JP4761107B2 - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP4761107B2
JP4761107B2 JP2004348767A JP2004348767A JP4761107B2 JP 4761107 B2 JP4761107 B2 JP 4761107B2 JP 2004348767 A JP2004348767 A JP 2004348767A JP 2004348767 A JP2004348767 A JP 2004348767A JP 4761107 B2 JP4761107 B2 JP 4761107B2
Authority
JP
Japan
Prior art keywords
storage material
heat storage
cell stack
fuel cell
phase change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004348767A
Other languages
Japanese (ja)
Other versions
JP2006156298A (en
Inventor
尚雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004348767A priority Critical patent/JP4761107B2/en
Publication of JP2006156298A publication Critical patent/JP2006156298A/en
Application granted granted Critical
Publication of JP4761107B2 publication Critical patent/JP4761107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池スタックに関し、特に、始動時の暖機性能向上に有効な技術に関する。   The present invention relates to a fuel cell stack, and more particularly to a technique effective for improving warm-up performance at the time of starting.

燃料電池は、水素と酸素の反応から水を生成する反応により電気を作り出す。かかる反応は発熱反応であるため、定置型などの連続運転では温度低下はほとんどなく、水蒸気が凝結して氷が生成される心配はない。しかしながら、車載用の燃料電池スタックの場合は、走行時は問題ないが、駐車場やガレージへの車両駐車時に外気温が低下すると、水蒸気が凝結して氷になることがある。かかる場合には、セル内のガス拡散が一部閉塞され、発電できなくなる場合や性能低下を生ずることがある。さらに、燃料極側での氷結による部分的なガス欠は、セル自体を劣化させる要因ともなる。   Fuel cells produce electricity through a reaction that produces water from the reaction of hydrogen and oxygen. Since this reaction is an exothermic reaction, there is almost no temperature drop in continuous operation such as a stationary type, and there is no fear that water vapor condenses and ice is generated. However, in the case of a fuel cell stack for in-vehicle use, there is no problem when traveling, but if the outside air temperature decreases when the vehicle is parked in a parking lot or a garage, water vapor may condense and become ice. In such a case, gas diffusion in the cell is partially blocked, and power generation cannot be performed or performance may be degraded. Further, partial gas shortage due to icing on the fuel electrode side also causes deterioration of the cell itself.

この対策として、起動時にヒータや燃料ガスを使用した燃焼などによる熱エネルギーを利用して燃料電池スタックを暖機する、あるいは、停止時にドライガスを流したりヒータ等で加温することによって、氷結の原因となるセル内の水分量を低減させることも考えられるが、いずれの場合もエネルギー消費が生じるため、燃料電池システム全体としてのエネルギー効率を低下させてしまう。このような背景から、冷却水に潜熱蓄熱材を混入し、潜熱蓄熱材の相変化に伴う発熱にて燃料電池スタックを暖機する技術が提案されている(例えば、特許文献1参照)。
特開2004−150336号公報
As a countermeasure, the fuel cell stack is warmed up by using thermal energy from combustion using a heater or fuel gas at start-up, or by flowing dry gas or heating with a heater etc. at the time of stoppage, Although it is conceivable to reduce the amount of moisture in the cell that causes the problem, in any case, energy consumption occurs, so that the energy efficiency of the entire fuel cell system is reduced. From such a background, a technique has been proposed in which a latent heat storage material is mixed into cooling water and the fuel cell stack is warmed up by heat generated by the phase change of the latent heat storage material (see, for example, Patent Document 1).
JP 2004-150336 A

しかしながら、特許文献1に記載の技術は、顕熱のみにて燃料電池から吸熱する冷却方式よりも効率よく多量の熱を吸熱することを目的として、言い換えれば、燃料電池の冷却性能向上を目的として、凝固しても流動性を保つ潜熱蓄熱材をラジエータ等で相変化させることにより、熱交換量を増大させるものである。このため、暖機時にも潜熱蓄熱材がラジエータを通ることになり、速やかな暖機を行うことはできない。以上の課題は、氷結した場合に限られず、低温始動時にも同様に生じる。   However, the technique described in Patent Document 1 is intended to absorb a large amount of heat more efficiently than the cooling system that absorbs heat from the fuel cell only by sensible heat, in other words, for the purpose of improving the cooling performance of the fuel cell. The amount of heat exchange is increased by changing the phase of a latent heat storage material that maintains fluidity even when solidified by a radiator or the like. For this reason, the latent heat storage material passes through the radiator even at the time of warming up, so that quick warming up cannot be performed. The above problems are not limited to icing, but also occur at low temperature start.

そこで、本発明は、エネルギー効率の低下を来たすことなく、暖機性能の十分な燃料電池スタックの提供を目的とする。   Accordingly, an object of the present invention is to provide a fuel cell stack with sufficient warm-up performance without causing a decrease in energy efficiency.

本発明は、膜−電極接合体とその両面に配されるセパレータとを有するセルが複数積層されてなるセル積層体を備えた燃料電池スタックであって、相変化により発熱する潜熱蓄熱材を保持する蓄熱材保持体が前記セルと接するように設けられたものである。   The present invention is a fuel cell stack including a cell stack in which a plurality of cells having a membrane-electrode assembly and separators disposed on both sides thereof are stacked, and holds a latent heat storage material that generates heat by phase change The heat storage material holder to be provided is in contact with the cell.

このような構成では、潜熱蓄熱材が発熱すると、発生した熱は潜熱蓄熱材を保持する蓄熱材保持体から直接セルに伝熱するため、燃料電池スタックの速やかな暖機が可能となる。潜熱蓄熱材は、例えば、酢酸ナトリウム・三水和物、リン酸水素二ナトリウム・十水和物、硫酸ナトリウム・十水和物、チオ硫酸ナトリウム・五水和物、及び塩化カルシウム・六水和物等、過冷却可能な蓄熱材であって、過冷却状態が解除されて液体(ジェルを含む)から固体へと相変化を起こすと、その相変化の際に凝固熱を発生するものである。   In such a configuration, when the latent heat storage material generates heat, the generated heat is directly transferred from the heat storage material holder holding the latent heat storage material to the cell, so that the fuel cell stack can be quickly warmed up. Latent heat storage materials include, for example, sodium acetate trihydrate, disodium hydrogen phosphate decahydrate, sodium sulfate decahydrate, sodium thiosulfate pentahydrate, and calcium chloride hexahydrate. It is a heat storage material that can be supercooled, such as materials, and when the supercooled state is released and a phase change occurs from a liquid (including gel) to a solid, solidification heat is generated during the phase change. .

前記蓄熱材保持体は、潜熱蓄熱材の相変化を促すトリガをさらに保持する構成でもよい。トリガとしては、潜熱蓄熱材に対して、例えば機械的あるいは電気的な振動・衝撃等の外乱を与え得るものが採用される。   The heat storage material holder may be configured to further hold a trigger that promotes a phase change of the latent heat storage material. As a trigger, what can give disturbances, such as a mechanical or electrical vibration and an impact, is employ | adopted with respect to a latent heat storage material.

前記蓄熱材保持体は、セル積層方向端部に設けられた構成でもよい。このような構成では、外気温低下の影響を最も受け易い端部セルを選択的に暖機することが可能となる。   The heat storage material holder may be provided at an end portion in the cell stacking direction. With such a configuration, it is possible to selectively warm up the end cell that is most susceptible to the influence of a decrease in outside air temperature.

前記蓄熱材保持体が導通性を有する構成でもよい。このような構成では、配置の自由度が増し、セル積層体の積層方向内部に蓄熱材保持体を設けることが可能となる。   The heat storage material holder may be conductive. In such a configuration, the degree of freedom of arrangement increases, and it becomes possible to provide the heat storage material holder inside the cell stack in the stacking direction.

前記蓄熱材保持体が出力端子を有する構成でもよい。このような構成では、蓄熱材保持体の出力端子から燃料電池スタックの総電力を取り出すことが可能となり、燃料電池スタックの体格が小型化される。   The heat storage material holder may have an output terminal. In such a configuration, it is possible to take out the total power of the fuel cell stack from the output terminal of the heat storage material holder, and the size of the fuel cell stack is reduced.

前記蓄熱材保持体はその側面に、セルとの熱交換に用いられる熱交換媒体の一部を流通させる媒体流路を有する構成でもよい。このような構成では、潜熱蓄熱材の発熱によって加温された熱交換媒体がセルに流通するので、蓄熱材保持体に接しないセルを速やかに暖機することが可能となる。 The heat storage material holder may have a medium flow path on a side surface thereof through which a part of a heat exchange medium used for heat exchange with the cell is circulated. In such a configuration, since the heat exchange medium heated by the heat generated by the latent heat storage material flows through the cells, it is possible to quickly warm up the cells that do not contact the heat storage material holder.

前記媒体流路は、互いに隣接するセル間に介在する媒体流路と同程度の圧損となるように形成された構成でもよい。このような構成では、セル及び蓄熱材保持体への媒体供給が例えばマニホールド等を介して並列的に行われる場合であっても、熱交換媒体をセル及び蓄熱材保持体に均等に分配することが可能となる。   The medium flow path may be configured to have a pressure loss comparable to that of a medium flow path interposed between adjacent cells. In such a configuration, even when the medium supply to the cells and the heat storage material holder is performed in parallel via, for example, a manifold, the heat exchange medium is evenly distributed to the cells and the heat storage material holder. Is possible.

前記蓄熱材保持体は、セルと接触しない面側に断熱性を有する構成でもよい。このような構成では、潜熱蓄熱材による発熱の外部への放熱が有効に抑制され、セルへの伝熱効率が向上する。   The heat storage material holder may have a heat insulating property on the surface side not in contact with the cell. In such a configuration, the heat release by the latent heat storage material is effectively suppressed to the outside, and the heat transfer efficiency to the cell is improved.

本発明の燃料電池スタックは、始動時に前記トリガにて潜熱蓄熱材の相変化を促す制御部を有する構成でもよい。このような構成では、解氷が必要な始動時の暖機を確実に行える。   The fuel cell stack of the present invention may have a control unit that promotes a phase change of the latent heat storage material by the trigger at the start. With such a configuration, warm-up at start-up that requires ice melting can be reliably performed.

前記制御部は、スタック温度が所定値以下の場合にのみ相変化を促す構成でもよい。このような構成では、始動時であっても、真に暖機が必要な場合にのみ選択的に暖機を行うことが可能となる。   The controller may be configured to prompt the phase change only when the stack temperature is equal to or lower than a predetermined value. In such a configuration, even at the time of start-up, it is possible to selectively perform warm-up only when truly warm-up is necessary.

本発明の燃料電池スタックによれば、潜熱蓄熱材が発熱すると、この熱エネルギーが潜熱蓄熱材を保持する蓄熱材保持体から直接セルに伝熱するため、始動時における暖機及び停止時におけるセル内水分の除去に余計なエネルギーを消費せずに、燃料電池スタックの速やかな暖機が可能となる。よって、エネルギー効率の低下を来たすことがなく、しかも暖機性能の十分な燃料電池スタックの提供が可能となる。   According to the fuel cell stack of the present invention, when the latent heat storage material generates heat, this thermal energy is directly transferred from the heat storage material holder holding the latent heat storage material to the cell. The fuel cell stack can be quickly warmed up without consuming extra energy to remove the internal moisture. Therefore, it is possible to provide a fuel cell stack that does not cause a decrease in energy efficiency and has sufficient warm-up performance.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る燃料電池スタックを備えた燃料電池システムの要部を示すシステム構成図である。この燃料電池システムは、特に燃料電池車両の車載発電システムに用いて好適であるが、その他に、例えば定置用発電システムへの適用も可能である。
(First embodiment)
FIG. 1 is a system configuration diagram showing a main part of a fuel cell system including a fuel cell stack according to the first embodiment of the present invention. This fuel cell system is particularly suitable for use in an in-vehicle power generation system of a fuel cell vehicle, but can also be applied to, for example, a stationary power generation system.

燃料電池スタック10のカソードには酸化剤ガスとしての空気が供給され、カソードからの排気は外部に排出される。一方、燃料電池スタック10のアノードには燃料ガスとしての水素が供給され、アノードからの排気(オフガス)は再び燃料電池スタック10を循環するが、オフガス中の不純物濃度に応じて適宜外部に排出(パージ)される。   Air as an oxidant gas is supplied to the cathode of the fuel cell stack 10, and the exhaust from the cathode is discharged to the outside. On the other hand, hydrogen as a fuel gas is supplied to the anode of the fuel cell stack 10 and exhaust (off gas) from the anode circulates again through the fuel cell stack 10, but is appropriately discharged to the outside depending on the impurity concentration in the off gas ( Purged).

燃料電池スタック10には、これら反応ガス(水素および空気)の他に、冷却水(熱交換媒体)も供給される。冷却水は、ポンプ20によって冷却水系21を流れ、通常運転時は、ラジエータ22で冷却(熱交換)されてから、燃料電池スタック10に供給される。冷却水系21の燃料電池スタック入口側及び出口側には、冷却水温を検出する温度センサT1,T2が設けられている。   In addition to these reaction gases (hydrogen and air), the cooling water (heat exchange medium) is also supplied to the fuel cell stack 10. The cooling water flows through the cooling water system 21 by the pump 20, and is cooled (heat exchange) by the radiator 22 during normal operation, and then supplied to the fuel cell stack 10. Temperature sensors T1 and T2 for detecting the coolant temperature are provided on the fuel cell stack inlet side and outlet side of the coolant system 21.

冷却水系21は、ラジエータ22の上流にて二つに分岐しており、その一方はラジエータ22をバイパスして、該ラジエータ22の下流に設けられたロータリーバルブ23等の流路切り替え手段に接続するバイパス配管21aとされている。この構成により、所定の場合(例えば、始動時等)には、燃料電池スタック10から流出した冷却水をラジエータ22で冷却(熱交換)せずに、そのまま燃料電池スタック10に供給することが可能になっている。   The cooling water system 21 is branched into two upstream of the radiator 22, one of which bypasses the radiator 22 and is connected to flow path switching means such as a rotary valve 23 provided downstream of the radiator 22. The bypass pipe 21a is used. With this configuration, in a predetermined case (for example, at the time of starting, etc.), the cooling water flowing out from the fuel cell stack 10 can be supplied to the fuel cell stack 10 as it is without being cooled (heat exchange) by the radiator 22. It has become.

燃料電池スタック10は、図2に示すように、水素と酸素の電気化学反応によって発電するセルの積層体(以下、セル積層体11)と、該セル積層体11の両端面(燃料電池スタックのセル積層方向端部)に接するように設けられた、言い換えれば、セル積層体11の端部セル12に接するように設けられた蓄熱材保持体13とを備えてなる。   As shown in FIG. 2, the fuel cell stack 10 includes a cell stack (hereinafter referred to as a cell stack 11) that generates electricity by an electrochemical reaction between hydrogen and oxygen, and both end surfaces of the cell stack 11 (of the fuel cell stack). A heat storage material holding body 13 provided in contact with the end cell 12 of the cell stack 11.

この蓄熱材保持体13は、発電セルと共にセル積層体11に締結されており、燃料電池スタックの10のセル積層方向の一部(本実施形態では端部であるが、後述するその他の実施形態のように内部でもよい。)に介在するように設けられている。   The heat storage material holder 13 is fastened to the cell stack 11 together with the power generation cells, and is a part of the fuel cell stack 10 in the cell stacking direction (in this embodiment, an end, but other embodiments described later) As well as inside.).

各セルは、膜−電極接合体(以下、「MEA」と称する。)の両面を燃料ガス(水素等)流路及び酸化剤ガス(酸素等)流路を備えたセパレータで狭持したものである。MEAは電子を通さず、イオンを透過する電解質膜と、その電解質膜の両面を狭持する反応電極との接合体の両面を、燃料ガス又は酸化剤ガスを拡散・透過させ反応電極で発生した電子を透過できる拡散層で狭持したものである。   Each cell has a membrane-electrode assembly (hereinafter referred to as “MEA”) sandwiched on both sides by a separator having a fuel gas (hydrogen etc.) channel and an oxidant gas (oxygen etc.) channel. is there. The MEA was generated at the reaction electrode by diffusing and permeating the fuel gas or the oxidant gas on both sides of the joined body of the electrolyte membrane that does not transmit electrons and permeates ions and the reaction electrode that holds both sides of the electrolyte membrane. It is sandwiched by a diffusion layer that can transmit electrons.

蓄熱材保持体13は、図3及び図4に示すように、所定の厚みを有する平板状の外形をなしており、中空箱状の本体部31と、該本体部31の内空部を複数の蓄熱材充填空間に分割する複数のリブ部32と、各蓄熱材充填空間に充填されていて相変化により発熱する潜熱蓄熱材33とを備えると共に、潜熱蓄熱材33の相変化を促すトリガ34が一体に設けられてなる(図2)。   As shown in FIGS. 3 and 4, the heat storage material holding body 13 has a flat outer shape having a predetermined thickness, and includes a hollow box-shaped main body portion 31 and a plurality of inner space portions of the main body portion 31. A plurality of ribs 32 that are divided into heat storage material filling spaces, and a latent heat storage material 33 that is filled in each heat storage material filling space and generates heat due to a phase change, and a trigger 34 that promotes a phase change of the latent heat storage material 33 Are integrally provided (FIG. 2).

リブ部32は、蓄熱材保持体13の断面積を増大させ、当該蓄熱材保持体13の電気抵抗を低減することができるという第1の効果と、発電セルと共にセル積層体11に締結された時の締結力に抗するための強度を確保することができるという第2の効果と、セルとの熱交換に係る表面積を増大させ、速やかな熱交換(暖機)を実現することができるという第3の効果を奏するものである。   The rib part 32 is fastened to the cell stack 11 together with the first effect that the cross-sectional area of the heat storage material holder 13 can be increased and the electrical resistance of the heat storage material holder 13 can be reduced. The second effect that the strength to resist the fastening force at the time can be ensured, and the surface area related to the heat exchange with the cell can be increased, and the rapid heat exchange (warming up) can be realized. There is a third effect.

なお、リブ部32の第3の効果については、本実施形態のリブ部32のように、本体部31のうちセル積層方向に対向する板状部材を相互連結させる構成でなくても、本体部31の内面を凹凸状(フィン状)にすることのできる構成であれば、例えば、一方の前記板状部材から起立して他方の板状部材側に延在するが、該他方の板状部材にまでは到達(当接)していない構成であってもよい。   As for the third effect of the rib portion 32, the main body portion is not necessarily configured to interconnect the plate-like members opposed to each other in the cell stacking direction in the main body portion 31 like the rib portion 32 of the present embodiment. If it is the structure which can make the inner surface of 31 uneven | corrugated (fin shape), for example, it will stand up from one said plate-shaped member, and it will extend to the other plate-shaped member side, but this other plate-shaped member The structure which has not reached (contact | abutted) may be sufficient.

蓄熱材保持体13の本体部31とリブ部32は、例えばSUS(ステンレス鋼)やFe等のように熱伝導性及び電気伝導性を備えていることが好ましく、さらに好ましくは、例えばカーボンやチタン化合物等のように、上記熱伝導性及び電気伝導性に加えて、潜熱蓄熱材33に対する耐食性(耐酸性)を備えていることが好ましい。ただし、この耐食性は、SUSやFe等からなる本体部31とリブ部32に表面処理を施すことによって付与してもよい。   The main body portion 31 and the rib portion 32 of the heat storage material holder 13 preferably have thermal conductivity and electrical conductivity, such as SUS (stainless steel) or Fe, and more preferably, for example, carbon or titanium. Like a compound, it is preferable to have corrosion resistance (acid resistance) against the latent heat storage material 33 in addition to the thermal conductivity and electrical conductivity. However, this corrosion resistance may be imparted by subjecting the main body portion 31 and the rib portion 32 made of SUS, Fe, or the like to surface treatment.

また、潜熱蓄熱材33をポリエチレン等の耐食性樹脂からなる袋体に充填することによって、SUSやFe等からなる本体部31及びリブ部32と、潜熱蓄熱材33とが直接接触しないようにしてもよい。   Further, by filling the latent heat storage material 33 in a bag made of a corrosion-resistant resin such as polyethylene, the main body portion 31 and the rib portion 32 made of SUS, Fe, etc., and the latent heat storage material 33 may not be in direct contact with each other. Good.

潜熱蓄熱材33は、酢酸ナトリウム・三水和物、リン酸水素二ナトリウム・十水和物、硫酸ナトリウム・十水和物、チオ硫酸ナトリウム・五水和物、及び塩化カルシウム・六水和物等、過冷却可能な蓄熱材であって、例えば振動や衝撃等の外乱がトリガ34によって機械的あるいは電気的な要因にて与えられると、過冷却状態が解除されて液体(ジェルを含む)から固体へと相変化を起こし、その相変化の際に凝固熱を発生するものである。   The latent heat storage material 33 is sodium acetate trihydrate, disodium hydrogen phosphate decahydrate, sodium sulfate decahydrate, sodium thiosulfate pentahydrate, and calcium chloride hexahydrate. For example, when a disturbance such as vibration or shock is given by a trigger 34 due to mechanical or electrical factors, the supercooled state is released and the liquid (including gel) is released. It causes a phase change to a solid and generates heat of solidification during the phase change.

トリガ34の構成としては、例えば、コイルと、該コイルの内部に進退可能に配されたプランジャと、該プランジャを前進方向に付勢するバネ等の付勢手段と、コイルへの通電を制御する制御手段とを備えた構成の採用が可能である。この構成では、トリガ作動前は、コイル通電による電磁力でプランジャをバネの付勢力に抗する方向(蓄熱材保持体13から離間する方向)に後退させておき、トリガ作動時にコイル通電をカットして電磁力を解除することにより、プランジャをバネの付勢力方向に駆動して蓄熱材保持体13に機械的な衝撃を与えることができる。   As the configuration of the trigger 34, for example, a coil, a plunger disposed inside the coil so as to be able to advance and retract, an urging means such as a spring for urging the plunger in the forward direction, and energization to the coil are controlled. It is possible to adopt a configuration including a control means. In this configuration, before the trigger operation, the plunger is retracted in a direction against the urging force of the spring (a direction away from the heat storage material holder 13) by an electromagnetic force generated by energizing the coil, and the coil energization is cut during the trigger operation. By releasing the electromagnetic force, the plunger can be driven in the direction of the urging force of the spring to give a mechanical shock to the heat storage material holder 13.

制御部100(図1)は、制御コンピュータシステムによって構成されていて、図示しない車両のアクセル開度信号等の要求負荷、燃料電池システムの各部に設けられたセンサ(圧力センサ、温度センサT1,T2、流量センサ、電流計、電圧計等)、各機器(エアコンプレッサ、ポンプ20等)から制御情報を受け取り、システム各部の弁類(ロータリーバルブ23等)やモータ類の運転を制御する。   The control unit 100 (FIG. 1) is configured by a control computer system, and includes a required load such as an accelerator opening signal of a vehicle (not shown), and sensors (pressure sensors, temperature sensors T1, T2) provided in each part of the fuel cell system. Control information from each device (air compressor, pump 20 etc.), and controls the operation of valves (rotary valve 23 etc.) and motors in each part of the system.

例えば、制御部100は、始動時であって、燃料電池スタック10の温度(スタック温度)が所定温度以下の場合には、トリガ34を作動させて機械的な振動や衝撃等を潜熱蓄熱材33に与えることにより、潜熱蓄熱材33の相変化(液体→固体)を促し、凝固熱を発生させる。   For example, when the temperature of the fuel cell stack 10 (stack temperature) is equal to or lower than a predetermined temperature at the time of start-up, the control unit 100 operates the trigger 34 to cause mechanical vibration, impact, etc., to the latent heat storage material 33. To promote the phase change (liquid → solid) of the latent heat storage material 33 and generate heat of solidification.

次に、上記構成からなる燃料電池システムの作用を説明する。始動時には、まず、燃料電池スタック10の温度(スタック温度)を検出する。本実施の形態では、冷却水系21の燃料電池スタック出口側に配設された温度センサT2で検出された冷却水温度をスタック温度とみなす。このスタック温度が所定温度(例えば、5℃)以下の低温始動時の場合には、トリガ34を作動し、潜熱蓄熱材33に機械的な振動や衝撃を与える。   Next, the operation of the fuel cell system having the above configuration will be described. At the start, first, the temperature of the fuel cell stack 10 (stack temperature) is detected. In the present embodiment, the coolant temperature detected by the temperature sensor T2 disposed on the fuel cell stack outlet side of the coolant system 21 is regarded as the stack temperature. In the case of a low temperature start when the stack temperature is equal to or lower than a predetermined temperature (for example, 5 ° C.), the trigger 34 is actuated to give mechanical vibration and impact to the latent heat storage material 33.

すると、潜熱蓄熱材33の過冷却状態が解除され、潜熱蓄熱材33は液体から固体へと相変化し、その相変化に伴い凝固熱を発生する。発生した凝固熱は、潜熱蓄熱材33を保持している蓄熱材保持体13を介して、この蓄熱材保持体13に接しているセル積層体11の端部セル12に直接伝熱する。つまり、スタック温度が所定値以下の場合にのみトリガ34が作動して潜熱蓄熱材33の相変化が促されることにより、始動時であって、かつ、真に暖機が必要な場合にのみ選択的に燃料電池スタック10の暖機が開始される。   Then, the supercooled state of the latent heat storage material 33 is released, and the latent heat storage material 33 undergoes a phase change from a liquid to a solid, and generates solidification heat along with the phase change. The generated solidification heat is directly transferred to the end cells 12 of the cell stack 11 in contact with the heat storage material holder 13 via the heat storage material holder 13 holding the latent heat storage material 33. That is, the trigger 34 is activated only when the stack temperature is equal to or lower than a predetermined value, and the phase change of the latent heat storage material 33 is promoted, so that it is selected only at the time of start-up and when truly warming up is required. Thus, the warm-up of the fuel cell stack 10 is started.

また、本実施の形態では、図7の実験結果に示すように、特に外気温低下の影響を最も受け易い端部セル12を選択的に暖機することができるので、十分な暖機性能を得ることが可能となっている。   Further, in the present embodiment, as shown in the experimental results of FIG. 7, the end cell 12 that is most susceptible to the influence of a decrease in outside air temperature can be selectively warmed up. It is possible to obtain.

図7において、実線は図3,4に示す蓄熱保持体13を用いた本発明の第1実施例であり、破線は比較例である。比較例(破線)では、まず、端部セル12が80℃になるまで発電を実施し、発電停止後、恒温槽にて0℃環境に4時間放置した。次いで、徐々に電流を挿引していき、一定電流で30秒固定した後、各セルのセル電圧を測定した。   In FIG. 7, the solid line is the first embodiment of the present invention using the heat storage holder 13 shown in FIGS. 3 and 4, and the broken line is a comparative example. In the comparative example (broken line), power generation was first performed until the end cell 12 reached 80 ° C., and after power generation was stopped, the cell was left in a constant temperature bath in a 0 ° C. environment for 4 hours. Next, the current was gradually inserted and fixed at a constant current for 30 seconds, and then the cell voltage of each cell was measured.

一方、第1実施例(実線)では、端部セル12が80℃になるまで発電を実施し、発電停止後、恒温槽にて0℃環境に4時間放置するまでの工程は上述の比較例と同様であるが、その後、トリガ34を作動させ、潜熱蓄熱材33に相変化を生じさせている。本実施例では、潜熱蓄熱材33として、酢酸ナトリウム三水和物を使用した。次いで、上述の比較例と同様、徐々に電流を挿引していき、一定電流で30秒固定した後、各セルのセル電圧を測定した。   On the other hand, in the first example (solid line), power generation is performed until the end cell 12 reaches 80 ° C., and the process from power generation stop to standing in a thermostatic chamber for 4 hours in a constant temperature bath is the above-described comparative example. However, after that, the trigger 34 is operated to cause a phase change in the latent heat storage material 33. In this example, sodium acetate trihydrate was used as the latent heat storage material 33. Next, as in the comparative example described above, the current was gradually inserted and fixed at a constant current for 30 seconds, and then the cell voltage of each cell was measured.

図7より明らかなように、比較例(破線)では、セル積層体11の左端側及び右端側、つまり、左右の端部セル12及びその近傍に位置するセルのセル電圧が、セル積層体11の中央部およびその近傍のセルに比して、極端に低下しているのに対し、第1実施例(実線)では、逆に上昇していることがわかる。両者のセル電圧差は、最大で15%である。つまり、第1実施形態の燃料電池スタック10によれば、端部セル12を速やかに暖機できることが確認された。   As is clear from FIG. 7, in the comparative example (broken line), the cell voltage of the cell located on the left end side and the right end side of the cell stack 11, that is, the left and right end cells 12 and the cells in the vicinity thereof is the cell stack 11. It can be seen that, although it is extremely lower than that of the central portion of the cell and its neighboring cells, it is increased in the first embodiment (solid line). The cell voltage difference between them is a maximum of 15%. That is, according to the fuel cell stack 10 of the first embodiment, it was confirmed that the end cells 12 can be quickly warmed up.

(第2の実施形態)
本実施の形態に係る蓄熱材保持体41は、図5に示すように、セル積層体11に接する側(セル積層方向内側)の一側面(以下、内端面41A)に、蛇行状の凹溝からなる冷媒流路(媒体流路)42を有する。この冷媒流路42は、図示しないセパレータに形成された冷媒流路(以下、セパレータ冷媒流路)と同程度の圧損となるように、例えばセパレータ冷媒流路と同一形態をなすように形成されている。
(Second Embodiment)
As shown in FIG. 5, the heat storage material holder 41 according to the present embodiment has a meandering concave groove on one side surface (hereinafter referred to as an inner end surface 41 </ b> A) on the side in contact with the cell stack 11 (inside the cell stacking direction). A refrigerant flow path (medium flow path) 42 is formed. The refrigerant flow path 42 is formed, for example, to have the same form as the separator refrigerant flow path so as to have a pressure loss comparable to a refrigerant flow path (hereinafter referred to as a separator refrigerant flow path) formed in a separator (not shown). Yes.

冷却水系21を流通する冷却水は、入口側マニホールド15より燃料電池スタック10に導入され、セル積層体11の各セルおよび両蓄熱材保持体13,13を並列的に流通して、出口側マニホールド16より燃料電池スタック10から導出される。このとき、冷媒流路42は、セパレータ冷媒流路と同圧損となるよう形成されているので、入口側マニホールド15より燃料電池スタック10に導入された冷却水は、各セル及び両蓄熱材保持体13,13に均等に分配される。   Cooling water flowing through the cooling water system 21 is introduced into the fuel cell stack 10 from the inlet side manifold 15, and flows in parallel through each cell of the cell stack 11 and both the heat storage material holders 13, 13, so that the outlet side manifold. 16 is derived from the fuel cell stack 10. At this time, since the refrigerant flow path 42 is formed to have the same pressure loss as the separator refrigerant flow path, the cooling water introduced into the fuel cell stack 10 from the inlet side manifold 15 is supplied to each cell and both heat storage material holders. 13 and 13 are equally distributed.

予め冷却水がバイパス配管21a側を流通するように、言い換えれば、ラジエータ22を迂回するように、ロータリーバルブ23内の流路を切り替えておけば、蓄熱材保持体13の冷媒流路を流通する間に加温された冷却水は、ラジエータ22で冷却されることなく、燃料電池スタック10の各セルに入口側マニホールド15を介して供給されるので、図8に示すように、蓄熱材保持体33に接しないセル、つまり、端部セル12よりもセル積層方向内側のセルについても速やかに暖機することが可能となる。   If the flow path in the rotary valve 23 is switched in advance so that the cooling water circulates on the bypass pipe 21a side, in other words, bypasses the radiator 22, the refrigerant flow path of the heat storage material holder 13 is circulated. Since the cooling water heated in the meantime is supplied to each cell of the fuel cell stack 10 via the inlet side manifold 15 without being cooled by the radiator 22, as shown in FIG. It is possible to quickly warm up the cells not in contact with 33, that is, the cells on the inner side of the end cells 12 in the cell stacking direction.

図8において、実線は図5に示す蓄熱材保持体41を用いた本発明の第2実施例であり、破線は比較例である。比較例(破線)では、まず、端部セル12が80℃になるまで発電を実施し、発電停止後、恒温槽にて0℃環境に4時間放置した。次いで、徐々に電流を挿引していき、一定電流で30秒固定した後、各セルのセル電圧を測定した。   In FIG. 8, a solid line is the second embodiment of the present invention using the heat storage material holder 41 shown in FIG. 5, and a broken line is a comparative example. In the comparative example (broken line), power generation was first performed until the end cell 12 reached 80 ° C., and after power generation was stopped, the cell was left in a constant temperature bath in a 0 ° C. environment for 4 hours. Next, the current was gradually inserted and fixed at a constant current for 30 seconds, and then the cell voltage of each cell was measured.

一方、第2実施例(実線)では、端部セル12が80℃になるまで発電を実施し、発電停止後、恒温槽にて0℃環境に4時間放置するまでの工程は上述の比較例と同様であるが、その後、トリガを作動させ、潜熱蓄熱材33に相変化を生じさせている。本実施例では、潜熱蓄熱材33として、酢酸ナトリウム三水和物を使用した。次いで、上述の比較例と同様、徐々に電流を挿引していき、一定電流で30秒固定した後、各セルのセル電圧を測定した。   On the other hand, in the second embodiment (solid line), power generation is performed until the end cell 12 reaches 80 ° C., and the process from power generation stop to standing in a constant temperature bath for 4 hours in the constant temperature bath is the above-described comparative example. However, after that, the trigger is operated to cause a phase change in the latent heat storage material 33. In this example, sodium acetate trihydrate was used as the latent heat storage material 33. Next, as in the comparative example described above, the current was gradually inserted and fixed at a constant current for 30 seconds, and then the cell voltage of each cell was measured.

図8より明らかなように、比較例(破線)では、セル積層体11の左端側及び右端側、つまり、左右の端部セル12及びその近傍に位置するセルのセル電圧が、セル積層体11の中央部およびその近傍のセルに比して、極端に低下しているのに対し、第2実施例(実線)では、逆に上昇していることがわかる。両者のセル電圧差は、最大で9%である。つまり、本発明の第2実施例では、端部セル12での低温に起因する性能低下が抑制される。   As is clear from FIG. 8, in the comparative example (broken line), the cell voltage of the cells located on the left end side and the right end side of the cell stack 11, that is, the left and right end cells 12 and the cells in the vicinity thereof is It can be seen that, although it is extremely lower than that of the central portion of the cell and its neighboring cells, it is increased in the second embodiment (solid line). The cell voltage difference between them is a maximum of 9%. That is, in the second embodiment of the present invention, performance degradation due to the low temperature in the end cell 12 is suppressed.

さらに、この第2実施例では、端部セル12よりも中央寄りのセルについても、セル電圧が上昇している。つまり、第2実施形態の燃料電池スタック10によれば、端部セル12だけでなく、端部セル12よりも内側のセルについても速やかに暖機できることが確認された。   Furthermore, in the second embodiment, the cell voltage also rises for the cells closer to the center than the end cells 12. That is, according to the fuel cell stack 10 of the second embodiment, it was confirmed that not only the end cells 12 but also the cells inside the end cells 12 can be quickly warmed up.

(第3の実施形態)
本実施の形態に係る蓄熱材保持体51は、図5に示す第2実施形態の構成に加えて、冷媒流路42を有する内端面41Aと反対側(セル積層方向外側)の他側面(以下、外端面)に出力端子52を備えている。この出力端子52は、セル積層方向に対して直交する方向(図6では外端面に沿って上方)に突出する。かかる構成によれば、蓄熱材保持体51の出力端子52から燃料電池スタック10の総電力を取り出すことができるので、燃料電池スタック11の体格を小型化することが可能となる。
(Third embodiment)
In addition to the configuration of the second embodiment shown in FIG. 5, the heat storage material holding body 51 according to the present embodiment has another side surface (hereinafter referred to as the cell stacking direction outer side) opposite to the inner end surface 41 </ b> A having the refrigerant flow path 42 (hereinafter, cell stacking direction). The output terminal 52 is provided on the outer end surface. The output terminal 52 protrudes in a direction orthogonal to the cell stacking direction (upward along the outer end surface in FIG. 6). According to such a configuration, since the total power of the fuel cell stack 10 can be taken out from the output terminal 52 of the heat storage material holder 51, the size of the fuel cell stack 11 can be reduced.

(その他の実施形態)
本発明は上記実施形態以外にも種々に変更して適用することが可能である。例えば、トリガは、上記の構成以外に、ピエゾ素子等の振動子と、該振動子に電圧を印加する電圧印加手段と、印加電圧を制御する制御手段とを備えた構成としてもよい。この構成では、振動子に電位差を与え、振動する振動子によって潜熱蓄熱材33に機械的な振動を連続的に与えることができる。
(Other embodiments)
The present invention can be applied with various modifications other than the above embodiment. For example, in addition to the above-described configuration, the trigger may include a vibrator such as a piezo element, a voltage applying unit that applies a voltage to the vibrator, and a control unit that controls the applied voltage. In this configuration, a potential difference is applied to the vibrator, and mechanical vibration can be continuously applied to the latent heat storage material 33 by the vibrating vibrator.

また、トリガは、潜熱蓄熱材33内に配される電極と、該電極への通電を制御する制御手段とを備えた構成としてもよい。この構成では、電極への通電によって潜熱蓄熱材33に電気的な衝撃を与えることができる。   Further, the trigger may be configured to include an electrode disposed in the latent heat storage material 33 and a control unit that controls energization to the electrode. In this configuration, an electrical shock can be applied to the latent heat storage material 33 by energizing the electrodes.

蓄熱材保持体13…は、蓄熱材保持体13…の外周面および外端面に断熱材を設けることによって、あるいは、蓄熱材保持体13…の外周壁部および外端壁部の内部に一または複数の空孔部を形成することによって、セル積層体(セル)11と接触しない面側に断熱性を備える構成としてもよい。かかる構成によれば、潜熱蓄熱材33による発熱の外部への放熱が有効に抑制されるので、セルへの伝熱効率が向上し、より短時間での暖機が可能となる。   The heat storage material holders 13... Are provided by providing heat insulating materials on the outer peripheral surface and outer end surface of the heat storage material holders 13, or inside the outer peripheral wall part and outer end wall part of the heat storage material holders 13. It is good also as a structure provided with heat insulation in the surface side which does not contact the cell laminated body (cell) 11 by forming a some void | hole part. According to such a configuration, since the heat generated by the latent heat storage material 33 is effectively suppressed from being released to the outside, the heat transfer efficiency to the cell is improved, and warm-up can be performed in a shorter time.

また、上記実施形態のように、蓄熱材保持体13…が導通性を有する場合には、蓄熱材保持体13…の配置は、端部セル12に接する位置、つまり、セル積層体11のセル積層方向端部に限定されることなく、セル積層体11の内部(セル積層方向内側)に設けることも可能である。つまり、配置上の制約がなくなり、蓄熱材保持体13を所望の位置に配置することが可能となる。   Moreover, when the heat storage material holders 13 are conductive as in the above-described embodiment, the arrangement of the heat storage material holders 13 is a position in contact with the end cell 12, that is, a cell of the cell stack 11. Without being limited to the end portion in the stacking direction, it can be provided inside the cell stack 11 (in the cell stacking direction). That is, there is no restriction on arrangement, and the heat storage material holder 13 can be arranged at a desired position.

さらに、燃料電池スタック10に供給された冷却水が、セル積層体11の各セルと両蓄熱材保持体13,13…とに並列的に導入される構成に代えて、まず両蓄熱材保持体13,13…のみに冷却水が導入され、両蓄熱保持体13,13…より導出された冷却水が各セルに並列的に導入されるように構成してもよい。かかる構成によれば、冷却水循環の初回から各セルが暖機されるので、より短時間での暖機が可能となる。   Furthermore, instead of the configuration in which the cooling water supplied to the fuel cell stack 10 is introduced in parallel to each cell of the cell stack 11 and the two heat storage material holders 13, 13. The cooling water may be introduced only into 13, 13... And the cooling water derived from the heat storage holders 13, 13... May be introduced into each cell in parallel. According to such a configuration, since each cell is warmed up from the first cooling water circulation, it is possible to warm up in a shorter time.

上記実施形態では、互いに隣接するセル間に介在する媒体流路として、セルの一部を構成するセパレータに形成された冷媒流路(セパレータ冷媒流路)を例示したが、このような構成に限らず、例えば、セルの一部を構成せずにセル間に介在する、言い換えれば、発電するセルとは別体に設けられる板状体(冷却プレート)に形成された媒体流路でもよい。   In the above-described embodiment, the refrigerant flow path (separator refrigerant flow path) formed in the separator constituting a part of the cell is illustrated as the medium flow path interposed between the cells adjacent to each other. For example, a medium flow path formed in a plate-like body (cooling plate) provided between cells without forming a part of the cells, in other words, may be provided separately from the cells that generate power.

(燃料電池車両)
上記いずれかの実施形態の燃料電池スタック10を搭載した燃料電池車両によれば、駐車場やガレージへの車両駐車時に外気温が低下しても、ヒータや燃料ガスを利用しない暖機が可能であるから、始動時に余計な電力を消費しなくてすみ、エネルギー効率の低下を抑制することができる。また、氷結状態からの始動を回避できるので、発電不能、発電不良、及びガス欠によるセル劣化も防止することができる。
(Fuel cell vehicle)
According to the fuel cell vehicle equipped with the fuel cell stack 10 of any one of the above embodiments, even if the outside air temperature decreases when the vehicle is parked in a parking lot or a garage, it is possible to warm up without using a heater or fuel gas. Therefore, it is not necessary to consume extra electric power at the time of starting, and a decrease in energy efficiency can be suppressed. In addition, since starting from an icing state can be avoided, it is possible to prevent cell deterioration due to power generation failure, power generation failure, and lack of gas.

本発明の第1実施形態に係る燃料電池スタックを備えた燃料電池システムの要部を示すシステム構成図。The system block diagram which shows the principal part of the fuel cell system provided with the fuel cell stack which concerns on 1st Embodiment of this invention. 図1に示す燃料電池スタックの正面図。The front view of the fuel cell stack shown in FIG. 図2に示す蓄熱材保持体の斜視図。The perspective view of the thermal storage material holding body shown in FIG. 同蓄熱材保持体の縦断面図。The longitudinal cross-sectional view of the thermal storage material holding body. 本発明の第2実施形態に係る燃料電池スタックにおける蓄熱材保持体の斜視図。The perspective view of the thermal storage material holding body in the fuel cell stack which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料電池スタックにおける蓄熱材保持体の斜視図。The perspective view of the thermal storage material holding body in the fuel cell stack which concerns on 3rd Embodiment of this invention. 本発明の第1実施例の効果を示すセル電圧測定結果。The cell voltage measurement result which shows the effect of 1st Example of this invention. 本発明の第2実施例の効果を示すセル電圧測定結果。The cell voltage measurement result which shows the effect of 2nd Example of this invention.

符号の説明Explanation of symbols

10…燃料電池スタック、11…セル積層体、12…端部セル、13,41,51…蓄熱材保持体、33…潜熱蓄熱材、34…トリガ、42…冷媒流路(媒体流路)、52…出力端子、100…制御部、T1,T2…温度センサ     DESCRIPTION OF SYMBOLS 10 ... Fuel cell stack, 11 ... Cell laminated body, 12 ... End cell, 13, 41, 51 ... Heat storage material holder, 33 ... Latent heat storage material, 34 ... Trigger, 42 ... Refrigerant flow path (medium flow path), 52 ... Output terminal, 100 ... Control unit, T1, T2 ... Temperature sensor

Claims (8)

膜−電極接合体とその両面に配されるセパレータとを有するセルが複数積層されてなるセル積層体を備えた燃料電池スタックであって、
相変化により発熱する潜熱蓄熱材を保持する蓄熱材保持体が前記セルと接するように設けられ、
前記蓄熱材保持体はその側面に、前記セルとの熱交換に用いられる熱交換媒体の一部を流通させる媒体流路を有し、前記熱交換媒体が当該蓄熱材保持体と前記セルとに並列的に供給可能であり、
前記媒体流路は、互いに隣接するセル間に介在する媒体流路と同程度の圧損となるように形成された、燃料電池スタック。
A fuel cell stack including a cell stack in which a plurality of cells having a membrane-electrode assembly and separators disposed on both sides thereof are stacked,
A heat storage material holding body that holds a latent heat storage material that generates heat due to a phase change is provided in contact with the cell,
The heat storage material holding body has a medium flow path through which a part of a heat exchange medium used for heat exchange with the cell is circulated, and the heat exchange medium is connected to the heat storage material holding body and the cell. Can be supplied in parallel,
The fuel cell stack , wherein the medium flow path is formed to have a pressure loss comparable to a medium flow path interposed between adjacent cells .
前記蓄熱材保持体は、潜熱蓄熱材の相変化を促すトリガをさらに保持する請求項1に記載の燃料電池スタック。   The fuel cell stack according to claim 1, wherein the heat storage material holder further holds a trigger that promotes a phase change of the latent heat storage material. 前記蓄熱材保持体は、セル積層方向端部に設けられている請求項1又は2に記載の燃料電池スタック。   The fuel cell stack according to claim 1 or 2, wherein the heat storage material holder is provided at an end portion in a cell stacking direction. 前記蓄熱材保持体が導通性を有する請求項1〜3のいずれかに記載の燃料電池スタック。   The fuel cell stack according to claim 1, wherein the heat storage material holder has conductivity. 前記蓄熱材保持体が出力端子を有する請求項1〜4のいずれかに記載の燃料電池スタック。   The fuel cell stack according to claim 1, wherein the heat storage material holder has an output terminal. 前記蓄熱材保持体は、セルと接触しない面側に断熱性を有する請求項1〜のいずれかに記載の燃料電池スタック。 The fuel cell stack according to any one of claims 1 to 5 , wherein the heat storage material holder has a heat insulating property on a surface side not in contact with the cell. 始動時にトリガにて潜熱蓄熱材の相変化を促す制御部を有する請求項1〜のいずれかに記載の燃料電池スタック。 The fuel cell stack according to any one of claims 1 to 6 , further comprising a control unit that promotes a phase change of the latent heat storage material by a trigger at the start. 前記制御部は、スタック温度が所定値以下の場合にのみ相変化を促す請求項に記載の燃料電池スタック。 The fuel cell stack according to claim 7 , wherein the control unit prompts a phase change only when the stack temperature is equal to or lower than a predetermined value.
JP2004348767A 2004-12-01 2004-12-01 Fuel cell stack Expired - Fee Related JP4761107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348767A JP4761107B2 (en) 2004-12-01 2004-12-01 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348767A JP4761107B2 (en) 2004-12-01 2004-12-01 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2006156298A JP2006156298A (en) 2006-06-15
JP4761107B2 true JP4761107B2 (en) 2011-08-31

Family

ID=36634295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348767A Expired - Fee Related JP4761107B2 (en) 2004-12-01 2004-12-01 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP4761107B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844797B2 (en) * 2004-12-27 2011-12-28 トヨタ自動車株式会社 Fuel cell stack warm-up device
JP2007299565A (en) * 2006-04-28 2007-11-15 Equos Research Co Ltd Fuel cell
DE102006050040B4 (en) * 2006-10-24 2017-06-29 Robert Bosch Gmbh Energy-autonomous pressure or touch sensor
DE102007033428A1 (en) * 2007-07-18 2009-01-22 Robert Bosch Gmbh Fuel cell system comprising a tempering agent comprising a phase change material
KR100994509B1 (en) * 2008-08-14 2010-11-16 주식회사 엑스에프씨 Fuel cell stack including Phase Change Meterials
JP5614727B2 (en) * 2011-02-10 2014-10-29 住友電気工業株式会社 Gas decomposition apparatus and gas decomposition system
JP5955673B2 (en) * 2012-07-13 2016-07-20 愛三工業株式会社 Air conditioner for vehicles
KR101290575B1 (en) 2012-12-26 2013-07-31 주식회사 엑스에프씨 Fuel cell stack including volume change material
CN105074985B (en) * 2013-02-27 2018-10-12 宝马股份公司 Fuel cell system
JP2018113214A (en) * 2017-01-13 2018-07-19 株式会社豊田自動織機 Fuel cell system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296017A (en) * 1992-04-20 1993-11-09 Nippondenso Co Ltd Engine oil heating device
JP3472796B2 (en) * 1999-12-27 2003-12-02 独立行政法人産業技術総合研究所 Heat storage tank, heat storage device, and heat storage and heat recovery method
JP4303899B2 (en) * 2001-07-30 2009-07-29 本田技研工業株式会社 Fuel cell stack and operation method thereof
JP4465945B2 (en) * 2002-04-12 2010-05-26 株式会社エクォス・リサーチ Fuel cell stack
JP2004327159A (en) * 2003-04-23 2004-11-18 Nissan Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2006156298A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US7662496B2 (en) Fuel cell cooling system and method for controlling circulation of cooling liquid in fuel cell
JP2004311218A (en) Warming-up device of fuel cell system
JP4761107B2 (en) Fuel cell stack
JP2004030979A (en) Fuel cell system
JP2008277017A (en) Heat exchange system and fuel cell
JP4533604B2 (en) Low temperature startup method for fuel cells
EP1510471A1 (en) Water storage device for fuel cell system and fuel cell system equipped with the same
JP4844797B2 (en) Fuel cell stack warm-up device
JP2003331886A (en) Fuel cell system
JP4501165B2 (en) Fuel cell system for vehicles
JP2007115463A (en) Fuel cell system
JP2009140614A (en) Fuel cell
JP4670316B2 (en) Fuel cell system
JP2008262752A (en) Fuel cell stack and its warming up method
JP2005259440A (en) Fuel cell system
JP5268371B2 (en) Fuel cell vehicle
JP4984546B2 (en) Fuel cell system
JP2005353327A (en) Electric automobile
JP2009218113A (en) Fuel cell system
JP2001266921A (en) Fuel cell system
JP2005032626A (en) Pure water tank for fuel cell power generation system
JP2009238628A (en) Fuel cell system
JP2007035392A (en) Fuel cell system
JP2010212120A (en) Fuel cell system
JP2006164670A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees