JP4761496B2 - Composite structure and manufacturing method thereof - Google Patents

Composite structure and manufacturing method thereof Download PDF

Info

Publication number
JP4761496B2
JP4761496B2 JP2002048610A JP2002048610A JP4761496B2 JP 4761496 B2 JP4761496 B2 JP 4761496B2 JP 2002048610 A JP2002048610 A JP 2002048610A JP 2002048610 A JP2002048610 A JP 2002048610A JP 4761496 B2 JP4761496 B2 JP 4761496B2
Authority
JP
Japan
Prior art keywords
phase
composition
melting point
glass
phase separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002048610A
Other languages
Japanese (ja)
Other versions
JP2003246647A (en
Inventor
智康 一木
浩一 林
信 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002048610A priority Critical patent/JP4761496B2/en
Publication of JP2003246647A publication Critical patent/JP2003246647A/en
Application granted granted Critical
Publication of JP4761496B2 publication Critical patent/JP4761496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基材表面に2層構造を有しかつその最表層が薄膜からなる複合構造体およびその製造方法に関する。
【0002】
【従来の技術】
今日各種基材への薄膜コーティング技術は、より材料の機能性を上げるために幅広い分野で用いられている。目的を機能別に分けると、化学耐久性を高めるため、あるいは機械的な強度を上げるための保護膜があり、また反射防止や着色などの光学的機能膜、導電性や強誘電性の電磁気機能コーティング膜として、あるいは金属触媒などを担持した触媒担体膜として応用があげられ、非常に多岐に渡っている。しかも、より機能的な材料を得るために膜厚への要求もより薄いものへとなっており、ナノメートルオーダーの薄膜作成技術が重要視されている。
このような薄膜の作製方法としては一般的に、薄膜化の要求に伴い物理的蒸着法や化学的気相成長法などの気相法、ゾルゲル法などの手法が現在多く用いられてきている。
【0003】
【発明が解決しようとする課題】
ただし、気相法では高価な設備が必要なことや、形状が限定され複雑形状などの対応が課題であり、ゾルゲル法においては多成分系の際にゾルの調整条件が厳しくなるなどの問題点がある。
このように、どの手法においても長所短所をもつため、ニーズが多様化している薄膜コーティング技術において新しい手法の探求は急務である。
また、今回対象としている基材表面に機能の異なる2層構造を有する被覆構造物を作製する場合においては、被膜工程を2回取らざるを得ず、その2回の被膜工程もその各々の厚みや材質によっては異なるコーティング技術を用いる必要がある。
本発明は、上記事情を鑑みて開発されたものであり、分相ガラスを用いた1度の被膜工程により基材表面に2層構造を有しかつその最表層が薄膜からなる複合構造体およびその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明では、分相組織を有するガラス構造物を耐熱性基材表面に適用する工程と、前記分相組織を形成する2つの相のうちの融点が低い方の相の融点より高くかつ前記基材の耐熱温度よりも低い温度で焼成する工程と、を具備することを特徴とする最表層が薄膜からなる複合構造体の製造方法を提供する。
本発明の好ましい態様においては、分相組織を有するガラス構造物を所定の粒径に粉砕しガラス粉体を作製する工程と、前記ガラス粉体を耐熱性基材表面に適用する工程と、前記分相組織を形成する2つの相のうちの融点が低い方の相の融点より高くかつ前記基材の耐熱温度よりも低い温度で焼成する工程と、を具備することを特徴とする最表層が薄膜からなる複合構造体の製造方法である。
【0005】
ここで分相組織を有するガラスとは特定の組成領域内において、高温で均質な状態にある融液が液相線以下の温度まで過冷却された際、準安定不混和領域において熱力学的要求に応じて2つの相に分かれて生じた組織である。
【0006】
本発明では、組成Xが不混和領域内で組成Aと組成Bに分かれた分相組織を有するガラスにおいて再度昇温した。その結果、請求項5に記載の製造方法にて作製される複合構造体であって、基材表面に、前記分相組織のうちの融点が低い方の相の組成の非晶質体と前記分相組織のうちの融点が高い方の相の組成の結晶質体若しくは非晶質体との混合物からなる下層部が形成されており、さらにその上に前記分相組織のうちの融点が低い方の相の組成の非晶質体からなる上層部が形成されていることを特徴とする複合構造体を作製できることを見出した。
【0007】
以下にそのメカニズムを説明する。組成Xが不混和領域内で組成Aと組成Bに分かれた分相ガラスにおいて、組成Aの結晶化温度をTx(A)、融点をTm(A)、組成Bの結晶化温度をTx(B)、融点をTm(B)とし、組成Aが組成Bより低融点としたとき、一般的にTx(A)<Tx(B)<Tm(A)<Tm(B)という関係となる。このとき、この分相ガラスはTm(A)以下の温度では組成A、Bともに固相、Tm(A)とTm(B)の間の温度では組成Aは液相、組成Bは固相の固液共存相、Tm(B)以上では組成A,Bともに液相の状態になることがわかる。
今、目的の形状にて作製された分相ガラス粉末を基材表面に適用し得られた被膜物を昇温してTm(A)以上になったとき、その分相ガラス粉末層中の組成Aは固相から液相となり一方組成Bは固相のままである。この状態において液相が適度な粘性が得られかつ移動に十分な時間が得られたとき、被覆物の表面エネルギーを小さくする作用により組成Aからなる液相が表面に移動する。これが表面に広がることで層を形成し、適した冷却速度を与えることで最表面に組成Aからなる非晶質層を持つ被覆構造物を得ることができる。Tm(B)以上に昇温した場合では、分相ガラス体内は組成A、組成Bともに液相となるが、その融液の粘性差により同様に組成Aからなる層を上層として形成することができる。
【0008】
このとき得られる層の厚みは表面に移動する液相量に依存し、それは各分相ガラスの組成に対して焼成条件(温度、時間)、分相ガラスの分相形状、大きさなどにより制御できる。
またこのとき得られる被覆構造物の下層は、取り残された組成Aからなる液相と、移動が起こらない組成Bからなる固相もしくは液相の混合体から形成され、結果として表面に形成される層と同じ組成Aからなる非晶物もしく結晶物と組成Bからなる非晶物もしく結晶物の混合体となる。
【0009】
この手法は、特殊な装置を必要とせず一般的な焼成工程において層の形成をするもので、分相ガラスの分相の大きさ、また焼成条件を制御することにより、上層の厚みを広い範囲で得ることが可能である。また、材料の自発的な機能による膜形成であるため、上層と下層の界面の接合性も高く、剥離等の問題は極めて起こりにくい。
【0010】
本発明では、請求項5又は6に記載の製造方法にて作製される最表層が薄膜からなる複合構造体であって、基材表面に、前記分相組織のうちの融点が低い方の相の組成の非晶質体と前記分相組織のうちの融点が高い方の相の組成の結晶質体若しくは非晶質体との混合物からなる下層部が形成されており、さらにその上に前記分相組織のうちの融点が低い方の相の組成の非晶質体からなる上層部が最表面として形成されていることを特徴とする最表層が薄膜からなる複合構造体を提供する。本作製方法によると、上層の組成は前述した理由から、分相の2つの相のうち融点が低い方の相の組成となる。分相ガラスからなる構造物をTm(A)以上の温度で上層を形成した後、冷却速度を制御することでその形成された上層を結晶質にしたり非晶質にしたりと制御することが可能であるが、均一な厚みの層を形成することができる点や、用途の一つとして期待される防汚部材として作製する際にはその表面に平滑性が期待されるため、非晶質で作製することが好ましい。下層は、分相の2つの相のうち融点が低い方の相の組成からなる非晶質体と、融点が高い方の相の組成からなる非晶質もしくは結晶質の混合体、もしくは融点が高い方の相の組成からなる均一な非晶質体もしくは結晶質体からなるようにする。前述の通り、上層と同じ組成Aからなる非晶物もしくは結晶物と組成Bからなる非晶物もしく結晶物の混合体、および組成Bからなる非晶体もしく結晶体から構成することができるが、このように上層とは違う構成の構造体から下層を形成することで、表面に要求される機能とは違う、例えば機械的強度の向上、着色、異なる光学屈折率の付与などの機能を与えることができる。
【0011】
本発明の好ましい態様においては、前記上層部の厚みが10ナノメートル以下であるようにする。
こうすることで、この薄膜からなる機能層はその全エネルギーに対する表面エネルギーの割合が多くなるため、各用途において更なる機能性の向上が期待される。
【0012】
本発明の好ましい態様においては、分相組織を有するガラス構造物において、その分相組織のうち融点が低い方の相が球形粒子となる独立液滴構造をもち、かつその球形粒子の直径が100ナノメートル以下であるようにする。
形粒子となる独立液滴構造をもち、かつその球形粒子の直径が100ナノメートル以下であるようにする。
形成する膜を10ナノメートル以下にするためには、使用する分相ガラスの分相の大きさを適切な形状、大きさにする必要がある。一般的に分相の形状形態は絡み合い構造(スピノーダル)と独立液滴構造(バイノーダル)のいずれかを取るが、この薄膜作製法においては、独立液滴構造のほうが膜厚の制御がおこないやすい。絡み合い構造の場合、表面に移動し広がって膜を形成する液相量を予測しにくい。また、独立液滴構造においても球状形状をもつガラスが融点の高い方のガラスの場合も同様に表面に移動し広がって膜を形成する液相量を予測しにくく、膜厚が大きくなる傾向にある。さらに、その球状粒子の直径100ナノメートル以上になると表面に移動し広がる液相量が多くなりすぎて、膜厚が10ナノメートル以上になる。
【0013】
本発明の好ましい態様においては、分相組織のうちの融点が低い方の相の組成にNa、K、Liなどの1価のアルカリ金属を含むようにする。
こうすることで、作製される薄膜ガラス構造体を防汚部材として活用する際にその表面に存在するNa、K、Liなどの1価のアルカリ金属による効果により、自浄作用を与えることができる。
【発明の実施の形態】
【0014】
本発明の一実施態様においては、例えば図1に示すように、上層に10ナノメートル以下の非晶質層を有し、かつ下層に前記非晶質層と同じ組成の非晶質体と異なる組成の非晶質体もしくは結晶質体の混合体を有する機能性材料である。
【0015】
図1の実施態様の最表層が薄膜からなる複合構造体を製造する一つの方法は、例えば、目的とする分相ガラスの原料を均一に混合したものを溶解し、耐熱性基材の上に一様に流し出し、冷却速度を制御することにより、分相組織のうちの融点が低い方の相が球形粒子となる独立液滴構造をもち、かつその球形粒子の直径が100ナノメートル以下である分相組織を有するガラスを作製する。その後、この分相の2つの相のうち融点が低い方の相の融点より高い温度でこの被膜物を焼成する。
【0016】
図1の実施態様の最表層が薄膜からなる複合構造体を製造する他の方法は、例えば、目的とする分相ガラスの原料を均一に混合したものを溶解し、目的の大きさの分相が生成する冷却速度で冷却することで、分相の2つの相のうち融点が低い方の相が球形粒子となる独立液滴構造をもち、かつその球形粒子の大きさが100ナノメートル以下である分相ガラスを作製する。このガラスを粉砕し対象とする耐熱性基材の上にスプレーコーティング法などで被膜物を得る。その後、この分相の2つの相のうち融点が低い方の相の融点より高い温度でこの被膜物を焼成する。
【0017】
分相を形成させる他の方法として、ガラス原料を溶解し均一化した後、対象とする構造物の形状にて急冷し、再度液相線以下の温度にて熱処理する工程を用いてもよい。
また、目的とする分相の大きさ、不混和領域での冷却速度を変えるもしくは液相線以下での熱処理時間を制御することで得ることができる。
【実施例】
【0018】
【表1】
表1の組成からなるガラス原料を、電気炉を用いて1300〜1500℃にて溶融し、水中で急冷してガラスフリットを得た。これをスタンプミルにより粉砕し、得られた粉末2kgと水1.2kg及び球石4kgを容積6リットルの陶器製ポット中に入れ、ボールミルにより約36時間粉砕した。レーザー回折式粒度分布計を用いて、粉砕後に得られたスラリーの粒径を測定したところ、10μm以下が68%、50%粒径が6.0μmであった。次に、ケイ砂、長石、粘土等を原料として調製した衛生陶器素地泥漿を用いて、70×150mmの板状試験片を作製した。この板状試験片上に前記スラリーを厚みが0.5mmになるようスプレーコーティングした後、電気炉にて約1時間あたり200℃で1200℃まで昇温し、1200℃で1時間熱処理を行い、1時間あたり200℃で冷却することにより試料を得た。ここで得られた試料のコーティング層の断面を走査型透過電子顕微鏡(STEM:日立製作所、HD2000)にてその表面近傍の観察をおこなった。観察結果を図2に示す。コーティング層の表面に約2ナノメートルの層が形成されていることが確認できた。
【0019】
【発明の効果】
本発明によれば、1度の被膜工程により基材表面に2層構造を有しかつその最表層が薄膜からなる複合構造体を得ることができる。
【図面の簡単な説明】
【図1】 本発明の一実施の態様を示す図である。
【図2】 本発明の実施例において作製された試料のSTEM写真である。
【符合の説明】
1…上層部
2…下層部
3…基材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite structure having a two-layer structure on the surface of a substrate and having an outermost layer formed of a thin film, and a method for producing the same.
[0002]
[Prior art]
Today, thin film coating technology for various substrates is used in a wide range of fields in order to increase the functionality of materials. If the purpose is divided into functions, there are protective films to increase chemical durability or mechanical strength, optical functional films such as anti-reflection and coloring, conductive and ferroelectric electromagnetic functional coatings It can be applied as a membrane or as a catalyst carrier membrane carrying a metal catalyst or the like, and it is very diverse. In addition, in order to obtain a more functional material, the demand for the film thickness has become thinner, and the nanometer order thin film production technique is regarded as important.
In general, as a method for producing such a thin film, a method such as a physical vapor deposition method, a chemical vapor deposition method such as a chemical vapor deposition method, or a sol-gel method is currently widely used in accordance with the demand for thinning.
[0003]
[Problems to be solved by the invention]
However, the vapor phase method requires expensive equipment, the shape is limited and there is a problem of dealing with complicated shapes, etc., and the sol-gel method has problems such as strict adjustment conditions for sol when using a multi-component system. There is.
As described above, since all methods have advantages and disadvantages, it is urgent to search for a new method in the thin film coating technology whose needs are diversified.
In addition, in the case of producing a coating structure having a two-layer structure with different functions on the surface of the base material targeted this time, the coating process must be performed twice, and the two coating processes also have their respective thicknesses. Depending on the material, it may be necessary to use different coating techniques.
The present invention has been developed in view of the above circumstances, and has a two-layer structure on the surface of a substrate by a single coating process using phase-separated glass, and a composite structure whose outermost layer is a thin film, and It aims at providing the manufacturing method.
[0004]
[Means for Solving the Problems]
In the present invention, a step of applying a glass structure having a phase-separated structure to the surface of the heat-resistant substrate, and a melting point higher than the melting point of the lower phase of the two phases forming the phase-separated structure and the group And a step of firing at a temperature lower than the heat resistant temperature of the material. A method for producing a composite structure in which the outermost layer is a thin film is provided.
In a preferred embodiment of the present invention, a step of pulverizing a glass structure having a phase-separated structure into a predetermined particle size to produce a glass powder, a step of applying the glass powder to a heat resistant substrate surface, A step of firing at a temperature higher than the melting point of the lower phase of the two phases forming the phase-separated structure and lower than the heat resistant temperature of the base material, and an outermost layer characterized by comprising: It is a manufacturing method of the composite structure which consists of a thin film.
[0005]
Glass having a phase-separated structure is a thermodynamic requirement in a metastable immiscible region when a melt in a homogeneous state at high temperature is supercooled to a temperature below the liquidus in a specific composition region. Depending on the structure of the two phases.
[0006]
In the present invention, the temperature is increased again in the glass having a phase separation structure in which the composition X is divided into the composition A and the composition B in the immiscible region. As a result, the composite structure produced by the manufacturing method according to claim 5 , wherein an amorphous body having a composition of a phase having a lower melting point of the phase-separated structure is formed on the surface of the substrate. A lower layer composed of a mixture of a crystalline material or an amorphous material having a composition having a higher melting point in the phase separation structure is formed, and a melting point of the phase separation structure is further lower It has been found that a composite structure characterized in that an upper layer portion made of an amorphous material having a composition of the other phase is formed.
[0007]
The mechanism will be described below. In a phase-separated glass in which composition X is separated into composition A and composition B in an immiscible region, the crystallization temperature of composition A is Tx (A), the melting point is Tm (A), and the crystallization temperature of composition B is Tx (B ) When the melting point is Tm (B) and the composition A is lower than the composition B, the relationship is generally Tx (A) <Tx (B) <Tm (A) <Tm (B). At this time, the phase-separated glass has a solid phase at a temperature below Tm (A), both of the compositions A and B, a composition A is a liquid phase, and a composition B is a solid phase It can be seen that in the solid-liquid coexistence phase, Tm (B) or higher, both compositions A and B are in the liquid phase.
Now, when the temperature of the coating obtained by applying the phase-separated glass powder produced in the desired shape to the surface of the substrate is increased to Tm (A) or higher, the composition in the phase-separated glass powder layer A goes from the solid phase to the liquid phase, while composition B remains in the solid phase. In this state, when the liquid phase has an appropriate viscosity and sufficient time for movement is obtained, the liquid phase composed of the composition A moves to the surface by the action of reducing the surface energy of the coating. By spreading this on the surface, a layer is formed, and a coating structure having an amorphous layer made of composition A on the outermost surface can be obtained by applying an appropriate cooling rate. When the temperature is raised to Tm (B) or higher, both the composition A and the composition B are in the liquid phase in the phase-divided glass body, but the layer composed of the composition A can be formed as an upper layer due to the viscosity difference of the melt. it can.
[0008]
The thickness of the layer obtained at this time depends on the amount of liquid phase transferred to the surface, which is controlled by the firing conditions (temperature, time), the phase separation shape and size of the phase separation glass, etc., for the composition of each phase separation glass. it can.
In addition, the lower layer of the coating structure obtained at this time is formed from a liquid phase composed of the remaining composition A and a solid phase or liquid phase mixture composed of the composition B in which no migration occurs, and as a result, formed on the surface. A mixture of an amorphous material or a crystal material having the same composition A as the layer and an amorphous material or a crystal material having the composition B is obtained.
[0009]
This method does not require special equipment and forms a layer in a general firing process. By controlling the size of the phase separation of the phase-separated glass and firing conditions, the thickness of the upper layer is wide. It is possible to obtain in In addition, since the film is formed by the spontaneous function of the material, the bonding property at the interface between the upper layer and the lower layer is high, and problems such as peeling hardly occur.
[0010]
In the present invention, the outermost layer produced by the manufacturing method according to claim 5 or 6 is a composite structure comprising a thin film, and a phase having a lower melting point of the phase-separated structure is formed on the substrate surface. A lower layer portion formed of a mixture of an amorphous body having the composition of the above and a crystalline body or an amorphous body having a composition having a higher melting point in the phase-separated structure is formed, and further on the lower portion Provided is a composite structure in which an outermost layer is formed of a thin film, and an upper layer portion made of an amorphous material having a composition having a lower melting point in a phase-separated structure is formed as an outermost surface. According to the present manufacturing method, the composition of the upper layer is the composition of the phase having the lower melting point of the two phase separation phases for the reason described above. After forming an upper layer of a structure made of phase-separated glass at a temperature of Tm (A) or higher, it is possible to control the formed upper layer to be crystalline or amorphous by controlling the cooling rate. However, it is possible to form a layer with a uniform thickness, and when producing as an antifouling member, which is expected as one of the applications, the surface is expected to be smooth, so that it is amorphous. It is preferable to produce it. The lower layer is composed of an amorphous material composed of the composition of the lower melting point of the two phases, an amorphous or crystalline mixture composed of the composition of the higher melting point, or a melting point of It is made to consist of a uniform amorphous body or crystalline body which consists of a composition of a higher phase. As described above, it can be composed of an amorphous material composed of the same composition A as the upper layer, an amorphous material composed of a crystal and a composition B or a mixture of crystalline materials, and an amorphous material composed of the composition B or a crystalline material. However, by forming the lower layer from a structure having a structure different from that of the upper layer in this way, functions different from those required for the surface, such as improving mechanical strength, coloring, and imparting a different optical refractive index, etc. Can be given.
[0011]
In a preferred aspect of the present invention, the upper layer portion has a thickness of 10 nanometers or less.
By carrying out like this, since the ratio of the surface energy with respect to the total energy of the functional layer which consists of this thin film increases, the further improvement of functionality is anticipated in each use.
[0012]
In a preferred embodiment of the present invention, a glass structure having a phase-separated structure has an independent droplet structure in which a phase having a lower melting point in the phase-separated structure is a spherical particle, and the diameter of the spherical particle is 100. Try to be nanometer or less.
It has an independent droplet structure to be shaped particles, and the spherical particles have a diameter of 100 nanometers or less.
In order to make the film to be formed 10 nanometers or less, it is necessary to make the size of the phase separation of the phase separation glass to be used an appropriate shape and size. In general, the shape of the phase separation is either an entangled structure (spinodal) or an independent droplet structure (binodal). In this thin film manufacturing method, it is easier to control the film thickness in the independent droplet structure. In the case of the entangled structure, it is difficult to predict the amount of liquid phase that moves to the surface and spreads to form a film. Also, in the case of an independent droplet structure, when the glass having a spherical shape is a glass with a higher melting point, it is difficult to predict the amount of liquid phase that moves to the surface and spreads to form a film, and the film thickness tends to increase. is there. Furthermore, when the diameter of the spherical particles is 100 nanometers or more, the amount of the liquid phase that moves to the surface and spreads increases so that the film thickness becomes 10 nanometers or more.
[0013]
In a preferred embodiment of the present invention, the composition of the phase having the lower melting point in the phase-separated structure contains a monovalent alkali metal such as Na, K, Li or the like.
By carrying out like this, when utilizing the produced thin film glass structure as an antifouling member, a self-cleaning action can be given by the effect by monovalent alkali metals, such as Na, K, and Li, which exist on the surface.
DETAILED DESCRIPTION OF THE INVENTION
[0014]
In one embodiment of the present invention, for example, as shown in FIG. 1, the upper layer has an amorphous layer of 10 nanometers or less, and the lower layer is different from an amorphous body having the same composition as the amorphous layer. It is a functional material having an amorphous or crystalline mixture of composition.
[0015]
One method for producing a composite structure in which the outermost layer of the embodiment of FIG. 1 is a thin film is, for example, by dissolving a homogeneously mixed raw material of phase-separated glass and placing it on a heat-resistant substrate. By flowing out uniformly and controlling the cooling rate, the phase having the lower melting point of the phase-separated structure has an independent droplet structure in which spherical particles are formed, and the diameter of the spherical particles is 100 nanometers or less. A glass having a certain phase separation structure is produced. Thereafter, the coating is fired at a temperature higher than the melting point of the lower phase of the two phases.
[0016]
Another method for producing a composite structure in which the outermost layer of the embodiment of FIG. 1 is a thin film is, for example, by dissolving a homogeneously mixed raw material of phase-separated glass to obtain a phase-separated phase of a desired size. By cooling at a cooling rate generated by the above, it has an independent droplet structure in which the phase with the lower melting point of the two phases is a spherical particle, and the size of the spherical particle is 100 nanometers or less. A phase-separated glass is produced. The glass is crushed and a coating is obtained on the target heat-resistant substrate by a spray coating method or the like. Thereafter, the coating is fired at a temperature higher than the melting point of the lower phase of the two phases.
[0017]
As another method for forming the phase separation, a step of melting and homogenizing the glass raw material, quenching in the shape of the target structure, and heat-treating again at a temperature below the liquidus line may be used.
It can also be obtained by changing the size of the target phase separation, the cooling rate in the immiscible region, or controlling the heat treatment time below the liquidus.
【Example】
[0018]
[Table 1]
A glass material having the composition shown in Table 1 was melted at 1300 to 1500 ° C. using an electric furnace and quenched in water to obtain a glass frit. This was pulverized by a stamp mill, and 2 kg of the obtained powder, 1.2 kg of water and 4 kg of cobblestone were placed in a 6 liter earthenware pot and pulverized by a ball mill for about 36 hours. When the particle size of the slurry obtained after pulverization was measured using a laser diffraction particle size distribution analyzer, the particle size was 10% or less, 68%, and the 50% particle size was 6.0 μm. Next, a plate test piece of 70 × 150 mm was prepared using sanitary ware body slurry prepared using silica sand, feldspar, clay and the like as raw materials. After spray coating the slurry on the plate-like specimen to a thickness of 0.5 mm, the temperature was raised to 1200 ° C. at 200 ° C. per hour in an electric furnace, and heat treatment was performed at 1200 ° C. for 1 hour. Samples were obtained by cooling at 200 ° C. per hour. The surface of the coating layer of the sample obtained here was observed in the vicinity of the surface with a scanning transmission electron microscope ( STEM: Hitachi, HD2000). The observation results are shown in FIG . It was confirmed that a layer of about 2 nanometers was formed on the surface of the coating layer.
[0019]
【The invention's effect】
According to the present invention, it is possible to obtain a composite structure having a two-layer structure on the surface of a substrate and having an outermost layer formed of a thin film by a single coating step.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a STEM photograph of a sample manufactured in an example of the present invention.
[Explanation of sign]
1 ... Upper part
2 ... Lower layer
3. Base material

Claims (7)

耐熱性基材表面に、分相組織を有するガラス構造物のうちの融点が低い方の相の組成の非晶質体と前記分相組織のうちの融点が高い方の相の組成の結晶質体若しくは非晶質体との混合物からなる下層部が形成されており、さらにその上に前記分相組織のうちの融点が低い方の相の組成の非晶質体からなる上層部が最表面として形成され、前記上層部の厚みが10ナノメートル以下であることを特徴とする複合構造体。  On the surface of the heat-resistant substrate, an amorphous body having a composition with a lower melting point in the glass structure having a phase separation structure and a crystalline material having a composition with a higher melting point in the phase separation structure. A lower layer portion made of a mixture with a solid body or an amorphous body is formed, and an upper layer portion made of an amorphous body having a composition having a lower melting point in the phase separation structure is formed on the uppermost surface. And a thickness of the upper layer portion is 10 nanometers or less. 前記分相組織のうちの融点が低い方の相の組成にNa、K、Liなどの1価のアルカリ金属を含むことを特徴とする請求項1に記載の複合構造体。  2. The composite structure according to claim 1, wherein a monovalent alkali metal such as Na, K, or Li is included in a composition of a phase having a lower melting point in the phase separation structure. 前記耐熱性基材が衛生陶器用素地であり、前記分相組織を有するガラス構造物が衛生陶器用釉薬であることを特徴とする請求項1又は2に記載の複合構造体。  The composite structure according to claim 1 or 2, wherein the heat-resistant substrate is a sanitary ware base, and the glass structure having the phase separation structure is a sanitary ware glaze. 前記分相組織を有するガラス構造物が、SiO 55〜80重量%、Al 5〜13重量%、Fe 0.1〜0.4重量%、MgO 0.8〜4.0重量%、CaO 8〜17重量%、ZnO 3〜10重量%、KO 1〜4重量%、NaO 0.5〜2.5重量%の組成からなることを特徴とする請求項1乃至3のいずれか一項に記載の複合構造体。The glass structure having the phase separation structure is SiO 2 55-80 wt%, Al 2 O 3 5-13 wt%, Fe 2 O 3 0.1-0.4 wt%, MgO 0.8-4. 0 wt%, CaO 8 to 17 wt%, ZnO 3 to 10 wt%, K 2 O 1 to 4 wt%, claims, characterized in that it consists of Na 2 O 0.5 to 2.5% by weight of the composition The composite structure according to any one of 1 to 3. 請求項1乃至4のいずれか一項に記載の複合構造体を得るための製造方法であって、分相組織を有するガラス構造物を耐熱性基材表面に適用する工程と、前記分相組織を形成する2つの相のうちの融点が低い方の相の融点より高くかつ前記基材の耐熱温度よりも低い温度で焼成する工程と、を具備することを特徴とする複合構造体の製造方法。 It is a manufacturing method for obtaining the composite structure as described in any one of Claims 1 thru | or 4, Comprising: The process of applying the glass structure which has a phase-separated structure to the heat-resistant base material surface, The said phase-separated structure And a step of firing at a temperature higher than the melting point of the lower phase of the two phases forming the base material and lower than the heat resistant temperature of the base material. . 請求項1乃至4のいずれか一項に記載の複合構造体を得るための製造方法であって、分相組織を有するガラス構造物を所定の粒径に粉砕しガラス粉体を作製する工程と、前記ガラス粉体を耐熱性基材表面に適用する工程と、前記分相組織を形成する2つの相のうちの融点が低い方の相の融点より高くかつ前記基材の耐熱温度よりも低い温度で焼成する工程と、を具備することを特徴とする複合構造体の製造方法。 A manufacturing method for obtaining the composite structure according to any one of claims 1 to 4, wherein a glass structure having a phase-separated structure is pulverized into a predetermined particle size to produce a glass powder; The step of applying the glass powder to the surface of the heat resistant substrate and the melting point of the lower phase of the two phases forming the phase separation structure are higher than the melting point of the lower phase and lower than the heat resistant temperature of the substrate. And a step of firing at a temperature. 前記ガラス構造物を耐熱性基材表面に適用する工程を一度だけで行うことを特徴とする請求項5又は請求項6に記載の複合構造体の製造方法。  The method for producing a composite structure according to claim 5 or 6, wherein the step of applying the glass structure to the surface of the heat-resistant substrate is performed only once.
JP2002048610A 2002-02-25 2002-02-25 Composite structure and manufacturing method thereof Expired - Fee Related JP4761496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048610A JP4761496B2 (en) 2002-02-25 2002-02-25 Composite structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048610A JP4761496B2 (en) 2002-02-25 2002-02-25 Composite structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003246647A JP2003246647A (en) 2003-09-02
JP4761496B2 true JP4761496B2 (en) 2011-08-31

Family

ID=28661362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048610A Expired - Fee Related JP4761496B2 (en) 2002-02-25 2002-02-25 Composite structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4761496B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099531B2 (en) 2010-09-29 2012-12-19 Toto株式会社 Sanitary ware having a glaze layer with excellent surface hiding
JP6197445B2 (en) * 2013-07-29 2017-09-20 Toto株式会社 Enamel article and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003246647A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP3177915B2 (en) Articles and methods having a support with a surface barrier layer
KR100509892B1 (en) Transparent beads and their production method
Pinckney et al. Microstructural evolution in some silicate glass–ceramics: a review
Rasteiro et al. Crystalline phase characterization of glass-ceramic glazes
JP5365975B2 (en) Crystallized glass article and method for producing the same
CN109809696A (en) A kind of magnalium silicon spinel devitrified glass
GB2266299A (en) Coated metal article
Wang et al. Effect of alkali metal Oxides on viscosity and crystallization of the MgO–Al2O3–SiO2 glasses
Sun et al. Crystallization behavior and thermal properties of B2O3–containing MgO-Al2O3-SiO2-Li2O glass-ceramic and its wettability on Si3N4 ceramic
Rincón et al. Some aspects of crystallization microstructure on new glass-ceramic glazes
JP4761496B2 (en) Composite structure and manufacturing method thereof
CN102167512B (en) Silicon carbide-doped glass-ceramic coating for titanium alloy
Weaver et al. The role of bulk nucleation in the formation of crystalline cordierite coatings produced by air plasma spraying
CN111471332B (en) Magnetic microcrystalline glass coating and preparation method thereof
Hong et al. Microstructure and properties of CaO–ZrO2–SiO2 glass–ceramics prepared by sintering
IT9019642A1 (en) CERAMIZABLE GLASS COMPOSITION WITH HIGH CRYSTALLIZATION SPEED FOR THE COATING OF CERAMIC PIECES, IN PARTICULAR TILES
JP2003246010A (en) Composite structure and manufacturing method therefor
Kracker et al. Silver-enhanced nucleation and morphology control of surface crystallized Ba0. 5Sr0. 5Zn2Si2O7 from 8 BaO· 8 SrO· 34 ZnO· 50 SiO2 glass
JP2918264B2 (en) Coated metal products
JP2003246646A (en) Thin film glass structure and method for preparing the same
JPH11292616A (en) Composite glass ceramic and its production
Mihailova et al. Phase characterization of glass-ceramics with high iron oxide concentrations
CN1244934C (en) Insulation material for heating wire, method for making same and use thereof
JP7406750B2 (en) How porous deposits are formed
Mukherjee et al. Traditional and modern uses of ceramics, glass and refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080715

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

LAPS Cancellation because of no payment of annual fees