JP2003246646A - Thin film glass structure and method for preparing the same - Google Patents

Thin film glass structure and method for preparing the same

Info

Publication number
JP2003246646A
JP2003246646A JP2002048612A JP2002048612A JP2003246646A JP 2003246646 A JP2003246646 A JP 2003246646A JP 2002048612 A JP2002048612 A JP 2002048612A JP 2002048612 A JP2002048612 A JP 2002048612A JP 2003246646 A JP2003246646 A JP 2003246646A
Authority
JP
Japan
Prior art keywords
phase
separated
melting point
thin film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002048612A
Other languages
Japanese (ja)
Inventor
Tomoyasu Ichiki
智康 一木
Koichi Hayashi
浩一 林
Makoto Hayakawa
信 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002048612A priority Critical patent/JP2003246646A/en
Publication of JP2003246646A publication Critical patent/JP2003246646A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a glass composite structure having a thin film less liable to be exfoliated by a simple step comprising only heat treatment. <P>SOLUTION: In the method for preparing a thin film glass structure, a glass structure having a separated-phase texture is fired at a temperature higher than the melting point of the lower melting point one of two phases forming the separated-phase texture. Preferably the glass structure having a separated- phase texture is previously comminuted and molded. By this method, an ultrathin film of ≤10 nm can be manufactured with ease. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜ガラス構造体
及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a thin film glass structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】今日各種基材への薄膜コーティング技術
は、より材料の機能性を上げるために幅広い分野で用い
られている。目的を機能別に分けると、化学耐久性を高
めるため、あるいは機械的な強度を上げるための保護膜
があり、また反射防止や着色などの光学的機能膜、導電
性や強誘電性の電磁気機能コーティング膜として、ある
いは金属触媒などを担持した触媒担体膜として応用があ
げられ、非常に多岐に渡っている。しかも、より機能的
な材料を得るために膜厚への要求もより薄いものへとな
っており、ナノメートルオーダーの薄膜作成技術が重要
視されている。このような薄膜の作製方法としては一般
的に、薄膜化の要求に伴い物理的蒸着法や化学的気相成
長法などの気相法、ゾルゲル法などの手法が現在多く用
いられてきている。
2. Description of the Related Art Today, thin film coating technology for various substrates is used in a wide range of fields in order to improve the functionality of materials. When the purpose is divided according to function, there is a protective film to enhance chemical durability or mechanical strength, an optical functional film such as antireflection and coloring, and a conductive or ferroelectric electromagnetic functional coating. It is widely applied as a membrane or as a catalyst carrier membrane carrying a metal catalyst or the like, and has a wide variety of applications. Moreover, in order to obtain a more functional material, the demand for the film thickness has become thinner, and the nanometer-order thin film forming technology is regarded as important. As a method for producing such a thin film, generally, a vapor deposition method such as a physical vapor deposition method or a chemical vapor deposition method, or a sol-gel method has been widely used at present due to the demand for thinning.

【0003】[0003]

【発明が解決しようとする課題】ただし、気相法では高
価な設備が必要なことや、形状が限定され複雑形状など
の対応が課題であり、ゾルゲル法においては多成分系の
際にゾルの調整条件が厳しくなるなどの問題点がある。
このように、どの手法においても長所短所をもつため、
ニーズが多様化している薄膜コーティング技術において
新しい手法の探求は急務である。本発明は、上記事情を
鑑みて開発されたものであり、熱処理のみの簡単な工程
により剥離しにくい薄膜を有するガラス複合構造体を得
ることを目的とする。
However, in the gas phase method, there are problems that expensive equipment is required and that the shape is limited and the complicated shape is dealt with. In the sol-gel method, the sol There are problems such as stricter adjustment conditions.
In this way, each method has advantages and disadvantages,
There is an urgent need to search for new methods in thin film coating technology, whose needs are diversifying. The present invention was developed in view of the above circumstances, and an object of the present invention is to obtain a glass composite structure having a thin film that is difficult to peel off by a simple process of only heat treatment.

【0004】[0004]

【課題を解決するための手段】本発明では、分相組織を
有するガラス構造物を、前記分相組織を形成する2つの
相のうちの融点が低い方の相の融点より高い温度で焼成
することを特徴とする薄膜ガラス構造体の製造方法を提
供する。
According to the present invention, a glass structure having a phase-separated structure is fired at a temperature higher than the melting point of one of the two phases forming the phase-separated structure having a lower melting point. A method for manufacturing a thin film glass structure is provided.

【0005】ここで、分相組織を有するガラスとは特定
の組成領域内において、高温で均質な状態にある融液が
液相線以下の温度まで過冷却された際、準安定不混和領
域において熱力学的要求に応じて2つの相に分かれて生
じる組織である。
Here, the glass having a phase-separated structure is in a metastable immiscible region when a melt in a homogeneous state at a high temperature is supercooled to a temperature below the liquidus line in a specific composition region. It is a tissue that separates into two phases according to thermodynamic requirements.

【0006】本発明では、組成Xが不混和領域内で組成
Aと組成Bに分かれた分相組織を有するガラスを再度昇
温した。その結果、母材に薄膜を有する構造体であっ
て、薄膜は前記分相組織のうち融点が低い方の相の組成
からなる非晶質体であり、母材は前記分相組織うちの融
点が低い方の相の組成からなる非晶質体と前記分相組織
うちの融点が高い方の相の組成からなる非晶質若しくは
結晶質の混合体からなることを特徴とする薄膜ガラス構
造体を作製できることを見出した。
In the present invention, the glass having a phase-separated structure in which the composition X is divided into the composition A and the composition B in the immiscible region is heated again. As a result, a structure having a thin film in the base material, the thin film is an amorphous body composed of the composition of the phase having a lower melting point of the phase-separated structure, the base material is the melting point of the phase-separated structure Thin-film glass structure characterized by comprising an amorphous body having a composition of a lower phase and an amorphous or crystalline mixture having a composition of a phase having a higher melting point in the phase-separated structure It was found that

【0007】以下に、そのメカニズムを説明する。組成
Aの結晶化温度をTx(A)、融点をTm(A)、組成
Bの結晶化温度をTx(B)、融点をTm(B)とし、
組成Aが組成Bより低融点としたとき、一般的にTx
(A)<Tx(B)<Tm(A)<Tm(B)という関
係となる。このとき、この分相ガラスはTm(A)以下
の温度では組成A、Bともに固相、Tm(A)とTm
(B)の間の温度では組成Aは液相、組成Bは固相の固
液共存相、Tm(B)以上では組成A,Bともに液相の
状態になる。今、目的の形状にて作製された分相ガラス
を昇温してTm(A)以上になったとき、組成Aは固相
から液相となり一方組成Bは固相のままである。この状
態において液相が適度な粘性が得られかつ移動に十分な
時間が得られたとき、分相ガラスの表面エネルギーを小
さくする作用から、組成Aからなる液相が表面に移動し
広がることで膜を形成し、表面に組成Aからなる膜構造
を持つ被膜構造物を得ることができる。Tm(B)以上
に昇温した場合では、分相ガラス体内は組成A、組成B
ともに液相となるが、その融液の粘性差により同様に組
成Aからなる層を表面に形成することができるのであ
る。
The mechanism will be described below. The crystallization temperature of the composition A is Tx (A), the melting point is Tm (A), the crystallization temperature of the composition B is Tx (B), the melting point is Tm (B),
When composition A has a lower melting point than composition B, Tx is generally
The relationship is (A) <Tx (B) <Tm (A) <Tm (B). At this time, this phase-separated glass has a solid phase in both compositions A and B at temperatures below Tm (A), Tm (A) and Tm.
At a temperature between (B), the composition A is in a liquid phase, the composition B is a solid-liquid coexisting phase, and above Tm (B), both the compositions A and B are in a liquid phase. Now, when the temperature of the phase-separated glass produced in the desired shape is raised to Tm (A) or higher, the composition A changes from the solid phase to the liquid phase, while the composition B remains the solid phase. In this state, when the liquid phase has an appropriate viscosity and a sufficient time for movement, the action of reducing the surface energy of the phase-separated glass causes the liquid phase of the composition A to move and spread on the surface. A film can be formed to obtain a film structure having a film structure of the composition A on the surface. When the temperature is raised above Tm (B), the composition A and the composition B are contained in the phase-separated glass body.
Both of them are in the liquid phase, but a layer composed of the composition A can be similarly formed on the surface due to the difference in the viscosity of the melt.

【0008】このとき得られる膜の厚みは表面に移動す
る液相量に依存し、それは各分相ガラスの組成に対して
焼成条件(温度、時間)、分相ガラスの分相形状、大き
さなどにより制御できる。またこのとき得られる被膜構
造物の母材は、取り残された組成Aからなる液相と、移
動が起こらない組成Bからなる固相もしくは液相の混合
体から形成され、結果として表面に形成される層と同じ
組成Aからなる非晶質体もしくは結晶質体と組成Bから
なる非晶物もしく結晶物の混合体となる。
The thickness of the film obtained at this time depends on the amount of the liquid phase moving to the surface, which depends on the composition of each phase-separated glass, the firing conditions (temperature, time), the phase-separated shape and size of the phase-separated glass. It can be controlled by Further, the base material of the coating structure obtained at this time is formed from a mixture of the liquid phase of the composition A that is left behind and the solid phase or the liquid phase of the composition B that does not move, and as a result, is formed on the surface. A mixture of an amorphous substance or a crystalline substance having the same composition A as the layer and an amorphous substance or a crystalline substance having the composition B.

【0009】この手法は、特殊な装置を必要とせず一般
的な焼成工程において膜の形成をするもので、分相ガラ
スの分相の大きさ、また焼成条件を制御することによ
り、幅広い膜厚を持つ被膜構造物を得ることが可能であ
る。また、材料の自発的な機能による膜形成であるた
め、膜と母材の界面の接合性も高く、膜の剥離等の問題
は極めて起こりにくい。
This method forms a film in a general firing process without requiring a special apparatus. By controlling the size of the phase separation of the phase-separated glass and the firing conditions, a wide range of film thickness can be obtained. It is possible to obtain a coating structure having Further, since the film is formed by the spontaneous function of the material, the bondability at the interface between the film and the base material is high, and problems such as peeling of the film are extremely unlikely to occur.

【0010】また本発明では、分相組織を有するガラス
構造物を粉砕して分相ガラス粉体を作製する工程と、前
記分相ガラス粉体を成形し分相ガラス粉体成形体を作製
する工程と、前記分相組織を形成する2つの相のうちの
融点が低い方の相の融点より高い温度で前記分相ガラス
粉末成形体を焼成する工程と、を含むことを特徴とする
薄膜ガラス構造体の製造方法を提供する。基本的な膜の
構成プロセスは同じであるが、この工程を用いること
で、より自由度のある形状の構造体を得ることができ、
かつ成形体内には分相ガラス粉体間に空間が存在するた
め、Tm(A)以上の温度でより積極的に液相の移動を
制御することができる。
Further, in the present invention, a step of pulverizing a glass structure having a phase-separated structure to prepare a phase-separated glass powder, and molding the phase-separated glass powder to prepare a phase-separated glass powder compact. A thin film glass, comprising: a step; and a step of firing the phase-separated glass powder compact at a temperature higher than a melting point of a phase having a lower melting point of the two phases forming the phase-separated structure. A method for manufacturing a structure is provided. Although the basic film forming process is the same, by using this step, a structure having a more flexible shape can be obtained,
Moreover, since there is a space between the phase-separated glass powders in the molded body, the movement of the liquid phase can be more positively controlled at a temperature of Tm (A) or higher.

【0011】本発明では、請求項1又は2に記載の製造
方法にて作製される母材に薄膜を有する構造体であっ
て、薄膜は前記分相組織のうち融点が低い方の相の組成
からなる非晶質体であり、母材は前記分相組織うちの融
点が低い方の相の組成からなる非晶質体と前記分相組織
うちの融点が高い方の相の組成からなる非晶質若しくは
結晶質の混合体からなることを特徴とする薄膜ガラス構
造体を提供する。本作製方法によると、膜の組成は前述
した理由から、分相の2つの相のうち融点が低い方の相
の組成となる。分相ガラスからなる構造物をTm(A)
以上の温度で膜を形成した後、冷却速度を制御すること
でその形成された膜を結晶質にしたり非晶質にしたりと
制御することが可能であるが、均一な厚みの層を形成す
ることができる点や、用途の一つとして期待される防汚
部材として作製する際にはその表面が平滑であるのが望
ましいため、非晶質で作製することが好ましい。母材
は、前記分相の2つの相のうち融点が低い方の相の組成
からなる非晶質体と、融点が高い方の相の組成からなる
非晶質もしくは結晶質の混合体、もしくは融点が高い方
の相の組成からなる均一な非晶質体もしくは結晶質体か
らなるようにする。前述の通り、膜と同じ組成Aからな
る非晶質もしくは結晶質と組成Bからなる非晶質もしく
結晶質の混合体、および組成Bからなる非晶質もしく結
晶質から構成することができるが、このように膜とは違
う構成の構造体から母材を形成することで、表面に要求
される機能とは違う、例えば機械的強度の向上、着色、
異なる光学屈折率の付与などの機能を与えることができ
る。
According to the present invention, there is provided a structure having a thin film as a base material produced by the manufacturing method according to claim 1 or 2, wherein the thin film has a composition of a phase having a lower melting point in the phase-separated structure. The base material is composed of an amorphous body composed of a composition of a phase having a lower melting point in the phase-separated structure and a non-crystalline body composed of a composition of a phase having a higher melting point in the phase-separated structure. Provided is a thin film glass structure characterized by comprising a crystalline substance or a mixture of crystalline substances. According to this manufacturing method, the composition of the film is the composition of the phase having the lower melting point of the two phases of the phase-separating phase, for the reason described above. A structure made of phase-separated glass is Tm (A)
After forming a film at the above temperature, it is possible to control the formed film to be crystalline or amorphous by controlling the cooling rate, but a layer having a uniform thickness is formed. Since it is desirable that the surface of the antifouling member is smooth, and it is desirable that the antifouling member is expected to be used for one purpose, it is preferably made of an amorphous material. The base material is a mixture of an amorphous material having the composition of the phase having the lower melting point and an amorphous or crystalline material having the composition of the phase having the higher melting point, or It should be composed of a uniform amorphous or crystalline material having the composition of the phase having the higher melting point. As described above, the film may be composed of an amorphous material having the same composition A as that of the film or a mixture of an amorphous material and a crystalline material having a composition B, and an amorphous material having a composition B or an amorphous material having a composition B. However, by forming the base material from a structure having a structure different from that of the film in this way, it is different from the function required for the surface, for example, improvement of mechanical strength, coloring,
Functions such as giving different optical refractive indexes can be given.

【0012】本発明の好ましい態様においては、前記薄
膜の厚みが10ナノメートル以下であるようにする。こ
うすることで、この薄膜からなる機能層はその全エネル
ギーに対する表面エネルギーの割合が多くなるため、各
用途において更なる機能性の向上が期待される。
[0012] In a preferred aspect of the present invention, the thin film has a thickness of 10 nm or less. By doing so, since the ratio of surface energy to the total energy of the functional layer made of this thin film is large, further improvement in functionality is expected in each application.

【0013】本発明の好ましい態様においては、前記分
相組織のうち融点が低い方の相が球形粒子となる独立液
滴構造をもち、かつその球形粒子の直径が100ナノメ
ートル以下であるようにする。形成する膜を10ナノメ
ートル以下にするためには、使用する分相ガラスの分相
の大きさを適切な形状、大きさにする必要がある。一般
的に分相の形状形態は絡み合い構造(スピノーダル)と
独立液滴構造(バイノーダル)のいずれかを取るが、こ
の薄膜作製法においては、独立液滴構造のほうが膜厚の
制御がおこないやすい。絡み合い構造の場合、表面に移
動し広がって膜を形成する液相量を予測しにくい。ま
た、独立液滴構造においても球状形状をもつガラスが融
点の高い方のガラスの場合も同様に表面に移動し広がっ
て膜を形成する液相量を予測しにくく、膜厚が大きくな
る傾向にある。さらに、その球状粒子の直径100ナノ
メートル以上になると表面に移動し広がる液相量が多く
なりすぎて、膜厚が10ナノメートル以上になる。
In a preferred aspect of the present invention, the phase having the lower melting point of the phase-separated structure has an independent droplet structure in which spherical particles are formed, and the diameter of the spherical particles is 100 nm or less. To do. In order to form a film having a thickness of 10 nanometers or less, it is necessary to make the size of the phase separation glass used into an appropriate shape and size. Generally, the shape of the phase separation has either an entangled structure (spinodal) or an independent droplet structure (binodal), but in this thin film manufacturing method, the independent droplet structure is easier to control the film thickness. In the case of an entangled structure, it is difficult to predict the amount of liquid phase that moves to the surface and spreads to form a film. Also in the case of the independent droplet structure, when the glass having a spherical shape has the higher melting point, it is difficult to predict the amount of liquid phase that moves to the surface and spreads to form a film, and the film thickness tends to increase. is there. Further, when the diameter of the spherical particles is 100 nanometers or more, the amount of liquid phase that moves to and spreads on the surface becomes too large, and the film thickness becomes 10 nanometers or more.

【0014】本発明の好ましい態様においては、前記分
相組織のうち融点が低い方の相の組成からなる非晶質体
には、Na、K、Liなどの1価のアルカリ金属が含む
ようにする。こうすることで、作製される薄膜ガラス構
造体を防汚部材として活用する際にその表面に存在する
Na、K、Liなどの1価のアルカリ金属による効果に
より、自浄作用を与えることができる。
In a preferred embodiment of the present invention, the amorphous body having the composition of the phase having the lower melting point of the phase-separated structure contains a monovalent alkali metal such as Na, K or Li. To do. By doing so, when the thin film glass structure produced is utilized as an antifouling member, a self-cleaning action can be provided by the effect of a monovalent alkali metal such as Na, K, or Li present on the surface thereof.

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0015】本発明の一実施態様においては、例えば図
1に示すように、母材表面に10ナノメートル以下の非
晶質膜を有する機能性材料である。図1の実施態様の薄
膜ガラス構造体を製造する1つの方法は、目的とする分
相組織を有するガラスの原料を均一に混合したものを溶
解し、図2に示すような凹型に流し込み、冷却速度を制
御することにより、分相組織のうちの融点が低い方の相
が球形粒子となる独立液滴構造をもち、かつその球形粒
子の直径が100ナノメートル以下である分相組織を有
するガラスを対象とする構造体の形状にて作製する。そ
のガラスを型に入れたまま再度昇温しこの分相組織のう
ちの融点が低い方の相の融点より高い温度で焼成する。
また、凹型に流し込み得られたガラス体を型からはず
し、平板状の型の上で焼成することにより、図3に示す
ような側面にも膜を持つ構造体を得ることもできる。
In one embodiment of the present invention, for example, as shown in FIG. 1, the functional material has an amorphous film of 10 nm or less on the surface of the base material. One method for manufacturing the thin film glass structure of the embodiment of FIG. 1 is to melt a mixture of raw materials of a glass having a target phase-separated structure, pour into a concave mold as shown in FIG. 2, and cool. A glass having a phase-separated structure in which the phase having a lower melting point in the phase-separated structure becomes a spherical particle by controlling the velocity, and the spherical particle has a diameter of 100 nm or less. Is manufactured in the shape of the target structure. The glass is heated in the mold again and heated at a temperature higher than the melting point of the phase having the lower melting point in the phase-separated structure.
Further, by removing the glass body poured into the concave mold from the mold and firing it on a flat mold, it is possible to obtain a structure having a film on the side surface as shown in FIG.

【0016】図1の実施態様の薄膜ガラス構造体を製造
する他の方法は、例えば、目的とする分相組織を有する
ガラスの原料を均一に混合したものを溶解し、冷却速度
を制御することで、分相組織のうちの融点が低い方の相
が球形粒子となる独立液滴構造をもち、かつその球形粒
子の直径が100ナノメートル以下である分相組織を有
するガラスを作製する。そのガラスを粉砕し図2に示す
ような凹型にてプレス法などで成形し、ガラス粉末成形
体を得る。そのガラス粉末成形体を型に入れたまま再度
昇温しこの分相組織のうちの融点が低い方の相の融点よ
り高い温度で焼成する。また、成形されたガラス粉末成
形体を型からはずし、平板状の型の上で焼成することに
より、図3に示すような側面にも膜を持つ構造体を得る
こともできる。
Another method for producing the thin film glass structure of the embodiment shown in FIG. 1 is, for example, to melt a mixture of raw materials of a glass having a target phase-separated structure and control the cooling rate. Then, a glass having a phase-separated structure in which the phase having a lower melting point of the phase-separated structure becomes a spherical particle and the diameter of the spherical particle is 100 nm or less is prepared. The glass is crushed and molded by a pressing method or the like in a concave mold as shown in FIG. 2 to obtain a glass powder molded body. The glass powder compact is heated again in the mold and fired at a temperature higher than the melting point of the phase having the lower melting point in the phase-separated structure. Further, by removing the molded glass powder compact from the mold and firing it on a flat mold, it is possible to obtain a structure having a film on the side surface as shown in FIG.

【0017】分相を形成させる他の方法として、ガラス
原料を溶解し均一化した後、対象とする構造物の形状に
て急冷した後、再度液相線以下の温度にて熱処理する工
程を用いてもよい。また、目的とする分相の大きさ、不
混和領域での冷却速度を変えるもしくは液相線以下での
熱処理時間を制御することで得ることができる。
As another method of forming the phase separation, a step of melting and homogenizing the glass raw material, quenching it in the shape of the target structure, and then heat treating it again at a temperature below the liquidus line is used. May be. Further, it can be obtained by changing the size of the target phase separation, the cooling rate in the immiscible region, or controlling the heat treatment time below the liquidus.

【0018】また他の実施態様として、対象とする構造
物の形状にて分相ガラス粉体を成形する場合、その成形
体の充填率を高くする方が好ましい。これは、充填率が
低い場合は母材部を緻密にするための制御を考慮する必
要があり、層の厚み等の制御に支障を来すからである。
As another embodiment, when the phase-separated glass powder is molded in the shape of the target structure, it is preferable to increase the filling rate of the molded body. This is because, when the filling rate is low, it is necessary to consider the control for making the base material part dense, which hinders the control of the layer thickness and the like.

【実施例】【Example】

【0019】[0019]

【表1】 表1の組成からなるガラス原料を100g秤量し、乳鉢
にてよく混合した試料を白金るつぼに入れ、電気炉内に
て1650℃で1時間溶解した後、金型に流し込み水中
で急冷して20×10×5mmの分相ガラス体を作製し
た。前記分相ガラス体を電気炉にて約1時間あたり20
0℃で1200℃まで昇温し、1200℃で1時間熱処
理を行い、空冷にて冷却することにより試料を得た。こ
のようにして得られた試料の断面を走査型透過電子顕微
鏡(日立製作所、HD2000)にてその表面近傍の観
察をおこなった。その結果を図2に示す。表面に約2ナ
ノメートルのガラス層があり、母材が2種類の非晶質の
混合した構造を持つものであることが観察された。
[Table 1] 100 g of a glass raw material having the composition shown in Table 1 was weighed, a sample well mixed in a mortar was placed in a platinum crucible, which was melted in an electric furnace at 1650 ° C. for 1 hour, then poured into a mold and rapidly cooled in water to 20 A phase-separated glass body of × 10 × 5 mm was produced. The phase-divided glass body is heated in an electric furnace for about 20 hours per hour.
A sample was obtained by heating to 1200 ° C. at 0 ° C., heat-treating at 1200 ° C. for 1 hour, and cooling by air cooling. The cross section of the sample thus obtained was observed in the vicinity of its surface with a scanning transmission electron microscope (HD2000, Hitachi, Ltd.). The result is shown in FIG. It was observed that there was a glass layer of about 2 nanometers on the surface, and the base material had a mixed structure of two kinds of amorphous materials.

【0020】[0020]

【発明の効果】本発明によれば、熱処理のみの簡単な工
程により剥離しにくい薄膜を有するガラス複合構造体を
得ることができる。
According to the present invention, it is possible to obtain a glass composite structure having a thin film which is difficult to peel off by a simple process of only heat treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施の態様を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】 本発明の一実施の態様における一製造過程を
示した図である。
FIG. 2 is a diagram showing one manufacturing process in one embodiment of the present invention.

【図3】 本発明の他の実施の態様における一製造過程
を示した図である。
FIG. 3 is a diagram showing one manufacturing process in another embodiment of the present invention.

【図4】 本発明の実施例において作製された試料のS
TEM写真である。
FIG. 4 is an S of a sample manufactured in an example of the present invention.
It is a TEM photograph.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 信 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 Fターム(参考) 4G059 AA17 AC30 CA01 CB04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shin Hayakawa             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. F-term (reference) 4G059 AA17 AC30 CA01 CB04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 分相組織を有するガラス構造物を、前記
分相組織を形成する2つの相のうちの融点が低い方の相
の融点より高い温度で焼成することを特徴とする薄膜ガ
ラス構造体の製造方法。
1. A thin film glass structure, comprising: firing a glass structure having a phase-separated structure at a temperature higher than a melting point of a phase having a lower melting point of the two phases forming the phase-separated structure. Body manufacturing method.
【請求項2】 分相組織を有するガラス構造物を粉砕し
て分相ガラス粉体を作製する工程と、前記分相ガラス粉
体を成形し分相ガラス粉体成形体を作製する工程と、前
記分相組織を形成する2つの相のうちの融点が低い方の
相の融点より高い温度で前記分相ガラス粉末成形体を焼
成する工程と、を含むことを特徴とする薄膜ガラス構造
体の製造方法。
2. A step of crushing a glass structure having a phase-separated structure to produce a phase-separated glass powder, and a step of forming the phase-separated glass powder to produce a phase-separated glass powder compact. Baking the phase-separated glass powder compact at a temperature higher than the melting point of the phase having the lower melting point of the two phases forming the phase-separated structure. Production method.
【請求項3】 前記分相組織のうち融点が低い方の相が
球形粒子となる独立液滴構造をもち、かつその球形粒子
の直径が100ナノメートル以下であることを特徴とす
る請求項1又は2に記載の製造方法。
3. The phase-separated structure having a lower melting point has an independent droplet structure in which spherical phases are spherical particles, and the spherical particles have a diameter of 100 nanometers or less. Or the manufacturing method according to 2.
【請求項4】 請求項1乃至3に記載の製造方法にて作
製される母材に薄膜を有する構造体であって、薄膜は前
記分相組織のうち融点が低い方の相の組成からなる非晶
質体であり、母材は前記分相組織うちの融点が低い方の
相の組成からなる非晶質体と前記分相組織うちの融点が
高い方の相の組成からなる非晶質若しくは結晶質の混合
体からなることを特徴とする薄膜ガラス構造体。
4. A structure having a thin film as a base material, which is produced by the manufacturing method according to any one of claims 1 to 3, wherein the thin film is composed of a phase having a lower melting point in the phase-separated structure. The base material is an amorphous material, and the base material is an amorphous material having a composition of a phase having a lower melting point in the phase-separated structure and an amorphous material having a composition of a phase having a higher melting point in the phase-separated structure. Alternatively, a thin film glass structure comprising a crystalline mixture.
【請求項5】 前記薄膜の厚みが10ナノメートル以下
であることを特徴とする請求項4に記載の薄膜ガラス構
造体。
5. The thin film glass structure according to claim 4, wherein the thin film has a thickness of 10 nanometers or less.
【請求項6】 前記分相組織のうち融点が低い方の相の
組成からなる非晶質体には、Na、K、Liなどの1価
のアルカリ金属が含まれていることを特徴とする請求項
4又は5に記載の薄膜ガラス構造体。
6. The amorphous body having a composition of a phase having a lower melting point in the phase-separated structure contains a monovalent alkali metal such as Na, K, or Li. The thin film glass structure according to claim 4.
JP2002048612A 2002-02-25 2002-02-25 Thin film glass structure and method for preparing the same Pending JP2003246646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048612A JP2003246646A (en) 2002-02-25 2002-02-25 Thin film glass structure and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048612A JP2003246646A (en) 2002-02-25 2002-02-25 Thin film glass structure and method for preparing the same

Publications (1)

Publication Number Publication Date
JP2003246646A true JP2003246646A (en) 2003-09-02

Family

ID=28661364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048612A Pending JP2003246646A (en) 2002-02-25 2002-02-25 Thin film glass structure and method for preparing the same

Country Status (1)

Country Link
JP (1) JP2003246646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157026A1 (en) * 2010-08-31 2013-06-20 Canon Kabushiki Kaisha Porous glass and optical member
US20170107142A1 (en) * 2012-10-12 2017-04-20 Asahi Glass Company, Limited Manufacturing method for phase-separated glass, and phase-separated glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157026A1 (en) * 2010-08-31 2013-06-20 Canon Kabushiki Kaisha Porous glass and optical member
US8993107B2 (en) * 2010-08-31 2015-03-31 Canon Kabushiki Kaisha Porous glass and optical member
US20170107142A1 (en) * 2012-10-12 2017-04-20 Asahi Glass Company, Limited Manufacturing method for phase-separated glass, and phase-separated glass
US9902647B2 (en) * 2012-10-12 2018-02-27 Asahi Glass Company, Limited Manufacturing method for phase-separated glass, and phase-separated glass

Similar Documents

Publication Publication Date Title
Goharian et al. Properties, crystallization mechanism and microstructure of lithium disilicate glass–ceramic
EP2752395A1 (en) A porous glass ceramic composition and method for manufacturing the same
Zawrah et al. Synthesis and characterization of calcium aluminate nanoceramics for new applications
Wang et al. Effect of alkali metal Oxides on viscosity and crystallization of the MgO–Al2O3–SiO2 glasses
Zheng et al. Effect of Y2O3 addition on viscosity and crystallization of the lithium aluminosilicate glasses
JP2003246646A (en) Thin film glass structure and method for preparing the same
Chen Effect of ZnO addition on properties of cordierite-based glass-ceramics
Zhang et al. Comprehensive effects of La/B ratio and CaO additive on the efficiency of lanthanum borate glass–ceramics as sintering aids for LTCC application
Song et al. Fabrication, sintering and characterization of cordierite glass–ceramics for low temperature co-fired ceramic substrates from kaolin
Chen et al. Sintering behavior and dielectric properties of La 2 O 3–B 2 O 3–CaO–P 2 O 5 glass/Al 2 O 3 composites for LTCC applications
Tang et al. CoO-doped MgO–Al 2 O 3–SiO 2-colored transparent glass–ceramics with high crystallinity
Hong et al. Microstructure and properties of CaO–ZrO2–SiO2 glass–ceramics prepared by sintering
JP4761496B2 (en) Composite structure and manufacturing method thereof
Ueno et al. Crystallization and microstructure formation of glass with Y2Si2O7-mullite eutectic composition
Harizanova et al. Investigation on the crystallization behaviour of sodium-aluminoborosilicate glasses with high concentrations of Ba and Ti
Xue et al. Microwave dielectric characterization and thermal analysis of B2O3-La2O3-ZnO glass-ceramic/Al2O3 composites for LTCC applications
Hwang et al. La 2 O 3–B 2 O 3–TiO 2 Glass/BaO–Nd 2 O 3–TiO 2 ceramic for high quality factor low temperature co-fired ceramic dielectric
CN1190374C (en) Low-cost prepn. technology of nanometer microcrystal ceramic products
Sycheva et al. Surface crystallization of glass based on blast furnace slags
Wang et al. Self-powdering phenomenon of β′-RE2 (MoO4) 3 formed in crystallization of glasses and its mechanism (RE: Gd, Sm, Dy)
JP2003246625A (en) Layered glass structure and method of manufacturing the same
JP2003246010A (en) Composite structure and manufacturing method therefor
JPH11292616A (en) Composite glass ceramic and its production
CN115650590B (en) Containing YF 3 Crystal phase fluoride microcrystalline glass and preparation method thereof
Mukherjee et al. Traditional and modern uses of ceramics, glass and refractories