JP4764225B2 - Temperature measuring method and temperature measuring structure of sintered raw material layer - Google Patents

Temperature measuring method and temperature measuring structure of sintered raw material layer Download PDF

Info

Publication number
JP4764225B2
JP4764225B2 JP2006095075A JP2006095075A JP4764225B2 JP 4764225 B2 JP4764225 B2 JP 4764225B2 JP 2006095075 A JP2006095075 A JP 2006095075A JP 2006095075 A JP2006095075 A JP 2006095075A JP 4764225 B2 JP4764225 B2 JP 4764225B2
Authority
JP
Japan
Prior art keywords
raw material
temperature measuring
material layer
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006095075A
Other languages
Japanese (ja)
Other versions
JP2007271355A (en
Inventor
浩二 阿野
剛司 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006095075A priority Critical patent/JP4764225B2/en
Publication of JP2007271355A publication Critical patent/JP2007271355A/en
Application granted granted Critical
Publication of JP4764225B2 publication Critical patent/JP4764225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結機により焼結鉱を製造する際に、同焼結機上に供給、形成される焼結原料層内の温度を連続的に精度良く測定する技術に関する。   The present invention relates to a technique for continuously and accurately measuring the temperature in a sintered raw material layer supplied and formed on a sintering machine when a sintered ore is produced by the sintering machine.

焼結鉱特に鉄鉱石焼結鉱は高炉の優れた主原料として多用されており、その製造に当たっては、一般にパレットを無端ベルト上に連結して構成したいわゆるドワイトロイド式焼結機を用いて、鉱石粉とコークス粉などからなる焼結原料をその供給側から製品(焼結鉱)排出側に移動するパレットに順次供給、充填して、焼結鉱原料層を形成し、この原料層の上部より着火するとともに下向きに空気を通過(下向き通風)させて、原料層の移動に伴って層下部に向けて燃焼、加熱を進め、製品排出側にいたるまでに原料層全体の焼結を完了させるものである。   Sintered ores, especially iron ore sintered ores, are widely used as excellent main raw materials for blast furnaces, and in the production thereof, generally using a so-called dweroid type sintering machine configured by connecting pallets on an endless belt, Sintered raw material consisting of ore powder and coke powder is sequentially supplied and filled from the supply side to the product (sintered ore) discharge side to form a sintered ore raw material layer. Further ignite and allow air to pass downward (downward ventilation), and with the movement of the raw material layer, combustion and heating are advanced toward the bottom of the layer to complete the sintering of the entire raw material layer until reaching the product discharge side Is.

かかる焼結鉱の製造過程において、焼結原料層内の温度を克明かつ正確に知ることは、焼結鉱の品質やその製造プロセスを改善する上で大きな手がかりとなるもので極めて重要である。   In such a manufacturing process of sintered ore, it is extremely important to know the temperature in the sintering raw material layer accurately and accurately as it is a great clue for improving the quality of the sintered ore and the manufacturing process.

従来、焼結原料層内の温度を測定する方法として、牽引索の先端部に温度検出端を取り付け、この検出端を原料層に埋没し、牽引索の基端側を原料装入側に設けた巻き取り装置に取り付け、この巻取り装置には牽引索の引き出し長さを計測するパルス発信器を設けた温度測定装置を用いる方法(特許文献1参照)が提案されている。   Conventionally, as a method of measuring the temperature in the sintered raw material layer, a temperature detection end is attached to the tip of the tow rope, the detection end is buried in the raw material layer, and the base end side of the tow rope is provided on the raw material charging side. A method of using a temperature measuring device provided with a pulse transmitter for measuring the pulling length of a tow rope (see Patent Document 1) has been proposed.

この方法は牽引索先端部に温度検出端(熱電対)を取り付け、牽引索により温度検出端を原料層中の所定位置に係止して温度を測定するようにしたものであるから、複数の牽引索を用いて温度検出端を原料層の高さ、幅方向の任意の位置での温度を測定することが可能である。しかしながら、温度検出端を増加させたとしてもあくまでも層内の特定された位置での温度履歴しか測定できず、移動する原料層自身のその移動に伴う連続的な温度履歴を計測することはできない。また、原料層内に牽引索並びにその先端の温度検出端を埋没させるため、原料層の移動に伴う摩擦や充填状態の変化などにより、温度検出端が高さや幅方向に変異することにより、正確な位置での測定が困難であり、測定精度も不十分である。   In this method, a temperature detection end (thermocouple) is attached to the tip of the tow rope, and the temperature detection end is locked at a predetermined position in the raw material layer by the tow rope so that the temperature is measured. It is possible to measure the temperature at the temperature detection end at an arbitrary position in the height and width directions of the raw material layer using a tow rope. However, even if the temperature detection end is increased, only the temperature history at the specified position in the layer can be measured, and the continuous temperature history accompanying the movement of the moving raw material layer itself cannot be measured. In addition, because the tow rope and the temperature detection end at the tip of the tow rope are buried in the raw material layer, the temperature detection end is changed in the height and width directions due to changes in friction and filling conditions accompanying the movement of the raw material layer. It is difficult to measure at a precise position, and the measurement accuracy is insufficient.

焼結原料層内の温度を測定する他の方法として、原料層の移動方向と平行に通気孔を形成する通気孔形成手段を設けて、この内部に測温プローブを挿通させて通気孔内の温度を測定する方法(特許文献2参照)が提案されている。この方法によれば、定常的に原料層の温度分布を測定できるとともにガスのサンプリングも可能であるが、上記の従来技術と同様に原料層内の特定位置での測定を対象としたもので、やはり移動原料層の幅方向の任意の位置での連続的な温度履歴の測定はできないし、原料層の移動や充填状態の影響により、測定精度が十分とはいえない。   As another method for measuring the temperature in the sintering raw material layer, a vent hole forming means for forming a vent hole in parallel with the moving direction of the raw material layer is provided, and a temperature measuring probe is inserted into the vent hole forming means. A method for measuring temperature (see Patent Document 2) has been proposed. According to this method, the temperature distribution of the raw material layer can be measured steadily and gas sampling is also possible, but the measurement is performed at a specific position in the raw material layer as in the above-described conventional technology, Again, the continuous temperature history cannot be measured at an arbitrary position in the width direction of the moving raw material layer, and the measurement accuracy is not sufficient due to the influence of the movement of the raw material layer and the filling state.

さらに、他の方法として、パレットの側壁を開口して、この部分に測温プローブを挿入、固定して、焼結原料層内の温度を測定するもの(特許文献3)がある。この方法によれば、移動原料層自身の連続的な温度履歴の測定が可能であり、パレットの高さの異なる位置に上記プローブを設置し、原料層の高さ方向の温度分布も測定することができる。   Furthermore, as another method, there is a method of measuring the temperature in the sintered raw material layer by opening the side wall of the pallet and inserting and fixing a temperature measuring probe in this part (Patent Document 3). According to this method, it is possible to measure the continuous temperature history of the moving raw material layer itself, install the probe at different positions on the pallet height, and measure the temperature distribution in the height direction of the raw material layer. Can do.

しかしながら、この方法では、パレットの側壁にプローブの基部を固定してプローブの測温端子を原料層内に突き出す所謂片持ち支持方式を採用するため、原料層内に突き出せる長さが制限され、パレット長さすなわち原料層の幅が4000m以上にも及ぶ大型焼結機の場合は原料層の中央部の測定は不可能となる。また、プローブを設置のためにパレットの側壁を開口することは強度の劣化などの問題もあり、好ましいとは言えない。
特開平10−332276号公報 特開2000−136969号公報 特開平59−59839号公報
However, in this method, since the so-called cantilever support method is adopted in which the probe base is fixed to the side wall of the pallet and the temperature measuring terminal of the probe is protruded into the raw material layer, the length that can be protruded into the raw material layer is limited. In the case of a large-sized sintering machine in which the pallet length, that is, the width of the raw material layer is 4000 m or more, it is impossible to measure the central portion of the raw material layer. Moreover, it is not preferable to open the side wall of the pallet for installing the probe because of problems such as deterioration of strength.
JP-A-10-332276 JP 2000-136969 A JP 59-59839 A

本発明はこうした事情に鑑み、焼結原料層自身の移動過程における層内の幅及び/または高さ方向における任意の位置における温度履歴を連続的にしかも精度よく測定することが可能な焼結原料層の温度測定方法及び測温構造体を提供することをその重要な課題としてなされたものである。   In view of such circumstances, the present invention provides a sintering raw material capable of continuously and accurately measuring a temperature history at an arbitrary position in the width and / or height direction in the moving process of the sintering raw material layer itself. Providing a temperature measuring method and a temperature measuring structure of the layer is an important issue.

本発明はこのような課題の解決のために完成されたものであって、その要旨とする特徴は以下の通りである。   The present invention has been completed to solve such a problem, and the gist of the present invention is as follows.

すなわち、請求項1に係る発明は、焼結機により焼結原料を焼結して焼結鉱を製造する際に、原料供給側から製品排出側に向かって移動する焼結原料層の層内温度を測定する方法において、前記焼結機の原料供給側の床敷上に、全体が枠体で構成された船形状を呈したもので、その縦横の各枠部材が格子状に配列された底枠体と、該底枠体の上部に固定された倒伏三角柱状の支持枠体と、該底枠体と該支持枠体の頂部の間に立設された測温端子支持梁からなり、該測温端子支持梁には、過熱使用限度が1300℃以上である熱電対で構成した複数の測温プローブが、その端部側が高さ方向に取り付けられた状態で支持されており、且つ該測温プローブの先端から補償導線に接続されるまでの長さは、焼結機全長の0.7〜1.0倍であって、且つ外部の電源に接続された消耗型測温プローブ構造体を載置し、該測温プローブを、この上方より供給、形成される焼結原料層内に埋没させると共に原料供給側から製品排出側に向かって焼結原料層と一体的に移動させながら該原料層の幅及び/または高さ方向の任意の位置の層内温度を連続的に測定することを特徴とする焼結原料層の温度測定方法を提案するものである。 That is, in the invention according to claim 1, the sintered raw material layer moves from the raw material supply side toward the product discharge side when the sintered raw material is produced by sintering the sintered raw material with a sintering machine. In the method for measuring the temperature, on the flooring on the raw material supply side of the sintering machine, the whole was formed in a ship shape composed of a frame body, and the vertical and horizontal frame members were arranged in a grid pattern. a bottom frame member, a support frame body lodging triangular prism which is fixed to the upper of the bottom frame, Ri Do from the temperature measuring terminal support beams erected between the top portion of the bottom frame and the support frame The temperature measuring terminal support beam is supported by a plurality of temperature measuring probes composed of thermocouples having an overheat usage limit of 1300 ° C. or more, with their end sides attached in the height direction , and The length from the tip of the temperature measuring probe to the compensating lead wire is 0.7 to 1.0 times the total length of the sintering machine, and Placed outside of the connected-consumable temperature measuring probe structure to a power source, a surveying temperature probe, supplied from the upper, from the raw material supply side together to bury the sintering material layer on the product discharge side, which is formed Temperature measurement of the sintering raw material layer, wherein the temperature in the layer at any position in the width and / or height direction of the raw material layer is continuously measured while moving integrally with the sintering raw material layer A method is proposed.

また、請求項2に係る発明は、全体が枠体で構成された船形状を呈したもので、その縦横の各枠部材が格子状に配列された底枠体と、該底枠体の上部に固定された倒伏三角柱状の支持枠体と、該底枠体と該支持枠体の頂部の間に立設された測温端子支持梁からなり、該測温端子支持梁には、過熱使用限度が1300℃以上である熱電対で構成した複数の測温プローブが、その端部側が高さ方向に取り付けられた状態で支持されており、且つ該測温プローブの先端から補償導線に接続されるまでの長さは、焼結機全長の0.7〜1.0倍であることを特徴とする焼結原料層の測温構造体を提案するものである。 In addition, the invention according to claim 2 has a ship shape that is entirely constituted by a frame, and includes a bottom frame in which vertical and horizontal frame members are arranged in a lattice shape, and an upper portion of the bottom frame. lodging a triangular prism-shaped support frame body fixed to, Ri Do from the temperature measuring terminal support beams erected between the top portion of the bottom frame and the support frame, the surveying temperature terminal support beam, overheating A plurality of temperature measuring probes composed of thermocouples with a usage limit of 1300 ° C or higher are supported with their end sides attached in the height direction, and connected to the compensating lead wire from the tip of the temperature measuring probe The proposed structure proposes a temperature measuring structure for a sintering raw material layer, characterized in that the length until it is 0.7 to 1.0 times the total length of the sintering machine .

焼結原料層自身の移動過程における層内の幅及び/または高さ方向における任意の位置または複数位置における温度履歴を連続的にしかも精度よく測定することができる。また、この測定を実現するための簡単な構成の測定構造体を提供することができる。   It is possible to continuously and accurately measure a temperature history at an arbitrary position or a plurality of positions in the width and / or height direction in the moving process of the sintering raw material layer itself. In addition, a measurement structure having a simple configuration for realizing this measurement can be provided.

以下、本発明の内容を当業者がその実施を容易し得るように明解且つ詳細に説明する。   Hereinafter, the contents of the present invention will be described clearly and in detail so that those skilled in the art can easily implement the contents.

本発明では焼結原料層自身の移動過程における層内の温度履歴を連続的に測定すべく検討を重ねた結果、原料層内に埋め込んで、原料層の給鉱側(原料供給側)から排鉱側(製品排出側)への原料層の移動に伴って一体となって一緒に移動し、かつ焼結完了時には確実に溶融して製品焼結鉱の品質や製造プロセスに悪影響を及ぼさない埋め込み消耗型の測温プローブ構造体を用いてその課題を実現する。   In the present invention, as a result of repeated studies to continuously measure the temperature history in the layer during the movement of the sintering raw material layer itself, it is embedded in the raw material layer and discharged from the supply side (raw material supply side) of the raw material layer. Embedding that moves together as the raw material layer moves to the ore side (product discharge side) and melts securely at the completion of sintering and does not adversely affect the quality of the product sinter or manufacturing process This problem is realized by using a consumable temperature measuring probe structure.

図1はこの埋め込み(埋没)消耗型測温プローブ構造体の好ましい実施形態を示す斜視図である。測温プローブ構造体Pは全体が枠体で構成された船形状を呈したもので、底部を形成する底枠体1と、その上部に固定された支持枠体2と、底枠体1と支持枠体2の頂部の間に立設された測温端子支持梁3から成っている。底枠体1はその縦横の各枠部材が格子状に配列されたものであり、2×4列の計六つの窓部Wを有したものである。また、底枠体1の前部(図1の斜め左上側)に位置する二つの窓部は完全に開口しているが、残りの窓部すなわち底枠体1の中央に位置する窓部とその後部に位置する窓部はこれを形成する枠部材の上面に張設された網板4によって覆われた構成となっている。この網板の網目の平均径は4〜6mmである。 FIG. 1 is a perspective view showing a preferred embodiment of the embedded (buried) consumable temperature measuring probe structure. The temperature measuring probe structure P has a ship shape composed entirely of a frame, and includes a bottom frame 1 forming a bottom, a support frame 2 fixed to the top, a bottom frame 1, It consists of a temperature measuring terminal support beam 3 erected between the tops of the support frame 2. The bottom frame 1 has the vertical and horizontal frame members arranged in a lattice pattern, and has a total of six windows W of 2 × 4 rows. In addition, the two window portions located at the front portion of the bottom frame body 1 (the upper left side in FIG. 1) are completely open, but the remaining window portions, that is, the window portions located at the center of the bottom frame body 1 The window portion located at the rear portion is configured to be covered with a mesh plate 4 stretched on the upper surface of the frame member forming the window portion. The average diameter of the mesh of this mesh plate is 4 to 6 mm.

測温プローブ構造体Pが全体として枠体形状となっているため、一定の強度を保持させるとともに、後述するように原料層に埋め込まれて使用されることから焼結操業にとって重要な原料層の通気性を阻害することがなく、さらに原料がこの中に円滑に供給、充填され、原料層内で測温プローブ構造体として安定した姿勢、状態が保持される。   Since the temperature measuring probe structure P has a frame shape as a whole, it maintains a certain strength and is embedded in the raw material layer and used as described later. The raw material is smoothly supplied and filled therein without impeding air permeability, and a stable posture and state as a temperature measuring probe structure are maintained in the raw material layer.

また、上記測温構造体の底枠体が少なくともその中央部の窓部が網板で覆われ構成されているため、原料層内に埋め込まれた際に、底枠体の中央部の上に原料中の粗粒分の原料が堆積し、微粉が通過するため目詰まりの心配がなく、原料層の通気性を維持することができるし、中央部に粗粒分を堆積させることで測温プローブ構造体としてより安定した姿勢、状態が保持される。 Further, since the bottom frame of the temperature measuring structure window of at least its center portion is formed is covered with a net plate, when implanted in a material layer, on the central portion of the bottom frame member The raw material of coarse particles in the raw material accumulates and fine powder passes, so there is no worry of clogging, the air permeability of the raw material layer can be maintained, and the coarse particles are deposited in the center. A more stable posture and state are maintained as the warm probe structure.

底枠体1、支持枠体2構成する枠部材及び測温端子支持梁3は全て通常の一般炭素鋼材(SS材)により加工して製作された例えば1mmの肉厚を有する直径6mmのパイプ(なお、図面上は分り易くするため測温端子支持梁3の径を他の枠体1,2よりも大きく描いている)前記底枠体1の窓部に覆設した網板4も一般炭素鋼材(SS材)でできている。このように、枠部材などの構成材料を一般炭素鋼材(SS材)とすることにより、必要な温度履歴最を測定した後に焼結の最高温度で軟化、溶融することになり、またこれらの材料成分が焼結鉱に取り込まれても、鉄、炭素であるため製品としての品質に与える影響もない。   The frame member constituting the bottom frame body 1, the support frame body 2, and the temperature measuring terminal support beam 3 are all manufactured by processing from a general carbon steel material (SS material), for example, a pipe having a thickness of 1 mm (diameter 6 mm) In addition, in order to make it easy to understand in the drawing, the diameter of the temperature measuring terminal support beam 3 is drawn larger than that of the other frames 1 and 2) The net plate 4 covering the window portion of the bottom frame 1 is also a general carbon. Made of steel (SS material). Thus, by using a general carbon steel material (SS material) as a constituent material such as a frame member, the necessary temperature history is measured and then softened and melted at the highest sintering temperature. Even if the components are incorporated into the sintered ore, they are iron and carbon, so there is no influence on the quality of the product.

支持枠体2は図のように倒伏二等辺三角柱状を有しており、その表側並びに裏側に位置する二等辺三角形の二等辺となる枠部材の下端がそれぞれ底枠体1の中央部にある四つの窓部Wの全体の四隅部に位置する枠部材に固定されている。 As shown in the figure, the support frame 2 has an inverted isosceles triangular prism shape, and the lower ends of the frame members forming the isosceles sides of the isosceles triangle located on the front side and the back side are in the center of the bottom frame 1. The four window portions W are fixed to frame members located at the four corners of the whole.

上記のように、支持枠体2を倒伏二等辺三角柱状に構成することにより、原料層に埋め込まれた際の上からの原料の自重の影響が極めて小さく、しかも高い構造強度で測温端子支持梁3を支持することができる。   As described above, the support frame 2 is configured in the shape of an isosceles triangular prism so that the influence of the weight of the raw material from above when embedded in the raw material layer is extremely small, and the temperature measuring terminal is supported with high structural strength. The beam 3 can be supported.

これら底枠体1、支持枠体2及び測温端子支持梁3で構成された測温プローブ構造体Pの全体の代表的な寸法構成を図2に例示している。   A typical dimensional configuration of the whole temperature measuring probe structure P composed of the bottom frame 1, the support frame 2, and the temperature measuring terminal support beam 3 is illustrated in FIG.

測温端子支持梁3はその上端が支持枠体2の頂部(頂辺)枠部材の中央部に固定され、またその下端が底枠体1の縦横を2分する枠部材の交点部に垂直に固定されている。   The temperature measuring terminal support beam 3 has its upper end fixed to the center of the top (top) frame member of the support frame 2 and its lower end perpendicular to the intersection of the frame members that bisect the vertical and horizontal directions of the bottom frame 1. It is fixed to.

この測温端子支持梁3には、図2にその詳細を示す通り、シース型熱電対などで構成した三本の測温プローブ5が、その端部側が取り付けられた状態で支持されている。この取り付けは針金などの結束線(図示せず)などにより測温プローブ5を支持梁3に結束して行われるが、この際、原料層内の熱影響の変化を考慮し、支持梁3と測温プローブ5とが互いの伸縮を許容し、かつ外れない程度にルーズに結束する。   As shown in detail in FIG. 2, the temperature measuring terminal support beam 3 supports three temperature measuring probes 5 made of a sheathed thermocouple or the like with their end portions attached. This attachment is performed by binding the temperature measuring probe 5 to the support beam 3 with a binding wire (not shown) such as a wire. In this case, considering the change in the thermal effect in the raw material layer, The temperature measuring probe 5 allows the expansion and contraction of each other and binds loosely to the extent that it does not come off.

測温プローブ5の先端の測温端子5a、5b、5cは支持梁3の高さ方向の上部、中間部、下部の三箇所に位置させて、前記測温プローブ構造体Pの前方(原料層の移動方向に相当)に向かって水平に曲げられた状態となっている。測温端子5a、5bに対応する2本の測温プローブ5の端部側は、支持梁3の下端まで支持梁に沿わせた形態で支持され、同支持梁3の下端において測温端子5cに対応する1本の測温プローブ5とともにそれぞれ後方(原料層の移動方向と反対方向に相当)に向かって水平に曲げられと共に3本にまとめられ、ここから底枠体1の上面位置に(原料層の下面に相当)に沿って水平に這わせた形態で配線される。   The temperature measuring terminals 5a, 5b, and 5c at the tip of the temperature measuring probe 5 are positioned at three positions in the upper, middle and lower portions of the support beam 3 in front of the temperature measuring probe structure P (raw material layer). It is in a state where it is bent horizontally toward the movement direction. The end portions of the two temperature measuring probes 5 corresponding to the temperature measuring terminals 5a and 5b are supported along the support beam up to the lower end of the support beam 3, and at the lower end of the support beam 3, the temperature measurement terminal 5c is supported. Are bent horizontally toward the rear (corresponding to the direction opposite to the direction of movement of the raw material layer) together with three temperature measuring probes 5 corresponding to the Wiring is performed horizontally along the lower surface of the raw material layer.

ここで、測温プローブ5が支持梁3の下端以降において底枠体1の上面位置で水平に這わせた配線形態としたのは、後述するように、これを取り付けた測温プローブ構造体Pを原料層に埋め込んで測定を実施する際に、測温プローブ5を、下向き通風により燃焼、加熱される原料層の最も熱的負荷の小さい下面(原料層の下面と床敷層の上面の間)の位置に配置、保持することにより燒結操業に伴う熱的影響を最小限とすべく配慮したものである。   Here, the temperature measuring probe 5 is arranged in a horizontal form at the upper surface position of the bottom frame 1 after the lower end of the support beam 3 as will be described later. When the measurement is carried out by embedding in the raw material layer, the temperature measuring probe 5 is connected to the lower surface (between the lower surface of the raw material layer and the upper surface of the floor layer) that has the lowest thermal load of the raw material layer that is burned and heated by downward ventilation ) Is placed and held at the position of () to minimize the thermal effects associated with the sintering operation.

そして、これら3本の測温プローブ5は補償導線(図示しない)を介して、近くの外部電源ならびに検出部、変換器およびデータ処理部などからなる測定器に接続される。この場合、測温プローブ5の全長(先端から補償導線に接続されるまでの長さ)は焼結機全長の0.7〜1.0倍とする。下限を0.7倍としたのは、原料層の全体(最下層)が焼結を完了する位置は燒結機の原料供給端から8割前後(製品排出端から2割前後)となることから、少なくともこの位置に至るまで、加熱、焼結される原料層に埋没した状態でも確実に測温ができるようにするためである。つまり、0.7倍未満の長さでこれに補償導線を接続した場合は補償導線も高温の原料層内に維持されるため焼損する恐れが大きく、焼結を完了する位置までの測温を連続的に遂行することが困難となるからである。被覆材、シースで保護された測温プローブ5であれば高温の原料層内にあってもその測温機能が劣化せずに、正確に測定することが可能となる。一方、下限についてはこの目的を達成するために最長でも燒結機の全長であれば十分であり、これ以上の余分な長さとしてもいたずらに測温プローブ5のコストが増大して不利を招くからである。   These three temperature measuring probes 5 are connected to a measuring device including a nearby external power source and a detection unit, a converter, a data processing unit, and the like via a compensation lead wire (not shown). In this case, the total length of the temperature measuring probe 5 (the length from the tip to the connection to the compensating conductor) is 0.7 to 1.0 times the total length of the sintering machine. The lower limit is 0.7 times because the position where the entire raw material layer (lowermost layer) completes sintering is about 80% from the raw material supply end of the sintering machine (about 20% from the product discharge end). This is because the temperature can be reliably measured even in a state where it is buried in the raw material layer to be heated and sintered at least up to this position. In other words, if a compensating lead wire is connected to this with a length less than 0.7 times, the compensation lead wire is also maintained in the high temperature raw material layer, so there is a high risk of burning, and the temperature measurement to the position where the sintering is completed is performed. This is because it becomes difficult to perform continuously. The temperature measuring probe 5 protected by the covering material and the sheath can accurately measure the temperature measuring function without deterioration even in the high temperature raw material layer. On the other hand, as for the lower limit, the full length of the sintering machine is sufficient even if it is the longest to achieve this purpose, and even if the extra length is longer than this, the cost of the temperature measuring probe 5 increases unnecessarily and causes a disadvantage. It is.

測温プローブ5に適用される熱電対としては過熱使用限度が少なくとも1200℃以上、好ましくは1300℃以上の耐熱性の高いものが良く、例えばJISのN種、R種、S種及びB種などを使用する。   The thermocouple applied to the temperature measuring probe 5 should have a high heat resistance of at least 1200 ° C., preferably 1300 ° C. or higher, such as JIS N type, R type, S type and B type. Is used.

各測温端子の支持梁3の高さ位置の具体的な寸法構成の一例は同図に表示されるとおりである。   An example of a specific dimensional configuration of the height position of the support beam 3 of each temperature measuring terminal is as shown in FIG.

次に、この実施形態の測温プローブ構造体Pを用いた焼結原料層内の温度測定方法について説明する。   Next, a method for measuring the temperature in the sintering material layer using the temperature measuring probe structure P of this embodiment will be described.

図4はドワイトロイド式焼結機の原料供給部付近の焼結原料層の形成状態を示す模式的な斜視図である。同図において、Mは原料、SLは焼結原料層、BLはパレットの底部に敷かれた床敷であり、11は給鉱ホッパー、12はドラムフィーダ、13は装入シュート、14はカットオフゲートをそれぞれ示している。   FIG. 4 is a schematic perspective view showing a formation state of a sintered raw material layer in the vicinity of a raw material supply section of a dweroid-type sintering machine. In the figure, M is a raw material, SL is a sintered raw material layer, BL is a floor laid on the bottom of the pallet, 11 is a feed hopper, 12 is a drum feeder, 13 is a charging chute, and 14 is a cut-off. Each gate is shown.

鉱石粉、コークス粉、など水分などを混合、調整された給鉱ホッパー11内の原料Mはドラムフィーダ12、装入シュート13を介して順次パレット内の床敷の上に落下、積載されて、焼結原料層SLが形成され、この原料層SLは製品排出側である矢印の方向に向かってパレットの速度で移動することになる。   The raw material M in the feed hopper 11 mixed and adjusted with water such as ore powder, coke powder, etc. is sequentially dropped and loaded on the floor in the pallet through the drum feeder 12 and the charging chute 13. A sintered raw material layer SL is formed, and this raw material layer SL moves at the speed of the pallet in the direction of the arrow on the product discharge side.

本発明では、測定時にあらかじめ準備しておい測温プローブ構造体Pを、ハンドリング機械を操作して把持し、原料が供給、積載より後方(手前側)の床敷のみが底部に敷かれた原料未供給のパレット(床敷空パレット)のうち供給中のパレットから数えて2〜4台手前に位置する床敷空パレットの上部空間に誘導し、次に、目的とする幅方向の箇所にパレットの移動方向と平行に位置決めした後、同パレット内の床敷BL上に静かに載置する。 In the present invention, the temperature measuring probe structure P which had been prepared in advance at the time of measurement, grips and operates the handling machine, the raw material is supplied, only the bedding behind the loading (front side) was laid on the bottom Guide to the upper space of the empty floor pallet that is 2-4 units ahead of the pallet that is not being supplied among the unsupplied pallets (floor empty pallet), and then to the target width direction location After positioning parallel to the movement direction of the pallet, it is gently placed on the flooring BL in the pallet.

そしてパレット内の測温プローブ構造体Pはパレットの移動に伴い、原料が供給される位置まで前進して、ここで同パレット内に原料が供給、積載されることにより測温プローブ構造体Pは原料層SL内に埋め込まれる。 The temperature measuring probe structure P in the pallet with the movement of the pallet, and advanced to a position where raw materials are fed, wherein the raw material is fed into the same pallet, temperature measuring probe structure P by being stacked Is embedded in the raw material layer SL.

この後、測温プローブ構造体Pは原料層SLに完全に埋め込まれた状態でパレットの移動に伴い原料層SLと一体となって製品排出側に向かって移動して行く。   After that, the temperature measuring probe structure P is moved toward the product discharge side together with the raw material layer SL along with the movement of the pallet while being completely embedded in the raw material layer SL.

このようにして、測温プローブ構造体Pに取り付けられた測温端子5a,5b,5cが位置する原料層内の高さ方向に異なる3点の温度履歴を焼結が完了するまで連続的に精度良く測定することが可能となる。   In this way, three different temperature histories in the height direction in the raw material layer in which the temperature measuring terminals 5a, 5b, 5c attached to the temperature measuring probe structure P are located are continuously obtained until the sintering is completed. It becomes possible to measure with high accuracy.

勿論、測温プローブ構造体Pの測温端子(または測温プローブ)を4点以上に増やしたり、また支持枠2にその幅方向に架け渡した測温端子支持梁を設けることにより、さらに、測温プローブ構造体P自体を複数個使用して原料層の幅方向の異なる位置に同時に埋め込んで測定を行うことにより、原料層内の任意の位置、任意の数の測定点における温度履歴を連続的に測定し得るものである。   Of course, by increasing the number of temperature measuring terminals (or temperature measuring probes) of the temperature measuring probe structure P to 4 or more, or by providing a temperature measuring terminal supporting beam spanning the support frame 2 in the width direction, By using a plurality of temperature measuring probe structures P themselves and simultaneously embedding them at different positions in the width direction of the raw material layer, the temperature history at any position and any number of measurement points in the raw material layer is continuously obtained. Can be measured automatically.

ところで、測温プローブ構造体Pは焼結完了温度(約1300℃)を過ぎると軟化、溶融して製品焼結鉱の中に取り込まれるが、構造体の本体は鉄、炭素が主成分であり、プローブのシースは鉄、熱電対素線の保護材はマグネシア、アルミナなどが主成分であり、熱電対は微量金属成分であるので製品に与える影響は全くない。   By the way, the temperature measurement probe structure P softens and melts after passing the sintering completion temperature (about 1300 ° C.) and is taken into the product sintered ore, but the main body of the structure is mainly composed of iron and carbon. The probe sheath is mainly composed of iron, and the thermocouple element protective material is magnesia, alumina, etc., and the thermocouple is a trace metal component, so there is no influence on the product.

(実施例)
図3に示した寸法構成の測温構造体(枠部材、測温端子支持梁は直径6mmのSS材製パイプ)を製作し、これに2本のプローブを各測温端子(測温点)の位置が測温端子支持梁の高さ(原料層高に相当)450mm及び50mmになるように針金により結束して取り付け測温プローブ構造体を準備した。測温プローブは、その全長が80mで、熱電対の素線(JIS−R種、直径:1mm)が3層のアルミナセラミックシートにより被覆され、これがアルミナセラミック充填材で包囲されもののさらに外側がステンレス細線でメッシュ状に編み込まれたシースでカバーされた断面が楕円形(長径:4.5mm、短径:3mm)ものを採用した。
(Example)
A temperature measuring structure having the dimensions shown in FIG. 3 (frame member, temperature measuring terminal support beam is a 6 mm diameter SS pipe) is manufactured, and two probes are connected to each temperature measuring terminal (temperature measuring point). A temperature measuring probe structure was prepared by binding with a wire such that the position of the temperature measuring terminal supporting beam was 450 mm and 50 mm (corresponding to the raw material layer height). The temperature measuring probe has an overall length of 80 m, and a thermocouple wire (JIS-R type, diameter: 1 mm) is covered with a three-layer alumina ceramic sheet, which is surrounded by an alumina ceramic filler, and further outside is stainless steel. A cross section covered with a sheath knitted in a mesh shape with a thin wire was adopted that has an elliptical shape (major axis: 4.5 mm, minor axis: 3 mm).

そこで、ドワイロイド式焼結機(長さ:100m、パレット幅:4m)による実操業(パレット速度;4.2〜4.5m/min)において、上記測温プローブ構造体を前述した測定方法と同様な要領により、原料供給中のパレットから数えて3台手前(3台目)の床敷空パレットを対象とし、幅方向、すなわち原料層の幅方向における中央位置の床敷上に載置して、パレットの移動により原料層内に埋め込み、測定を実施した。 Therefore, Dowai toroidal type sintering machine (length: 100 m, pallets Width: 4m) actual operation by (pallet velocity; 4.2~4.5m / min) in the measured described above the temperature measuring probe structure method In the same way as above, the floor pallet 3 floors ahead (3rd) from the pallet that is supplying the raw material is the target and placed on the floor in the center in the width direction, that is, the width direction of the material layer. Then, the measurement was carried out by embedding in the raw material layer by moving the pallet.

この結果を、図5に示す。同図は風箱端(測温プローブ構造体を埋め込んだ位置)からの距離(原料供給と層高450mm(実腺)及び50m(破線)の温度との関係を示すグラフである。これから明らかなように、本発明により、原料層内の任意かつ複数の位置における温度履歴を精度良く測定できることが判明する。   The result is shown in FIG. This figure is a graph showing the relationship between the distance from the wind box end (position where the temperature measuring probe structure is embedded) (raw material supply and layer height of 450 mm (solid line) and 50 m (broken line)). Thus, according to the present invention, it is found that the temperature history at any and a plurality of positions in the raw material layer can be measured with high accuracy.

本発明に係る測温プローブ構造体の実施形態を示す斜視図である。It is a perspective view which shows embodiment of the temperature measurement probe structure which concerns on this invention. 本発明に係る同実施形態における測温端子支持梁への測温プローブの取り付け状態を示す斜視図である。It is a perspective view which shows the attachment state of the temperature measuring probe to the temperature measuring terminal support beam in the same embodiment which concerns on this invention. 本発明に係る測温プローブ構造体の寸法構成を例示した斜視図である。It is the perspective view which illustrated the dimension structure of the temperature measuring probe structure which concerns on this invention. 本発明に係る焼結鉱原料層内の測定方法を説明するドワイトロイド式焼結機の原料供給部付近の焼結原料層の形成状態を示す模式的な斜視図である。It is a typical perspective view which shows the formation state of the sintering raw material layer of the raw material supply part vicinity of the dwyroid type sintering machine explaining the measuring method in the sintered ore raw material layer which concerns on this invention. 本発明の実施例による風箱端(測温プローブ構造体を埋め込んだ位置)からの距離(層高450mm(実腺)及び50m(破線))と温度との関係を示すグラフである。It is a graph which shows the relationship between the distance (layer height 450mm (real gland) and 50m (dashed line)) from the wind-box edge (position which embedded the temperature-measurement probe structure) by the Example of this invention, and temperature.

符号の説明Explanation of symbols

P:測温プローブ構造体
1:底枠体 2:支持枠体 3:測温端子支持梁 4:網板
5:測温プローブ 5a、5b、5c:測温端子
M:原料 SL:焼結原料層 BL:床敷
11:給鉱ホッパー 12:ドラムフィーダ 13:装入シュート
14:カットオフゲート
P: Temperature measuring probe structure 1: Bottom frame 2: Support frame 3: Temperature measuring terminal support beam 4: Net plate 5: Temperature measuring probe 5a, 5b, 5c: Temperature measuring terminal M: Raw material SL: Sintered raw material Layer BL: Flooring 11: Feeding hopper 12: Drum feeder 13: Charging chute 14: Cut-off gate

Claims (2)

焼結機により焼結原料を焼結して焼結鉱を製造する際に、原料供給側から製品排出側に向かって移動する焼結原料層の層内温度を測定する方法において、前記焼結機の原料供給側の床敷上に、全体が枠体で構成された船形状を呈したもので、その縦横の各枠部材が格子状に配列された底枠体と、該底枠体の上部に固定された倒伏三角柱状の支持枠体と、該底枠体と該支持枠体の頂部の間に立設された測温端子支持梁からなり、該測温端子支持梁には、過熱使用限度が1300℃以上である熱電対で構成した複数の測温プローブが、その端部側が高さ方向に取り付けられた状態で支持されており、且つ該測温プローブの先端から補償導線に接続されるまでの長さは、焼結機全長の0.7〜1.0倍であって、且つ外部の電源に接続された消耗型測温プローブ構造体を載置し、該測温プローブを、この上方より供給、形成される焼結原料層内に埋没させると共に原料供給側から製品排出側に向かって焼結原料層と一体的に移動させながら該原料層の幅及び/または高さ方向の任意の位置の層内温度を連続的に測定することを特徴とする焼結原料層の温度測定方法。 In the method of measuring the temperature inside the sintered raw material layer moving from the raw material supply side toward the product discharge side when the sintered raw material is produced by sintering the sintered raw material with a sintering machine, the sintering The floor frame on the raw material supply side of the machine has a ship shape composed entirely of a frame body, and a bottom frame body in which the vertical and horizontal frame members are arranged in a grid, and the bottom frame body lodging a triangular prism-shaped supporting frame member which is fixed to the upper, Ri Do from the temperature measuring terminal support beams erected between the top portion of the bottom frame and the support frame, the surveying temperature terminal support beam, A plurality of temperature measuring probes composed of thermocouples with an overheat usage limit of 1300 ° C. or more are supported with their end portions attached in the height direction , and from the tip of the temperature measuring probe to the compensating lead wire length to be connected is a 0.7 to 1.0 times the sintering machine the overall length, and measuring consumable connected to an external power source The probe structure is placed, and the temperature measurement probe is supplied from above and buried in the formed sintering material layer, and moves integrally with the sintering material layer from the material supply side to the product discharge side. A method for measuring the temperature of a sintered raw material layer, wherein the temperature in the layer at an arbitrary position in the width and / or height direction of the raw material layer is continuously measured. 全体が枠体で構成された船形状を呈したもので、その縦横の各枠部材が格子状に配列された底枠体と、該底枠体の上部に固定された倒伏三角柱状の支持枠体と、該底枠体と該支持枠体の頂部の間に立設された測温端子支持梁からなり、該測温端子支持梁には、過熱使用限度が1300℃以上である熱電対で構成した複数の測温プローブが、その端部側が高さ方向に取り付けられた状態で支持されており、且つ該測温プローブの先端から補償導線に接続されるまでの長さは、焼結機全長の0.7〜1.0倍であることを特徴とする焼結原料層の測温構造体。 A bottom frame body in which the vertical and horizontal frame members are arranged in a lattice shape, and a supporting triangular prism-shaped support frame fixed to the top of the bottom frame body body and, Ri Do from the temperature measuring terminal support beams erected between the top portion of the bottom frame and the support frame, the surveying warm terminals supporting beam, thermocouple overheating allowable limit is 1300 ° C. or higher A plurality of temperature measuring probes constituted by the above are supported in a state where the end portions are attached in the height direction, and the length from the tip of the temperature measuring probe to the connection to the compensating lead wire is sintered. A temperature measuring structure of a sintering raw material layer, which is 0.7 to 1.0 times the total length of the machine .
JP2006095075A 2006-03-30 2006-03-30 Temperature measuring method and temperature measuring structure of sintered raw material layer Expired - Fee Related JP4764225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095075A JP4764225B2 (en) 2006-03-30 2006-03-30 Temperature measuring method and temperature measuring structure of sintered raw material layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095075A JP4764225B2 (en) 2006-03-30 2006-03-30 Temperature measuring method and temperature measuring structure of sintered raw material layer

Publications (2)

Publication Number Publication Date
JP2007271355A JP2007271355A (en) 2007-10-18
JP4764225B2 true JP4764225B2 (en) 2011-08-31

Family

ID=38674318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095075A Expired - Fee Related JP4764225B2 (en) 2006-03-30 2006-03-30 Temperature measuring method and temperature measuring structure of sintered raw material layer

Country Status (1)

Country Link
JP (1) JP4764225B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411061A (en) * 2010-09-21 2012-04-11 鞍钢股份有限公司 Method and apparatus for detecting vertical sintering speed
CN102023060A (en) * 2010-10-22 2011-04-20 首钢总公司 Device and method for testing ignition temperature field of sinter bed
CN107388841B (en) * 2017-08-02 2019-03-05 郑州登电科诚新材料有限公司 A kind of temperature on-line detection device
CN107870613A (en) * 2017-11-07 2018-04-03 中国能源建设集团安徽省电力设计院有限公司 A kind of circular coal yard with self-ignition of coal pile preventing and treating function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016619Y1 (en) * 1970-05-30 1975-05-23
JPH10332276A (en) * 1997-05-30 1998-12-15 Nippon Steel Corp Temperature measuring device for raw material filling bed in sintering machine, control device and method for controlling raw material filling layer
JP2000136969A (en) * 1998-11-02 2000-05-16 Kobe Steel Ltd Method for measuring temperature of mobile type filling layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016619Y1 (en) * 1970-05-30 1975-05-23
JPH10332276A (en) * 1997-05-30 1998-12-15 Nippon Steel Corp Temperature measuring device for raw material filling bed in sintering machine, control device and method for controlling raw material filling layer
JP2000136969A (en) * 1998-11-02 2000-05-16 Kobe Steel Ltd Method for measuring temperature of mobile type filling layer

Also Published As

Publication number Publication date
JP2007271355A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4764225B2 (en) Temperature measuring method and temperature measuring structure of sintered raw material layer
US10520254B2 (en) Electric induction furnace lining wear detection system
JP5298634B2 (en) Quality control method for sintered ore
JP4677785B2 (en) Sinter ore manufacturing apparatus and method
JP6447614B2 (en) Raw material charging method to blast furnace
JP2013129895A (en) Sintering machine and method of supplying gas fuel
JP2012072432A (en) Method for measuring firing-condition in sintering machine and method for manufacturing sintered ore
JP4383313B2 (en) Method and apparatus for measuring surface shape of blast furnace interior
JP5843063B2 (en) Sintering machine and gaseous fuel supply method
JP5862872B2 (en) Sintering machine and gaseous fuel supply method
CN102840926A (en) Interior temperature measuring equipment for material bed of belt-type sinterer
JP5826734B2 (en) Sintering simulator
JP5892316B2 (en) Sintering machine and gaseous fuel supply method
JP5733236B2 (en) Sampling method and sampling apparatus for blast furnace charge
JP6107461B2 (en) Sintering raw material sintering method
JP2014055328A (en) Measurement method for air flow rate in sintering machine and production method for sintered ore
JP2013019560A (en) Sintered layer temperature measuring probe
KR20150016635A (en) Method for producing sinter
CN104729741A (en) Temperature measuring device for automatic sintering control
JP2020147824A (en) Reactor for simulating blast furnace cohesive zone
US10598439B2 (en) Electric induction furnace lining wear detection system
CN107314678A (en) A kind of method for measuring sintering machine temperature matrices
JP7555193B2 (en) Heat treatment device for carbonaceous particles and method for assembling same
JP5381955B2 (en) In-furnace condition detector for blast furnace
JP2012001758A (en) Method of charging sintering raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees