突然変化する。これは接触管中の構造化された充填物(または床)とも呼ばれる。   Rather, in most cases, the contact tube packing consists of multiple portions of catalyst packing disposed on top of each other. Each individual bed portion consists of a uniform bed of catalyst compacts. However, its composition generally changes suddenly as it moves from one floor part to the next. This is also referred to as a structured packing (or bed) in the contact tube.

これらの接触管中の構造化された充填物の例は、特に欧州特許第979813号、欧州特許第90074号、欧州特許第456837号、欧州特許第1106598号、米国特許第5198581号および米国特許第4203903号に記載されている。   Examples of structured packing in these contact tubes are in particular European Patent No. 979813, European Patent No. 90074, European Patent No. 456837, European Patent No. 1105598, US Pat. No. 5,1985,811 and US Pat. No. 4203903.

最も簡単な場合は、反応管中の触媒充填物の2つの異なる部分が、1種類の活性材料を有する触媒成形体が、活性材料を有しない、異なる割合の不活性成形体で希釈された(希釈成形体として知られている、最も簡単な場合は不活性担体であってもよいが、金属から形成される成形体であってもよい)点でのみ互いに異なっていてもよい。この希釈成形体は触媒成形体として同じ形状または異なる形状(その可能な最も長い寸法範囲は一般に触媒成形体の場合と同じ限界に支配される)を有することができる。接触管に沿って連続して、それぞれの場合に実施される気相反応の要求に個々に適合した、異なる希薄の程度を有する触媒充填物の部分を配置することにより多くの種類の希薄形状物(希薄構造物)を製造することができる。多くの場合に希薄構造物は反応ガス混合物の流動方向に希薄の程度が減少する(すなわち流動方向で比体積活性材料が増加し、反応物質濃度が高い所で比体積活性が低く、逆の場合も同じである)ように選択される。しかし必要により反対または完全に異なる希薄形状物(活性構造化)を選択することもできる。最も簡単な場合は、接触管中の構造化充填物は、(希薄成形体で希釈されていてもよい)活性材料を有する触媒成形体からなる触媒充填物の部分が例えば接触管の底部に配置され、その上に希薄成形体のみからなる触媒充填物の部分が存在する(希薄成形体のみからなるこれらの充填物の部分はこれ以後触媒成形体からなる充填物の部分と呼ぶ)ように存在してもよい。活性材料を有する同じ触媒成形体から形成される充填物の2つの部分を希薄成形体のみからなる部分により中断することもできる。   In the simplest case, two different parts of the catalyst packing in the reaction tube were diluted with different proportions of inert compacts with no active material, with the catalyst compact having one active material ( In the simplest case, known as a diluted shaped body, it may be an inert carrier, but it may also be a shaped body formed from metal. This diluted shaped body can have the same shape as the catalyst shaped body or a different shape (the longest possible dimension range is generally governed by the same limits as for the catalyst shaped body). Many types of dilute shapes by arranging portions of catalyst packing with different degrees of dilute, which are individually adapted to the requirements of the gas phase reaction carried out in each case, continuously along the contact tube (Diluted structure) can be manufactured. In many cases, the lean structure decreases the degree of dilution in the flow direction of the reaction gas mixture (ie, the specific volume active material increases in the flow direction and the specific volume activity is low where the reactant concentration is high, and vice versa. Is also the same). However, if necessary, the opposite or completely different dilute shapes (active structuring) can be selected. In the simplest case, the structured packing in the contact tube is a portion of the catalyst packing consisting of a catalyst shaped body with an active material (which may be diluted with a dilute shaped body), for example at the bottom of the contact tube. There is a portion of the catalyst filling consisting only of the lean shaped body (the portion of the filling consisting of only the lean shaped body is hereinafter referred to as the portion of the packing consisting of the catalyst shaped body). May be. It is also possible to interrupt the two parts of the packing formed from the same catalyst shaped body with active material by the part consisting only of the lean shaped body.

もちろん接触管中の充填物の部分に存在する活性材料を有する2種以上の異なる触媒成形体の部分に沿って変化しない混合物により活性構造化を生じることもできる。この場合に触媒成形体は形状のみが異なるかまたは活性材料の化学的組成のみが異なるかまたは活性材料の物理的組成が異なる(例えば細孔分布、比表面積等)かまたは不活性希薄成形体に塗布される活性材料の質量比のみが異なってもよい。しかし触媒成形体は前記の相違する特徴の2個以上または全部が異なってもよい。更に触媒成形体は希薄触媒成形体を含むことができる。活性構造化の代わりに接触管の充填物は選択的構造化を有してもよい。選択的構造化は気相反応が引き続く反応として生じ、個々の活性材料が要求に合ったやり方で種々の引き続く反応工程に触媒作用できる場合が特に有利である。   Of course, the active structuring can also be caused by a mixture that does not change along two or more different parts of the catalyst body with the active material present in the part of the packing in the contact tube. In this case, the catalyst shaped bodies differ only in shape or only in the chemical composition of the active material or in the physical composition of the active material (eg pore distribution, specific surface area, etc.) Only the mass ratio of the active material applied may be different. However, the catalyst molded body may be different in two or more or all of the different features. Furthermore, the catalyst molded body can include a diluted catalyst molded body. Instead of active structuring, the filling of the contact tube may have selective structuring. Selective structuring occurs particularly as a reaction followed by a gas phase reaction, and is particularly advantageous when the individual active materials can catalyze various subsequent reaction steps in a demanding manner.

全体として、接触管中の部分に(下から上に)構造化された充填物の場合に、反応管中の均一に充填された部分は1種のみの触媒成形体からなるかまたは1種のみの希薄成形体のみからなるかまたは触媒成形体の混合物からなるかまたは触媒成形体と希薄成形体の混合物からなるかまたは種々の希薄成形体の混合物であってもよい特定の組成の触媒成形体を表す。   Overall, in the case of a structured packing in the part in the contact tube (from bottom to top), the uniformly packed part in the reaction tube consists of only one type of catalyst or only one type Catalyst moldings of a specific composition, which may consist only of a dilute molding, or a mixture of catalyst moldings, or a mixture of a catalyst molding and a dilute molding, or may be a mixture of various lean moldings Represents.

構造化されたやり方で充填された接触管は定義により少なくとも2個、しばしば3または4個、しばしば5または6個、または7または8〜10またはそれ以上の充填物の部分を有し、充填物は含まれる触媒成形体の組成がその種類および/または量に関して異なり、すなわち一般に同じでない。   Contact tubes filled in a structured manner have by definition at least 2, often 3 or 4, often 5 or 6, or 7 or 8 to 10 or more portions of filling Are different in terms of their type and / or amount, i.e. generally not the same.

この構造化されたやり方で充填される接触管の均一な充填は、第1に、接触管部分に沿って変動しない触媒成形体の同じ組成物が相当する接触管部分に存在することだけが必要である。しかし第2に触媒成形体の同じ量の同じ組成物が相当する接触管部分に存在することが必要である。   Uniform filling of the contact tubes filled in this structured manner only requires that the same composition of the catalyst compact that does not vary along the contact tube portion is present in the corresponding contact tube portion. It is. Secondly, however, it is necessary that the same amount of the same composition of the catalyst compact is present in the corresponding contact tube section.

多数(10000以上)の接触管(作業管)の場合にこの目的を達成するために、触媒成形体のそれぞれの組成物の測定した部分を組成物を有する貯蔵容器からそれぞれの接触管に導入する技術水準の触媒充填装置が使用された(例えばドイツ特許第19934324号、WO98/14392号および米国特許第4402643号参照)。ここで探求された主な種類のパラメーターは導入の均一な速度(すなわち充填の間に単位時間当たり導入されるそれぞれの触媒成形体組成物のきわめて一定の量)である。導入速度および導入時間を有する組成物が導入される部分および充填される部分の寸法を決定する。   In order to achieve this purpose in the case of a large number (more than 10,000) of contact tubes (working tubes), a measured portion of each composition of the catalyst compact is introduced into each contact tube from a storage container with the composition. State-of-the-art catalyst filling equipment was used (see, for example, German Patent No. 19934324, WO 98/14392 and US Pat. No. 4,402,463). The main type of parameter sought here is the uniform rate of introduction (ie a very constant amount of each catalyst compact composition introduced per unit time during filling). The dimensions of the portion into which the composition having an introduction rate and introduction time is introduced and the portion to be filled are determined.

しかし技術水準の方法は種々の欠点を有する。第1に導入速度が時間にわたり完全に十分に一定でなく、導入される部分のずれが生じる。これは特に導入される成形体が横に配置され、時折充填装置の成形体出口を部分的に閉塞することによる。触媒成形体の個々の組成物が1個より多い種類の成形体からなる場合は、貯蔵容器で部分的脱混合が起こり、これが最終的に種々の接触管中の相当する充填物の部分に比べてある程度の組成物の変動を生じる。個々の接触管中の充填物の1つの、同じ部分内で、充填物の部分に沿って組成物の変動が生じる。更に達成される充填物の速度がしばしば十分でない。充填物の速度は製造、すなわち気相反応が接触管の充填の間に中断されるので特に重要である。   However, state-of-the-art methods have various drawbacks. First, the rate of introduction is not completely constant over time, resulting in a shift in the introduced portion. This is particularly due to the fact that the molded body to be introduced is arranged laterally and occasionally closes the molded body outlet of the filling device. If the individual composition of the catalyst shaped body consists of more than one type of shaped body, partial demixing occurs in the storage vessel, which is ultimately compared to the portion of the corresponding packing in the various contact tubes. Cause some compositional variation. Within one and the same part of the packing in the individual contact tubes, composition variations occur along the part of the packing. Furthermore, the packing speed achieved is often not sufficient. The rate of packing is particularly important since the production, ie the gas phase reaction, is interrupted during the filling of the contact tube.

従って本発明の課題は、構造化された方法で接触管の束の接触管を充填する改良された方法を提供することである。   It is therefore an object of the present invention to provide an improved method of filling contact tubes in a bundle of contact tubes in a structured manner.

接触管の束の個々の接触管を均一な方法で下から上に断面で触媒成形体の異なる組成で充填する、構造化された方法で接触管の束の接触管を充填する方法が見出され、まず触媒成形体の適当な組成物の均一な部分を形成し、前記部分を包装材料で包囲することにより触媒成形体の組成物の均一な量が充填された包みを製造し、多数の包みをそれぞれの個々の接触管に移すことにより、接触管中の充填物の特定の部分を製造することを特徴とする。1つの接触管に移される包みのこの数は一般に1以上である。   A method for filling the contact tubes of a bundle of contact tubes in a structured way, filling the individual contact tubes of a bundle of contact tubes in a uniform manner from bottom to top in cross-section with different compositions of the catalyst compact. First, a uniform portion of a suitable composition of the catalyst molded body is formed, and the portion is surrounded by a packaging material to produce a package filled with a uniform amount of the composition of the catalyst molded body. It is characterized in that a specific part of the filling in the contact tube is produced by transferring the packet to each individual contact tube. This number of packets transferred to one contact tube is generally 1 or more.

本発明により前記部分の均一性間隔は一般に(すべての均一に製造される部分の数平均にもとづく)±1質量%未満または0.3質量%未満または0.1質量%未満であり、好ましい場合は0.01質量%未満である。この相対的均一性間隔が小さいほど、ここの包みに存在する部分が大きい。   According to the invention, the uniformity interval of said parts is generally less than ± 1% by weight or less than 0.3% by weight or less than 0.1% by weight (based on the number average of all uniformly produced parts) Is less than 0.01% by weight. The smaller the relative uniformity interval, the larger the portion present in the packet.

本発明の方法は一般に最も長い直径Lが反応管の内径Dより(かなり)小さい触媒成形体に適用できる。しかしこの直径と同じ程度の大きさの直径も一般的である。D/L比はしばしば2:1または3:1〜20:1または4:1〜10:1である。   The method of the present invention is generally applicable to catalyst shaped bodies in which the longest diameter L is (substantially) smaller than the inner diameter D of the reaction tube. However, a diameter as large as this diameter is also common. The D / L ratio is often 2: 1 or 3: 1 to 20: 1 or 4: 1 to 10: 1.

触媒成形体で充填された包みに存在する量は有利に50g〜5kgであり、充填物の部分の所望の長さに適合し、適当な形状の透明な管中の注入試験で予め決定される。1つの部分の量はしばしば100g〜3kgであり、しばしば200gまたは300g〜2kgであり、すなわち量は例えば400g、600g、800g、1000g、1200g、1400g、1600gおよび1800g等であってもよい。これは一般にlまたはmlでの数的に類似の充填物体積(すなわち25または50ml〜5または10lの範囲)に相当する。   The amount present in the packet filled with the catalyst compact is preferably between 50 g and 5 kg, adapted to the desired length of the part of the packing and determined in advance by injection tests in a suitably shaped transparent tube. . The amount of one part is often 100 g to 3 kg, often 200 g or 300 g to 2 kg, i.e. the amount may be eg 400 g, 600 g, 800 g, 1000 g, 1200 g, 1400 g, 1600 g and 1800 g. This generally corresponds to a numerically similar packing volume in l or ml (ie in the range of 25 or 50 ml to 5 or 10 l).

本発明により、包みの量はきわめて有利に包みを反応管に移した場合に、管中の充填物のすべての所望の部分を生じる量である。しかし充填物部分の増加した均一性を達成するために、1つの部分に相当する量は充填物の所望の部分の製造が1より多い(しばしば2〜10、しばしば2〜5)移される包みを必要とする量であってもよい。   According to the present invention, the amount of wrap is very advantageously the amount that, when transferred to the reaction tube, produces all the desired parts of the packing in the tube. However, in order to achieve an increased uniformity of the filling part, the amount corresponding to one part is a packet in which the production of the desired part of the filling is transferred more than one (often 2-10, often 2-5). The required amount may be used.

包装は紙袋、他の材料から製造される袋、大袋、箱、缶、コンパートメント、バケツ、枠箱、かご、ドラム缶、ビン等であってもよい。包装材料として、活性材料に依存して、紙、厚紙、木材、ガラス、セラミック材料、金属(シートおよびホイル)、プラスチック、フォーム等を使用できる。包装手段および包装方法の選択は活性材料の種類だけでなく、包装後に期待される、例えば保存中の、外部の影響の種類に依存する。例えば耐熱性、衝撃安定性、光不透過性、空気不透過性、水蒸気不透過性等が要求される。   The packaging may be paper bags, bags made from other materials, large bags, boxes, cans, compartments, buckets, frame boxes, baskets, drums, bottles and the like. Depending on the active material, paper, cardboard, wood, glass, ceramic materials, metals (sheets and foils), plastics, foams, etc. can be used as packaging materials. The choice of packaging means and packaging method depends not only on the type of active material, but also on the type of external influence expected after packaging, for example during storage. For example, heat resistance, impact stability, light impermeability, air impermeability, water vapor impermeability and the like are required.

例えば減圧下で包装した触媒成形体密閉し、特に簡単に包みを積層できる収縮フィルムを使用して前記部分を包装することが有利である。例えば包装材料が揮発性可塑剤または残留モノマーのような異種物質を排出し、包みの保存中に存在し、触媒活性表面を閉塞することにより、包装材料が触媒の特性に不利に作用しないことが保証されるように一般に注意しなければならない。   For example, it is advantageous to package the part using a shrinkable film that can be sealed under reduced pressure and that can be easily laminated. For example, the packaging material may discharge foreign substances such as volatile plasticizers or residual monomers, be present during storage of the package, and clog the catalytically active surface so that the packaging material does not adversely affect the properties of the catalyst. General care must be taken to ensure.

本発明により、特に活性材料が多元素酸化物、例えば多金属酸化物である場合に、透明ポリエチレン(高密度、低密度または中密度)が特に有利な包装材料である。25℃で1.0g/m/d(d=日)以下である包装の水分(水蒸気)透過性が一般に有利である。この目的のために、例えばアルミニウム被覆袋または液晶ポリエステルフィルムからなる袋を使用できる。有利な手段は袋であり、特にプラスチック(例えばポリエチレン)から製造され、気密に溶接して閉鎖できる場合が有利である。 According to the invention, transparent polyethylene (high density, low density or medium density) is a particularly advantageous packaging material, especially when the active material is a multi-element oxide, such as a multi-metal oxide. The moisture (water vapor) permeability of the package which is 1.0 g / m 2 / d 1 (d = day) or less at 25 ° C. is generally advantageous. For this purpose, for example, an aluminum-coated bag or a bag made of liquid crystal polyester film can be used. An advantageous means is a bag, especially if it is made of plastic (for example polyethylene) and can be sealed by airtight welding.

均一な量の触媒成形体の組成物が充填され、本発明により使用される包みの製造は該当する充填工程の前に包装装置によりきわめて効率よく、速い速度で行うことができる。分配装置が本発明の方法に特に有利である。この包装装置の組み合わせの場合に、包装品は分配のために製造された形で存在する(たとえばロールの形で用意されたフィルムから包装品自体を製造する包装装置が頻繁に使用されているにもかかわらず)。包装装置は基本的部材として、充填される材料を部品の質量または数により分配する配量装置、実際に充填する装置および例えばひねる、回転する、折る、付着して接合する、溶接することにより、溝/ばね原理によりまたはファスナーと取り付けにより包装品をゆるくから強固にまで閉鎖する閉鎖装置からなる
本発明により導入される触媒成形体の組成物が1より多い種類の成形体を有する場合は、組成物の均一な部分の本発明による製造は有利に以下のように行う。
A uniform amount of the composition of the catalyst compact is filled, and the production of the packets used according to the invention can be carried out very efficiently and at high speed by means of a packaging device prior to the corresponding filling process. Dispensing devices are particularly advantageous for the method of the invention. In the case of this packaging device combination, the packaged goods exist in a form produced for distribution (for example, packaging apparatuses that produce the packaged goods themselves from films prepared in the form of rolls are frequently used. Though). As a basic component, the packaging device is a dispensing device that distributes the material to be filled according to the mass or number of parts, a device that actually fills and, for example, twist, rotate, fold, adhere and join, weld, Consisting of a closing device that closes the package from loose to firm by the groove / spring principle or by attachment with fasteners, if the composition of the catalyst molded body introduced by the present invention has more than one type of molded body, the composition The production according to the invention of a uniform part of an object is preferably carried out as follows.

まずそれぞれの種類の成形体を大量に、できるだけ大きな均一性を有して製造する。   First, each type of compact is produced in large quantities with as much uniformity as possible.

引き続きそれぞれの種類の成形体の均一な部分を部品の質量または数により個々の種類の成形体のために用意された配量装置を使用して連続的に製造し、個々の種類の成形体のために用意されたコンベアベルトに入れる。個々のコンベアベルトは個々の種類の成形体の均一な部分を適当な速度で搬送する。コンベアベルトはその端部で一緒になり、所望の量の個々の種類の成形体を包みに排出する。これにより包みの内容物が量および組成に関して区別できない包みが製造される。   Subsequently, a uniform part of each type of molded body is continuously produced by means of a metering device prepared for each type of molded body according to the mass or number of parts. Put it in the prepared conveyor belt. Each conveyor belt conveys a uniform portion of each type of compact at an appropriate speed. The conveyor belts come together at their ends and discharge the desired amount of each type of molded body into a wrap. This produces a packet whose contents are indistinguishable in terms of quantity and composition.

接触管の充填は簡単なやり方で、接触管の寸法および充填物部分の所望の長さから予め計算した、および相当する形状の透明な反応管での注入試験で測定した数の包みを移すことにより行うことができ、触媒成形体の組成物が充填された包みをそれぞれの接触管に移す。本発明の方法において、個々の包みに包装される量は個々の接触管に導入される量より常に少ないかまたは等しい。同じ数の包みをそれぞれの接触管に移す場合がしばしば存在する。本発明により接触管に移す数は有利に整数である。充填物部分のために用意されたそれぞれの包みは同じ組成および量を有するので、種々の接触管上で特に均一である充填物部分がこうして本発明により短い時間で製造できる。   Filling the contact tube is a simple way to transfer the number of packets pre-calculated from the dimensions of the contact tube and the desired length of the packing part and measured in the injection test in the correspondingly shaped transparent reaction tube. The packet filled with the composition of the catalyst molded body can be transferred to each contact tube. In the method of the invention, the amount packaged in the individual packet is always less than or equal to the amount introduced into the individual contact tubes. Often there is a case where the same number of packets is transferred to each contact tube. The number transferred to the contact tube according to the invention is preferably an integer. Since each packet provided for the filling part has the same composition and amount, a filling part that is particularly uniform on various contact tubes can thus be produced in a short time according to the invention.

接触管に包みを移す最も簡単な方法は手による。しかしきわめて均一なかさ密度を得るように接触管に包みを移すためには、ドイツ特許第19934324号に記載されるばら材料を管に充填する装置により移動を行うこともできる。この装置は特定の数の分配管を有し、分配管は充填される接触管に同時におろすことができる。この装置は分配管当たり1つの貯蔵容器を有し、貯蔵容器は注入口および搬送シュートによりそれぞれの分配管に接続されている。個々の運転可能な配量帯域により、それぞれの貯蔵容器から搬送シュートに排出されるばら座量の流れは接触管に導入する所望の速度のに制限される。本発明により充填される包みをそれぞれの接触管に直接移す代わりに、包みを消費により連続して前記充填装置のそれぞれの貯蔵容器により(貯蔵容器の容量は有利に1つの包みの含量または1または2個の包みの含量に相当する)それぞれの接触管にきわめて均一な搬送速度で移すことができる。貯蔵容器は任意の時点で充填される触媒成形体の多くの量の組成物を含有しないので、これは当然貯蔵容器中の成形体の脱混合を阻止し、導入速度の安定性がきわめて均一なかさ密度を生じる。典型的な搬送速度は毎分成形体500個から毎分成形体40000個であってもよい。   The easiest way to transfer the packet to the contact tube is by hand. However, in order to transfer the packet to the contact tube so as to obtain a very uniform bulk density, the movement can also be carried out by means of an apparatus for filling the tube with the bulk material described in DE 199334324. This device has a certain number of distribution pipes, which can be lowered simultaneously into the contact tubes to be filled. This device has one storage container per distribution pipe, which is connected to each distribution pipe by an inlet and a conveying chute. Due to the individual operable metering zones, the flow of the loose mass discharged from the respective storage container to the conveying chute is limited to the desired speed to be introduced into the contact tube. Instead of transferring the packet filled according to the invention directly to the respective contact tube, the package is consumed continuously by each storage container of the filling device (the capacity of the storage container is preferably the content of one packet or 1 or It can be transferred to each contact tube (corresponding to the content of two packets) with a very uniform transport speed. Since the storage container does not contain a large amount of the composition of the catalyst compact that is filled at any time, this naturally prevents demixing of the compact in the storage container and the stability of the introduction rate is very uniform. Produces density. A typical conveying speed may be from 500 molded bodies per minute to 40000 molded bodies per minute.

特に有利な充填装置は互いに接続され、本発明の方法の連続的実施を実質的に可能にする貯蔵容器のカスケードを有する。   A particularly advantageous filling device has a cascade of storage vessels that are connected to one another and substantially allow continuous execution of the process of the invention.

この配置でのそれぞれの貯蔵容器の上に第2の貯蔵容器が存在し、この容器は下にある貯蔵容器の内容物が完全に排出される前に1つの包みに相当する部分を充填することができる。   There is a second storage container on top of each storage container in this arrangement, and this container fills the portion corresponding to one packet before the contents of the underlying storage container are completely discharged. Can do.

互いに上に配置された貯蔵容器は種々の分配管に接続することができる。   Storage containers arranged on top of each other can be connected to various distribution pipes.

本発明の方法は、例えば包みに存在する触媒成形体の活性材料がMo、BiおよびFEを含有する多金属酸化物(例えばドイツ特許第4442346号の一般式IIの酸化物)および/またはMoおよびVを含有する多金属酸化物(例えばドイツ特許第4442346号の一般式Iの酸化物)である場合に適している。しかし包みに存在する触媒成形体の活性材料がVおよびPを含有する多金属酸化物(例えば欧州特許第302509号、例えば無水マレイン酸の製造のための)またはVおよびCsを含有する多金属酸化物(例えば欧州特許第1084115号、欧州特許第1117484号、または欧州特許第131467号、例えば無水フタル酸の製造のための)またはMoおよびPを含有する多金属酸化物(例えばドイツ特許第4329907号、例えばメタクリル酸の製造のための)である場合も適している。   The process according to the invention can be carried out, for example, when the active material of the catalyst compact present in the package is a multi-metal oxide containing Mo, Bi and FE (for example the oxide of the general formula II of DE 44 42 346) and / or Mo and It is suitable when it is a multimetal oxide containing V (for example, an oxide of the general formula I of German Patent No. 4442346). However, the active material of the catalyst compact present in the wrapping is a multimetallic oxide containing V and P (eg for the production of European Patent No. 302509, eg maleic anhydride) or a multimetallic oxidation containing V and Cs Products (for example EP 1084115, EP 1117484, or EP 131467, for example for the production of phthalic anhydride) or Mo and P-containing multimetal oxides (for example DE 4329907) For example, for the production of methacrylic acid).

本発明に関して勧められる方法は、プロペンおよび/またはアクロレインのアクリル酸への不均一接触部分酸化のための刊行物、欧州特許第7000893号、欧州特許第700714号、ドイツ特許第10337788号、ドイツ特許第10313210号、ドイツ特許第10313214号、ドイツ特許第10313213号、ドイツ特許第10313212号、ドイツ特許第10313211号、ドイツ特許第10313208号、ドイツ特許第10313209号に勧められる構造化された接触管充填物を接触管の部分に充填するために特に有用である。使用される包装材料は水蒸気を極めて透過し、気密な方法で閉鎖される包装材料であるべきである。特開平15−10695号の勧めはこの目的を追求できる。必要な場合はドイツ特許第10337998号で勧められる充填助剤を使用できる。これは本発明の範囲で引用された技術水準で勧められる充填手段に該当する。   The methods recommended in connection with the present invention are the publications for the heterogeneous catalytic partial oxidation of propene and / or acrolein to acrylic acid, European Patent No. 7000893, European Patent No. 7000071, German Patent No. 10337788, German Patent No. Structured contact tube fillings recommended in US Pat. No. 10313210, German Patent No. 10313214, German Patent No. 10313213, German Patent No. 10313212, German Patent No. 10313211, German Patent No. 10313208, German Patent No. 10313209 It is particularly useful for filling parts of the contact tube. The packaging material used should be a packaging material that is highly permeable to water vapor and closed in an airtight manner. The recommendation of Japanese Patent Laid-Open No. 15-10695 can pursue this purpose. If necessary, the filling aids recommended in German Patent No. 10337998 can be used. This corresponds to the filling means recommended in the state of the art cited within the scope of the present invention.

本発明の方法は、本発明の方法を使用して達成できる充填物均一性の高い程度に関しておよび本発明の方法を使用して実現できる同じ充填均一性と組み合わせた高い充填速度にかんして優れている。両方とも部分の配分と充填が空間および時間的に互いに分離される事実に少なくない程度で依存する。本発明の方法を使用する場合の充填物の均一な部分の長さは典型的に20cm〜800cm、しばしば50cm〜200cmである。   The method of the present invention is superior with respect to the high degree of packing uniformity that can be achieved using the method of the present invention and for high filling rates combined with the same packing uniformity that can be achieved using the method of the present invention. Yes. Both depend to a great extent on the fact that the distribution and filling of the parts are separated from each other in space and time. The length of the uniform portion of the packing when using the method of the present invention is typically 20 cm to 800 cm, often 50 cm to 200 cm.

本発明により、特定の色を有する触媒成形体の同じ組成物を含有する包みを用意することが特に有利である。充填物の所望の部分を製造するために包みを個々の反応管に移した後に、それぞれの反応管を引き続き有利にこの工程が終了したことを示すために同じ色のキャップで閉鎖することができる。これは反応管が1回より多く触媒成形体の1つの同じ組成物で充填されることを回避するきわめて簡単なやり方を構成する。選択的に、反応管の充填高さを測定棒により調べることができる。   According to the invention, it is particularly advantageous to provide a packet containing the same composition of a shaped catalyst body having a specific color. After transferring the packets to the individual reaction tubes to produce the desired part of the packing, each reaction tube can subsequently be closed with a cap of the same color to advantageously indicate that this process has been completed. . This constitutes a very simple way of avoiding that the reaction tube is filled more than once with one and the same composition of the catalyst compact. Alternatively, the filling height of the reaction tube can be checked with a measuring bar.

実施例および比較例
A)ドイツ特許第10046957号の例1に記載される方法を使用して、5mm×3mm×2mm(外径×長さ×内径)の形状を有する完全活性触媒リング70kgを製造した。
Examples and Comparative Examples A) Using the method described in Example 1 of German Patent No. 10046957, 70 kg of a fully active catalyst ring having a shape of 5 mm × 3 mm × 2 mm (outer diameter × length × inner diameter) is produced. did.

活性材料の化学量論は以下のとおりであった。
[B×2WO0.5×[Mo12Co5.5Fe2.94Si1.590.08
完全活性触媒リング70kgを、7mm×7mm×4mmの形状を有するステアタイトリング30kgと均一に混合し、内径35mmの長さ6mの透明なプラスチック管に、ドイツ特許第19934324号に記載される触媒充填装置を使用して、プラスチック管が完全に充填するまでこの混合物を充填させた。この充填法において、すべての均一な混合物を貯蔵容器に配置し、プラスチック管をこれから充填した。
The stoichiometry of the active material was as follows:
[B 2 W 2 O 9 × 2WO 3 ] 0.5 × [Mo 12 Co 5.5 Fe 2.94 Si 1.59 K 0.08 O x ] 1
70 kg of fully active catalyst ring is uniformly mixed with 30 kg of steatite ring having a shape of 7 mm × 7 mm × 4 mm, and the catalyst filling described in German Patent No. 1934324 is carried out in a transparent plastic tube having an inner diameter of 35 mm and a length of 6 m The apparatus was used to fill the mixture until the plastic tube was completely filled. In this filling method, all homogeneous mixture was placed in a storage container and plastic tubes were filled from it.

この方法で充填されたプラスチック管の目による検査は多くの充填高さで不均一な帯域を示した。   Visual inspection of plastic tubes filled in this way showed uneven bands at many fill heights.

B)完全活性触媒リング70kgおよびA)からのステアタイトリング30kgをポリエチレンの袋に導入した。これらの充填したポリエチレン袋55個を連続してA)と同じ触媒充填装置の貯蔵容器に移し、A)と同じ充填速度で触媒充填装置によりA)と同じプラスチック管に移した。   B) 70 kg of fully active catalyst ring and 30 kg of steatite ring from A) were introduced into a polyethylene bag. These 55 filled polyethylene bags were successively transferred to a storage container of the same catalyst filling apparatus as A), and transferred to the same plastic tube as A) by the catalyst filling apparatus at the same filling speed as A).

この方法で充填されたプラスチック管の目による検査は不均一な帯域を示さなかった。   Visual inspection of plastic tubes filled with this method showed no non-uniform bands.

C)A)からの完全活性触媒リング(形状5mm×3mm×2mm)および同じ形状(5mm×3mm×2mm)のステアタイトリングを使用して、完全活性触媒リング357g/ステアタイトリング153gの組成物Iの部分を包装装置を使用してポリエチレン袋に充填した(包みI)。充填した組成物Iの全量は5.685メートルトンであった。   C) A composition of 357 g of fully active catalyst ring / 153 g of steatite ring using a fully active catalyst ring from A) (shape 5 mm × 3 mm × 2 mm) and a steatite ring of the same shape (5 mm × 3 mm × 2 mm) Part I was filled into a polyethylene bag using a packaging device (wrapping I). The total amount of Composition I charged was 5.685 metric tons.

更にAからの完全活性触媒リングのみからなる組成物II 835gの部分をポリエチレン袋に充填した(包みII)。充填した組成物IIの全量は9.308メートルトンであった。   Furthermore, a portion of 835 g of composition II consisting only of the fully active catalyst ring from A was filled into a polyethylene bag (wrapping II). The total amount of Composition II charged was 9.308 metric tons.

フェライト鋼から形成され、内径25.4mm(壁厚2mm)および長さ3.20mを有する11148個の接触管を、ドイツ特許第19934324号に記載される触媒充填装置を使用して最初に1つの包みIIをすべての管に、引き続き1つの包みIをすべての管に連続して移すことにより充填した。個々の管の充填時間の均一な間隔は時間平均に対して±5秒未満であった。平均充填時間は45秒であった。空気供給量3000Nl/l・hでの200個のランダムに選択した個々の充填管での圧力低下測定は±3%未満の数平均圧力低下に関する均一性間隔を生じた。   11148 contact tubes made of ferritic steel and having an inner diameter of 25.4 mm (wall thickness of 2 mm) and a length of 3.20 m are first converted into one piece using the catalyst filling device described in German Patent No. 1934324. Packet II was filled into all tubes and subsequently one packet I was transferred sequentially to all tubes. The uniform interval of filling time of the individual tubes was less than ± 5 seconds relative to the time average. The average filling time was 45 seconds. Pressure drop measurements on 200 randomly selected individual fill tubes with an air supply of 3000 Nl / l · h produced a uniformity interval for number average pressure drops of less than ± 3%.

充填した管はプロペンのアクロレインへの部分酸化に適している。WO03/057653号により勧められる均一性を改良する再充填は必要でなかった。   The filled tube is suitable for partial oxidation of propene to acrolein. Refilling to improve the uniformity recommended by WO 03/057653 was not necessary.

2004年5月7日出願の米国特許60/568699号は引用により本発明に含まれる。前記思想に関して本発明の多くの変更および変形が可能である。従って本発明は付随するクレームの範囲で、ここに具体的に記載されるもの以外の方法で実施できることが推測できる。   US Patent No. 60/568699, filed May 7, 2004, is hereby incorporated by reference. Many modifications and variations of the present invention are possible with respect to the above concepts. Thus, it can be assumed that the invention may be practiced otherwise than as specifically described within the scope of the appended claims.

Claims (10)

個々の接触管が、異なる成形体の組成物を有する少なくとも2個の部分を含み、かつ、該部分が多数の接触管の間で均一に設けられるように、成形体で多数の接触管を充填する方法において、その際、Filling a large number of contact tubes with a compact so that each contact tube comprises at least two parts with different compact compositions and is evenly provided between the multiple contact tubes In that case,
(1)対応する成形体の組成物の均一の量を多数の包装物のそれぞれへ詰め込み、そして、該包装物の同じ数を、該多数の接触管のそれぞれ別々の個々の1つの部分に移すことによって、該多数の接触管中へ充填された、該異なる成形体の組成物を有する少なくとも2個の部分は得られ、(1) Packing a uniform amount of the corresponding shaped body composition into each of a number of packages and transferring the same number of packages to each separate individual part of the number of contact tubes Thereby obtaining at least two parts having a composition of the different shaped bodies filled into the multiple contact tubes,
(2)成形体の組成物は、形状、活性材料の化学的組成、活性材料の物理的性質若しくは活性材料の質量比の1以上の手段において異なる、2以上の触媒成形体種類の混合物(2) Molded body composition is a mixture of two or more types of catalyst molded bodies that differ in one or more means of shape, chemical composition of active material, physical properties of active material or mass ratio of active material
又はOr
触媒成形体および希薄成形体の混合物Mixture of catalyst compact and dilute compact
からなり、Consists of
(3)該それぞれの包装物中の量および組成物は、異なる触媒成形体種類の質量又は数によって決定され、(3) The amount and composition in each respective package is determined by the mass or number of different catalyst compact types,
(4)該多数の接触管のそれぞれ別の個々の1つの部分に移されるべき該包装物の数は1〜10の整数であり、(4) The number of the packages to be transferred to different individual one parts of the multiple contact tubes is an integer from 1 to 10,
(5)該多数の接触管は、10〜50mmの内部直径を有する少なくとも1000の接触管の束を有し、(5) the multiple contact tubes have a bundle of at least 1000 contact tubes having an internal diameter of 10-50 mm;
およびand
(6)該それぞれの包装物が50g〜5kgの成形体を含む、(6) Each package includes a molded body of 50 g to 5 kg.
個々の接触管が、異なる成形体の組成物を有する少なくとも2個の部分を含み、かつ、該部分が多数の接触管の間で均一に設けられるように、成形体で多数の接触管を充填する方法。Filling a large number of contact tubes with a compact so that each contact tube comprises at least two parts with different compact compositions and is evenly provided between the multiple contact tubes how to.
該成形体が1〜20mmの最も長い寸法を有する請求項1に記載の方法。The method according to claim 1, wherein the shaped body has a longest dimension of 1 to 20 mm. 該それぞれの接触管が異なる成形体の組成物を有する少なくとも3つの異なる該部分を含む請求項1又は2に記載の方法。3. A method according to claim 1 or 2, wherein each said contact tube comprises at least three different parts having different shaped body compositions. 該接触管の内径Dと包装物に含まれる触媒成形体の最も長い寸法Lの比が2:1〜20:1である請求項1からまでのいずれか1項記載の方法。The method according to any one of claims 1 to 3, wherein the ratio of the inner diameter D of the contact tube to the longest dimension L of the catalyst molded body contained in the package is 2: 1 to 20: 1. 該成形体の組成物は、複合金属酸素を含むMo−、Bi−およびFe−を有する触媒成形体、並びに/または、複合金属酸素を含むMo−およびV−を有する触媒成形体を含む請求項1〜4のいずれか1項に記載の方法。The composition of the compact includes a catalyst compact having Mo-, Bi- and Fe- containing composite metal oxygen and / or a catalyst compact having Mo- and V- containing composite metal oxygen. The method of any one of 1-4. 該包装物が、該接触管の全ての決められた部分に供給するための成形体の十分な量で詰め込まれている請求項1〜5のいずれか1項に記載の方法。6. A method according to any one of the preceding claims, wherein the package is packed with a sufficient amount of shaped body to supply all defined portions of the contact tube. 該包装物が、手動で該接触管に移される請求項1〜6の何れかに記載の方法。The method according to claim 1, wherein the package is manually transferred to the contact tube. 触媒充填機の方法によって、該触媒の包装物を該接触管に移す、請求項1〜6のいずれか1項に記載の方法。The method according to any one of claims 1 to 6, wherein the catalyst package is transferred to the contact tube by a method of a catalyst filling machine. 触媒充填機が包装物の量部分の収容能力に相当する貯蔵容器を有する請求項記載の方法。9. A process according to claim 8 , wherein the catalyst filling machine has a storage container corresponding to the capacity of the quantity part of the package. 接触管当たり移される包装物の数が、1〜5である請求項1からまでのいずれか1項記載の方法。The number of packages to be transferred per contact tube, any one process of claim 1 which is 5 to 9.
JP2007511930A 2004-05-07 2005-04-22 Method for structurally filling contact tubes of a contact tube bundle Active JP4768726B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US56869904P 2004-05-07 2004-05-07
DE102004023249.0 2004-05-07
DE102004023249A DE102004023249A1 (en) 2004-05-07 2004-05-07 Process to insert selected catalyst rings into battery of reactor tubes followed by manual removal as required
US60/568,699 2004-05-07
PCT/EP2005/004351 WO2005113123A1 (en) 2004-05-07 2005-04-22 Method for structurally filling contact tubes of a bank of contact tubes

Publications (3)

Publication Number Publication Date
JP2007536078A JP2007536078A (en) 2007-12-13
JP2007536078A5 JP2007536078A5 (en) 2010-06-03
JP4768726B2 true JP4768726B2 (en) 2011-09-07

Family

ID=34178117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007511930A Active JP4768726B2 (en) 2004-05-07 2005-04-22 Method for structurally filling contact tubes of a contact tube bundle

Country Status (6)

Country Link
JP (1) JP4768726B2 (en)
KR (1) KR101431365B1 (en)
CN (3) CN103894117A (en)
DE (1) DE102004023249A1 (en)
RU (1) RU2393915C2 (en)
ZA (1) ZA200610181B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523322A (en) * 2007-04-10 2010-07-15 ビーエーエスエフ ソシエタス・ヨーロピア Method of charging the longitudinal part of the contact pipe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028332A1 (en) 2007-06-15 2008-12-18 Basf Se A method for feeding a reactor with a fixed catalyst bed comprising at least annular shaped catalyst bodies K.
DE102007028333A1 (en) 2007-06-15 2008-12-18 Basf Se Method for introducing a subset taken from at least one production batch of annular shell catalysts K into a reaction tube of a tube bundle reactor
DE202008004922U1 (en) 2008-04-10 2009-08-20 Süd-Chemie AG Feeding system for tube bundle reactors
DE102014016203A1 (en) 2014-11-03 2016-05-19 Clariant International Ltd. Feeding system for feeding a tube bundle reactor
EP3112014A1 (en) * 2015-06-30 2017-01-04 Shell Internationale Research Maatschappij B.V. Method of loading a particulate material into a reactor
WO2021048373A1 (en) * 2019-09-13 2021-03-18 Hte Gmbh The High Throughput Experimentation Company Method for filling reactors and for examining catalytic reactors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310907A (en) * 1941-01-27 1943-02-09 Shell Dev Catalytic conversion apparatus
JPS63197533A (en) * 1987-12-28 1988-08-16 ケミカル・リサーチ・アンド・ライセンシング・カンパニー Catalytic distillation catalyst
JPH07144125A (en) * 1993-06-30 1995-06-06 Sulzer Chemtech Ag Catalyst-immobilized bed type reactor
JPH07508461A (en) * 1992-06-22 1995-09-21 キャタリティック・ディスティレイション・テクノロジーズ Catalytic distillation structure
JPH08252464A (en) * 1994-11-29 1996-10-01 Basf Ag Preparation of catalyst, preparation of outer shell catalyst, acrylic acid, acrolein, and methacrolein and catalytic gas phase oxidation method
JP2000296337A (en) * 1999-04-12 2000-10-24 Mitsui Chemicals Inc Method for packing organopolysiloxane catalyst
JP2003001094A (en) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd Solid particle-packed reactor and gas-phase catalytic oxidation method using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT955185B (en) * 1972-04-29 1973-09-29 Saes Getter Spa CATALYTIC CARTRIDGE
KR830000312B1 (en) * 1978-03-13 1983-03-02 유씨비, 에스. 에이. Plastic container body for pressurized carbonated beverage
US4402643A (en) * 1981-02-18 1983-09-06 Ppg Industries, Inc. Catalyst loader
WO1990002603A1 (en) * 1988-09-02 1990-03-22 Gebrüder Sulzer Aktiengesellschaft Device for carrying out catalytic reactions
WO1998014392A1 (en) * 1996-10-22 1998-04-09 Comardo Mathis P Catalytic reactor charging system and method
DE19934324A1 (en) * 1999-07-21 2000-09-07 Basf Ag Apparatus for filling tubular reactors with catalyst particles comprises a filling tube that can be moved in a frame structure in two directions
AU2001265326A1 (en) * 2000-06-07 2001-12-17 Abb Lummus Global Inc. Heat exchanger/reactor apparatus
CN1172823C (en) * 2001-05-30 2004-10-27 中国石油化工股份有限公司 Packing bag and its application in packing catalyst
US7182778B2 (en) * 2001-11-01 2007-02-27 Gel Tech Solutions, Inc. Conforming thermal pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310907A (en) * 1941-01-27 1943-02-09 Shell Dev Catalytic conversion apparatus
JPS63197533A (en) * 1987-12-28 1988-08-16 ケミカル・リサーチ・アンド・ライセンシング・カンパニー Catalytic distillation catalyst
JPH07508461A (en) * 1992-06-22 1995-09-21 キャタリティック・ディスティレイション・テクノロジーズ Catalytic distillation structure
JPH07144125A (en) * 1993-06-30 1995-06-06 Sulzer Chemtech Ag Catalyst-immobilized bed type reactor
JPH08252464A (en) * 1994-11-29 1996-10-01 Basf Ag Preparation of catalyst, preparation of outer shell catalyst, acrylic acid, acrolein, and methacrolein and catalytic gas phase oxidation method
JP2000296337A (en) * 1999-04-12 2000-10-24 Mitsui Chemicals Inc Method for packing organopolysiloxane catalyst
JP2003001094A (en) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd Solid particle-packed reactor and gas-phase catalytic oxidation method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523322A (en) * 2007-04-10 2010-07-15 ビーエーエスエフ ソシエタス・ヨーロピア Method of charging the longitudinal part of the contact pipe

Also Published As

Publication number Publication date
JP2007536078A (en) 2007-12-13
KR101431365B1 (en) 2014-08-18
CN1956773A (en) 2007-05-02
ZA200610181B (en) 2008-05-28
CN103894117A (en) 2014-07-02
CN103908927A (en) 2014-07-09
RU2393915C2 (en) 2010-07-10
DE102004023249A1 (en) 2005-03-10
RU2006143086A (en) 2008-06-20
KR20120134146A (en) 2012-12-11

Similar Documents

Publication Publication Date Title
JP4768726B2 (en) Method for structurally filling contact tubes of a contact tube bundle
CN102989377B (en) Process for introducing a portion withdrawn from at least one production charge of annular coated catalysts K into a reaction tube of a tube bundle reactor
KR101237662B1 (en) Method for structurally filling contact tubes of a bank of contact tubes
JP4681183B2 (en) Catalytic gas phase oxidation method to produce (meth) acrolein and / or (meth) acrylic acid
EP1270065B1 (en) Apparatus for pressure and temperature measurements in tube reactors
US7528281B2 (en) Method for vapor phase catalytic oxidation
CN100448522C (en) Fixed bed reactor for gas-phase catalytic oxidation and processes for producing acrolein or acrylic acid
KR20110065374A (en) Method for blending and loading solid catalyst material into tubular structures
JP4334797B2 (en) Method for packing solid particulates into a fixed bed multitubular reactor.
CN106163654B (en) It is used to prepare the catalyst arrangement with optimizing surface of phthalic anhydride
US20080014127A1 (en) Pilot test method for multitubular reactor
JP6257758B2 (en) Catalyst arrangement composition with optimized porosity for producing phthalic anhydride
CN100496740C (en) Multi-layer catalyst for producing phthalic anhydride

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100323

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100330

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20100416

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4768726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250