JP4765313B2 - Exposure equipment - Google Patents

Exposure equipment Download PDF

Info

Publication number
JP4765313B2
JP4765313B2 JP2004376546A JP2004376546A JP4765313B2 JP 4765313 B2 JP4765313 B2 JP 4765313B2 JP 2004376546 A JP2004376546 A JP 2004376546A JP 2004376546 A JP2004376546 A JP 2004376546A JP 4765313 B2 JP4765313 B2 JP 4765313B2
Authority
JP
Japan
Prior art keywords
light
exposure
scanning direction
receiving element
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004376546A
Other languages
Japanese (ja)
Other versions
JP2006186028A (en
Inventor
一 山本
徳行 平柳
秀基 小松田
洋行 近藤
一明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004376546A priority Critical patent/JP4765313B2/en
Publication of JP2006186028A publication Critical patent/JP2006186028A/en
Application granted granted Critical
Publication of JP4765313B2 publication Critical patent/JP4765313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、半導体集積回路等のリソグラフィーに使用される露光装置に関する。   The present invention relates to an exposure apparatus used for lithography such as a semiconductor integrated circuit.

従来、パルス光源を使用した走査型露光装置では、照明光学系とレチクルとの間に半透過型のミラーを設置して照明光の一部を分岐し、レチクル面と共約な位置に配置される受光素子によりパルス毎の光量をモニターすることが行われている。そして、このモニターされた値に基づいてパルス光源のパルス強度を制御し、ウエハ等の感応基板に照射される露光光の強度が安定に保たれるように露光量制御することが行われている。
特開平6−181160号公報
Conventionally, in a scanning exposure apparatus using a pulsed light source, a transflective mirror is installed between the illumination optical system and the reticle to divide a part of the illumination light, and is arranged at a position approximately congruent with the reticle surface. The light quantity for each pulse is monitored by a light receiving element. Then, the pulse intensity of the pulse light source is controlled based on the monitored value, and the exposure amount is controlled so that the intensity of the exposure light applied to the sensitive substrate such as a wafer is kept stable. .
JP-A-6-181160

しかしながら、EUV光(極端紫外線)を用いるリソグラフィーでは、EUV光を半透過する光学素子が存在しないため、照明光を分岐することが困難である。従って、レチクル面と共役な位置に受光素子を設置することが困難であり、リアルタイムでパルス強度をモニターすることが困難であるという問題があった。
本発明は、かかる従来の問題を解決するためになされたもので、照明光を分岐するためのハーフミラーを設置することなく露光量制御の為の光強度検出を行うことができる露光装置を提供することを目的とする。
However, in lithography using EUV light (extreme ultraviolet light), it is difficult to branch the illumination light because there is no optical element that semi-transmits EUV light. Therefore, it is difficult to install the light receiving element at a position conjugate with the reticle surface, and it is difficult to monitor the pulse intensity in real time.
The present invention has been made to solve such a conventional problem, and provides an exposure apparatus capable of detecting light intensity for exposure amount control without installing a half mirror for branching illumination light. The purpose is to do.

本発明の露光装置は、パターンが形成されたレチクルと感応基板とを走査方向に相対的に移動させ、パターンを感応基板上に転写する露光装置において、レチクルの下方に配置され、感応基板上に照射される露光光の露光領域を円弧形状に規定する露光領域規定部材を備え、露光領域規定部材は、走査方向における露光領域を円弧形状に制限し、走査方向に移動可能な走査方向遮光部材と、円弧形状の露光領域の端部を制限するとともに、露光光を検出する受光素子を備え、円弧形状の露光領域に対する受光素子の位置を調整するために、走査方向に垂直な方向に対して所定角度傾いた方向に受光素子を移動させる非走査方向遮光部材と、を有することを特徴とする。 The exposure apparatus of the present invention, relatively moving the sensitive substrate and a reticle on which a pattern is formed in the scanning direction, an exposure apparatus for transferring a pattern onto a photosensitive substrate, is disposed below the reticle onto a photosensitive substrate An exposure area defining member that defines an exposure area of the exposure light to be irradiated in an arc shape, and the exposure area defining member includes a scanning direction light shielding member that limits the exposure area in the scanning direction to an arc shape and is movable in the scanning direction ; In addition to limiting the end of the arc-shaped exposure area and including a light-receiving element that detects exposure light, the position of the light-receiving element relative to the arc-shaped exposure area is adjusted in a direction perpendicular to the scanning direction. a non-scanning light shield member for moving the light receiving element at an angle inclined direction, and having a.

また、本発明の露光装置において、受光素子円弧形状の露光領域に対応した領域内を移動することを特徴とする。 Further, in the exposure apparatus of the present invention, the light receiving element, characterized in that to move the region corresponding to the exposure area of circular arc shape.

また、本発明の露光装置において、受光素子は、円弧形状の露光領域に対応した領域内を直線上に移動することを特徴とする。
また、本発明の露光装置において、非走査方向遮光部材は、レチクルに対して走査方向遮光部材より遠い位置に配置されていることを特徴とする。
In the exposure apparatus of the present invention, the light receiving element moves in a straight line within an area corresponding to the arc-shaped exposure area.
In the exposure apparatus of the present invention, the non-scanning direction light blocking member is arranged at a position farther from the reticle than the scanning direction light blocking member.

た、本発明の露光装置において、感応基板ステージ上に配置される第2の受光素子と、レチクルステージ上に配置される基準反射面と、露光領域規定部材に配置される受光素子と、第2の受光素子間の校正を行う校正手段とを有することを特徴とする。 The exposure apparatus or the present invention, a second light receiving element disposed on the sensitive substrate stage, and the reference reflecting surface disposed on the reticle stage, and light receiving elements arranged in the exposure region defining member, the And calibration means for performing calibration between the two light receiving elements.

また、本発明の露光装置において、校正手設は、レチクルを照明する照明条件または露光領域の設定が変更された時に受光素子間の校正を行うことを特徴とする。 In the exposure apparatus of the present invention, the calibration manual is characterized in that calibration is performed between the light receiving elements when the illumination condition for illuminating the reticle or the setting of the exposure region is changed.

本発明の露光装置では、ウエハ等の感応基板に照射される露光光の露光領域を定める露光領域規定部材に、光を検出する受光素子を配置したので、照明光を分岐することなく露光量制御の為の光の強度検出を行うことができる。   In the exposure apparatus of the present invention, since the light receiving element for detecting the light is arranged on the exposure area defining member that determines the exposure area of the exposure light irradiated to the sensitive substrate such as a wafer, the exposure amount control is performed without branching the illumination light. Therefore, the light intensity can be detected.

図1は本発明の露光装置の第1の実施形態を示している。
この露光装置は、光源部11、照明光学系13、レチクルステージ15、投影光学系17およびウエハステージ19を有している。
光源部11はターゲット材料をプラズマ化しEUV光からなるパルス光を発生させる。
この光源部11では、ノズル21の先端から、ガスあるいは液体状のターゲット材料が間歇的に噴出される。レーザ装置25から射出したレーザ光27は、レンズ29を介してターゲット材料上に集光し、ターゲット材料をプラズマ化する。これにより、パルス光からなるEUV光31が発生する。
FIG. 1 shows a first embodiment of the exposure apparatus of the present invention.
The exposure apparatus includes a light source unit 11, an illumination optical system 13, a reticle stage 15, a projection optical system 17, and a wafer stage 19.
The light source unit 11 converts the target material into plasma and generates pulsed light composed of EUV light.
In the light source unit 11, a gas or liquid target material is intermittently ejected from the tip of the nozzle 21. The laser beam 27 emitted from the laser device 25 is condensed on the target material via the lens 29, and the target material is turned into plasma. Thereby, EUV light 31 composed of pulsed light is generated.

照明光学系13は、レチクルステージ15の下側に配置されるレチクル33の下面に照明光を導く。
この照明光学系13では、光源部11からのEUV光31が、コリメータミラーとして作用する凹面反射鏡35を介して略平行光束となり、第1のフライアイミラー37および第2のフライアイミラー39からなるオプティカルインテグレータ41に入射する。これにより、第2のフライアイミラー39の反射面の近傍に、所定の形状(本例では円弧状であるがこの形状に限られるものではない)を有する実質的な面光源が形成される。実質的な面光源からのEUV光31は、反射鏡43,45により反射された後、平面反射鏡47により偏向される。
The illumination optical system 13 guides illumination light to the lower surface of the reticle 33 arranged below the reticle stage 15.
In this illumination optical system 13, the EUV light 31 from the light source unit 11 becomes a substantially parallel light beam via the concave reflecting mirror 35 that acts as a collimator mirror, and is emitted from the first fly-eye mirror 37 and the second fly-eye mirror 39. Is incident on an optical integrator 41. Thereby, a substantial surface light source having a predetermined shape (in this example, an arc shape but not limited to this shape) is formed in the vicinity of the reflection surface of the second fly-eye mirror 39. The EUV light 31 from the substantial surface light source is reflected by the reflecting mirrors 43 and 45 and then deflected by the planar reflecting mirror 47.

レチクルステージ15は、X,Y,Z方向に移動可能とされている。レチクルステージ15の下側には静電チャック49が固定され、静電チャック49の下面にレチクル33が吸着保持されている。レチクル33の下方には、固定ブラインド(固定遮光羽)51および可動ブラインド(可動遮光羽)53が配置されている。そして、平面反射鏡47により偏向されたEUV光31は、可動ブラインド53および固定ブラインド51の開口部を通り、レチクル33の下面に細長い円弧状の照明領域を形成する。尚、説明の便宜上、固定ブラインド51及び可動ブラインド53はレチクル33に入射する照明光を遮光しているが、レチクル33から反射してきた光束を遮光する構成としても良いし、入射側、反射側の両方で光束を遮光する構成にしても良い。つまり、最終的にウエハ上における露光領域の形状が規定できるように配置されていれば良い。固定ブラインド51は図2に示す円弧形状の上下方向の形状を定め、可動ブラインド53の非走査方向遮光部材63は円弧形状の横方向の幅を定めている。レチクル33は、EUV光31を反射する多層膜とパターンを形成するための吸収体パターン層を有しており、レチクル33でEUV光31が反射されることによりEUV光31はパターン化される。   The reticle stage 15 is movable in the X, Y, and Z directions. An electrostatic chuck 49 is fixed to the lower side of the reticle stage 15, and the reticle 33 is attracted and held on the lower surface of the electrostatic chuck 49. Below the reticle 33, a fixed blind (fixed light shielding feather) 51 and a movable blind (movable light shielding feather) 53 are arranged. Then, the EUV light 31 deflected by the plane reflecting mirror 47 passes through the openings of the movable blind 53 and the fixed blind 51 to form an elongated arc-shaped illumination area on the lower surface of the reticle 33. For convenience of explanation, the fixed blind 51 and the movable blind 53 block the illumination light incident on the reticle 33. However, the light beam reflected from the reticle 33 may be blocked, or the incident side and the reflection side may be blocked. You may make it the structure which shields a light beam by both. In other words, it may be arranged so that the shape of the exposure area on the wafer can be finally defined. The fixed blind 51 defines the vertical shape of the arc shape shown in FIG. 2, and the non-scanning direction light shielding member 63 of the movable blind 53 defines the horizontal width of the arc shape. The reticle 33 has a multilayer film that reflects the EUV light 31 and an absorber pattern layer for forming a pattern. The EUV light 31 is patterned by reflecting the EUV light 31 with the reticle 33.

投影光学系17は、4つの反射ミラーを有しており、各ミラー17a〜17dにはEUV光31を反射する多層膜が備えられている。レチクル33により反射されパターン化されたEUV光31は第1ミラー17aから第4ミラー17dまで順次反射されて、レチクルパターンの縮小された像をウエハ55上に形成する。
ウエハステージ19は、X,Y,Z方向に移動可能とされている。ウエハステージ19の上側には静電チャック57が固定され、静電チャック57の上面にウエハ55が吸着保持されている。ウエハ55上のダイを露光するときには、EUV光31がレチクル33の所定の領域に照射され、レチクル33とウエハ55は投影光学系17に対して投影光学系17の縮小率に従った所定の速度で動く。このようにして、レチクルパターンはウエハ55上の所定の露光範囲(ダイに対して)に露光される。
The projection optical system 17 has four reflecting mirrors, and each of the mirrors 17 a to 17 d is provided with a multilayer film that reflects the EUV light 31. The EUV light 31 reflected and patterned by the reticle 33 is sequentially reflected from the first mirror 17 a to the fourth mirror 17 d to form a reduced image of the reticle pattern on the wafer 55.
The wafer stage 19 is movable in the X, Y, and Z directions. An electrostatic chuck 57 is fixed on the upper side of the wafer stage 19, and the wafer 55 is attracted and held on the upper surface of the electrostatic chuck 57. When exposing the die on the wafer 55, the EUV light 31 is irradiated onto a predetermined region of the reticle 33, and the reticle 33 and the wafer 55 have a predetermined speed according to the reduction ratio of the projection optical system 17 with respect to the projection optical system 17. It moves with. In this way, the reticle pattern is exposed to a predetermined exposure range (with respect to the die) on the wafer 55.

図2は、可動ブラインド53を下側から見た時の詳細を示している。
可動ブラインド53は、一対の走査方向遮光部材61(走査方向遮光羽)と一対の非走査方向遮光部材63(非走査方向遮光羽)とを有している。なお、図2では、走査方向遮光部材61と非走査方向遮光部材63の一部のみを示している。
図2において太い実線L1で囲まれた部分は、レチクル33のパターン面に照射される円弧状の照明領域A1を示している。この円弧状の照明領域A1の中心を径方向に通る直線の方向(図2の上下方向)がレチクル33の走査方向とされている。そして、照明領域A1の走査方向の両側となる位置にレチクル33の走査方向を制限する一対の走査方向遮光部材61が配置されている。この走査方向遮光部材61は、走査方向に移動可能とされ、走査前後での露光エリアのはみ出しを防止するものであり、マスクブラインド、同期ブラインドと呼ばれることもある。
FIG. 2 shows details when the movable blind 53 is viewed from below.
The movable blind 53 has a pair of scanning direction light shielding members 61 (scanning direction light shielding feathers) and a pair of non-scanning direction light shielding members 63 (non-scanning direction light shielding feathers). In FIG. 2, only a part of the scanning direction light shielding member 61 and the non-scanning direction light shielding member 63 is shown.
In FIG. 2, a portion surrounded by a thick solid line L <b> 1 indicates an arcuate illumination area A <b> 1 irradiated on the pattern surface of the reticle 33. The direction of the straight line passing in the radial direction through the center of the arcuate illumination area A1 (vertical direction in FIG. 2) is the scanning direction of the reticle 33. A pair of scanning direction light shielding members 61 that limit the scanning direction of the reticle 33 are arranged at positions on both sides of the illumination area A1 in the scanning direction. The light blocking member 61 in the scanning direction is movable in the scanning direction and prevents the exposure area from protruding before and after scanning, and is sometimes called a mask blind or a synchronous blind.

また、円弧状の照明領域A1の走査方向に垂直な方向(照明領域A1の両端が位置する方向)の両側に、レチクル33の非走査方向を制限する一対の非走査方向遮光部材63が配置されている。この非走査方向遮光部材63は、走査幅を決定する。
そして、一対の非走査方向遮光部材63の内側(対向側)の端部の下面には、照明領域A1に入射する照明光の強度をパルス毎に検出する受光素子65が配置されている。この受光素子65は、非走査方向遮光部材63の高さ位置における照明範囲A2において、照明光のボケが少ない円弧状の検出領域A3内に位置するように配置されている。
A pair of non-scanning direction light shielding members 63 that limit the non-scanning direction of the reticle 33 are arranged on both sides of the arcuate illumination area A1 in the direction perpendicular to the scanning direction (the direction in which both ends of the illumination area A1 are located). ing. The non-scanning direction light blocking member 63 determines the scanning width.
A light receiving element 65 that detects the intensity of the illumination light incident on the illumination area A1 for each pulse is disposed on the lower surface of the inner (opposite side) end of the pair of non-scanning direction light shielding members 63. The light receiving element 65 is disposed so as to be positioned in an arc-shaped detection area A3 in which the illumination light is less blurred in the illumination range A2 at the height position of the non-scanning direction light blocking member 63.

すなわち、図1に示したように、レチクル33のパターン面の下方に間隔を置いて可動ブラインド53が配置されるため、非走査方向遮光部材63の高さ位置では円弧状の照明範囲A2の径方向の幅R2が、照明領域A1の径方向の幅R1より大きくなっており幅R2方向の両側及びR2に垂直な方向がボケている。従って、この実施形態では、ボケの少ない中央領域を検出領域A3とし、この検出領域A3の位置に受光素子65が配置される。また、照明光の照明範囲A2が、本来露光に必要な照明領域A1よりも拡大されている。   That is, as shown in FIG. 1, since the movable blind 53 is arranged below the pattern surface of the reticle 33 with an interval, the diameter of the arcuate illumination range A2 at the height position of the non-scanning direction light blocking member 63. The width R2 in the direction is larger than the radial width R1 of the illumination area A1, and both sides in the direction of the width R2 and the direction perpendicular to R2 are blurred. Therefore, in this embodiment, the central region with less blur is set as the detection region A3, and the light receiving element 65 is arranged at the position of the detection region A3. In addition, the illumination range A2 of the illumination light is larger than the illumination area A1 that is originally required for exposure.

図2は、フルフィールド露光時の非走査方向遮光部材63の位置を示しており、フィールドが小さくなるに従って、例えば図3に示すように、一対の非走査方向遮光部材63の間隔が小さくなる。従って、一対の非走査方向遮光部材63を単に走査方向に垂直な方向に移動すると、移動により受光素子65の位置が検出領域A3から外れることになる。
そこで、この実施形態では、図3に示すように、非走査方向遮光部材63を、走査方向に垂直な方向に対して所定の角度θで、直線的に、直線L2と直線L3との間を移動させる。これにより、検出領域A3内に受光素子65を位置させた状態で非走査方向遮光部材63を移動することが可能になる。そして、非走査方向遮光部材63を直線的に移動するため、2次元的に移動させる場合に比較して非走査方向遮光部材63の駆動機構を簡易なものにすることができる。もちろん、照明領域A3に入れば遮光部材63を曲線的に動かすことも可能である。
FIG. 2 shows the position of the non-scanning direction light shielding member 63 at the time of full field exposure. As the field becomes smaller, for example, as shown in FIG. 3, the interval between the pair of non-scanning direction light shielding members 63 becomes smaller. Therefore, when the pair of non-scanning direction light blocking members 63 is simply moved in a direction perpendicular to the scanning direction, the position of the light receiving element 65 is moved away from the detection area A3.
Therefore, in this embodiment, as shown in FIG. 3, the non-scanning direction light blocking member 63 is linearly spaced between the straight line L2 and the straight line L3 at a predetermined angle θ with respect to the direction perpendicular to the scanning direction. Move. As a result, the non-scanning direction light blocking member 63 can be moved in a state where the light receiving element 65 is positioned in the detection region A3. Since the non-scanning direction light blocking member 63 is moved linearly, the driving mechanism of the non-scanning direction light blocking member 63 can be simplified as compared with the case where it is moved two-dimensionally. Of course, it is also possible to move the light blocking member 63 in a curved manner when entering the illumination area A3.

この実施形態では、図3に示すように、非走査方向遮光部材63は、レチクル33に対して走査方向遮光部材61より遠い位置(図3において走査方向遮光部材61を隠す位置)に配置されている。すなわち、走査方向遮光部材61の下方に非走査方向遮光部材63が配置されている。これにより、走査方向遮光部材61により非走査方向遮光部材63の受光素子65の下方が遮られることを確実に回避することができる。   In this embodiment, as shown in FIG. 3, the non-scanning direction light shielding member 63 is arranged at a position farther than the reticle 33 than the scanning direction light shielding member 61 (a position where the scanning direction light shielding member 61 is hidden in FIG. 3). Yes. That is, the non-scanning direction light shielding member 63 is disposed below the scanning direction light shielding member 61. Thereby, it is possible to reliably avoid the lower side of the light receiving element 65 of the non-scanning direction light blocking member 63 from being blocked by the scanning direction light blocking member 61.

上述した露光装置では、レチクル33に照射される照明光の照明範囲A2を定める非走査方向遮光部材63に、照明光を検出する受光素子65を配置したので、照明光を分岐することなく照明光の強度をモニターすることができる。
(第2の実施形態)
図4は本発明の露光装置の第2の実施形態を示している。
In the exposure apparatus described above, since the light receiving element 65 for detecting the illumination light is arranged on the non-scanning direction light shielding member 63 that defines the illumination range A2 of the illumination light irradiated on the reticle 33, the illumination light is not branched. The intensity of can be monitored.
(Second Embodiment)
FIG. 4 shows a second embodiment of the exposure apparatus of the present invention.

なお、この実施形態において第1の実施形態と同一の部材には、同一の符号を付して詳細な説明を省略する。
この実施形態では、レチクルステージ15にパターンの形成されない基準反射面71が形成されている。また、ウエハステージ19に第2の受光素子73が配置されている。そして、非走査方向遮光部材63に配置される受光素子65と、ウエハステージ19に配置される第2の受光素子73との校正(キャリブレーション)を行う校正手段75が配置されている。露光量の制御はウエハ55上における露光量を制御して行われるが露光時にウエハ55上で光量を検出できないので、露光時は受光素子65の検出結果を用いて制御が行われる。従って、受光素子65の検出値とその時の実際のウエハステージ19上における光量値の関係を測定してキャリブレーションを行う必要がある。
In this embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
In this embodiment, a reference reflecting surface 71 on which no pattern is formed is formed on the reticle stage 15. A second light receiving element 73 is disposed on the wafer stage 19. A calibration means 75 for calibrating the light receiving element 65 disposed on the non-scanning direction light blocking member 63 and the second light receiving element 73 disposed on the wafer stage 19 is disposed. The exposure amount is controlled by controlling the exposure amount on the wafer 55. However, since the amount of light cannot be detected on the wafer 55 during exposure, the control is performed using the detection result of the light receiving element 65 during exposure. Therefore, it is necessary to perform calibration by measuring the relationship between the detection value of the light receiving element 65 and the actual light amount value on the wafer stage 19 at that time.

この校正手段75は、レチクルステージ15に配置される基準反射面71に照明光学系13からの照明光を照射し、この時の照明光の強度を非走査方向遮光部材63に配置される受光素子65により検出する。また、基準反射面71で反射した照明光の強度を第2の受光素子73により検出する。そして、受光素子65で検出される照明光の強度と第2の受光素子73で検出される照明光の強度を比較することにより受光素子65の校正を行う。この校正は、例えば照明条件(露光量や照明光学系のNA絞りを変更した時等)または露光領域の設定が変更された時に行われる。   The calibration means 75 irradiates the reference reflecting surface 71 disposed on the reticle stage 15 with illumination light from the illumination optical system 13, and the intensity of the illumination light at this time is a light receiving element disposed on the non-scanning direction light shielding member 63. 65. Further, the intensity of the illumination light reflected by the reference reflecting surface 71 is detected by the second light receiving element 73. The light receiving element 65 is calibrated by comparing the intensity of the illumination light detected by the light receiving element 65 with the intensity of the illumination light detected by the second light receiving element 73. This calibration is performed, for example, when the illumination conditions (such as when the exposure amount or the NA aperture of the illumination optical system is changed) or the exposure area setting is changed.

また、この実施形態では、照明光学系13の凹面反射鏡35と第1のフライアイミラー37との間には、減光フィルタ77が配置されている。この減光フィルタ77は、図5に示すように、中心軸79の周りに回転可能な円板81を有している。円板81には、4つの円形穴81a,81b,81c,81dが形成されている。1つの円形穴81aは空洞になっており、他の3つの円形穴81b,81c,81dには、厚さの異なるSiNx等からなる薄膜83,84,85が配置されている。これにより、それぞれの円形穴81a,81b,81c,81dを透過するEUV光31の減衰率が異なっている。従って、円板81を回転させて、どの円形穴81a,81b,81c,81dをEUV光31の通過する部分に位置させるかにより、レチクル33を照射するEUV光31の強さを4段階に切り換えることができる。   In this embodiment, a neutral density filter 77 is disposed between the concave reflecting mirror 35 of the illumination optical system 13 and the first fly-eye mirror 37. As shown in FIG. 5, the neutral density filter 77 has a disk 81 that can rotate around a central axis 79. The circular plate 81 is formed with four circular holes 81a, 81b, 81c, 81d. One circular hole 81a is hollow, and thin films 83, 84, and 85 made of SiNx having different thicknesses are arranged in the other three circular holes 81b, 81c, and 81d. Thereby, the attenuation factors of the EUV light 31 transmitted through the circular holes 81a, 81b, 81c, 81d are different. Therefore, the intensity of the EUV light 31 that irradiates the reticle 33 is switched in four steps depending on which circular hole 81a, 81b, 81c, 81d is positioned at a portion through which the EUV light 31 passes by rotating the disk 81. be able to.

そして、図4に示すように、減光フィルタ77を回転駆動して露光量の制御を行う露光量制御手段87が配置されている。この露光量制御手段87は、非走査方向遮光部材63に配置される受光素子65の信号から照明光の強度を検出し、強度に対応する円形穴81a,81b,81c,81dをEUV光31の通過する部分に位置させ露光量の制御を行う。   As shown in FIG. 4, exposure amount control means 87 for controlling the exposure amount by rotating the neutral density filter 77 is disposed. This exposure amount control means 87 detects the intensity of the illumination light from the signal of the light receiving element 65 arranged on the non-scanning direction light blocking member 63, and makes the circular holes 81a, 81b, 81c, 81d corresponding to the intensity of the EUV light 31. The exposure amount is controlled by being positioned at a passing portion.

この実施形態では、校正手段75により、非走査方向遮光部材63に配置される受光素子65と、ウエハステージ19に配置される第2の受光素子73との校正を容易,確実に行うことができる。
また、露光量制御手段87により、照明光学系13内に設置された減光フィルタ77を制御して照明光の強度の安定化を行うことができる。
(実施形態の補足事項)
以上、本発明を上述した実施形態によって説明してきたが、本発明の技術的範囲は上述した実施形態に限定されるものではなく、例えば、以下のような形態でも良い。
In this embodiment, the calibration means 75 can easily and reliably calibrate the light receiving element 65 disposed on the non-scanning direction light blocking member 63 and the second light receiving element 73 disposed on the wafer stage 19. .
Further, the intensity of the illumination light can be stabilized by controlling the neutral density filter 77 installed in the illumination optical system 13 by the exposure amount control means 87.
(Supplementary items of the embodiment)
As mentioned above, although this invention was demonstrated by embodiment mentioned above, the technical scope of this invention is not limited to embodiment mentioned above, For example, the following forms may be sufficient.

(1)上述した第2の実施形態では、減光フィルタ77を制御して照明光の強度の安定化を行った例について述べたが、例えば受光素子65の信号から照明光強度のパルス毎の揺らぎを検出し照明光強度の安定化を行うようにしても良い。また、照明光の光源出力を制御して照明光強度の安定化を行うようにしても良い。さらに、ウエハステージ19の走査速度を制御して照明光の強度の安定化を行うようにしても良い。   (1) In the second embodiment described above, the example in which the intensity of the illumination light is stabilized by controlling the neutral density filter 77 is described. For example, the pulse of the illumination light intensity is determined from the signal of the light receiving element 65. Fluctuation may be detected to stabilize the illumination light intensity. Further, the illumination light intensity may be stabilized by controlling the light source output of the illumination light. Furthermore, the intensity of illumination light may be stabilized by controlling the scanning speed of the wafer stage 19.

(2)上述した実施形態では、EUV光31の光源にレーザ生成プラズマ光源を用いた例について説明したが、例えば、間歇的にターゲット材料を電極間に供給し、それに合わせて放電を行ってEUV光を発生する放電プラズマエックス線源であっても良い。
(3)上述した実施形態では、EUV光31を用いた露光装置に本発明を適用した例について説明したが、本発明は、レチクルに照射される照明光の照明範囲を定めるブラインドを備えた露光装置に広く適用することができる。例えば、透過型のレチクル(マスク)を用いた場合にも適用可能である。
(2) In the above-described embodiment, the example in which the laser-generated plasma light source is used as the light source of the EUV light 31 has been described. For example, the target material is intermittently supplied between the electrodes, and discharge is performed in accordance with the target material. It may be a discharge plasma X-ray source that generates light.
(3) In the above-described embodiment, the example in which the present invention is applied to the exposure apparatus using the EUV light 31 has been described. However, the present invention is an exposure that includes a blind that defines an illumination range of illumination light irradiated on the reticle. Can be widely applied to the device. For example, the present invention can also be applied when a transmission type reticle (mask) is used.

(4)上述した実施形態では、レチクルに入射する照明光を検出するように露光領域規定部材であるブラインド上に検出器を配置しているが、レチクルから反射或いはレチクルを透過してきた光束の強度を検出するようにブラインド上に配置することも可能である。例えば、上述の実施形態ではブラインドの下面に検出器65を配置しているが、ブラインドの上面に配置すればよい。   (4) In the above-described embodiment, the detector is arranged on the blind that is the exposure region defining member so as to detect the illumination light incident on the reticle. However, the intensity of the light beam reflected from or transmitted through the reticle. It is also possible to arrange on the blind so as to detect. For example, in the above-described embodiment, the detector 65 is disposed on the lower surface of the blind, but may be disposed on the upper surface of the blind.

(5)上述した実施形態では可動ブラインドに検出器を配置したが、固定ブラインドに配置することも可能である。この場合、可動ブラインドによって遮光されない領域に検出器を配置する必要がある。例えば、図2で示す円弧形状の上下方向(紙面の上下方向)に検出器を配置すれば良い。特に、円弧の中央付近に検出器を配置すると、可動ブラインドによって円弧の横方向の幅が変更されても検出可能である。また、検出器を一つではなく複数個アレイ状に配置し、用いる検出器を可動ブラインドの位置に応じて選択することも可能である。   (5) In the embodiment described above, the detector is arranged on the movable blind, but it can also be arranged on the fixed blind. In this case, it is necessary to arrange the detector in an area that is not shielded by the movable blind. For example, the detector may be arranged in the vertical direction of the arc shape shown in FIG. In particular, if a detector is arranged near the center of the arc, it can be detected even if the horizontal width of the arc is changed by the movable blind. It is also possible to arrange a plurality of detectors in an array instead of one and select the detector to be used according to the position of the movable blind.

(6)上述した実施形態では、可動ブラインドが固定ブラインドよりもレチクルから遠い位置に配置されているが、逆に配置することも可能である。   (6) In the above-described embodiment, the movable blind is disposed at a position farther from the reticle than the fixed blind, but may be disposed in reverse.

本発明の露光装置の第1の実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment of the exposure apparatus of this invention. 図1の可動ブラインドの詳細を示す説明図である。It is explanatory drawing which shows the detail of the movable blind of FIG. 図2の非走査方向遮光部材を移動した状態を示す説明図である。It is explanatory drawing which shows the state which moved the non-scanning direction light shielding member of FIG. 本発明の露光装置の第2の実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment of the exposure apparatus of this invention. 図4の減光フィルタの詳細を示す説明図である。It is explanatory drawing which shows the detail of the neutral density filter of FIG.

符号の説明Explanation of symbols

11 光源部
13 照明光学系
15 レチクルステージ
17 投影光学系
19 ウエハステージ
33 レチクル
53 可動ブラインド
55 ウエハ
61 走査方向遮光部材
63 非走査方向遮光部材
65 受光素子
71 基準反射面
73 第2の受光素子
75 校正手段
77 減光フィルタ
87 露光量制御手段
A1 照明領域
A2 照明範囲
A3 検出領域
DESCRIPTION OF SYMBOLS 11 Light source part 13 Illumination optical system 15 Reticle stage 17 Projection optical system 19 Wafer stage 33 Reticle 53 Movable blind 55 Wafer 61 Scanning direction light shielding member 63 Non-scanning direction light shielding member 65 Light receiving element 71 Reference reflecting surface 73 Second light receiving element 75 Calibration Means 77 Neutralizing filter 87 Exposure amount control means A1 Illumination area A2 Illumination area A3 Detection area

Claims (6)

パターンが形成されたレチクルと感応基板とを走査方向に相対的に移動させ、前記パターンを前記感応基板上に転写する露光装置において、
前記レチクルの下方に配置され、前記感応基板上に照射される露光光の露光領域を円弧形状に規定する露光領域規定部材を備え、
前記露光領域規定部材は、前記走査方向における前記露光領域を円弧形状に制限し、前記走査方向に移動可能な走査方向遮光部材と、前記円弧形状の露光領域の端部を制限するとともに、前記露光光を検出する受光素子を備え、前記円弧形状の露光領域に対する前記受光素子の位置を調整するために、前記走査方向に垂直な方向に対して所定角度傾いた方向に前記受光素子を移動させる非走査方向遮光部材と
を有することを特徴とする露光装置。
In an exposure apparatus that relatively moves a reticle on which a pattern is formed and a sensitive substrate in a scanning direction, and transfers the pattern onto the sensitive substrate.
An exposure area defining member that is arranged below the reticle and defines an exposure area of exposure light irradiated on the sensitive substrate in an arc shape;
The exposure area defining member limits the exposure area in the scanning direction to an arc shape, limits a scanning direction light shielding member movable in the scanning direction, an end of the arc-shaped exposure area, and the exposure. A light receiving element that detects light, and moves the light receiving element in a direction inclined by a predetermined angle with respect to a direction perpendicular to the scanning direction in order to adjust the position of the light receiving element with respect to the arc-shaped exposure region; A scanning direction light shielding member ;
An exposure apparatus comprising:
請求項1に記載の露光装置において、
前記受光素子前記円弧形状の露光領域に対応した領域内を移動することを特徴とする露光装置。
The exposure apparatus according to claim 1,
An exposure apparatus , wherein the light receiving element moves in an area corresponding to the arc-shaped exposure area.
請求項2記載の露光装置において、
前記受光素子は、前記円弧形状の露光領域に対応した領域内を直線上に移動することを特徴とする露光装置。
The exposure apparatus according to claim 2, wherein
The exposure apparatus according to claim 1, wherein the light receiving element moves linearly within an area corresponding to the arc-shaped exposure area.
請求項記載の露光装置において、
前記非走査方向遮光部材は、前記レチクルに対して前記走査方向遮光部材より遠い位置に配置されていることを特徴とする露光装置。
The exposure apparatus according to claim 1 , wherein
The exposure apparatus according to claim 1, wherein the non-scanning direction light shielding member is disposed at a position farther from the reticle than the scanning direction light shielding member.
請求項1ないし4のいずれか1項記載の露光装置において、
感応基板ステージ上に配置される第2の受光素子と、
レチクルステージ上に配置される基準反射面と、
前記露光領域規定部材に配置される前記受光素子と、前記第2の受光素子間の校正を行う校正手段と、
を有することを特徴とする露光装置。
The exposure apparatus according to any one of claims 1 to 4,
A second light receiving element disposed on the sensitive substrate stage;
A reference reflecting surface disposed on the reticle stage;
Calibration means for performing calibration between the light receiving element disposed on the exposure region defining member and the second light receiving element;
Exposure apparatus characterized by have a.
請求項記載の露光装置において、
前記校正手設は、前記レチクルを照明する照明条件または前記露光領域の設定が変更された時に前記受光素子間の校正を行うことを特徴とする露光装置。
The exposure apparatus according to claim 5 , wherein
The exposure apparatus characterized in that the calibration manual performs calibration between the light receiving elements when an illumination condition for illuminating the reticle or a setting of the exposure region is changed .
JP2004376546A 2004-12-27 2004-12-27 Exposure equipment Expired - Fee Related JP4765313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376546A JP4765313B2 (en) 2004-12-27 2004-12-27 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376546A JP4765313B2 (en) 2004-12-27 2004-12-27 Exposure equipment

Publications (2)

Publication Number Publication Date
JP2006186028A JP2006186028A (en) 2006-07-13
JP4765313B2 true JP4765313B2 (en) 2011-09-07

Family

ID=36738934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376546A Expired - Fee Related JP4765313B2 (en) 2004-12-27 2004-12-27 Exposure equipment

Country Status (1)

Country Link
JP (1) JP4765313B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303270A (en) * 2005-04-22 2006-11-02 Nikon Corp Aligner
NL2009020A (en) * 2011-07-22 2013-01-24 Asml Netherlands Bv Radiation source, method of controlling a radiation source, lithographic apparatus, and method for manufacturing a device.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201025B2 (en) * 1992-12-14 2001-08-20 株式会社ニコン Exposure method and apparatus, and element manufacturing method
JP3200244B2 (en) * 1993-07-16 2001-08-20 キヤノン株式会社 Scanning exposure equipment
JPH0817713A (en) * 1994-07-01 1996-01-19 Nikon Corp Projection aligner
JP2000277413A (en) * 1999-03-24 2000-10-06 Canon Inc Exposure amount control method, aligner and device manufacturing method
JP2000286191A (en) * 1999-03-31 2000-10-13 Nikon Corp Projection aligner, exposure method, and device- manufacturing method
JP4289755B2 (en) * 2000-02-24 2009-07-01 キヤノン株式会社 Exposure amount control method, device manufacturing method, and exposure apparatus
JP4803901B2 (en) * 2001-05-22 2011-10-26 キヤノン株式会社 Alignment method, exposure apparatus, and semiconductor device manufacturing method
JP4006217B2 (en) * 2001-10-30 2007-11-14 キヤノン株式会社 Exposure method, exposure apparatus, and device manufacturing method
JP2004356291A (en) * 2003-05-28 2004-12-16 Nikon Corp Device and method for scanning exposure

Also Published As

Publication number Publication date
JP2006186028A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US10042271B2 (en) Projection exposure system for microlithography with a measurement device
JP4924421B2 (en) Sensor calibration method, exposure method, exposure apparatus, device manufacturing method, and reflective mask
JP4892645B2 (en) Apparatus for microlithographic projection exposure and apparatus for inspecting the surface of a substrate
KR100650946B1 (en) Radiation system, lithographic apparatus, device manufacturing method and device manufactured thereby
US20060238749A1 (en) Flare measuring method and flare measuring apparatus, exposure method and exposure apparatus, and exposure apparatus adjusting method
JP6371473B2 (en) Lighting system
TW200811609A (en) Surface location survey apparatus, exposure apparatus and fabricating method of device
KR101332035B1 (en) Method for measuring position of mask surface in height direction, exposure apparatus and exposure method
TW201316132A (en) Programmable illuminator for a photolithography system
JP3874755B2 (en) Method for determining stray radiation, lithographic projection apparatus
TWI295413B (en) Lithographic apparatus and method to determine beam size and divergence.
JP4765313B2 (en) Exposure equipment
JP2007095767A (en) Exposure apparatus
JP2006303270A (en) Aligner
JP4268364B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP6952136B2 (en) Lithography method and equipment
JP5352989B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JPH088204B2 (en) Projection exposure device
JPH11251213A (en) Aligner and method for determining position therein
JP2006339348A (en) Aligner
JP2000114136A (en) Aligner and its light quantity detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees