JP4765223B2 - Turbo type aerodynamic device and method for manufacturing the wing - Google Patents

Turbo type aerodynamic device and method for manufacturing the wing Download PDF

Info

Publication number
JP4765223B2
JP4765223B2 JP2001242118A JP2001242118A JP4765223B2 JP 4765223 B2 JP4765223 B2 JP 4765223B2 JP 2001242118 A JP2001242118 A JP 2001242118A JP 2001242118 A JP2001242118 A JP 2001242118A JP 4765223 B2 JP4765223 B2 JP 4765223B2
Authority
JP
Japan
Prior art keywords
blade
composite material
natural frequency
matrix composite
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001242118A
Other languages
Japanese (ja)
Other versions
JP2003056486A (en
Inventor
大 加藤
邦之 今成
彰樹 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001242118A priority Critical patent/JP4765223B2/en
Publication of JP2003056486A publication Critical patent/JP2003056486A/en
Application granted granted Critical
Publication of JP4765223B2 publication Critical patent/JP4765223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ファン、圧縮機、ガスタービン等のターボ型空力機器とその翼の製造方法に係る。特に翼の共振を回避するための構造に特徴のあるターボ型空力機器とその翼の製造方法に関する。
【0002】
【従来の技術】
航空用及び産業用ガスタービンでは、ファン、圧縮機、ガスタービン等のターボ型空力機器の各翼列に対し、その上流翼列と下流翼列とで発生する空気励振力を加振源とするその固有モードでの翼の共振を回避するための共振回避設計が行われる。従来の共振回避設計手法では、最初に最適翼設計を行い、その後に翼が運転範囲内に共振点を有することを確認すると、翼の厚みや翼コード長などの翼形状を変更して翼の固有モード周波数を変更したり、上流翼列または下流翼列の翼枚数を変更して励振力周波数を変更して、翼の共振を回避している。
【0003】
従来の共振回避設計手法の一例を、図を参照して説明する。図5は、従来の共振回避設計手法におけるキャンベル線図である。
(A)最初に最適効率を得られる翼列と翼枚数を設計する。
(B)その翼列の固有モードにおける固有振動数を解析し、キャンベル線図を描く。
(C)キャンベル線図から、ある列の翼の第3モードの固有振動数が、定常運転回転数における励振力周波数の帯のなかに入っていることが判明する。
(D)翼の厚みを10%厚くし、翼コード長を10%短くして、翼の固有振動数を上げる。
(E)キャンベル線図から、第2モードの固有振動数と第3モードとの固有振動数とが定常運転回転数における励振力周波数の帯から外れていることが確認できる。
(F)すべての翼列について上記の作業をおこない、すべての翼列が定常運転において共振しないことが確認できたら、製造する翼列と翼枚数を決定する。
【0004】
【発明が解決しようとする課題】
上述の共振回避設計手法の場合、翼形状の変更に伴い、その翼の空力性能を犠牲にせざるえない場合が多い。また、上流翼列と下流翼列の翼枚数を変更した場合は、翼一枚毎の負荷が変化するため、それらの翼列の空力特性を損なう場合が多い。
さらに、共振回避のための翼形状変更案を見つけ出すためには相当の試行錯誤が必要なので、設計時間が増大してしまう。近年の3次元設計翼の形状がより複雑なために、その傾向がますます顕著になる。
【0005】
ところで、近年、機械材料として金属基複合材を使用するための研究がなされている。例えば、特開平5−5142において「α型、α+β型、あるいはβ型のチタン合金からなるマトリックスと、該マトリックス中に分散した体積比で5〜50%のTiB固溶体とからなることを特徴とするチタン基複合材料」が開示され、その製造方法として、「チタン粉末と、少なくとも2種以上の金属元素を含む強化用物質粉末と、硼素を含む物質粉末とを混合・成形すると共に、該成形体を無加圧で焼成することにより、チタン合金からなるマトリックス中に体積比で5〜50%のTiB固溶体が分散したチタン基複合材料を得ることを特徴とするチタン基複合材料の製造方法」が開示されている。
【0006】
そして、前記出願の発明者の研究によれば、TiB固溶体の成分比を変化させると、物質の比重の変化が少なく、被破壊強度が低下しないが、物質の弾性係数が大きく変化することが分かる。一般にTiB固溶体の重量比を上げると弾性係数が大きくなる。
【0007】
また、振動工学の技術分野では、金属材料で出来た構造物の形状と大きさが一定の場合、その固有振動数は弾性係数を比重で除した値の平方根に比例することが知られている。
【0008】
本発明は以上に述べた問題点に鑑み、上記知見に基づき、案出されたもので、従来のターボ型空力機器とその翼の製造方法にかわって、ターボ型空力機器の空力性能を犠牲にせずに翼の共振回避ができ、その共振回避設計が試行錯誤を必要とせずに短い時間でできるターボ型空力機器とその翼の製造方法を提供しようとする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る固有振動数Hを有し強化粒子を含有する金属基複合材料でできたターボ型空力機器用翼の製造方法は、翼形状を決定する翼形状設計工程と、強化粒子を特定重量比で有する金属基複合材料である特定金属基複合材料でできた前記翼形状の翼の固有振動数である特定固有振動数H0を確認する特定固有振動数確認工程と、前記特定金属基複合材料の弾性係数である特定弾性係数E0と比重である特定比重ρ0と前記特定固有振動数H0とから固有振動数Hを有する翼の弾性係数Eを比重ρで除した値である物性比E/ρを予測する物性比予測工程と、前記物性比E/ρを有する金属基複合材料の強化粒子の重量比を確認する重量比確認工程と、強化粒子を前記重量比で有する原料で金属基複合材料製の翼を製造する翼製造工程と、を有し、物性比予測工程において、固有振動数Hを特定固有振動数H0で除した固有振動数比H/H0に特定弾性係数E0を特定比重ρ0で除した特定物性比E0/ρ0の平方根を乗じた値が物性比E/ρの平方根に等しいとして物性比E/ρを予測するものとした。ここで、重量比は0%を含む値である。また、ここでターボ型空力機器とは、軸流型、傾流型、遠心型等の翼車を有する空力機器をいう。
【0010】
上記本発明の構成により、翼形状を決定し、強化粒子を特定重量比で有する金属基複合材料でできた前記翼形状の翼の特定固有振動数H0を確認し、強化粒子を特定重量比で有する金属基複合材料の特定弾性係数E0と特定比重ρ0と前記特定固有振動数H0とから固有振動数Hを有する翼の物性比E/ρを予測し、前記物性比E/ρを有する金属基複合材料の強化粒子の重量比を確認し、強化粒子を前記重量比で有する原料で金属基複合材料製の翼を製造するので、金属基複合材料製の翼の強化粒子の重量比を変更するだけで、翼の翼形状を変化させずに翼の固有振動数を所望の値にすることができ、試行錯誤をしなくても所望の固有振動数を有する翼を製作でき、かつ翼の空力性能を犠牲にしない。
【0011】
また、上記本発明では、所望の固有振動数Hを有する翼の物性比E/ρを予測する際に、固有振動数比H/H0に特定物性比E0/ρ0の平方根を乗じた値が物性比E/ρの平方根に等しいとして物性比E/ρを予測するので、物質の固有振動数が弾性係数を比重で除した値の平方根に比例するという振動工学の基本原理に基づき、所望の固有振動数を有する翼の物性比E/ρを的確かつ正確に予測して、翼の固有振動数を所望の値にすることができ、試行錯誤をしなくても所望の固有振動数を有する翼を製作でき、かつ翼の空力性能を犠牲にしない。
【0012】
また、本発明に係るターボ型空力機器用翼の製造方法は、金属基複合材料がチタン基複合材料であって、強化粒子がTiC,TiN,SiC,TiBの内の一つであるものとした。
上記本発明の構成により、金属基複合材料がTiC,TiN,SiC,TiBの内の一つを強化粒子として有するチタン基複合材料であるでの、強化粒子の一つの重量比を変化させるだけで、弾性係数と比重とを変化させて所望の固有振動数を有するチタン基複合材料製のターボ型空力機器用翼を製作できる。
【0013】
さらに、本発明に係るターボ型空力機器用翼の製造方法は、金属基複合材料がチタン基複合材料であって、強化粒子がTiBであるものとした。
上記本発明の構成により、金属基複合材料がTiBを強化粒子として有するチタン基複合材料であるので、TiBの重量比を変化させるだけで、被破壊強度を低下させずに、弾性係数と比重とを変化させて所望の固有振動数を有するチタン基複合材料製のターボ型空力機器用翼を製作できる。
【0014】
また、上記目的を達成するため、本発明に係る翼列を有するターボ型空力機器は、翼列の翼が強化粒子を含有する金属基複合材料でできており、翼列毎に前記強化粒子の重量比が異なっており、前記各翼列の翼は、上述のターボ型空力機器用翼の製造方法で製造されている。上記本発明の構成により、翼列毎に金属基複合材料の強化粒子の重量比が異なり、翼の最適形状を変更せずに重量比を変化させて翼の固有振動数を調整できるので、運転中に翼が共振せず、高い空力性能を得ることができる。
【0015】
さらに、本発明に係るターボ型空力機器は、金属基複合材料がチタン基複合材料であって、強化粒子がTiC,TiN,SiC,TiBの内の一つであるものとした。
上記本発明の構成により、翼列毎にチタン基複合材料の強化粒子であるTiC,TiN,SiC,TiBの内の一つが異なる重量比で混合し、翼の最適形状を変更せずに翼の固有振動数を調整できるので、運転中に翼が共振せず、高い空力性能を得ることができる。
【0016】
さらに、本発明に係るターボ型空力機器は、金属基複合材料がチタン基複合材料であって、強化粒子がTiBであるものとした。
上記本発明の構成により、翼列毎にチタン基複合材料の強化粒子であるTiBが異なる重量比で混合し、翼の最適形状を変更せずに翼の固有振動数を調整できるので、運転中に翼が共振せず、高い強度と、高い空力性能を得ることができる。
【0017】
【発明の実施の形態】
以下、本発明の好ましい実施形態を、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0018】
本発明の実施形態に係るターボ型空力機器用翼の製造方法を、ガスタービンの圧縮機の翼を例に、説明する。図1は、本発明の実施形態の概念図である。図2は、本発明の実施形態の概念図である。図3は、本発明の実施形態のキャンベル線図である。説明の便宜のために、金属基複合材料として、チタン合金にTiB粒子を分散されたチタン基複合材料を例に説明する。図4はチタン基複合材料の物性図である。
【0019】
最初に(ステップ101)、設計仕様書から翼の目標固有振動数Hを決定する。目標固有振動数Hが、ガスタービンの最小運転回転数に翼の前段の翼枚数を乗じた値とガスタービンの最大運転回転数に翼の前段の翼枚数を乗じた値との振動数バンドの中に入らないように決定される。例えば、定格運転を100%とした時に、80%から100%の定常運転の幅であり、この回転数に上段の翼枚数を掛け合わせて得た値の幅に入らないように十分な余裕を持った振動数を翼の目標固有振動数とする。
【0020】
次に、金属基複合材料に含まれる強化粒子の重量比(以下、特定重量比という。)を決定する。重量比は0%から100%の間の任意の値である。一般には、重量比を0%とするのが良い。特定重量比が決定すると、その金属基複合材料の弾性係数(以下、特定弾性係数E0という)と比重(以下、特定比重ρ0という)が自動的に確定する。例えば、チタン基複合材料に含まれるTiB粒子の全体に対する重量比をゼロとする。
【0021】
翼形状設計工程(ステップ102):翼の形状と各翼段の翼枚数を決定する。ガスタービン圧縮機の最適効率が得られる翼形状を決定する。例えば、翼の空力性能プログラムにより最適な翼形状と翼数が決定したら、翼の3次元形状データを出力する。
【0022】
特定固有振動数確認工程(ステップ103):翼形状と特定弾性係数E0と特定比重ρ0とから、翼の固有振動数(以下、特定固有振動数H0という)を確認する。
確認する方法としては、有限要素法による数値解析と、実物によるモーダル解析とがある。例えば、翼形状設計工程で得られた翼の3次元データから数値モデルを生成し、その数値モデルと特定弾性係数E0と特定比重ρ0とをコンピュータに入力し、固有振動数解析をおこない、1次、2次、3次の振動モードと固有振動数を出力する。その固有振動数を特定固有振動数H0とする。この特定固有振動数H0が目標固有振動数と一致する場合は、以下の工程を行う必要はない。一般には、図3に示す様に、翼の特定固有振動数が定常運転による励振力周波数帯に入っているので、以下の工程に移る。
【0023】
物性比予測工程(ステップ104):目標固有振動数Hと特定固有振動数H0と特定固有振動数E0と特定比重ρ0から目標となる物性比E/ρを予測する。ここで、固有振動数を比重で除した値を物性比と呼ぶ。
例えば、所望の固有振動数Hを特定固有振動数H0で除した固有振動数比H/H0に特定弾性係数E0を特定比重ρ0で除した特定物性比E0/ρ0の平方根を乗じた値が物性比E/ρの平方根に等しいとして物性比E/ρを予測する。さらに、回転による遠心力と温度上昇による弾性係数の変化とを考慮するのが好ましい。
例えば、図4に示すごとく、TiBを強化粒子として含むチタン基複合材料では、TiBの重量比の増加に従って、顕著に弾性係数が大きくなる。一方、比重は、緩やかに低下する。このことから、TiBの重量比を増すと物性比は大きくなることが分かる。一方、物体の固有振動数は物性比の平方根に比例するので、TiBの重量比を増加すると、チタン基複合材料でできた翼の固有振動数は大きくなる。
また、回転数が増すと遠心力が翼に作用するので、翼の見かけの剛性が大きくなり固有振動数が大きくなる。また、温度が上昇すると弾性係数が低下する。これらの現象を考慮して、所望の固有振動数Hを有する翼の物性比E/ρを予測する。
【0024】
重量比確認工程(ステップ105)物性比E/ρを有する金属基複合材料の重量比を確認する。重量比を変化させた時の弾性係数Eと比重ρの変化を予め実験により求めておき、重量比と物性比E/ρの関係から重量比を確認する。例えば、予め複数の重量比が異なる試験ピースを製作し、その試験ピース毎の弾性係数と比重と重量比とから、重量比と物性比の相関グラフを作成し、その相関グラフから、物性比E/ρを有するチタン基複合材のTiBの重量比を確認する。
【0025】
翼製造工程(ステップ200):決定した重量比で強化粒子を有する金属基複合材料製の翼を製作する。
強化粒子の重量比が定まると、予め行った試験データを基に、その重量比の金属基複合材料を得るための強化材料と金属と合金成分の配合比を逆算する。ここで、強化材料とは強化粒子の基となる材料である。
【0026】
例えば、TiB粒子の全体に対する重量比が定まると、予め行った試験データを基に、その重量比のチタン基複合材料を得るためのチタン粉末とベース合金とボロン粉末の配合比を逆算する。
N%(例えば50%)のTiB粒子を含有したチタン基複合材料を製造する場合を例にとり、翼製造工程を詳述する。Tiの分子量が47.9であり、Bの分子量が10.82であるので、TiB粒子でのBの重量割合は約18/100である。チタンと反応してTiB粒子を生成するBの量をNとすると、N×18/100%(例えば9%)のボロンを含有させるためのボロン粉末の含有量とTiB粒子を生成するTiの含有量とBに結合しないチタンの含有量とそのチタンがチタン合金(例えば、Ti−6AL−4V)をつくるのに必要なベース合金の含有量とを決定する。
【0027】
材料準備工程(ステップ201):金属粉末とベース合金と強化材料粉末を用意する。例えば、上記で決定したチタン粉末とベース合金とボロン粉末の含有量になるように、チタン粉末とベース合金とボロン粉末を用意する。
【0028】
材料調合工程(ステップ202):重量比となるように金属粉末とベース合金と強化材料粉末を調合する。例えば、チタン粉末とベース合金とボロン粉末を調合する。
【0029】
混合・練り工程(ステップ203):調合した材料を混合し、練る。例えば、チタン粉末とベース合金とボロン粉末を混合し、練る。
【0030】
圧縮工程(ステップ204):材料を圧縮する。例えば、翼形状の空隙を有する型にいれて、十分な充填密度になるように、圧縮する。
【0031】
焼結工程(ステップ205):圧縮した材料を加熱して焼結させる。温度が下がったら、型からとりだすと、目標の固有振動数をもつ翼ができ上がる。例えば、混合したチタン粉末とベース合金とボロン粉末の入った翼型を所定温度で加熱する。所定時間が経過したら、加熱を停止し、冷却させる。
【0032】
上述の方法でできた翼をそれぞれの翼段に設置すると、各段の翼毎に重量比の異なる翼が並び、すべての翼が運転回転数の領域内で共振を起こすことなく運転でき、翼形状と各段での翼枚数は当初設計した翼形状と翼枚数なので、設計上最適の効率や燃費や出力を得ることのできるガスタービン圧縮機を製作できる。
【0033】
上述の実施形態のターボ型空力機器用翼の製造方法を用いれば、翼形状と翼枚数を最適設計値のままにして、翼の共振を避けることができ、最適設計に基づいたガスタービン圧縮機を製作することができる。
また、重量比を変化させることで、所望の固有振動数を有する翼を製作できるので、所望の固有振動数を得るための試行錯誤の設計工程を省略することができる。
また、TiBを強化粒子とするチタン基複合材料で翼をつくると、非破壊強度がさがることなく、弾性係数を変化させて、翼の固有振動数を調整できる。
【0034】
本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。
金属基複合材料をチタン基複合材料として説明したがこれに限定されない。
また、重量比をボロンの重量比であるとして説明したがこれに限定されない。
【0035】
【発明の効果】
以上説明したように本発明の固有振動数Hを有するターボ型空力機器用翼の製造方法は、その構成により、以下の効果を有する。
金属基複合材料製の翼の強化粒子の重量比を変更するだけで、翼の翼形状を変化させずに翼の固有振動数を所望の値にすることができ、試行錯誤をしなくても所望の固有振動数を有する翼を製作でき、かつ翼の空力性能を犠牲にしない。
また、物質の固有振動数が弾性係数を比重で除した値の平方根に比例するという振動工学の基本原理に基づき、所望の固有振動数を有する翼の物性比E/ρを的確かつ正確に予測して、翼の固有振動数を所望の値にすることができ、試行錯誤をしなくても所望の固有振動数を有する翼を製作でき、かつ翼の空力性能を犠牲にしない。
また、金属基複合材料がTiC,TiN,SiC,TiBの内の一つを強化粒子として有するチタン基複合材料であるでの、強化粒子の重量比を変化させるだけで、弾性係数と比重を変化させて所望の固有振動数を有するチタン基複合材料製のターボ型空力機器用翼を製作できる。
また、金属基複合材料がTiBを強化粒子として有するチタン基複合材料であるので、TiBの重量比を変化させるだけで、被破壊強度を低下させずに、弾性係数と比重を変化させて所望の固有振動数を有するチタン基複合材料製のターボ型空力機器用翼を製作できる。
【0036】
また、以上説明したように翼列を有するターボ型空力機器は、その構成により、以下の効果を有する。
翼列毎に金属基複合材料の強化粒子の重量比が異なり、翼の最適形状を変更せずに重量比を変化させて翼の固有振動数を調整できるので、運転中に翼が共振せず、高い空力性能を得ることができる。
また、翼列毎にチタン基複合材料の強化粒子であるTiC,TiN,SiC,TiBの内の一つが異なる重量比で混合し、翼の最適形状を変更せずに翼の固有振動数を調整できるので、運転中に翼が共振せず、高い空力性能を得ることができる。
また、翼列毎にチタン基複合材料の強化粒子であるTiBが異なる重量比で混合し、翼の最適形状を変更せずに翼の固有振動数を調整できるので、運転中に翼が共振せず、高い強度と、高い空力性能を得ることができる。
従って、ターボ型空力機器の空力性能を犠牲にせずに翼の共振回避ができ、その共振回避設計が試行錯誤を必要とせずに短い時間でできるターボ型空力機器とその翼の製造方法を提供できる。
【0037】
【図面の簡単な説明】
【図1】本発明の実施形態の作業手順図である。
【図2】本発明の実施形態の次の作業手順図である。
【図3】本発明の実施形態のキャンベル線図である。
【図4】本発明のチタン基複合材の物性図である。
【図5】従来のキャンベル線図である。
【符号の説明】
S100 設計手順
S101 目標固有振動数の決定
S102 翼形状設計工程
S103 特定固有振動数確認工程
S105 物性比予測工程
S105 重量比確認工程
S200 翼製造工程
S201 材料準備工程
S202 材料調合工程
S203 混合、練り工程
S204 圧縮工程
S205 焼結工程
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbo-type aerodynamic device such as a fan, a compressor, and a gas turbine, and a method for manufacturing the blade. In particular, the present invention relates to a turbo type aerodynamic device characterized by a structure for avoiding blade resonance and a method for manufacturing the blade.
[0002]
[Prior art]
In aeronautical and industrial gas turbines, the air excitation force generated in the upstream and downstream cascades is used as the excitation source for each cascade of turbo-type aerodynamic equipment such as fans, compressors, and gas turbines. Resonance avoidance design is performed to avoid the resonance of the blade in its natural mode. In the conventional resonance avoidance design method, the optimum blade design is performed first, and then after confirming that the blade has a resonance point within the operating range, the blade shape such as the blade thickness and blade cord length is changed to change the blade shape. The resonance of the blade is avoided by changing the natural mode frequency or changing the number of blades of the upstream blade row or the downstream blade row to change the excitation force frequency.
[0003]
An example of a conventional resonance avoidance design method will be described with reference to the drawings. FIG. 5 is a Campbell diagram in a conventional resonance avoidance design method.
(A) First, design the blade row and the number of blades to obtain the optimum efficiency.
(B) Analyze the natural frequency of the cascade in the natural mode and draw a Campbell diagram.
(C) From the Campbell diagram, it is found that the natural frequency of the third mode of the blades in a certain row falls within the band of the excitation force frequency at the steady operation rotational speed.
(D) Increase the blade's natural frequency by increasing the blade thickness by 10% and shortening the blade cord length by 10%.
(E) From the Campbell diagram, it can be confirmed that the natural frequency of the second mode and the natural frequency of the third mode are out of the band of the excitation force frequency at the steady operation rotational speed.
(F) The above operation is performed for all blade rows, and if it is confirmed that all blade rows do not resonate in steady operation, the blade rows to be manufactured and the number of blades are determined.
[0004]
[Problems to be solved by the invention]
In the case of the above-described resonance avoidance design method, the aerodynamic performance of the blade is often sacrificed as the blade shape is changed. In addition, when the number of blades in the upstream blade row and the downstream blade row is changed, the load for each blade changes, so the aerodynamic characteristics of those blade rows are often impaired.
Furthermore, since considerable trial and error is required to find a blade shape modification plan for avoiding resonance, the design time increases. This trend becomes more pronounced due to the more complex shape of the three-dimensional design wing in recent years.
[0005]
By the way, in recent years, studies for using metal matrix composites as mechanical materials have been made. For example, in Japanese Patent Laid-Open No. 5-5142, “it is characterized by comprising a matrix made of an α-type, α + β-type, or β-type titanium alloy and a TiB solid solution having a volume ratio of 5 to 50% dispersed in the matrix. "Titanium-based composite material" is disclosed, and as its manufacturing method, "a titanium powder, a reinforcing substance powder containing at least two kinds of metal elements, and a substance powder containing boron are mixed and molded, and said molded body The titanium-based composite material manufacturing method is characterized by obtaining a titanium-based composite material in which 5 to 50% of a TiB solid solution is dispersed in a volume ratio in a matrix made of a titanium alloy by firing without pressure ” It is disclosed.
[0006]
According to the research of the inventor of the application, when the component ratio of the TiB solid solution is changed, the change in the specific gravity of the substance is small and the fracture strength does not decrease, but the elastic modulus of the substance changes greatly. . Generally, when the weight ratio of the TiB solid solution is increased, the elastic modulus increases.
[0007]
In the field of vibration engineering, when the shape and size of a structure made of a metal material is constant, the natural frequency is known to be proportional to the square root of the value obtained by dividing the elastic modulus by the specific gravity. .
[0008]
The present invention has been devised based on the above-mentioned knowledge in view of the problems described above, and at the expense of the aerodynamic performance of the turbo-type aerodynamic equipment in place of the conventional turbo-type aerodynamic equipment and the method of manufacturing the blades. Therefore, an object of the present invention is to provide a turbo-type aerodynamic device capable of avoiding resonance of a blade, and capable of designing the resonance avoidance in a short time without requiring trial and error, and a method of manufacturing the blade.
[0009]
[Means for Solving the Problems]
To achieve the above object, a method for manufacturing a blade for a turbo aerodynamic device made of a metal matrix composite material having a natural frequency H and containing reinforcing particles according to the present invention includes a blade shape design step for determining a blade shape. And a specific natural frequency confirmation step of confirming a specific natural frequency H0 that is a natural frequency of the blade having the wing shape made of the specific metal matrix composite material that is a metal matrix composite material having reinforcing particles at a specific weight ratio; A value obtained by dividing the elastic modulus E of the blade having the natural frequency H by the specific gravity ρ from the specific elastic modulus E0 that is the elastic coefficient of the specific metal matrix composite material, the specific gravity ρ0 that is the specific gravity, and the specific natural frequency H0. The physical property ratio prediction step for predicting the physical property ratio E / ρ, the weight ratio confirmation step for confirming the weight ratio of the reinforcing particles of the metal matrix composite material having the physical property ratio E / ρ, and the reinforcing particles at the weight ratio. Wings made of metal matrix composite with raw materials Has a wing manufacturing process for forming the, in physical properties ratio prediction step, identified by dividing a specific modulus E0 in particular gravity ρ0 to the natural frequency ratio H / H0 obtained by dividing the natural frequency H in particular natural frequency H0 The physical property ratio E / ρ was predicted by assuming that the value obtained by multiplying the square root of the physical property ratio E0 / ρ0 is equal to the square root of the physical property ratio E / ρ . Here, the weight ratio is a value including 0%. Here, the turbo type aerodynamic device refers to an aerodynamic device having an impeller such as an axial flow type, a tilt flow type, and a centrifugal type.
[0010]
According to the configuration of the present invention, the blade shape is determined, the specific natural frequency H0 of the blade-shaped blade made of the metal matrix composite material having the reinforcing particles at a specific weight ratio is confirmed, and the reinforcing particles are determined at the specific weight ratio. The physical property ratio E / ρ of the blade having the natural frequency H is predicted from the specific elastic modulus E0, the specific specific gravity ρ0, and the specific natural frequency H0 of the metal matrix composite material having the metal matrix having the physical property ratio E / ρ. The weight ratio of the reinforcing particles of the composite material is confirmed, and the weight ratio of the reinforcing particles of the metal matrix composite material is changed because the metal matrix composite blade is manufactured from the raw material having the reinforcing particles in the above weight ratio. Therefore, it is possible to make the blade's natural frequency to a desired value without changing the blade shape of the blade, and it is possible to manufacture a blade having the desired natural frequency without trial and error, and the aerodynamics of the blade. Do not sacrifice performance.
[0011]
In the present invention, when the physical property ratio E / ρ of a blade having a desired natural frequency H is predicted, a value obtained by multiplying the natural frequency ratio H / H0 by the square root of the specific physical property ratio E0 / ρ0 is a physical property. Since the physical property ratio E / ρ is predicted to be equal to the square root of the ratio E / ρ, it is based on the fundamental principle of vibration engineering that the natural frequency of the material is proportional to the square root of the value obtained by dividing the elastic modulus by the specific gravity. A blade having a desired natural frequency without trial and error can be obtained by accurately and accurately predicting the physical property ratio E / ρ of the blade having a frequency so that the natural frequency of the blade can be set to a desired value. Can be manufactured, and the aerodynamic performance of the wings is not sacrificed.
[0012]
Further, in the method for manufacturing a turbo type aerodynamic blade according to the present invention, the metal matrix composite material is a titanium matrix composite material, and the reinforcing particles are one of TiC, TiN, SiC, and TiB. .
With the configuration of the present invention described above, the metal matrix composite material is a titanium matrix composite material having one of TiC, TiN, SiC, and TiB as the reinforcement particles. By changing the elastic modulus and specific gravity, it is possible to manufacture a turbo-type aerodynamic device blade made of a titanium-based composite material having a desired natural frequency.
[0013]
Further, in the method for manufacturing a turbo-type aerodynamic blade according to the present invention, the metal matrix composite material is a titanium matrix composite material, and the reinforcing particles are TiB.
According to the configuration of the present invention, the metal matrix composite material is a titanium matrix composite material having TiB as reinforcing particles. Therefore, the elastic modulus and specific gravity Thus, it is possible to manufacture a turbo-type aerodynamic device blade made of a titanium-based composite material having a desired natural frequency.
[0014]
In order to achieve the above object, a turbo-type aerodynamic device having cascades according to the present invention is made of a metal matrix composite material in which the blades of the cascades contain reinforcing particles. and the weight ratio becomes different, the blades of each blade row is manufactured by the manufacturing method of the blade for a turbo-type aerodynamic devices described above. With the configuration of the present invention, the weight ratio of the reinforcing particles of the metal matrix composite material is different for each blade row, and the natural frequency of the blade can be adjusted by changing the weight ratio without changing the optimum shape of the blade. The blades do not resonate inside, and high aerodynamic performance can be obtained.
[0015]
Furthermore, in the turbo type aerodynamic device according to the present invention, the metal matrix composite material is a titanium matrix composite material, and the reinforcing particles are one of TiC, TiN, SiC, and TiB.
According to the configuration of the present invention, one of TiC, TiN, SiC, and TiB, which are reinforcing particles of titanium-based composite material, is mixed at different weight ratios for each blade row, and the blade shape can be changed without changing the optimum shape of the blade. Since the natural frequency can be adjusted, the blades do not resonate during operation, and high aerodynamic performance can be obtained.
[0016]
Further, in the turbo type aerodynamic device according to the present invention, the metal matrix composite material is a titanium matrix composite material and the reinforcing particles are TiB.
With the configuration of the present invention, TiB, which is a reinforcing particle of titanium-based composite material, is mixed at different weight ratios for each blade row, and the natural frequency of the blade can be adjusted without changing the optimum shape of the blade. Therefore, the blades do not resonate, and high strength and high aerodynamic performance can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0018]
A method of manufacturing a blade for a turbo type aerodynamic device according to an embodiment of the present invention will be described using a blade of a compressor of a gas turbine as an example. FIG. 1 is a conceptual diagram of an embodiment of the present invention. FIG. 2 is a conceptual diagram of an embodiment of the present invention. FIG. 3 is a Campbell diagram according to the embodiment of the present invention. For convenience of explanation, as a metal matrix composite material, a titanium matrix composite material in which TiB particles are dispersed in a titanium alloy will be described as an example. FIG. 4 is a physical property diagram of the titanium-based composite material.
[0019]
First (step 101), the target natural frequency H of the blade is determined from the design specification. The target natural frequency H is a frequency band of a value obtained by multiplying the minimum operating speed of the gas turbine by the number of blades in the preceding stage of the gas turbine and a value obtained by multiplying the maximum operating speed of the gas turbine by the number of blades in the preceding stage of the blade. It is decided not to go inside. For example, when the rated operation is 100%, the range is 80% to 100% of steady operation, and a sufficient margin is provided so as not to fall within the range of values obtained by multiplying this rotation speed by the number of blades in the upper stage. This frequency is taken as the target natural frequency of the blade.
[0020]
Next, the weight ratio of reinforcing particles contained in the metal matrix composite material (hereinafter referred to as a specific weight ratio) is determined. The weight ratio is an arbitrary value between 0% and 100%. In general, the weight ratio is preferably 0%. When the specific weight ratio is determined, the elastic modulus (hereinafter referred to as specific elastic modulus E0) and specific gravity (hereinafter referred to as specific specific gravity ρ0) of the metal matrix composite material are automatically determined. For example, the weight ratio with respect to the entire TiB particles contained in the titanium-based composite material is set to zero.
[0021]
Blade shape design process (step 102): The blade shape and the number of blades in each blade stage are determined. Determine the blade shape that will give the optimum efficiency of the gas turbine compressor. For example, when the optimum blade shape and the number of blades are determined by the blade aerodynamic performance program, the three-dimensional shape data of the blade is output.
[0022]
Specific natural frequency confirmation step (step 103): The natural frequency of the blade (hereinafter referred to as the specific natural frequency H0) is confirmed from the blade shape, the specific elastic modulus E0, and the specific specific gravity ρ0.
As a confirmation method, there are a numerical analysis by a finite element method and a modal analysis by a real object. For example, a numerical model is generated from the three-dimensional data of the blade obtained in the blade shape design process, the numerical model, the specific elastic modulus E0, and the specific specific gravity ρ0 are input to a computer to perform natural frequency analysis. The secondary and tertiary vibration modes and the natural frequency are output. The natural frequency is defined as a specific natural frequency H0. When this specific natural frequency H0 matches the target natural frequency, it is not necessary to perform the following steps. In general, as shown in FIG. 3, since the specific natural frequency of the blade is in the excitation force frequency band by steady operation, the process proceeds to the following steps.
[0023]
Physical property ratio prediction step (step 104): The target physical property ratio E / ρ is predicted from the target natural frequency H, the specific natural frequency H0, the specific natural frequency E0, and the specific specific gravity ρ0. Here, a value obtained by dividing the natural frequency by the specific gravity is called a physical property ratio.
For example, a value obtained by multiplying the natural frequency ratio H / H0 obtained by dividing the desired natural frequency H by the specific natural frequency H0 and the square root of the specific physical property ratio E0 / ρ0 obtained by dividing the specific elastic modulus E0 by the specific specific gravity ρ0. The physical property ratio E / ρ is predicted as being equal to the square root of the ratio E / ρ. Furthermore, it is preferable to consider the centrifugal force due to rotation and the change in elastic modulus due to temperature rise.
For example, as shown in FIG. 4, in a titanium-based composite material containing TiB as reinforcing particles, the elastic modulus is remarkably increased as the weight ratio of TiB increases. On the other hand, the specific gravity gradually decreases. From this, it can be seen that the physical property ratio increases as the weight ratio of TiB increases. On the other hand, since the natural frequency of the object is proportional to the square root of the physical property ratio, increasing the weight ratio of TiB increases the natural frequency of the blade made of the titanium-based composite material.
Further, since the centrifugal force acts on the blade as the rotational speed increases, the apparent rigidity of the blade increases and the natural frequency increases. In addition, the elastic modulus decreases as the temperature increases. Considering these phenomena, the physical property ratio E / ρ of a blade having a desired natural frequency H is predicted.
[0024]
Weight ratio confirmation step (step 105) The weight ratio of the metal matrix composite material having the physical property ratio E / ρ is confirmed. Changes in the elastic modulus E and specific gravity ρ when the weight ratio is changed are obtained in advance by experiments, and the weight ratio is confirmed from the relationship between the weight ratio and the physical property ratio E / ρ. For example, a plurality of test pieces having different weight ratios are manufactured in advance, and a correlation graph between the weight ratio and the physical property ratio is created from the elastic coefficient, specific gravity, and weight ratio for each test piece. From the correlation graph, the physical property ratio E The TiB weight ratio of the titanium matrix composite with / ρ is confirmed.
[0025]
Wing manufacturing process (step 200): Wings made of metal matrix composite material having reinforcing particles at a determined weight ratio are manufactured.
When the weight ratio of the reinforcing particles is determined, the blending ratio of the reinforcing material, the metal, and the alloy component for obtaining the metal matrix composite material of the weight ratio is calculated backward based on the test data performed in advance. Here, the reinforcing material is a material on which reinforcing particles are based.
[0026]
For example, when the weight ratio with respect to the entire TiB particles is determined, the blending ratio of titanium powder, base alloy, and boron powder for obtaining a titanium-based composite material with the weight ratio is calculated backward based on previously performed test data.
The blade manufacturing process will be described in detail, taking as an example the case of manufacturing a titanium-based composite material containing N% (for example, 50%) TiB particles. Since the molecular weight of Ti is 47.9 and the molecular weight of B is 10.82, the weight ratio of B in TiB particles is about 18/100. When the amount of B that reacts with titanium to generate TiB particles is N, the content of boron powder to contain N × 18/100% (for example, 9%) boron and the content of Ti that generates TiB particles The amount, the content of titanium that does not bind to B, and the content of the base alloy that the titanium needs to make a titanium alloy (eg, Ti-6AL-4V) are determined.
[0027]
Material preparation process (step 201): A metal powder, a base alloy, and a reinforcing material powder are prepared. For example, the titanium powder, the base alloy, and the boron powder are prepared so that the content of the titanium powder, the base alloy, and the boron powder determined above is obtained.
[0028]
Material preparation step (step 202): Metal powder, base alloy, and reinforcing material powder are prepared so as to have a weight ratio. For example, titanium powder, base alloy, and boron powder are prepared.
[0029]
Mixing and kneading step (step 203): The prepared materials are mixed and kneaded. For example, titanium powder, base alloy and boron powder are mixed and kneaded.
[0030]
Compression process (step 204): The material is compressed. For example, it is put into a mold having airfoil-shaped voids and compressed so as to have a sufficient packing density.
[0031]
Sintering step (step 205): The compressed material is heated and sintered. When the temperature drops, take it out of the mold and you will have a wing with the desired natural frequency. For example, an airfoil containing a mixed titanium powder, base alloy, and boron powder is heated at a predetermined temperature. When the predetermined time has elapsed, the heating is stopped and cooled.
[0032]
When the blades made by the above method are installed in each blade stage, blades with different weight ratios are arranged for each blade, and all the blades can be operated without causing resonance within the range of the operating rotational speed. Since the shape and the number of blades at each stage are the originally designed blade shape and number of blades, it is possible to manufacture a gas turbine compressor that can achieve optimum efficiency, fuel efficiency and output in terms of design.
[0033]
By using the turbo-type aerodynamic device blade manufacturing method of the above-described embodiment, the blade shape and the number of blades can be kept at the optimum design values, and resonance of the blades can be avoided. A gas turbine compressor based on the optimum design Can be produced.
Further, by changing the weight ratio, a blade having a desired natural frequency can be manufactured, so that a trial and error design process for obtaining a desired natural frequency can be omitted.
In addition, when a blade is made of a titanium-based composite material using TiB as reinforcing particles, the natural frequency of the blade can be adjusted by changing the elastic coefficient without reducing the nondestructive strength.
[0034]
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention.
Although the metal-based composite material has been described as a titanium-based composite material, the present invention is not limited to this.
Further, although the weight ratio is described as being the weight ratio of boron, the present invention is not limited to this.
[0035]
【The invention's effect】
As described above, the method for manufacturing a blade for a turbo aerodynamic device having the natural frequency H of the present invention has the following effects due to its configuration.
By simply changing the weight ratio of the reinforcing particles of the wing made of metal matrix composite material, the wing's natural frequency can be set to the desired value without changing the wing shape, without trial and error. A wing having a desired natural frequency can be manufactured, and the aerodynamic performance of the wing is not sacrificed.
In addition, based on the fundamental principle of vibration engineering that the natural frequency of a substance is proportional to the square root of the value obtained by dividing the elastic modulus by the specific gravity, the physical property ratio E / ρ of the blade having the desired natural frequency is accurately and accurately predicted. Thus, the natural frequency of the blade can be set to a desired value, a blade having the desired natural frequency can be manufactured without trial and error, and the aerodynamic performance of the blade is not sacrificed.
In addition, since the metal matrix composite is a titanium matrix composite having one of TiC, TiN, SiC, and TiB as reinforcing particles, the elastic modulus and specific gravity can be changed simply by changing the weight ratio of the reinforcing particles. Thus, it is possible to manufacture a turbo-type aerodynamic device blade made of a titanium-based composite material having a desired natural frequency.
In addition, since the metal matrix composite is a titanium matrix composite having TiB as reinforcing particles, it is possible to change the elastic modulus and specific gravity by simply changing the weight ratio of TiB without changing the fracture strength. A turbo-type aerodynamic wing made of a titanium-based composite material having a natural frequency can be manufactured.
[0036]
Further, as described above, the turbo type aerodynamic device having the cascade has the following effects due to its configuration.
The weight ratio of the reinforcing particles of the metal matrix composite material is different for each cascade, and the blade's natural frequency can be adjusted by changing the weight ratio without changing the optimum shape of the blade. High aerodynamic performance can be obtained.
In addition, one of TiC, TiN, SiC, and TiB, which are reinforcing particles of titanium-based composite material, is mixed at different weight ratios for each blade row, and the natural frequency of the blade is adjusted without changing the optimum shape of the blade. Therefore, the blades do not resonate during operation, and high aerodynamic performance can be obtained.
In addition, TiB, which is a reinforcing particle of titanium-based composite material, is mixed at different weight ratios for each blade row, and the blade's natural frequency can be adjusted without changing the optimum shape of the blade. However, high strength and high aerodynamic performance can be obtained.
Therefore, it is possible to provide a turbo type aerodynamic device and a method of manufacturing the blade that can avoid the resonance of the wing without sacrificing the aerodynamic performance of the turbo type aerodynamic device, and can perform the resonance avoidance design in a short time without requiring trial and error .
[0037]
[Brief description of the drawings]
FIG. 1 is a work procedure diagram according to an embodiment of the present invention.
FIG. 2 is a next operation procedure diagram according to the embodiment of the present invention.
FIG. 3 is a Campbell diagram according to the embodiment of the present invention.
FIG. 4 is a physical property diagram of the titanium matrix composite of the present invention.
FIG. 5 is a conventional Campbell diagram.
[Explanation of symbols]
S100 Design procedure S101 Determination of target natural frequency S102 Blade shape design step S103 Specific natural frequency confirmation step S105 Physical property ratio prediction step S105 Weight ratio confirmation step S200 Blade manufacturing step S201 Material preparation step S202 Material preparation step S203 Mixing and kneading step S204 Compression process S205 Sintering process

Claims (6)

固有振動数Hを有し強化粒子を含有する金属基複合材料でできたターボ型空力機器用翼の製造方法であって、翼形状を決定する翼形状設計工程と、強化粒子を特定重量比で有する金属基複合材料である特定金属基複合材料でできた前記翼形状の翼の固有振動数である特定固有振動数H0を確認する特定固有振動数確認工程と、前記特定金属基複合材料の弾性係数である特定弾性係数E0と比重である特定比重ρ0と前記特定固有振動数H0とから固有振動数Hを有する翼の弾性係数Eを比重ρで除した値である物性比E/ρを予測する物性比予測工程と、前記物性比E/ρを有する金属基複合材料の強化粒子の重量比を確認する重量比確認工程と、強化粒子を前記重量比で有する原料で金属基複合材料製の翼を製造する翼製造工程と、を有し
物性比予測工程において、固有振動数Hを特定固有振動数H0で除した固有振動数比H/H0に特定弾性係数E0を特定比重ρ0で除した特定物性比E0/ρ0の平方根を乗じた値が物性比E/ρの平方根に等しいとして物性比E/ρを予測することを特徴とするターボ型空力機器用翼の製造方法。
A method of manufacturing a blade for a turbo type aerodynamic device made of a metal matrix composite material having a natural frequency H and containing reinforcing particles, the blade shape design step for determining the blade shape, and the reinforcing particles at a specific weight ratio A specific natural frequency confirmation step of confirming a specific natural frequency H0, which is a natural frequency of the blade of the blade shape made of the specific metal matrix composite material which is a metal matrix composite material, and elasticity of the specific metal matrix composite material The physical property ratio E / ρ, which is a value obtained by dividing the elastic coefficient E of the blade having the natural frequency H by the specific gravity ρ from the specific elastic coefficient E0 that is the coefficient, the specific specific gravity ρ0 that is the specific gravity, and the specific natural frequency H0. A physical property ratio prediction step, a weight ratio confirmation step for confirming the weight ratio of the reinforcing particles of the metal matrix composite material having the physical property ratio E / ρ, and a raw material having the reinforcing particles at the weight ratio. has a wing process of manufacturing the blade, a,
In the physical property ratio prediction step, a value obtained by multiplying the natural frequency ratio H / H0 obtained by dividing the natural frequency H by the specific natural frequency H0 by the square root of the specific physical property ratio E0 / ρ0 obtained by dividing the specific elastic modulus E0 by the specific specific gravity ρ0. Is estimated to be equal to the square root of the physical property ratio E / ρ, and the physical property ratio E / ρ is predicted .
金属基複合材料がチタン基複合材料であって、強化粒子がTiC,TiN,SiC,TiBの内の一つであることを特徴とする請求項1に記載のターボ型空力機器用翼の製造方法。The method for producing a blade for a turbo aerodynamic device according to claim 1, wherein the metal matrix composite material is a titanium matrix composite material, and the reinforcing particles are one of TiC, TiN, SiC, and TiB. . 金属基複合材料がチタン基複合材料であって、強化粒子がTiBであることを特徴とする請求項1に記載のターボ型空力機器用翼の製造方法。The method for manufacturing a blade for a turbo aerodynamic device according to claim 1, wherein the metal matrix composite material is a titanium matrix composite material, and the reinforcing particles are TiB. 翼列を有するターボ型空力機器であって、翼列の翼が強化粒子を含有する金属基複合材料でできており、翼列毎に前記強化粒子の重量比が異なっており、
前記各翼列の翼は、請求項1に記載のターボ型空力機器用翼の製造方法で製造されている、ことを特徴とするターボ型空力機器。
A turbo aerodynamic device having a cascade, wings blade row is made of a metal matrix composite containing reinforcing particles, the weight ratio of said reinforcing particles each blade row has become different,
The turbo type aerodynamic device according to claim 1, wherein the blades of each blade row are manufactured by the method for manufacturing a turbo type aerodynamic device blade according to claim 1 .
金属基複合材料がチタン基複合材料であって、強化粒子がTiC,TiN,SiC,TiBの内の一つであることを特徴とする請求項に記載のターボ型空力機器。5. The turbo type aerodynamic device according to claim 4 , wherein the metal matrix composite material is a titanium matrix composite material, and the reinforcing particles are one of TiC, TiN, SiC, and TiB. 金属基複合材料がチタン基複合材料であって、強化粒子がTiBであることを特徴とする請求項に記載のターボ型空力機器。The turbo type aerodynamic device according to claim 4 , wherein the metal matrix composite material is a titanium matrix composite material, and the reinforcing particles are TiB.
JP2001242118A 2001-08-09 2001-08-09 Turbo type aerodynamic device and method for manufacturing the wing Expired - Lifetime JP4765223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242118A JP4765223B2 (en) 2001-08-09 2001-08-09 Turbo type aerodynamic device and method for manufacturing the wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242118A JP4765223B2 (en) 2001-08-09 2001-08-09 Turbo type aerodynamic device and method for manufacturing the wing

Publications (2)

Publication Number Publication Date
JP2003056486A JP2003056486A (en) 2003-02-26
JP4765223B2 true JP4765223B2 (en) 2011-09-07

Family

ID=19072446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242118A Expired - Lifetime JP4765223B2 (en) 2001-08-09 2001-08-09 Turbo type aerodynamic device and method for manufacturing the wing

Country Status (1)

Country Link
JP (1) JP4765223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239460A1 (en) 2016-04-27 2017-11-01 Siemens Aktiengesellschaft Method for profiling blades of an axial turbo machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203204A (en) * 1990-11-29 1992-07-23 Hitachi Ltd Fluid machinery
US5372499A (en) * 1993-08-24 1994-12-13 Daido Tokushuko Kabushiki Kaisha High-temperature gas blower impeller with vanes made of dispersion-strengthened alloy, gas blower using such impeller, and gas circulating furnace equipped with such gas blower
JPH08121108A (en) * 1994-10-31 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd Stationary blade supporting structure
JP2001324420A (en) * 2000-05-17 2001-11-22 Mitsubishi Heavy Ind Ltd Method and device for predicting oscillation of blades in rotating machine

Also Published As

Publication number Publication date
JP2003056486A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP2012052540A (en) Airfoil shape for compressor inlet guide vane
US7985053B2 (en) Inlet guide vane
CN104595245B (en) The adjustable stator blade of first half section and method of work thereof for axial flow compressor final stage
CN116186947B (en) Impeller simulation design method, device, equipment, medium and product
Dinh et al. Effects of rotor-bleeding airflow on aerodynamic and structural performances of a single-stage transonic axial compressor
Allison et al. Manufacturing and testing experience with direct metal laser sintering for closed centrifugal compressor impellers
Diener et al. Multi-Disciplinary optimization of a mixed-flow compressor impeller
JP4765223B2 (en) Turbo type aerodynamic device and method for manufacturing the wing
Boyle et al. Design considerations for ceramic matrix composite high pressure turbine blades
Engin Study of tip clearance effects in centrifugal fans with unshrouded impellers using computational fluid dynamics
Robinson et al. An integrated approach to the aero-mechanical optimisation of turbo compressors
He et al. Development of a multi-objective preliminary design optimization approach for axial flow compressors
Spasić et al. Numerical investigation of the influence of the doubly curved blade profiles on the reversible axial fan characteristics
Li et al. Design of a novel axial impeller as a part of counter-rotating axial compressor to compress water vapor as refrigerant
Maier et al. Decreasing the mass of turbomachinery subansamblies using advanced polymer composites
Xu et al. Study of the flow in centrifugal compressor
Barr et al. A numerical study of the performance characteristics of a radial turbine with varying inlet blade angle
Barr et al. A numerical and experimental performance comparison of an 86 mm radial and back swept turbine
Fleeter et al. Fatigue life prediction of turbomachine blading
Osborn et al. Performance of a 1.15-pressure-ratio Axial-flow Fan Stage with a Blade Tip Solidity of 0.5
Niveditha et al. Numerical Investigation of vaneless diffuser by pinching and rotation
Singh et al. Aerodynamic Design Aspects for Stator of Highly Loaded Tandem Bladed Axial Compressor
Agney et al. Structural and fluid flow analysis of subsonic aircraft jet engine centrifugal compressor
Howard et al. Analysis and Design of Centrifugal Blowers for the Pressure Ratio Range 1.2-1.8
Kale et al. CFX ANALYSIS OF AN IMPELLER BLADE DESIGN OF CENTRIFUGAL COMPRESSOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R151 Written notification of patent or utility model registration

Ref document number: 4765223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term