JP4761430B2 - Production method of high molecular weight poly-γ-glutamic acid by Bacillus natto - Google Patents

Production method of high molecular weight poly-γ-glutamic acid by Bacillus natto Download PDF

Info

Publication number
JP4761430B2
JP4761430B2 JP2004224472A JP2004224472A JP4761430B2 JP 4761430 B2 JP4761430 B2 JP 4761430B2 JP 2004224472 A JP2004224472 A JP 2004224472A JP 2004224472 A JP2004224472 A JP 2004224472A JP 4761430 B2 JP4761430 B2 JP 4761430B2
Authority
JP
Japan
Prior art keywords
pga
molecular weight
glutamic acid
natto
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004224472A
Other languages
Japanese (ja)
Other versions
JP2006042617A (en
Inventor
祐史 廣藤
義治 野田
達朗 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA SOY SAUCE BREWING COOPERATION
Fukuoka Prefectural Government
Original Assignee
FUKUOKA SOY SAUCE BREWING COOPERATION
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA SOY SAUCE BREWING COOPERATION, Fukuoka Prefectural Government filed Critical FUKUOKA SOY SAUCE BREWING COOPERATION
Priority to JP2004224472A priority Critical patent/JP4761430B2/en
Publication of JP2006042617A publication Critical patent/JP2006042617A/en
Application granted granted Critical
Publication of JP4761430B2 publication Critical patent/JP4761430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

この発明は、ポリ−γ−グルタミン酸(以下γ−PGAと称する)の生産方法、とくに、納豆菌による高分子量ポリ−γ−グルタミン酸の生産方法に関する。   The present invention relates to a method for producing poly-γ-glutamic acid (hereinafter referred to as γ-PGA), and more particularly to a method for producing high molecular weight poly-γ-glutamic acid by Bacillus natto.

バチルス属細菌がグルコースあるいはクエン酸などからγ−PGAを生産することは、非特許文献1にも記載されているようによく知られている。   As described in Non-Patent Document 1, it is well known that Bacillus bacteria produce γ-PGA from glucose or citric acid.

しかし、長い食経験を有し、生体安全性の高い納豆菌(Bacillus subtilis var. natto)によるγ−PGAの生産は、固体培養では安定するものの、大量生産に不可欠である液体培養では極めて不安定である。   However, γ-PGA production by Bacillus subtilis var. Natto, which has a long dietary experience and is highly biosafe, is stable in solid culture but extremely unstable in liquid culture, which is essential for mass production. It is.

これは、液体培養では培地中のγ−PGAの蓄積量が一定しないことに起因しており、同一の培養条件であってもγ−PGAをほとんど回収できない場合もある。   This is due to the fact that the amount of γ-PGA accumulated in the medium is not constant in liquid culture, and γ-PGA may be hardly recovered even under the same culture conditions.

この不安定さは培養規模が拡大すると加速度的に増大し、50リットル以上の培養規模では粘性がほとんど認められない割合が9割を越えることもあるなど、固体培養と同等の高分子量γ−PGAを安定して得ることは極めて困難である。このように、納豆菌において液体培養が不安定であることは、人体に対する安全性の面で不安のないγ−PGAを大量生産できないことを意味する。   This instability increases at an accelerated rate when the culture scale is increased, and the proportion of almost no viscosity observed at a culture scale of 50 liters or more may exceed 90%. It is extremely difficult to stably obtain. Thus, instability in liquid culture in Bacillus natto means that γ-PGA that is not uneasy in terms of safety to the human body cannot be mass-produced.

納豆菌以外のバチルス・ズブチリス(Bacillus subtilis)、バチルス・リケニホルミス(Bacillus licheniformis)やバチルス・メガテリウム(Bacillus megaterium)などのバチルス属細菌は比較的容易にγ−PGAを生産・蓄積できるため、これらの菌を用いて糖類を追加供給する方法が特許文献1に提案されている。   Bacillus subtilis (Bacillus subtilis), Bacillus licheniformis and Bacillus megaterium (Bacillus megaterium) other than natto bacteria can produce and accumulate γ-PGA relatively easily. Patent Document 1 proposes a method of additionally supplying saccharides using a glycine.

しかしながら、この方法は、不純物である多糖類の生成を防ぎつつ不足する養分を供給し、γ−PGAの収量を向上させることを目的としたものであり、糖類の濃度を2から3g/l以下に維持するように流加培養を行うものである。   However, this method aims to supply insufficient nutrients while preventing the formation of polysaccharides as impurities, and to improve the yield of γ-PGA. The concentration of saccharides is 2 to 3 g / l or less. The fed-batch culture is performed so as to maintain the temperature.

ところが、糖類の濃度を望ましいレベルに維持することは、γ−PGAを蓄積する状態にあるバチルス属細菌には効果を示すが、培地中にγ−PGAを蓄積しない状態に陥った納豆菌には効果を示さない。   However, maintaining the sugar concentration at a desirable level is effective for Bacillus bacteria that are in a state of accumulating γ-PGA, but is not effective for Bacillus natto that has fallen into the state of not accumulating γ-PGA in the medium. Does not show any effect.

また、バチルス属細菌が生産するγ−PGAの平均分子量は、特許文献2〜5に記載のとおり、数千ないしは200万のレベルであり、納豆菌が固体培養において生産するγ−PGAの平均分子量の300万以上には及ばない。   The average molecular weight of γ-PGA produced by Bacillus bacteria is several thousand to 2 million as described in Patent Documents 2 to 5, and the average molecular weight of γ-PGA produced by Bacillus natto in solid culture. This is less than 3 million.

加えて、これらのバチルス属細菌は生体安全性の検討が十分とは言えず、人体に与える影響の面で不安がある。   In addition, these Bacillus bacteria are not sufficiently examined for biological safety, and there is anxiety in terms of their effects on the human body.

このγ−PGAの生産をコードする遺伝子はpgsBCAであり、その直下にD−グルタミン酸とL−グルタミン酸の結合を切断して分子量10万から50万に断片化するγ−PGA分解酵素YwtDをコードする遺伝子、ywtDが存在することが非特許文献2と特許文献6に報告されている。   The gene coding for the production of γ-PGA is pgsBCA, which encodes γ-PGA degrading enzyme YwtD that cuts the bond between D-glutamic acid and L-glutamic acid and fragments it to a molecular weight of 100,000 to 500,000 immediately below it. It is reported in Non-Patent Document 2 and Patent Document 6 that a gene, ywtD exists.

YwtD以外にも、特許文献7には、分子量10万の断片に切断する酵素、ポリグルタミン酸ハイドラーゼ(以下PghAと表記する)が存在することが記載され、また、非特許文献3、4および特許文献8、9には、末端からグルタミン酸を順次切断する酵素、γ−グルタミルトランスペプチダーゼ(以下GGTと表記する)を有することも報告されている。   In addition to YwtD, Patent Document 7 describes the presence of an enzyme that cleaves into fragments with a molecular weight of 100,000, polyglutamate hydrase (hereinafter referred to as PghA), and Non-Patent Documents 3, 4 and Patent Documents. 8 and 9 are also reported to have an enzyme that sequentially cleaves glutamic acid from the end, γ-glutamyltranspeptidase (hereinafter referred to as GGT).

また、γ−PGAは将来の飢餓に備えた栄養源の蓄積と、アメーバなどの外敵から菌体自身を保護することを目的として生産されるものと考えられている。固体培養では菌体表面に存在する何らかの受容体が菌体が空気中に露出していることを認識し、上記のYwtD、PghAやGGT等のγ−PGA分解酵素群の生成が抑制されて、相当量のγ−PGAが蓄積される。   In addition, γ-PGA is considered to be produced for the purpose of accumulating nutrient sources for future starvation and protecting the cells themselves from external enemies such as amoeba. In solid culture, it is recognized that some receptors present on the cell surface are exposed to the air, and the production of the above-described γ-PGA degrading enzymes such as YwtD, PghA and GGT is suppressed, A considerable amount of γ-PGA is accumulated.

これに対して、液体培養では菌体表面が空気中に露出していないためγ−PGA分解酵素群の生成が抑制されにくくなり、結果としてγ−PGAの蓄積が不安定になるものと考えられる。   On the other hand, in the liquid culture, since the surface of the bacterial cell is not exposed to the air, the production of γ-PGA degrading enzymes is hardly suppressed, and as a result, the accumulation of γ-PGA is considered to be unstable. .

これに対処することを目的として、下記特許文献10と11には、γ−PGA分解酵素群に係わる遺伝子を欠損させることが提案されている。   In order to deal with this, Patent Documents 10 and 11 listed below propose to delete genes related to the γ-PGA degrading enzyme group.

しかし、遺伝子組み換え体を大量に培養することは、各省庁が定めるガイドラインの拘束を受けるため実施が困難であり、また、消費者に与えるイメージの点でも問題があった。
大韓民国特許第363434号(PCT/KR00/00761) 特公昭43−24472号公報 特開平1−174397号公報 特開平3−47087号公報 特許第3081901号明細書 特開2003−235566号公報 特開2003−230384号公報 特開2003−230384号公報 特開2003−235566号公報 特開2003−230384号公報 特開2003−235566号公報 F.B.Oppermann−Sanio and A.Steinbuchel, Naturwissenschaften, Vol.89, pp.11−22 (2002) T.Suzuki and Y.Tahara, J.Bacteriol., Vol.185, No.7, pp.2379−2382 (2003) Y.Ogawa, H.Hosoyama, M.Hamano and H.Motai, Agri.Biol.Chem., 55, pp.2971−2977 (1991) K.Xu and M.A.Strauch, J.Bacteriol., 178, pp.4319−4322 (1996) T.Nagai, L.S.Phan Tran, Y.Inatsu and Y.Itoh, J.Bacteriology, 182, pp.2387−2392 (2000) T.Nagai, L.−S. Phan Tran, Y.Inatsu, and Y.Itoh, J.Bacteriol., 182, pp.2387−2392 (2000) 納豆試験法研究会, 納豆試験法, pp.65−73, 光琳 (1990) A.Goto and M.Kunioka, Biosci.Biotech.Biochem., 56, pp.1031−1035 (1992) M.Kambourova, M.Tangney and F.G.Priest, Appl.and Environ.Microbiol., Vol.67, No.2, pp.1004−1007 (2001)
However, culturing large amounts of genetically modified organisms is difficult to implement because they are restricted by the guidelines set by each ministry and agency, and there is also a problem in terms of the image given to consumers.
Korean Patent No. 363434 (PCT / KR00 / 00761) Japanese Patent Publication No.43-24472 Japanese Patent Laid-Open No. 1-174397 JP-A-3-47087 Japanese Patent No. 3081901 JP 2003-235666 A JP 2003-230384 A JP 2003-230384 A JP 2003-235666 A JP 2003-230384 A JP 2003-235666 A F. B. Oppermann-Sanio and A.M. Steinbuchel, Naturewissenschaften, Vol. 89, pp. 11-22 (2002) T.A. Suzuki and Y.J. Tahara, J .; Bacteriol. , Vol. 185, no. 7, pp. 2379-2382 (2003) Y. Ogawa, H .; Hosoyama, M .; Hamano and H.M. Motai, Agri. Biol. Chem. , 55, pp. 2971-2977 (1991) K. Xu and M.M. A. Strauch, J.M. Bacteriol. 178, pp. 4319-4322 (1996) T.A. Nagai, L .; S. Phan Tran, Y.M. Inatsu and Y. Itoh, J. et al. Bacteriology, 182, pp. 2387-2392 (2000) T.A. Nagai, L .; -S. Phan Tran, Y.M. Inatsu, and Y.J. Itoh, J. et al. Bacteriol. , 182, pp. 2387-2392 (2000) Natto Test Method Study Group, Natto Test Method, pp. 65-73, Korin (1990) A. Goto and M.M. Kunioka, Biosci. Biotech. Biochem. , 56, pp. 1031-1035 (1992) M.M. Kambourova, M .; Tangney and F.M. G. Priest, Appl. and Environ. Microbiol. , Vol. 67, no. 2, pp. 1004-1007 (2001)

この発明が解決しようとする課題は、γ−PGAの液体培地中への蓄積が、培地中のγ−PGAの蓄積量が一定しないことに起因して非常に不安定である納豆菌を用いて、高分子量のγ−PGAを安定して生産する方法を提案するものである。   The problem to be solved by the present invention is to use Bacillus natto in which the accumulation of γ-PGA in a liquid medium is very unstable due to the fact that the amount of γ-PGA accumulated in the medium is not constant. The present invention proposes a method for stably producing high molecular weight γ-PGA.

さらに詳しくは、液体培地を用いた納豆菌によるγ−PGAの生産が困難である要因はYwtD、PghAやGGTなどのγ−PGA分解酵素群にある。分解酵素群が生成すると、納豆菌が生成したγ−PGAは即座に分解されて、培地中に蓄積されない。この発明は、遺伝子操作によらず、納豆菌が生産するγ−PGA分解酵素群の生成を抑制する手法を提供するものである。   More specifically, a factor that makes it difficult to produce γ-PGA by Bacillus natto using a liquid medium is a group of γ-PGA degrading enzymes such as YwtD, PghA, and GGT. When the degrading enzyme group is generated, γ-PGA produced by Bacillus natto is immediately decomposed and is not accumulated in the medium. This invention provides a technique for suppressing the production of γ-PGA degrading enzymes produced by Bacillus natto, regardless of genetic manipulation.

この発明は、γ−PGAの生産安定性はγ−PGA分解酵素群の生成によって損なわれており、γ−PGA分解酵素群の生成を抑制できれば安定生産が可能であることに着目し、菌体に外的ストレスを与えることによってγ−PGA分解酵素群の生成を効果的に抑制できることを見出し、この知見に基づいて完成したものである。
すなわち、請求項1の発明は、納豆の製造に供される納豆菌の培養による高分子量ポリ−γ−グルタミン酸の安定生産方法において、
グルタミン酸ナトリウム1水和物が1.0〜5.0(質量/容量)%(以下%は(質量/容量)%である)、グルコースが1.0〜5.0%、リン酸2水素カリウムが0.25%、リン酸水素2ナトリウム12水和物が0.17%、塩化ナトリウムが0.05%、硫酸マグネシウム7水和物が0.05%、ビオチンが0.1ppmから構成される液体培地中で前記納豆菌を培養し、対数増殖期の中期から後期に差し掛かり、溶存酸素濃度が急減し始めた時点で、培養液温度を40℃〜50℃の範囲から40℃未満に変更することを特徴とする。
請求項2の発明は、請求項1の発明において、培養液温度を40℃未満に変更した後、pH上昇によってグルコースの枯渇が観察された時点でグルコースを流加することを特徴とする。
The present invention focuses on the fact that the production stability of γ-PGA is impaired by the production of γ-PGA degrading enzyme group, and that stable production is possible if the production of γ-PGA degrading enzyme group can be suppressed. The present inventors have found that the generation of γ-PGA degrading enzyme group can be effectively suppressed by applying external stress to, and have been completed based on this finding.
That is, the invention of claim 1 is a method for stably producing high molecular weight poly-γ-glutamic acid by culturing Bacillus natto used for the production of natto.
Sodium glutamate monohydrate is 1.0 to 5.0 (mass / volume)% (hereinafter% is (mass / volume)%), glucose is 1.0 to 5.0%, potassium dihydrogen phosphate 0.25%, disodium hydrogenphosphate dodecahydrate 0.17%, sodium chloride 0.05%, magnesium sulfate heptahydrate 0.05%, biotin 0.1 ppm The Bacillus natto is cultured in a liquid medium, and when the dissolved oxygen concentration starts to decrease rapidly from the middle to the later stage of the logarithmic growth phase, the temperature of the culture solution is changed from the range of 40 ° C to 50 ° C to less than 40 ° C. It is characterized by that.
The invention of claim 2 is characterized in that, in the invention of claim 1 , after changing the culture solution temperature to less than 40 ° C., glucose is fed at the time when glucose depletion is observed due to pH increase.

この発明が対象とする納豆菌は市販の納豆の生産に供されるものを指す。市販の納豆製造には、γ−PGAの生産にビオチンを要求し、バチルス・ズブチリスに分類される菌株が用いられる。納豆の製造に用いられる代表的な納豆菌は、宮城野菌、高橋菌、成瀬菌であるが、これらは共通の菌株に由来することが分子遺伝学的手法によって確認されている(非特許文献5)。   The Bacillus natto targeted by the present invention refers to those used for the production of commercial natto. In the production of commercially available natto, a strain that requires biotin for production of γ-PGA and is classified into Bacillus subtilis is used. Representative natto bacteria used in the production of natto are Miyagino, Takahashi, and Naruse, but it has been confirmed by molecular genetic techniques that they are derived from a common strain (Non-patent Document 5). ).

γ−PGAの生産に供する菌株はこれらのいずれでも良く、Bacillus subtilis var. nattoとして登録されている、例えばIFO3009、IFO3013、IFO3335、IFO3336、IFO3936、IFO13169、ATCC7058、ATCC7059、ATCC15245のような任意の分譲菌株を用いることもできる。   Any of these strains may be used for the production of γ-PGA, and Bacillus subtilis var. Arbitrary strains such as IFO3009, IFO3013, IFO3335, IFO3336, IFO3936, IFO13169, ATCC7058, ATCC7059, and ATCC15245 registered as “natto” can also be used.

ただし、非特許文献6にも記載のとおり、納豆菌は遺伝的に不安定であり、生産を安定させるためには、好ましくは市販納豆から高粘性発現株を選択したものを拡大培養して用いることが望ましい。この高粘性発現株は、非特許文献7にも記載の公知の手法によって取得できる。   However, as described in Non-Patent Document 6, natto bacteria are genetically unstable, and in order to stabilize production, preferably a highly viscous expression strain selected from commercial natto is used after being expanded and used. It is desirable. This highly viscous expression strain can be obtained by a known method described in Non-Patent Document 7.

この発明にいう外的ストレスとは、培地中の養分の枯渇、温度の変動、酸素供給の有無、pHの変動など、γ−PGA分解酵素群の生成に影響を与える種々の外的因子を指し、列挙した項目に限定されるものではない。これらの外的ストレスは単独で与えても組み合わせて与えてもよい。   The external stress referred to in the present invention refers to various external factors that affect the production of γ-PGA degrading enzymes such as nutrient depletion in the medium, temperature fluctuation, presence / absence of oxygen supply, and pH fluctuation. The items are not limited to the listed items. These external stresses may be applied alone or in combination.

外的ストレスによるγ−PGA分解酵素群の生成抑制の機構は、外的ストレスの種類に関係なく類似している。   The mechanism for inhibiting the production of γ-PGA degrading enzymes by external stress is similar regardless of the type of external stress.

例えば、外的ストレスの一つとして、培地中の養分の枯渇についてのγ−PGA分解酵素群の生成抑制の機構は以下のように考えられる。   For example, as one of the external stresses, the mechanism for suppressing the production of γ-PGA degrading enzymes for the depletion of nutrients in the medium is considered as follows.

すなわち、納豆菌が生産するγ−PGAは、非特許文献8に記載のとおり、培地中に存在するグルタミン酸からではなく、グルコースなどの糖分やクエン酸などの有機酸を炭素源として、TCA回路を経て合成される。納豆菌においてグルタミン酸はγ−PGA合成経路の効率的な発現に必要であることが知られているが、非特許文献9に記載のとおり、グルコースの存在下では培養期間を通じてほとんど消費されない。培地中の炭素源が枯渇すると、グルタミン酸が栄養源としてTCA回路に取り込まれ、併せて菌体外に貯蔵したγ−PGAを利用するためにγ−PGA分解酵素群が盛んに生産される。この時、炭素源としてグルコースなどの糖を使用していた場合には、グルタミン酸の消費が開始されると培地中の有機酸の消費と合わせてアンモニアの蓄積が始まるため、pHが急激に上昇する。このpHの急激な上昇を指標とすることで、容易に炭素源の枯渇を検知し、自動的に炭素源を流加することが可能となる。   That is, as described in Non-Patent Document 8, γ-PGA produced by Bacillus natto is not derived from glutamic acid present in the medium, but a sugar component such as glucose or an organic acid such as citric acid as a carbon source. After being synthesized. In Natto, glutamic acid is known to be necessary for efficient expression of the γ-PGA synthesis pathway, but as described in Non-Patent Document 9, it is hardly consumed throughout the culture period in the presence of glucose. When the carbon source in the medium is depleted, glutamic acid is taken into the TCA cycle as a nutrient source, and a group of γ-PGA degrading enzymes is actively produced in order to use γ-PGA stored outside the cells. At this time, when sugar such as glucose is used as a carbon source, when consumption of glutamic acid is started, ammonia starts accumulating together with consumption of organic acid in the culture medium, so that the pH rapidly increases. . By using this rapid increase in pH as an index, it is possible to easily detect the depletion of the carbon source and automatically feed the carbon source.

培地中の炭素源が枯渇した状態で炭素源を再度流加すると、TCA回路へのグルタミン酸の取り込みは速やかに停止する。生成していたγ−PGA分解酵素群はグルタミン酸の取り込みの停止と同時に生成が抑制され、γ−PGAが効率的に蓄積されることになる。   When the carbon source is fed again in a state where the carbon source in the medium is depleted, the incorporation of glutamic acid into the TCA cycle is quickly stopped. The produced γ-PGA degrading enzyme group is inhibited simultaneously with the stop of glutamate uptake, and γ-PGA is efficiently accumulated.

同様に、他の外的ストレスとして温度については40℃から50℃の範囲に置いたとき、また、酸素供給については供給を停止したとき、さらには、pHについては5以上かつ6未満の範囲にしたとき、γ−PGA分解酵素群の生成が促進される。なお、γ−PGA分解酵素群の生成が抑制される条件は、温度については40℃未満、酸素供給については酸素が供給されているとき、pHについては6以上かつ8までの範囲である。   Similarly, as another external stress, when the temperature is set in the range of 40 ° C. to 50 ° C., when the supply of oxygen is stopped, further, the pH is set within the range of 5 or more and less than 6. When it does, production | generation of (gamma) -PGA degrading enzyme group is accelerated | stimulated. The conditions under which the generation of the γ-PGA degrading enzyme group is suppressed are below 40 ° C. for temperature, and when oxygen is supplied for oxygen supply, the pH ranges from 6 to 8.

このように、いずれの外的ストレスの因子についても、酵素群の生成が促進される環境から抑制される環境に外的条件を切り替えることによって納豆菌に外的ストレスを与え、γ−PGA分解酵素群の生成を抑制してγ−PGAの蓄積を促進する。   Thus, for any external stress factor, external stress is applied to Bacillus natto by switching external conditions from an environment in which the generation of enzymes is promoted to an environment that is suppressed, and a γ-PGA degrading enzyme It suppresses the formation of groups and promotes the accumulation of γ-PGA.

また、純粋なγ−PGAを得るためには、生産に用いる培地はグルタミン酸ナトリウム1水和物が1.0〜5.0(質量/容量)%(以下%は(質量/容量)%である)、グルコースが1.0〜5.0%、リン酸2水素カリウムが0.25%、リン酸水素2ナトリウム12水和物が0.17%、塩化ナトリウムが0.05%、硫酸マグネシウム7水和物が0.05%、それに、ビオチンが0.1ppmから構成されるものが望ましい。   In order to obtain pure γ-PGA, the medium used for production is sodium glutamate monohydrate of 1.0 to 5.0 (mass / volume)% (hereinafter,% is (mass / volume)%. ), Glucose 1.0-5.0%, potassium dihydrogen phosphate 0.25%, disodium hydrogen phosphate dodecahydrate 0.17%, sodium chloride 0.05%, magnesium sulfate 7 What consists of 0.05% hydrate and 0.1 ppm biotin is desirable.

不純物であるフラクタンなどの多糖類が混入しても良い場合もあるが、この場合には、グルコースの替わりにサッカロースなどを用いても良い。同様の理由で、不純物が混入しても差し支えない場合には、上記組成の追加養分として、ポリペプトンSやフィトンなどの大豆蛋白分解物を1.0%〜2.0%追加しても良い。   In some cases, polysaccharides such as fructan, which is an impurity, may be mixed. In this case, sucrose may be used instead of glucose. For the same reason, when impurities may be mixed, 1.0% to 2.0% of soy protein degradation products such as polypeptone S and phyton may be added as additional nutrients of the above composition.

また、炭素源が存在する間は菌体外に排出される各種有機酸の影響でpHが低下する。このとき、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムやアンモニアなどのアルカリ溶液を添加することでpHを6.4〜7の間に保つと、納豆菌の活動を高いレベルに維持することが可能である。   Moreover, while a carbon source exists, pH falls under the influence of various organic acids discharged | emitted out of a microbial cell. At this time, if the pH is kept between 6.4 and 7 by adding an alkaline solution such as sodium hydroxide, potassium hydroxide, calcium hydroxide or ammonia, the activity of Bacillus natto can be maintained at a high level. Is possible.

なお、以上の説明においては、対象を納豆菌と特定して説明しているが、γ−PGA分解酵素群によってγ−PGAを蓄積しない状態にある納豆菌以外のバチルス属細菌にも効果を発揮するもので、これらのバチルス属細菌も、この発明においては納豆菌に含まれる。   In the above description, the target is specifically described as Bacillus natto, but it is also effective against Bacillus bacteria other than Bacillus natto in a state where γ-PGA is not accumulated by the γ-PGA degrading enzyme group. Therefore, these Bacillus bacteria are also included in the Bacillus natto in this invention.

また、この発明においては、生産対象をγ−PGAと特定しているが、γ−PGA以外の生体高分子の生産が、当該生体高分子分解酵素の生成によって阻害されている状態にある細菌においても効果を発揮する。この発明においては、このような細菌が生産する任意の生体高分子もγ−PGAに含まれるものとする。   In the present invention, the production target is specified as γ-PGA, but in a bacterium in which the production of biopolymers other than γ-PGA is inhibited by the production of the biopolymer degrading enzyme. Is also effective. In the present invention, any biopolymer produced by such bacteria is also included in γ-PGA.

この発明によって、生体安全性が食経験によって確認されている納豆菌によって、平均分子量300万以上の高分子量γ−PGAを安定生産することができる。   According to the present invention, high molecular weight γ-PGA having an average molecular weight of 3 million or more can be stably produced by Bacillus natto, whose biological safety is confirmed by eating experience.

また、この発明によって得られるγ−PGAは、従来提供されているものに比べて分子量が高く、生体安全性の面でも不安がないため、特に化粧品、医薬品や食品に関連する用途に適用できる。   In addition, the γ-PGA obtained by the present invention has a higher molecular weight than those conventionally provided and has no anxiety in terms of biosafety, so that it can be applied particularly to applications related to cosmetics, pharmaceuticals and foods.

これらの用途に積極的に利用できるγ−PGAを安定供給できる点で、産業上極めて有用である。   It is extremely useful industrially in that γ-PGA that can be actively used for these applications can be stably supplied.

γ−PGA分解酵素群の生成の抑制効果は、培養液中のγ−PGAの蓄積量によって知ることができる。そして、培養液中のγ−PGAの蓄積量は、培養液の見掛け粘度と一義的な比例関係にある。   The effect of suppressing the production of the γ-PGA degrading enzyme group can be known from the amount of γ-PGA accumulated in the culture solution. And the accumulation | storage amount of (gamma) -PGA in a culture solution is in a proportional relationship with the apparent viscosity of a culture solution.

図1は、培養液の見掛け粘度とγ−PGAの蓄積量との関係を示す。この図から、培養液の見掛け粘度とγ−PGAの蓄積量は比例関係にあることが分かる。   FIG. 1 shows the relationship between the apparent viscosity of the culture solution and the accumulated amount of γ-PGA. From this figure, it can be seen that the apparent viscosity of the culture solution and the accumulated amount of γ-PGA are in a proportional relationship.

以下に、この発明の実施の形態を実施例に示し、それぞれの培養液の見掛け粘度mPa・sとγ−PGA濃度g/lによって、γ−PGA分解酵素群の生成の抑制効果を調べた。   Embodiments of the present invention are shown in the following Examples, and the effect of suppressing the production of γ-PGA degrading enzymes was examined by the apparent viscosity mPa · s and γ-PGA concentration g / l of each culture solution.

比較例Comparative example

γ−PGA分解酵素群の生成の抑制効果の確認の基準として、ストレスを与えない従来法によってγ−PGAを培養した例を示す。   An example in which γ-PGA is cultured by a conventional method that does not give stress is shown as a standard for confirming the inhibitory effect on the production of γ-PGA degrading enzyme group.

市販納豆表面の粘質物を白金耳でかき取ったものを滅菌水10mlに懸濁し、粘質物生産寒天培地に懸濁液1白金耳を連続して画線して、37℃で24時間培養した。   The sticky material on the surface of commercially available natto was scraped with platinum ears and suspended in 10 ml of sterilized water. Suspension 1 platinum ears were continuously streaked on a sticky product-producing agar medium and cultured at 37 ° C. for 24 hours. .

粘質物生産寒天培地としては、グルタミン酸ナトリウム1水和物2.0%、サッカロース3%、リン酸2水素カリウム0.25%、リン酸水素2ナトリウム12水和物0.17%、塩化ナトリウム0.05%、硫酸マグネシウム7水和物0.05%、ビオチン0.1ppm、寒天2%を含む培地をpH6.8に調整したものを使用した。   The mucilage producing agar medium includes sodium glutamate monohydrate 2.0%, saccharose 3%, potassium dihydrogen phosphate 0.25%, disodium hydrogen phosphate dodecahydrate 0.17%, sodium chloride 0 A medium containing 0.05% magnesium sulfate heptahydrate 0.05%, biotin 0.1 ppm and agar 2% adjusted to pH 6.8 was used.

培養後のコロニーに白金耳の先端を当て、もっとも強く糸を引くコロニーを単離した。単離した納豆菌は標準寒天培地で37℃、3日間の培養を行い、胞子化した菌叢を得た。 この胞子化した菌叢を滅菌水1mlあたり1白金耳となるように懸濁して、γ−PGAの生産に供するまで20℃以下の環境に保存した。得られた胞子懸濁液は、10〜10cfu/mlの納豆菌胞子を含有するものであった。 The tip of the platinum ear was applied to the colony after culture, and the colony that pulled the string most strongly was isolated. The isolated Bacillus natto was cultured on a standard agar medium at 37 ° C. for 3 days to obtain a spore-forming bacterial flora. This spore-forming bacterial flora was suspended at 1 platinum loop per 1 ml of sterilized water and stored in an environment at 20 ° C. or lower until it was used for production of γ-PGA. The obtained spore suspension contained 10 8 to 10 9 cfu / ml of Bacillus natto spores.

この納豆菌胞子懸濁液をγ−PGA生産培地30リットルに10cfu/mlとなるように接種した。培養には丸菱バイオエンジ社MSJ−U2 50L型ファーメンターを使用した。 This Bacillus natto spore suspension was inoculated into 30 liters of γ-PGA production medium so as to be 10 4 cfu / ml. For the cultivation, MSJ-U2 50L type fermenter manufactured by Maruhishi Bioengineer was used.

γ−PGA生産培地は、グルタミン酸ナトリウム1水和物2.0%、グルコース2%、リン酸2水素カリウム0.25%、リン酸水素2ナトリウム12水和物0.17%、塩化ナトリウム0.05%、硫酸マグネシウム7水和物0.05%、ビオチン0.1ppmからなり、接種前にpH6.8に調整した。通気量1VVM、撹拌速度120rpmに設定し、37℃で培養を行ったところ、培養開始から32時間経過後に炭素源であるグルコースの枯渇に伴うpHの上昇が観察された。このとき、培養液の見掛け粘度は100mPa・sであり、そのγ−PGA濃度は、6.1g/lであった。見掛け粘度はB型粘度計によって計測し、測定回転数30rpm、使用ローターNo.2の条件で見掛け粘度を得た。   The γ-PGA production medium consists of sodium glutamate monohydrate 2.0%, glucose 2%, potassium dihydrogen phosphate 0.25%, disodium hydrogen phosphate dodecahydrate 0.17%, sodium chloride 0. It consisted of 05%, magnesium sulfate heptahydrate 0.05%, biotin 0.1ppm, and was adjusted to pH 6.8 before inoculation. When culture was performed at 37 ° C. with an aeration rate of 1 VVM and a stirring speed of 120 rpm, an increase in pH was observed with the depletion of glucose, which is a carbon source, 32 hours after the start of the culture. At this time, the apparent viscosity of the culture solution was 100 mPa · s, and the γ-PGA concentration was 6.1 g / l. The apparent viscosity was measured with a B-type viscometer. Apparent viscosity was obtained under the condition of 2.

γ−PGAは、γ−PGA含有培養液に公知の分離方法であるアルコール沈殿法を施すことによって粗精製した。   γ-PGA was roughly purified by subjecting the γ-PGA-containing culture solution to an alcohol precipitation method which is a known separation method.

この粗精製物を水に再溶解して透析を一夜行ったうえで凍結乾燥を行い、精製γ−PGAを得た。上記のγ−PGA濃度は、このようにして得られた精製γ−PGAの濃度である。精製γ−PGAは白色の固体であり、90%以上がグルタミン酸から構成され、多糖類は含まなかった。各γ−PGA粉末粉末の分子量を検討したところ、平均分子量は300万以上であった。   This crude product was redissolved in water and dialyzed overnight and then freeze-dried to obtain purified γ-PGA. The above-mentioned γ-PGA concentration is the concentration of the purified γ-PGA thus obtained. Purified γ-PGA was a white solid, 90% or more was composed of glutamic acid, and no polysaccharide was contained. When the molecular weight of each γ-PGA powder was examined, the average molecular weight was 3 million or more.

なお、平均分子量はゲルろ過カラムを用いた高速液体クロマトグラフによるもので、図2(a)に示すように保持時間約10分でピークが見られ、図2(b)に示す図から平均分子量が300万以上であることが確認された。測定は、カラムにTSK−GEL GMPWXL(内径7.8mm、長さ300mm)、移動相に50mMリン酸カリウム緩衝液(pH6.5)を使用し、カラム温度40℃、流量0.5ml/minの条件で行った。ピークの検出にはUV検出器を使用し、214nmの吸収でγ−PGAに由来するピークを検出した。以下の実施例1〜3についても同様である。 The average molecular weight is based on a high performance liquid chromatograph using a gel filtration column, and a peak is observed at a retention time of about 10 minutes as shown in FIG. 2 (a). From the figure shown in FIG. 2 (b), the average molecular weight is obtained. Was confirmed to be 3 million or more. The measurement uses TSK-GEL GMPW XL (inner diameter 7.8 mm, length 300 mm) for the column, 50 mM potassium phosphate buffer (pH 6.5) for the mobile phase, column temperature 40 ° C., flow rate 0.5 ml / min. It went on condition of. A UV detector was used to detect the peak, and a peak derived from γ-PGA was detected with absorption at 214 nm. The same applies to Examples 1 to 3 below.

この実施例は、付与ストレスとして養分を枯渇させたのち、再投与する例を示す。   This example shows an example of re-administration after depleting nutrients as applied stress.

培養の条件は、上記比較例と同様とし、32時間が経過したのち、pHの上昇によってグルコースの枯渇が観察された時点でグルコース2%を流加した。流加直前の培養液粘度は、比較例と同様、100mPa・sであった(No.2ローター、30rpm)。その後、48時間が経過するまで培養を行ったところ、培養液の見掛け粘度は2,000mPa・s、そのγ−PGA濃度は15.4g/lに達した(No.3ローター、30rpm)。そして、平均分子量は300万以上であった。このように、この実施例の場合、ストレスを与えない比較例と対比して、その抑制効果は、ほぼ、2.5倍に達している。   The culture conditions were the same as in the above comparative example. After 32 hours had passed, 2% glucose was fed when glucose depletion was observed due to an increase in pH. The viscosity of the culture solution immediately before feeding was 100 mPa · s as in the comparative example (No. 2 rotor, 30 rpm). Then, when culture | cultivation was performed until 48 hours passed, the apparent viscosity of the culture solution reached 2,000 mPa · s and its γ-PGA concentration reached 15.4 g / l (No. 3 rotor, 30 rpm). And the average molecular weight was 3 million or more. Thus, in the case of this example, the suppression effect reaches about 2.5 times as compared with the comparative example in which no stress is applied.

この実施例は、付与ストレスとして温度変化を与えた例を示す。   This embodiment shows an example in which a temperature change is given as the applied stress.

培養温度を45℃に設定した以外は、上記比較例と同様の条件で培養を行った。7.5時間が経過して対数増殖期の中期から後期に差し掛かり、溶存酸素濃度が急減し始めた時点で、培養液温度を37℃に変更した。培養開始から30時間が経過すると、グルコースの枯渇に伴うpHの上昇が観察された。この時、培養液粘度は1,600mPa・sに達し、そのγ−PGA濃度は12.2g/lであった(No.3ローター、30rpm)。平均分子量は300万以上であった。このように、この実施例の場合、ストレスを与えない比較例と対比して、その抑制効果は、ほぼ、2倍に達している。   The culture was performed under the same conditions as in the comparative example except that the culture temperature was set to 45 ° C. When 7.5 hours passed and the middle of the logarithmic growth phase was reached, the temperature of the culture solution was changed to 37 ° C. when the dissolved oxygen concentration began to decrease rapidly. When 30 hours passed from the start of the culture, an increase in pH accompanying glucose depletion was observed. At this time, the viscosity of the culture solution reached 1,600 mPa · s, and the γ-PGA concentration was 12.2 g / l (No. 3 rotor, 30 rpm). The average molecular weight was 3 million or more. Thus, in the case of this Example, the suppression effect has almost doubled compared with the comparative example which does not give stress.

この実施例は、付与ストレスとして、養分の枯渇と再投与、それに温度変化を組み合わせた例を示す。   This example shows an example in which nutrient depletion, re-administration, and temperature change are combined as applied stress.

実施例2と同様の条件で培養を行い、30時間が経過してグルコースの枯渇に伴うpHの上昇が観察された時点でグルコース2%を流加した。流加直前の培養液粘度は、実施例2と同様1,600mPa・sであった。その後、48時間が経過するまで培養を行ったところ、培養液粘度は3,500mPa・s、γ−PGA濃度は22.8g/lに達した(No.3ローター、30rpm)。平均分子量は300万以上であった。このように、この実施例の場合、ストレスを与えない比較例と対比して、その抑制効果は、ほぼ、3.7倍に達した。   Cultivation was performed under the same conditions as in Example 2, and 2% glucose was fed when 30 hours passed and when an increase in pH was observed accompanying glucose depletion. The viscosity of the culture solution immediately before feeding was 1,600 mPa · s as in Example 2. Then, when it culture | cultivated until 48 hours passed, the culture solution viscosity reached 3,500 mPa * s and the (gamma) -PGA density | concentration reached 22.8 g / l (No. 3 rotor, 30 rpm). The average molecular weight was 3 million or more. Thus, in the case of this example, as compared with the comparative example in which no stress was applied, the suppression effect reached almost 3.7 times.

表1は、上記各実施例及び比較例におけるγ−PGA分解酵素群の生成の抑制効果を、まとめて比較したものである。

Figure 0004761430
Table 1 summarizes the inhibitory effects of the production of γ-PGA degrading enzyme groups in the above Examples and Comparative Examples.
Figure 0004761430

同表から明かなとおり、この発明に基づいて培養中にストレスを付加した場合には、γ−PGAの蓄積量は、ストレスを付加しない場合と比較して著しく増大しており、また異なるストレスを複合して付加した場合、その効果は更に著しくなることが分かる。   As is clear from the table, when stress was added during culture according to the present invention, the amount of γ-PGA accumulated markedly increased compared to the case where no stress was applied, and different stresses were applied. It turns out that the effect becomes more remarkable when it adds in combination.

また、実施例1から4の各培養液の粘度とγ−PGAの培地中への蓄積量の間には、図2に示すように良好な相関が認められ、γ−PGA分解経路が抑制されたことによりγ−PGAが効果的に蓄積されたことと、異なるストレスを組み合わせて与えることで分解経路の抑制効果を増強できることを確認できた。   In addition, a good correlation was observed between the viscosity of each culture solution of Examples 1 to 4 and the amount of γ-PGA accumulated in the medium as shown in FIG. 2, and the γ-PGA degradation pathway was suppressed. As a result, it was confirmed that γ-PGA was effectively accumulated and that the inhibitory effect on the degradation pathway could be enhanced by combining different stresses.

この発明によって得られるγ−PGAは、化粧品、医薬品、食品の他に、水質浄化剤、コンクリートのひび割れ防止剤、砂漠緑化用保水材料、結露防止剤など幅広い用途に用いることができる。   The γ-PGA obtained by this invention can be used for a wide range of applications such as water purification agents, concrete cracking prevention agents, water retention materials for desert greening, and dew condensation prevention agents in addition to cosmetics, pharmaceuticals, and foods.

γ−PGA蓄積量と培養液見掛け粘度の関係を示すグラフである。It is a graph which shows the relationship between (gamma) -PGA accumulation amount and a culture solution apparent viscosity. (a)は高速液体クロマトグラフによる分子量分布測定結果を示すチャート、(b)は保持時間と分子量の関係を示すグラフである。(A) is a chart which shows the molecular weight distribution measurement result by a high performance liquid chromatograph, (b) is a graph which shows the relationship between retention time and molecular weight.

Claims (2)

納豆の製造に供される納豆菌の培養による高分子量ポリ−γ−グルタミン酸の安定生産方法において、
グルタミン酸ナトリウム1水和物が1.0〜5.0(質量/容量)%(以下%は(質量/容量)%である)、グルコースが1.0〜5.0%、リン酸2水素カリウムが0.25%、リン酸水素2ナトリウム12水和物が0.17%、塩化ナトリウムが0.05%、硫酸マグネシウム7水和物が0.05%、ビオチンが0.1ppmから構成される液体培地中で前記納豆菌を培養し、
対数増殖期の中期から後期に差し掛かり、溶存酸素濃度が急減し始めた時点で、培養液温度を40℃〜50℃の範囲から40℃未満に変更することを特徴とする高分子量ポリ−γ−グルタミン酸の安定生産方法。
In a stable production method of high molecular weight poly-γ-glutamic acid by culturing natto bacteria used in the production of natto,
Sodium glutamate monohydrate is 1.0 to 5.0 (mass / volume)% (hereinafter% is (mass / volume)%), glucose is 1.0 to 5.0%, potassium dihydrogen phosphate 0.25%, disodium hydrogenphosphate dodecahydrate 0.17%, sodium chloride 0.05%, magnesium sulfate heptahydrate 0.05%, biotin 0.1 ppm Culturing the Bacillus natto in a liquid medium,
A high molecular weight poly-γ- characterized by changing the temperature of the culture solution from the range of 40 ° C. to 50 ° C. to less than 40 ° C. when the dissolved oxygen concentration starts to decrease rapidly from the middle to the late phase of the logarithmic growth phase. A stable production method of glutamic acid.
培養液温度を40℃未満に変更した後、pH上昇によってグルコースの枯渇が観察された時点でグルコースを流加することを特徴とする請求項1記載の高分子量ポリ−γ−グルタミン酸の安定生産方法。 The method for stable production of high molecular weight poly-γ-glutamic acid according to claim 1 , characterized in that glucose is fed at the time when the depletion of glucose is observed due to an increase in pH after changing the culture solution temperature to less than 40 ° C. .
JP2004224472A 2004-07-30 2004-07-30 Production method of high molecular weight poly-γ-glutamic acid by Bacillus natto Active JP4761430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224472A JP4761430B2 (en) 2004-07-30 2004-07-30 Production method of high molecular weight poly-γ-glutamic acid by Bacillus natto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224472A JP4761430B2 (en) 2004-07-30 2004-07-30 Production method of high molecular weight poly-γ-glutamic acid by Bacillus natto

Publications (2)

Publication Number Publication Date
JP2006042617A JP2006042617A (en) 2006-02-16
JP4761430B2 true JP4761430B2 (en) 2011-08-31

Family

ID=36021867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224472A Active JP4761430B2 (en) 2004-07-30 2004-07-30 Production method of high molecular weight poly-γ-glutamic acid by Bacillus natto

Country Status (1)

Country Link
JP (1) JP4761430B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703443B2 (en) 2006-05-23 2014-04-22 Toyo Boseki Kabushiki Kaisha γ-L-PGA producing microorganism, method of producing γ-L-PGA using the microorganism, crosslinked substance produced using the microorganism, and external dermal agent produced using the microorganism
WO2009038194A1 (en) 2007-09-20 2009-03-26 Kao Corporation Recombinant microorganism and method for producing poly-gamma-glutamic acid
CN107198219A (en) * 2017-05-02 2017-09-26 上海纳德生物科技有限公司 A kind of preparation method of the food additives of the polyglutamic acid containing γ
CN110229852B (en) * 2019-06-20 2021-02-23 东莞理工学院 Method for producing gamma-polyglutamic acid by fermenting soybean protein zymolyte

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3682435B2 (en) * 2002-02-07 2005-08-10 独立行政法人食品総合研究所 γ-polyglutamic acid-degrading enzyme-deficient mutant and method for producing γ-polyglutamic acid using the mutant
JP2003235566A (en) * 2002-02-08 2003-08-26 Ajinomoto Co Inc POLY-gamma-GLUTAMIC ACID DEGRADATION ENZYME GENE AND METHOD FOR PRODUCING POLY-gamma-GLUTAMIC ACID

Also Published As

Publication number Publication date
JP2006042617A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
KR102223521B1 (en) Recombinant Microorganisms Producing Methyl-anthranilate and Method for Producing Methyl-anthranilate Using the Same
JP2001037494A (en) Dna encoding variant isopropyl maleate synthase, l- leucine-producing microorganism and production of l- leucine
FR2747689A1 (en) Escherichia strain for fermentative production of L-glutamic acid
JP2002017342A (en) Arginine producing bacterium of escherichia coli and method for producing l-arginine using the same
JP2017225368A (en) Methods for producing ergothioneine
CN101072873B (en) Compositions and methods of biopolymer production using a regulator
Pink et al. Regulation of S-layer protein synthesis of Bacillus stearothermophilus PV72 through variation of continuous cultivation conditions
JP4352716B2 (en) Inosine-producing bacteria belonging to the genus Bacillus and a method for producing inosine
US5229277A (en) Process for the production of dextran polymers of controlled molecular size and molecular size distributions
JP4761430B2 (en) Production method of high molecular weight poly-γ-glutamic acid by Bacillus natto
TW591109B (en) Recombinant DNA comprising DNA encoding enzyme, and processes of preparing said enzyme
JP3635638B2 (en) Surfactin production method
JP5677963B2 (en) Corynebacterium microorganism having N-acetylglucosamine-producing ability and method for producing N-acetylglucosamine or glucosamine using the same
JP5392942B2 (en) Novel alkaline alginate lyase and its utilization
AUMAYR et al. Transformation of Bacillus subtilis in polyglutamate production by deoxyribonucleic acid from B. natto
RU2343192C2 (en) Medium for heterotrophic algae or heterotrophic bacteria growth, method of their cultivation and substratum for their growth
EP1283256B1 (en) Method of culturing microorganisms
EP1543142B1 (en) Production method for iturin a and its homologues
CN114616320A (en) Transformed microorganism and method for producing polyhydroxyalkanoate using same
Furukawa et al. Ferulic acid production from clove oil byPseudomonas fluorescens E118
KR101043938B1 (en) Production method of iturin a and its homologues
JPH05507410A (en) Improved production of poly-β-hydroxybutyrate in transformed E. coli
Simmonds et al. A microorganism exhibiting a growth requirement for peptides
KR101291339B1 (en) Transformant for improving productivity of biosurfactin and Method for producing surfactin using the same
Miri et al. Medium optimization for exopolysaccharides production by Bacillus Zhangzhouensis BZ 16 strain isolated from Khnifiss Lagoon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4761430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250