JP4760442B2 - Test method for optically anisotropic film - Google Patents
Test method for optically anisotropic film Download PDFInfo
- Publication number
- JP4760442B2 JP4760442B2 JP2006046576A JP2006046576A JP4760442B2 JP 4760442 B2 JP4760442 B2 JP 4760442B2 JP 2006046576 A JP2006046576 A JP 2006046576A JP 2006046576 A JP2006046576 A JP 2006046576A JP 4760442 B2 JP4760442 B2 JP 4760442B2
- Authority
- JP
- Japan
- Prior art keywords
- tan
- anisotropic film
- incident
- optically anisotropic
- phase difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、複雑なデータ処理を経ずに、容易な計算で、小数点以下3桁以上の屈折率異方性(屈折率の差)及び正確な屈折率値を求めることができる、光学異方性膜の試験方法に関するものである。 The present invention provides optical anisotropy capable of obtaining refractive index anisotropy (difference in refractive index) and an accurate refractive index value with 3 digits or more after the decimal point by an easy calculation without complicated data processing. The present invention relates to a method for testing a conductive film.
光の偏光状態を変化させることができる光学異方性膜は、位相差板、視野角補償板などとして液晶表示装置をはじめ様々な光学装置に用いられている。
この光学異方性膜を評価する方法として、例えば、特許文献1には、複数の波長の光を入射した際に発生する反射光強度の入射角依存性を測定する方法が提案されている。特許文献2には、反射光強度の入射角及び入射方位依存性から測定する方法が提案されている。
また、特許文献3には、直線偏光した入射光をレンズを用いて集光し、S偏光成分のみおよびP偏光成分のみのをもつ入射光による反射光強度の入射角および入射方位依存性を能率的に測定する方法が提案されている。しかしながら、これらの方法はパラメータを決定するために最小自乗法などのデータ処理が必要であり、計算に時間を要する上に、小数点以下3桁以上の屈折率異方性及び正確な屈折率値を求められない。
Optically anisotropic films capable of changing the polarization state of light are used in various optical devices such as liquid crystal display devices as retardation plates and viewing angle compensation plates.
As a method for evaluating this optically anisotropic film, for example, Patent Document 1 proposes a method of measuring the incident angle dependence of the intensity of reflected light generated when light having a plurality of wavelengths is incident. Patent Document 2 proposes a method of measuring from the dependence of the reflected light intensity on the incident angle and the incident azimuth.
In Patent Document 3, incident light that is linearly polarized is condensed using a lens, and the incident angle and incident azimuth dependence of the reflected light intensity due to incident light having only the S-polarized component and only the P-polarized component is efficiently managed. A method of measuring automatically has been proposed. However, these methods require data processing such as the least square method to determine the parameters, and it takes time to calculate. In addition, the refractive index anisotropy of 3 digits or more after the decimal point and the accurate refractive index value are set. It is not required.
特許文献4には、異方性薄膜に、一定の偏光状態の光を一定の角度で入射したときに発生する反射光の偏光状態の入射方位依存性を測定し、測定された反射光の偏光状態の位相差成分及び振幅比成分の入射方位に関するフーリエ係数を算出し、前記位相差成分の最大値と最小値の差と、前記振幅比成分の最大値と最小値の差を算出し、前記フーリエ係数及び前記各差に基づいて異方性薄膜を評価する方法が提案されている。しかし、この方法もフーリエ変換というデータ処理が必要であり、小数点以下3桁以上の屈折率異方性及び正確な屈折率値を求められない。 In Patent Document 4, the incident azimuth dependence of the polarization state of reflected light generated when light in a certain polarization state is incident on an anisotropic thin film at a certain angle, and the polarization of the measured reflected light is measured. Calculating a Fourier coefficient related to the incident direction of the phase difference component and the amplitude ratio component of the state, calculating a difference between the maximum value and the minimum value of the phase difference component, and calculating a difference between the maximum value and the minimum value of the amplitude ratio component, A method for evaluating an anisotropic thin film based on a Fourier coefficient and each difference has been proposed. However, this method also requires data processing called Fourier transform, and it is impossible to obtain a refractive index anisotropy and an accurate refractive index value of 3 digits or more after the decimal point.
本発明の目的は、複雑なデータ処理を経ずに、容易な計算で、小数点以下3桁以上の屈折率異方性及び正確な屈折率値を求めることができる、光学異方性膜の試験方法を提供することにある。 It is an object of the present invention to test an optically anisotropic film that can obtain a refractive index anisotropy and an accurate refractive index value of 3 digits or more after the decimal point by an easy calculation without complicated data processing. It is to provide a method.
本発明者は、上記目的を達成するために検討した結果、光学異方性膜について、波長λの光を入射角θOで入射したときの透過位相差ΔOを測定し、前記波長λの光を入射角θTで入射したときの透過位相差ΔTを測定し、さらに、前記波長λの光を入射角θRで入射したときの反射振幅比角ΨR又は透過振幅比角ΨTのいずれか一方を測定し、そして、測定された透過位相差ΔOと、透過位相差ΔTと、反射振幅比角ΨR又は透過振幅比角ΨTのいずれか一方とに基づくことによって、単純な代数計算で、該光学異方性膜の屈折率nx、ny、及びnzが容易に求められることを見出した。本発明はこの知見に基づいて完成したものである。 The present inventor has investigated in order to achieve the above object, the optically anisotropic film, and measuring the transmission phase difference delta O when the light of wavelength λ at an incident angle theta O, the wavelength λ the transmission phase difference delta T when the light at an incident angle theta T measured, further, the wavelength reflection amplitude ratio angle when light at an incident angle theta R of lambda [psi R or transmission amplitude ratio angle [psi T measured either, and the measured transmission phase difference delta O, and transmission phase difference delta T, by based on either one bets reflection amplitude ratio angle [psi R or transmission amplitude ratio angle [psi T, simple algebraic calculations, it was found that the refractive index of the optically anisotropic film n x, n y, and n z can be easily determined. The present invention has been completed based on this finding.
かくして本発明によれば、
(1) 光学異方性膜に、波長λの光を入射角θO1で入射したときの透過位相差ΔO1を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θT1で入射したときの透過位相差ΔT1を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θR1で入射したときの反射振幅比角ΨR1を測定する工程と、
測定された透過位相差ΔO1、透過位相差ΔT1、及び反射振幅比角ΨR1に基づいて、該光学異方性膜の屈折率を求める工程と、
を含んでなる光学異方性膜の試験方法。
Thus, according to the present invention,
(1) the optically anisotropic film, a step of measuring the transmission phase difference delta O1 when the light of wavelength λ at an incident angle theta O1,
The optically anisotropic film, a step of measuring the transmission phase difference delta T1 when the light of the wavelength λ at an incident angle theta T1,
Measuring a reflection amplitude ratio angle Ψ R1 when light having the wavelength λ is incident on the optical anisotropic film at an incident angle θ R1 ;
The measured transmission phase difference delta O1, transmission phase difference delta T1, and on the basis of the reflection amplitude ratio angle [psi R1, a step of determining the refractive index of the optically anisotropic film,
A method for testing an optically anisotropic film comprising:
(2) 光学異方性膜に、波長λの光を入射角θO2で入射したときの透過位相差ΔO2を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θT2で入射したときの透過位相差ΔT2測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θR2で入射したときの透過振幅比角ΨT2とを測定する工程と、
測定された透過位相差ΔO2、透過位相差ΔT2、及び透過振幅比角ΨT2に基づいて、該光学異方性膜の屈折率を求める工程と、
を含んでなる光学異方性膜の試験方法。
(3) 前記(1)又は(2)に記載の試験方法を用いることを含む光学異方性膜を製造する方法。
が提供される。
(2) the optically anisotropic film, a step of measuring the transmission phase difference delta O2 when the light of wavelength λ at an incident angle theta O2,
The optically anisotropic film, comprising the steps of: transmitting a phase difference delta T2 measurement when the incident light of the wavelength λ at an incident angle theta T2,
Measuring a transmission amplitude ratio angle Ψ T2 when light having the wavelength λ is incident on the optical anisotropic film at an incident angle θ R2 ;
Obtaining a refractive index of the optically anisotropic film based on the measured transmission phase difference Δ O2 , transmission phase difference Δ T2 , and transmission amplitude ratio angle Ψ T2 ;
A method for testing an optically anisotropic film comprising:
(3) A method for producing an optically anisotropic film, comprising using the test method according to (1) or (2).
Is provided.
本発明の光学異方性膜の試験方法によれば、複雑なデータ処理を経ずに、容易な計算で、小数点以下3桁以上の屈折率異方性及び正確な屈折率値を求めることができる、 According to the test method for an optically anisotropic film of the present invention, it is possible to obtain a refractive index anisotropy and an accurate refractive index value of three decimal places or more by an easy calculation without complicated data processing. it can,
本発明の試験法が適用できる、光学異方性膜は、光を透過する性質のあるものであれば、特に限定されない。光学異方性膜は、通常、膜厚が20〜250μm、好ましくは40〜180μmである。光学異方性膜は、通常、薄いので、互いに直交するx軸及びy軸を膜面に平行な方向に、z軸を膜に垂直(厚さ)な方向にとり、そして、nxを光学異方性膜の面内遅相軸方向の屈折率、nyを光学異方性膜の面内遅相軸に面内で直交する方向の屈折率、nzを光学異方性膜の厚み方向の屈折率と定義している。また、本発明の試験法に用いる光は、レーザー光のように細い平行光線であることが好ましい。光学異方性膜に照射される光の範囲を狭くでき、より正確な試験が可能になる。
光学異方性膜の具体例としては、透明樹脂フィルムを延伸することによって得られる位相差板(位相差フィルム)、液晶などの光学異方性物質を塗布した膜、極性基を有する化合物を塗布しラビング処理した膜(配向膜など)などが挙げられる。
The optically anisotropic film to which the test method of the present invention can be applied is not particularly limited as long as it has a property of transmitting light. The optically anisotropic film usually has a thickness of 20 to 250 μm, preferably 40 to 180 μm. Since the optically anisotropic film is usually thin, the x axis and y axis perpendicular to each other are taken in a direction parallel to the film surface, the z axis is taken in a direction perpendicular to the film (thickness), and nx is optically different. plane slow axis direction of the refractive index of the isotropic film, the refractive index in the direction orthogonal to n y in a plane in the in-plane slow axis of the optically anisotropic film, the thickness direction of the n z optically anisotropic film Is defined as the refractive index. Moreover, it is preferable that the light used for the test method of this invention is a thin parallel light beam like a laser beam. The range of light irradiated to the optical anisotropic film can be narrowed, and a more accurate test can be performed.
Specific examples of the optically anisotropic film include a retardation plate (retardation film) obtained by stretching a transparent resin film, a film coated with an optically anisotropic substance such as liquid crystal, and a compound having a polar group. And a rubbing-treated film (such as an alignment film).
本発明の第一の光学異方性膜の試験法は、光学異方性膜に、波長λの光を入射角θO1で入射したときの透過位相差ΔO1を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θT1で入射したときの透過位相差ΔT1を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θR1で入射したときの反射振幅比角ΨR1を測定する工程と、
測定された透過位相差ΔO1、透過位相差ΔT1、及び反射振幅比角ΨR1に基づいて、該光学異方性膜の屈折率を求める工程と、を含んでなるものである。
Test Method of the first optically anisotropic film of the present invention, the optically anisotropic film, a step of measuring the transmission phase difference delta O1 when the light of wavelength λ at an incident angle theta O1,
The optically anisotropic film, a step of measuring the transmission phase difference delta T1 when the light of the wavelength λ at an incident angle theta T1,
Measuring a reflection amplitude ratio angle Ψ R1 when light having the wavelength λ is incident on the optical anisotropic film at an incident angle θ R1 ;
And calculating the refractive index of the optically anisotropic film based on the measured transmission phase difference Δ O1 , transmission phase difference Δ T1 , and reflection amplitude ratio angle Ψ R1 .
透過位相差ΔO1及びΔT1は、エリプソメータなどの偏光解析装置、複屈折解析装置によって、測定することができる。
光学異方性膜に、波長λの光を入射角θO1で入射したときの透過位相差ΔO1は、入射面がxz面であるときに、式(1)で表すことができる。
ΔO1=(nx(1−ξO1 2/nz 2)0.5
−ny(1−ξO1 2/ny 2)0.5)×d 式(1)
ただし、ξO1=sinθO1である。
また、dは膜厚、nxは光学異方性膜の面内遅相軸方向の屈折率、nyは光学異方性膜の面内遅相軸に面内で直交する方向の屈折率、nzは光学異方性膜の厚み方向の屈折率である。
特に、入射角θO1が0°のとき、ΔO1は、(nx−ny)×d となる。
Transmission phase difference delta O1 and delta T1 is ellipsometer such as an ellipsometer, by birefringence analyzer can be measured.
The optically anisotropic film, transmission phase difference delta O1 when the light of wavelength λ at an incident angle theta O1, when the incident plane is xz plane can be expressed by Equation (1).
Δ O1 = (n x (1 -ξ O1 2 / n z 2) 0.5
-N y (1-ξ O1 2 / n y 2) 0.5) × d (1)
However, ξ O1 = sin θ O1 .
Further, d thickness, n x plane slow axis direction of the refractive index of the optically anisotropic film, n y is a refractive index in the direction perpendicular in the plane in the in-plane slow axis of the optically anisotropic film , Nz is the refractive index in the thickness direction of the optically anisotropic film.
In particular, when the incident angle theta O1 is 0 °, delta O1 becomes (n x -n y) × d .
同様に、光学異方性膜に、波長λの光を入射角θTで入射したときの透過位相差ΔTは、入射面がxz面であるときに、式(2)で表すことができる。
ΔT1=(nx(1−ξT1 2/nz 2)0.5
−ny(1−ξT1 2/ny 2)0.5)×d 式(2)
ただし、ξT1=sinθT1である。
Similarly, the optically anisotropic film, the transmission phase difference delta T when the light of wavelength λ is incident at an incident angle theta T, when the incident plane is xz plane can be expressed by Equation (2) .
Δ T1 = (n x (1 -ξ T1 2 / n z 2) 0.5
-N y (1-ξ T1 2 / n y 2) 0.5) × d (2)
However, ξ T1 = sin θ T1 .
透過位相差ΔO1、及び透過位相差ΔT1を求める際の、入射角θO1及びθT1は異なるものであれば、特に制限されない。測定精度を高めるために、入射角θO1は25度以下にすることが好ましく、10度以下にすることがより好ましく、0度にすることが特に好ましい。また、入射角θT1は30度以上にすることが好ましく、40度以上にすることがより好ましい。なお、入射面がyz面であるときにも、透過位相差ΔO1及び透過位相差ΔT1について同様な式を求めることができるので、入射面に応じて、透過位相差ΔO1及び透過位相差ΔT1の式を選択する。 There are no particular limitations on the incident angles θ O1 and θ T1 when the transmission phase difference Δ O1 and the transmission phase difference Δ T1 are determined. In order to increase the measurement accuracy, the incident angle θ O1 is preferably 25 degrees or less, more preferably 10 degrees or less, and particularly preferably 0 degrees. Further, the incident angle θ T1 is preferably 30 degrees or more, and more preferably 40 degrees or more. Even when the incident plane is the yz plane, it is possible to obtain the same expression for the transmission phase difference delta O1 and transmission phase difference delta T1, depending on the incident surface, the transmission phase difference delta O1 and transmission phase difference to select the equation of Δ T1.
反射振幅比角ΨR1は、偏光解析装置によって測定することができる。反射振幅比角の測定においては、光学異方性膜の表面における反射光だけを測定したいので、光学異方性膜の裏面における反射を抑えるために、膜裏側に光吸収材や光拡散材を設けることが好ましい。
該光学異方性膜に、前記波長λの光を入射角θR1で入射したときの反射振幅比角ΨR1は、tan−1|Rp/Rs|で定義される値である。Rpはp偏光の複素振幅反射率であり、Rsはs偏光の複素振幅反射率である。
s偏光にとって光学異方性膜は等方性に感じられるので、s偏光の反射は、フレネルの反射係数の式がそのまま適用できる。
一方p偏光にとって光学異方性膜は異方性を有する結晶に感じられるので、p偏光の反射はMaxwellの電磁波理論の式を適用する。
The reflection amplitude ratio angle Ψ R1 can be measured by an ellipsometer. In the measurement of the reflection amplitude ratio angle, we want to measure only the reflected light on the surface of the optical anisotropic film, so in order to suppress reflection on the back surface of the optical anisotropic film, a light absorbing material or light diffusing material is installed on the back side It is preferable to provide it.
The reflection amplitude ratio angle Ψ R1 when the light of wavelength λ is incident on the optically anisotropic film at an incident angle θ R1 is a value defined by tan −1 | R p / R s |. R p is the complex amplitude reflectivity of p-polarized light, and R s is the complex amplitude reflectivity of s-polarized light.
Since the optically anisotropic film feels isotropic for s-polarized light, the Fresnel reflection coefficient equation can be applied to s-polarized light as it is.
On the other hand, since the optically anisotropic film is felt as an anisotropic crystal for p-polarized light, Maxwell's electromagnetic wave theory formula is applied to the reflection of p-polarized light.
先ず、Maxwell方程式から異方性膜を伝播するそれぞれの部分波の伝播ベクトルを求め、その部分波の偏光ベクトルを求める。次いで空気−異方性膜界面に境界条件を適用して複素振幅反射率Rpを求める。その結果、tanΨR1は、入射面がxz面であるときに、式(3)で表すことができる。
tanΨR1=|((ξp+αξR)cosθR1−1)×(cosθR1+ξs))
/((ξp+αξR)cosθR1+1)×(cosθR1+ξs))| 式(3)
ただし、ξR=sinθR1、 ξs=ny(1−ξR 2/ny 2)0.5、
ξp=nx(1−ξR 2/nz 2)0.5、
α=(nx 2−ξp 2−ξRξp)/(ξR 2+ξRξp−nz 2)
である。なお、測定は通常、空気中で行われるので、光学異方性膜の周囲の屈折率niは1である。
First, the propagation vector of each partial wave propagating through the anisotropic film is obtained from the Maxwell equation, and the polarization vector of the partial wave is obtained. Next, the complex amplitude reflectance R p is obtained by applying boundary conditions to the air-anisotropic film interface. As a result, tan Ψ R1 can be expressed by Expression (3) when the incident surface is the xz plane.
tan Ψ R1 = | ((ξ p + αξ R ) cos θ R1 −1) × (cos θ R1 + ξ s ))
/ ((Ξ p + αξ R ) cos θ R1 +1) × (cos θ R1 + ξ s )) | Equation (3)
However, ξ R = sinθ R1, ξ s = n y (1-ξ R 2 / n y 2) 0.5,
ξ p = n x (1- ξ R 2 / n z 2) 0.5,
α = (n x 2 -ξ p 2 -ξ R ξ p) / (ξ R 2 + ξ R ξ p -n z 2)
It is. The measurement is usually so performed in air, the refractive index n i of the surrounding of the optically anisotropic film is 1.
反射振幅比角ΨR1を求める際の、入射角θR1は、特に制限されないが、測定精度を高めるために、入射角θR1を30度以上にすることが好ましく、40度以上にすることがより好ましい。また、θR1は、本発明の光学異方性膜のBrewster角にすると測定精度が最も高くなる。なお、入射面がyz面であるときにも、反射振幅比角ΨR1について同様な式を求めることができるので、入射面に応じて、反射振幅比角ΨR1の式を選択する。 The incident angle θ R1 for obtaining the reflection amplitude ratio angle Ψ R1 is not particularly limited, but the incident angle θ R1 is preferably set to 30 degrees or more, and is preferably set to 40 degrees or more in order to improve measurement accuracy. More preferred. Further, when θ R1 is the Brewster angle of the optically anisotropic film of the present invention, the measurement accuracy becomes the highest. Note that when the incident plane is the yz plane also, it is possible to obtain the same expression for the reflection amplitude ratio angle [psi R1, depending on the incident surface, to select an expression of reflection amplitude ratio angle [psi R1.
膜厚dは、マイクロメーター等によって測定することができる。そして、上記の式(1)、式(2)、及び式(3)の連立方程式を解くことによって、nx、ny、nzを代数計算によって算出することができる。 The film thickness d can be measured with a micrometer or the like. Then, n x , n y , and nz can be calculated by algebraic calculation by solving the simultaneous equations of the above formulas (1), (2), and (3).
透過位相差ΔO1、透過位相差ΔT1、及び反射振幅比角ΨR1を、入射光の波長λを分光装置等で切り替えて、測定することによって、それぞれの波長依存性がわかる。例えば、図1、図2及び図3に示すような、透過位相差ΔO1、透過位相差ΔT1、及び反射振幅比角ΨR1の波長依存性が求められる。
そして、上記連立方程式を入射光の波長毎に解くことによって、波長毎の屈折率nx、ny、nzを求めることができる。それによって図4に示すような、屈折率の波長依存性が求められる。
By measuring the transmission phase difference Δ O1 , the transmission phase difference Δ T1 , and the reflection amplitude ratio angle Ψ R1 by switching the wavelength λ of the incident light with a spectroscopic device or the like, the respective wavelength dependency can be understood. For example, the wavelength dependence of the transmission phase difference Δ O1 , the transmission phase difference Δ T1 , and the reflection amplitude ratio angle Ψ R1 as shown in FIGS.
Then, by solving the simultaneous equations for each wavelength of incident light, the refractive indexes nx , ny , and nz for each wavelength can be obtained. Thereby, the wavelength dependency of the refractive index as shown in FIG. 4 is required.
本発明の第二の光学異方性膜の試験法は、光学異方性膜に、波長λの光を入射角θO2で入射したときの透過位相差ΔO2を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θT2で入射したときの透過位相差ΔT2測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θR2で入射したときの透過振幅比角ΨT2とを測定する工程と、
測定された透過位相差ΔO2、透過位相差ΔT2、及び透過振幅比角ΨT2に基づいて、該光学異方性膜の屈折率を求める工程と、を含んでなるものである。
Test Method for second optically anisotropic film of the present invention, the optically anisotropic film, a step of measuring the transmission phase difference delta O2 when the light of wavelength λ at an incident angle theta O2,
The optically anisotropic film, comprising the steps of: transmitting a phase difference delta T2 measurement when the incident light of the wavelength λ at an incident angle theta T2,
Measuring a transmission amplitude ratio angle Ψ T2 when light having the wavelength λ is incident on the optical anisotropic film at an incident angle θ R2 ;
And calculating the refractive index of the optically anisotropic film based on the measured transmission phase difference Δ O2 , transmission phase difference Δ T2 , and transmission amplitude ratio angle Ψ T2 .
透過位相差ΔO2及びΔT2は、エリプソメータなどの偏光解析装置、複屈折解析装置によって、測定することができる。
光学異方性膜に、波長λの光を入射角θO2で入射したときの透過位相差ΔO2は、入射面がxz面であるときに、式(4)で表すことができる。
ΔO2=(nx(1−ξO2 2/nz 2)0.5
−ny(1−ξO2 2/ny 2)0.5)×d 式(4)
ただし、ξO2=sinθO2である。
また、dは膜厚、nxは光学異方性膜の面内遅相軸方向の屈折率、nyは光学異方性膜の面内遅相軸に面内で直交する方向の屈折率、nzは光学異方性膜の厚み方向の屈折率である。
特に、入射角θO2が0°のとき、ΔO2は、(nx−ny)×d となる。
Transmission phase difference delta O2 and delta T2 is ellipsometer such as an ellipsometer, by birefringence analyzer can be measured.
The optically anisotropic film, transmission phase difference delta O2 when the light of wavelength λ at an incident angle theta O2, when the incident plane is xz plane can be expressed by Equation (4).
Δ O2 = (n x (1 -ξ O2 2 / n z 2) 0.5
-N y (1-ξ O2 2 / n y 2) 0.5) × d Equation (4)
However, ξ O2 = sin θ O2 .
Further, d thickness, n x plane slow axis direction of the refractive index of the optically anisotropic film, n y is a refractive index in the direction perpendicular in the plane in the in-plane slow axis of the optically anisotropic film , Nz is the refractive index in the thickness direction of the optically anisotropic film.
In particular, when the incident angle theta O2 is 0 °, delta O2 becomes (n x -n y) × d .
同様に、光学異方性膜に、波長λの光を入射角θT2で入射したときの透過位相差ΔT2は、入射面がxz面であるときに、式(5)で表すことができる。
ΔT2=(nx(1−ξT2 2/nz 2)0.5
−ny(1−ξT2 2/ny 2)0.5)×d 式(5)
ただし、ξT2=sinθT2である。
Similarly, the optically anisotropic film, transmission phase difference delta T2 when the light at an incident angle theta T2 of wavelength λ, when the incident plane is xz plane can be represented by the formula (5) .
Δ T2 = (n x (1 -ξ T2 2 / n z 2) 0.5
-N y (1-ξ T2 2 / n y 2) 0.5) × d Formula (5)
However, ξ T2 = sin θ T2 .
透過位相差ΔO2、及び透過位相差ΔT2を求める際の、入射角θO2及びθT2は異なるものであれば、特に制限されない。測定精度を高めるために、入射角θO2は25度以下にすることが好ましく、10度以下にすることがより好ましく、0度にすることが特に好ましい。また入射角θT2は30度以上にすることが好ましく、40度以上にすることがより好ましい。なお、入射面がyz面であるときにも、透過位相差ΔO2及び透過位相差ΔT2について同様な式を求めることができるので、入射面に応じて、透過位相差ΔO2及び透過位相差ΔT2の式を選択する。 There are no particular limitations on the incident angles θ O2 and θ T2 when the transmission phase difference Δ O2 and the transmission phase difference Δ T2 are determined. In order to increase the measurement accuracy, the incident angle θ O2 is preferably 25 degrees or less, more preferably 10 degrees or less, and particularly preferably 0 degrees. In addition, the incident angle θ T2 is preferably 30 degrees or more, and more preferably 40 degrees or more. Even when the incident plane is the yz plane, it is possible to obtain the same expression for the transmission phase difference delta O2 and transmission phase difference delta T2, in response to the incident surface, the transmission phase difference delta O2 and transmission phase difference to select the equation of Δ T2.
透過振幅比角ΨT2は、偏光解析装置によって測定することができる。
波長λの光を入射角θR2で入射したときの透過振幅比角ΨT2はtan−1|TP1・TP2/TS1・TS2|で定義される値である。すなわち、tanΨT2は式(6)で表される。
tanΨT2=|TP1・TP2/TS1・TS2| 式(6)
なお、入射面がxz面であるときに、s偏光に対して光学異方性膜は等方性に感じられるので、TS1及びTS2は、フレネルの式に従って、次式で表される。
TS1=2nicosθR2
/(nicosθR2+ny(1−(nisinθR2/ny)2)0.5)
TS2=2ny(1−(nisinθR2/ny)2)0.5
/(ny(1−(nisinθR2/ny)2)0.5+nicosθR2)
The transmission amplitude ratio angle Ψ T2 can be measured by an ellipsometer.
The transmission amplitude ratio angle Ψ T2 when light of wavelength λ is incident at an incident angle θ R2 is a value defined by tan −1 | T P1 · T P2 / T S1 · T S2 |. That is, tan Ψ T2 is expressed by Expression (6).
tan Ψ T2 = | T P1 · T P2 / T S1 · T S2 | Equation (6)
Note that when the incident surface is the xz plane, the optically anisotropic film is felt isotropic with respect to the s-polarized light. Therefore, T S1 and T S2 are expressed by the following equations according to the Fresnel equation.
T S1 = 2n i cos θ R2
/ (N i cosθ R2 + n y (1- (n i sinθ R2 / n y) 2) 0.5)
T S2 = 2n y (1- ( n i sinθ R2 / n y) 2) 0.5
/ (N y (1- (n i sinθ R2 / n y) 2) 0.5 + n i cosθ R2)
一方、入射面がxz面であるときに、p偏光に対して光学異方性膜は異方性に感じれらるので、結晶光学の理論とMaxwellの電磁波理論を適用する。次いで、空気−異方性膜界面における境界条件を考慮する。その結果、TP1及びTP2は、次式で表される。
TP1=[(ξz1 (r)−ξz1 (i))−ξx(tanαr1+tanαi1)]
/[(ξz1 (r)−ξz1 (t))−ξx(tanαr1+tanαt1)]
×[(1+tan2αt1)/(1+tan2αi1)]0.5
但し、ξx=nisinθR2、ξz1 (i)=nicosθR2、
ξz1 (r)=−nicosθR2、
ξz1 (t)=nx(1−ξx 2/nz 2)0.5、
tanαi1=tanθR2、tanαr1=tanθR2、
tanαt1=−ξxξz1 (t)/(ξx 2−nz 2) 、である。
On the other hand, when the incident surface is the xz plane, the optically anisotropic film feels anisotropic with respect to the p-polarized light, so the crystal optics theory and Maxwell's electromagnetic wave theory are applied. Next, boundary conditions at the air-anisotropic film interface are considered. As a result, T P1 and T P2 are expressed by the following equations.
T P1 = [(ξ z1 (r) −ξ z1 (i) ) −ξ x (tan α r1 + tan α i1 )]
/ [([Xi] z1 (r)- [xi] z1 (t) )-[ xi ] x (tan [alpha] r1 + tan [alpha] t1 )]
× [(1 + tan 2 α t1 ) / (1 + tan 2 α i1 )] 0.5
Where ξ x = n i sin θ R2 , ξ z1 (i) = n i cos θ R2 ,
ξ z1 (r) = −n i cos θ R2 ,
ξ z1 (t) = n x (1-ξ x 2 / n z 2) 0.5,
tanα i1 = tanθ R2 , tanα r1 = tanθ R2 ,
tanα t1 = -ξ x ξ z1 ( t) / (ξ x 2 -n z 2), it is.
TP2=[(ξz2 (r)−ξz2 (i))−ξx(tanαr2+tanαi2)]
/[(ξz2 (r)−ξz2 (t))−ξx(tanαr2+tanαt2)]
×[(1+tan2αt2)/(1+tan2αi2)]0.5、
但し、ξz2 (i)=nx(1−ξx 2/nz 2)0.5、ξz2 (r)=−ξz2 (i)、
ξz2 (t)=nicosθR2、
tanαi2=−ξxξz2 (i)/(ξx 2−nz 2)、
tanαr2=ξxξz2 (r)/(ξx 2−nz 2)、
tanαt2=tanθR2 、である。なお、測定は通常、空気中で行われるので、光学異方性膜の周囲の屈折率niは1である。
T P2 = [(ξ z2 ( r) -ξ z2 (i)) -ξ x (tanα r2 + tanα i2)]
/ [([Xi] z2 (r)- [xi] z2 (t) )-[ xi ] x (tan [alpha] r2 + tan [alpha] t2 )]
× [(1 + tan 2 α t2 ) / (1 + tan 2 α i2 )] 0.5 ,
However, ξ z2 (i) = n x (1-ξ x 2 / n z 2) 0.5, ξ z2 (r) = -ξ z2 (i),
ξ z2 (t) = n i cos θ R2 ,
tanα i2 = -ξ x ξ z2 ( i) / (ξ x 2 -n z 2),
tanα r2 = ξ x ξ z2 ( r) / (ξ x 2 -n z 2),
tan α t2 = tan θ R2 . The measurement is usually so performed in air, the refractive index n i of the surrounding of the optically anisotropic film is 1.
透過振幅比角ΨT2を求める際の、入射角θR2は、特に制限されないが、測定精度を高めるために、入射角θR2を30度以上にすることが好ましく、40度以上にすることがより好ましく、60度以上にすることが特に好ましい。なお、入射面がyz面であるときにも、反射振幅比角ΨT2について同様な式を求めることができるので、入射面に応じて、透過振幅比角ΨT2の式を選択する。 The incident angle θ R2 for obtaining the transmission amplitude ratio angle Ψ T2 is not particularly limited. However, in order to improve measurement accuracy, the incident angle θ R2 is preferably set to 30 degrees or more, and preferably set to 40 degrees or more. More preferably, it is particularly preferably 60 degrees or more. Even when the incident plane is the yz plane, a similar expression can be obtained for the reflection amplitude ratio angle Ψ T2 , so the transmission amplitude ratio angle Ψ T2 is selected according to the incident plane.
膜厚dは、マイクロメーター等によって測定することができる。そして、上記の式(4)、式(5)、及び式(6)の連立方程式を解くことによって、nx、ny、nzを代数計算によって算出することができる。 The film thickness d can be measured with a micrometer or the like. Then, n x , n y , and nz can be calculated by algebraic calculation by solving the simultaneous equations of the above equations (4), (5), and (6).
透過位相差ΔO2、透過位相差ΔT2、及び透過振幅比角ΨT2を、入射光の波長λを分光装置等によって切り替えて、測定することによって、それぞれの波長依存性がわかる。そして、上記連立方程式を入射光の波長毎に解くことによって、波長毎の屈折率nx、ny、nzを求めることができる。 By measuring the transmission phase difference Δ O2 , the transmission phase difference Δ T2 , and the transmission amplitude ratio angle Ψ T2 by switching the wavelength λ of the incident light with a spectroscopic device or the like, the respective wavelength dependence can be understood. Then, by solving the simultaneous equations for each wavelength of incident light, the refractive indexes nx , ny , and nz for each wavelength can be obtained.
以上のように、本発明の試験方法によれば、少なくとも二つの入射角における透過光位相差を測定し、少なくとも一つの入射角における透過振幅比角又は反射振幅比角を測定し、その値に基づいて、最小自乗法などの複雑なデータ処理をせずに、代数幾何学的な計算をするだけで、光学異方性膜の屈折率異方性及び3方向の屈折率を正確に求めることができる。 As described above, according to the test method of the present invention, the transmitted light phase difference at at least two incident angles is measured, the transmitted amplitude ratio angle or the reflected amplitude ratio angle at at least one incident angle is measured, and the value is obtained. Based on this, the refractive index anisotropy of the optically anisotropic film and the refractive index in the three directions can be accurately obtained only by performing algebraic geometric calculation without performing complicated data processing such as the method of least squares. Can do.
本発明の光学異方性膜の製造方法は、前記試験方法を用いることを含む製法である。
透明樹脂を押出成形法や溶液キャスト成形法などのよって成膜する方法;さらに延伸をする方法;液晶などの光学異方性物質を塗布する方法などの光学異方性膜の製造方法においては、所望の屈折率異方性及び屈折率をもつ光学異方性膜を得るために、製造工程の諸条件、例えば、温度、圧力、膜厚、成膜速度、粘度などの条件を変更し、屈折率等が所望の値に近づくように、自動又は手動でフィードバック制御している。そして、このフィードバック制御に必要な屈折率異方性及び屈折率の正確な値を求めるために本発明の試験方法が用いられるのである。
The manufacturing method of the optically anisotropic film of the present invention is a manufacturing method including using the test method.
In a method for producing an optically anisotropic film, such as a method of forming a transparent resin by an extrusion molding method or a solution cast molding method; a method of further stretching; a method of applying an optically anisotropic substance such as liquid crystal; In order to obtain an optically anisotropic film having a desired refractive index anisotropy and refractive index, various conditions of the manufacturing process, for example, conditions such as temperature, pressure, film thickness, film forming speed, viscosity, etc. are changed and refraction is performed. Feedback control is performed automatically or manually so that the rate or the like approaches a desired value. Then, the test method of the present invention is used to obtain the refractive index anisotropy and the accurate value of the refractive index necessary for this feedback control.
波長550nmでの屈折率が1.533の光学等方性プラスチック材料を横延伸して、平均膜厚43μmのフィルムを得た、このフィルムの屈折率nx,ny,nzを本発明の試験法を用いて試験を行なった。透過位相差及び反射振幅比角の測定には分光エリプソメータ(M−2000、ジェー・エー・ウーラム社製)を使用した。
最初にフィルムの光学主軸を測定装置の座標系xyz(実験座標系)と一致させるようにフィルムをセットした。
垂直入射(入射角0度)の条件で、可視光線領域の波長λに対する透過位相差ΔOを測定した。結果を図1に示した。
Refractive index at a wavelength of 550nm is optically isotropic plastic material 1.533 and transverse stretching, to obtain a film having an average thickness of 43 .mu.m, of the present invention the refractive indices n x of the film, n y, n z The test was conducted using the test method. A spectroscopic ellipsometer (M-2000, manufactured by JA Woollam Co., Ltd.) was used to measure the transmission phase difference and the reflection amplitude ratio angle.
First, the film was set so that the optical principal axis of the film coincided with the coordinate system xyz (experimental coordinate system) of the measuring apparatus.
Under the condition of normal incidence (incidence angle 0 °) was measured transmission phase difference delta O with respect to the wavelength λ in the visible light region. The results are shown in FIG.
フィルムを回転して入射角60度の条件(入射面がxz面であった)に設置し、可視光線領域の波長λに対する透過位相差ΔTを測定した。結果を図2に示した。 Film was placed to rotate by the incident angle of 60 degrees conditions (incident surface was xz plane), and measuring the transmission phase difference delta T for the wavelength λ in the visible light region. The results are shown in FIG.
裏反射の影響を除去するために、フィルムの裏面に黒ビニールテープを貼り付けた。フィルムを入射角70度の条件(入射面がxz面であった)に設置し、可視光線領域の波長λに対する反射振幅比角ΨRを測定した。結果を図3に示した。 In order to remove the influence of back reflection, black vinyl tape was attached to the back of the film. The film was placed under conditions of an incident angle of 70 degrees (the incident surface was the xz plane), and the reflection amplitude ratio angle Ψ R with respect to the wavelength λ in the visible light region was measured. The results are shown in FIG.
ΔO、ΔT、及びΨRを測定したフィルムの厚さをマイクロメーターで測定した。膜厚は43.0μmであった。 The film thickness from which Δ O , Δ T , and Ψ R were measured was measured with a micrometer. The film thickness was 43.0 μm.
最後に、図1、図2、及び図3に示した測定値ΔO、ΔT、ΨRを、式(1)、式(2)、式(3)に代入し、nx,ny,nzを算出した。結果を図4に示した。 Finally, FIGS. 1, 2, and measurements delta O shown in FIG. 3, delta T, the [psi R, equation (1), formula (2) are substituted into equation (3), n x, n y , Nz were calculated. The results are shown in FIG.
実施例1において、入射角60度の透過位相差ΔTを測定するのと同時に、透過振幅比角ΨTを測定した。結果を図5に示した。
ΔO、ΔT、及びΨTを測定したフィルムの厚さをマイクロメーターで測定した。膜厚は43.0μmであった。
In Example 1, at the same time as measuring the transmission phase difference delta T of the incident angle of 60 degrees was measured transmission amplitude ratio angle [psi T. The results are shown in FIG.
The thickness of the film from which Δ O , Δ T , and Ψ T were measured was measured with a micrometer. The film thickness was 43.0 μm.
最後に、図1、図2、及び図5に示した測定値ΔO、ΔT、ΨTを、式(4)、式(5)、式(6)に代入し、nx,ny,nzを算出した。結果を図6に示した。 Finally, FIGS. 1, 2, and measurements delta O shown in FIG. 5, delta T, the [psi T, equation (4), equation (5) are substituted into equation (6), n x, n y , Nz were calculated. The results are shown in FIG.
以上の結果から、各波長におけるΔO、ΔT、ΨRを測定し、その値を式(1)、式(2)、式(3)に代入するだけで、各波長におけるnx,ny,nzを単純な代数計算で算出できることがわかる。同様に、各波長におけるΔO、ΔT、ΨTを測定し、その値を式(4)、式(5)、式(6)に代入するだけで、各波長におけるnx,ny,nzを単純な代数計算で算出できることがわかる。 From the above results, delta at each wavelength O, delta T, [psi R measured, the value equation (1), equation (2), only into equation (3), n x at each wavelength, n: It can be seen that y and nz can be calculated by simple algebraic calculation. Similarly, delta O at each wavelength, delta T, measured [psi T, the value equation (4), Equation (5), only into equation (6), n x at each wavelength, n y, It can be seen that nz can be calculated by simple algebraic calculation.
ΔO:入射角 0度のときの透過位相差
ΔT:入射角60度のときの透過位相差
ΨR:入射角70度のときの反射振幅比角
ΨT:入射角60度のときの透過振幅比角
nx:光学異方性膜の面内遅相軸方向の屈折率
ny:光学異方性膜の面内遅相軸に面内で直交する方向の屈折率
nz:光学異方性膜の厚み方向の屈折率
Δ O : Transmission phase difference at an incident angle of 0 degree Δ T : Transmission phase difference at an incident angle of 60 degrees Ψ R : Reflection amplitude ratio angle at an incident angle of 70 degrees Ψ T : When the incident angle is 60 degrees transmission amplitude ratio angle n x: refractive index in the in-plane slow axis direction of the optically anisotropic film n y: refractive index in a direction perpendicular in a plane in the in-plane slow axis of the optically anisotropic film n z: optical Refractive index in the thickness direction of anisotropic film
Claims (2)
光学異方性膜に、波長λの光を入射角θO1で入射したときの透過位相差ΔO1を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θT1で入射したときの透過位相差ΔT1を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θR1で入射したときの反射振幅比角ΨR1を測定する工程と
(ただし、Δ O1 、Δ T1 およびΨ R1 の測定における光の入射面は同一で且つ光学異方性膜のxz面またはyz面のいずれかであり、入射角θ O1 、θ T1 およびθ R1 は、該光が入射面内においてz軸と成す角度を表し、且つθ O1 とθ T1 は等しくない。)、
測定された透過位相差ΔO1、透過位相差ΔT1及び反射振幅比角ΨR1 を用いて、入射面がxz面である場合は式(1)〜(3)に基づいて、入射面がyz面である場合は式(1’)〜(3’)に基づいて、該光学異方性膜の屈折率n x 、n y およびn z を求める工程と、 を含んでなる光学異方性膜の試験方法。
Δ O1 =(n x (1−ξ O1 2 /n z 2 ) 0.5
−n y (1−ξ O1 2 /n y 2 ) 0.5 )×d 式(1)
〔ただし、ξ O1 =sinθ O1 である。〕
Δ T1 =(n x (1−ξ T1 2 /n z 2 ) 0.5
−n y (1−ξ T1 2 /n y 2 ) 0.5 )×d 式(2)
〔ただし、ξ T1 =sinθ T1 である。〕
tanΨ R1 =|((ξ p +αξ R )cosθ R1 −1)×(cosθ R1 +ξ s ))
/((ξ p +αξ R )cosθ R1 +1)×(cosθ R1 +ξ s ))| 式(3)
〔ただし、
ξ R =sinθ R1
ξ s =n y (1−ξ R 2 /n y 2 ) 0.5
ξ p =n x (1−ξ R 2 /n z 2 ) 0.5
α=(n x 2 −ξ p 2 −ξ R ξ p )/(ξ R 2 +ξ R ξ p −n z 2 ) である。〕
Δ O1 =(n y (1−ξ O1 2 /n z 2 ) 0.5
−n x (1−ξ O1 2 /n x 2 ) 0.5 )×d 式(1’)
〔ただし、ξ O1 =sinθ O1 である。〕
Δ T1 =(n y (1−ξ T1 2 /n z 2 ) 0.5
−n x (1−ξ T1 2 /n x 2 ) 0.5 )×d 式(2’)
〔ただし、ξ T1 =sinθ T1 である。〕
tanΨ R1 =|((ξ p +αξ R )cosθ R1 −1)×(cosθ R1 +ξ s ))
/((ξ p +αξ R )cosθ R1 +1)×(cosθ R1 +ξ s ))| 式(3’)
〔ただし、
ξ R =sinθ R1
ξ s =n x (1−ξ R 2 /n x 2 ) 0.5
ξ p =n y (1−ξ R 2 /n z 2 ) 0.5
α=(n y 2 −ξ p 2 −ξ R ξ p )/(ξ R 2 +ξ R ξ p −n z 2 ) である。〕
X-axis and y-axis is taken in a direction parallel to the optically anisotropic film surface, the z-axis is taken in a direction perpendicular to the membrane, and the in-plane slow axis (x-axis of the optically anisotropic film a n x orthogonal to each other ) Direction refractive index, ny is the in-plane orthogonal refractive index of the optical anisotropic film (y axis), and nz is the optical anisotropic film thickness (z axis) direction. When the refractive index is
The optically anisotropic film, a step of measuring the transmission phase difference delta O1 when the light of wavelength λ at an incident angle theta O1,
The optically anisotropic film, a step of measuring the transmission phase difference delta T1 when the light of the wavelength λ at an incident angle theta T1,
Measuring a reflection amplitude ratio angle Ψ R1 when light having the wavelength λ is incident on the optical anisotropic film at an incident angle θ R1 ;
(However, the incident surfaces of light in the measurement of Δ O1 , Δ T1 and Ψ R1 are the same and are either the xz plane or the yz plane of the optical anisotropic film, and the incident angles θ O1 , θ T1 and θ R1 are Represents the angle that the light makes with the z-axis in the plane of incidence, and θ O1 and θ T1 are not equal.)
Using the measured transmission phase difference Δ O1 , transmission phase difference Δ T1, and reflection amplitude ratio angle Ψ R1 , when the incident surface is an xz plane, the incident surface is yz based on the equations (1) to (3). If a surface based on equation (1 ') to (3') comprises a refractive index of the optically anisotropic film n x, and obtaining a n y and n z, the optically anisotropic film Test method.
Δ O1 = (n x (1 -ξ O1 2 / n z 2) 0.5
-N y (1-ξ O1 2 / n y 2) 0.5) × d (1)
[However, ξ O1 = sin θ O1 . ]
Δ T1 = (n x (1 -ξ T1 2 / n z 2) 0.5
-N y (1-ξ T1 2 / n y 2) 0.5) × d (2)
[However, ξ T1 = sin θ T1 . ]
tan Ψ R1 = | ((ξ p + αξ R ) cos θ R1 −1) × (cos θ R1 + ξ s ))
/ ((Ξ p + αξ R ) cos θ R1 +1) × (cos θ R1 + ξ s )) | Equation (3)
[However,
ξ R = sinθ R1
ξ s = ny (1-ξ R 2 / ny 2 ) 0.5
ξ p = n x (1- ξ R 2 / n z 2) 0.5
alpha = a (n x 2 -ξ p 2 -ξ R ξ p) / (ξ R 2 + ξ R ξ p -n z 2). ]
Δ O1 = ( ny (1-ξ O1 2 / nz 2 ) 0.5
-N x (1-ξ O1 2 / n x 2) 0.5) × d Formula (1 ')
[However, ξ O1 = sin θ O1 . ]
Δ T1 = ( ny (1-ξ T1 2 / nz 2 ) 0.5
-N x (1-ξ T1 2 / n x 2) 0.5) × d (2 ')
[However, ξ T1 = sin θ T1 . ]
tan Ψ R1 = | ((ξ p + αξ R ) cos θ R1 −1) × (cos θ R1 + ξ s ))
/ ((Ξ p + αξ R ) cos θ R1 +1) × (cos θ R1 + ξ s )) | formula (3 ′)
[However,
ξ R = sinθ R1
ξ s = n x (1-ξ R 2 / n x 2 ) 0.5
ξ p = ny (1-ξ R 2 / nz 2 ) 0.5
alpha = a (n y 2 -ξ p 2 -ξ R ξ p) / (ξ R 2 + ξ R ξ p -n z 2). ]
光学異方性膜に、波長λの光を入射角θO2で入射したときの透過位相差ΔO2を測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θT2で入射したときの透過位相差ΔT2測定する工程と、
該光学異方性膜に、前記波長λの光を入射角θR2で入射したときの透過振幅比角ΨT2を測定する工程と
(ただし、Δ O2 、Δ T2 およびΨT2 の測定における光の入射面は同一で且つ光学異方性膜のxz面またはyz面のいずれかであり、入射角θ O2 、θ T2 およびθ R2 は、該光が入射面内においてz軸と成す角度を表し、且つθ O2 とθ T2 は等しくない。)、
測定された透過位相差ΔO2、透過位相差ΔT2及び透過振幅比角ΨT2 を用いて、入射面がxz面である場合は式(4)〜(6)に基づいて、入射面がyz面である場合は式(4’)〜(6’)に基づいて、該光学異方性膜の屈折率n x 、n y およびn z を求める工程と、 を含んでなる光学異方性膜の試験方法。
Δ O2 =(n x (1−ξ O2 2 /n z 2 ) 0.5
−n y (1−ξ O2 2 /n y 2 ) 0.5 )×d 式(4)
〔ただし、ξ O2 =sinθ O2 である。〕
Δ T2 =(n x (1−ξ T2 2 /n z 2 ) 0.5
−n y (1−ξ T2 2 /n y 2 ) 0.5 )×d 式(5)
〔ただし、ξ T2 =sinθ T2 である。〕
tanΨ T2 =|T P1 ・T P2 /T S1 ・T S2 | 式(6)
〔ただし、
T S1 =2n i cosθ R2
/(n i cosθ R2 +n y (1−(n i sinθ R2 /n y ) 2 ) 0.5 )
T S2 =2n y (1−(n i sinθ R2 /n y ) 2 ) 0.5
/(n y (1−(n i sinθ R2 /n y ) 2 ) 0.5 +n i cosθ R2 )
T P1 =[(ξ z1 (r) −ξ z1 (i) )−ξ x (tanα r1 +tanα i1 )]
/[(ξ z1 (r) −ξ z1 (t) )−ξ x (tanα r1 +tanα t1 )]
×[(1+tan 2 α t1 )/(1+tan 2 α i1 )] 0.5
{但し、
ξ x =n i sinθ R2
ξ z1 (i) =n i cosθ R2
ξ z1 (r) =−n i cosθ R2
ξ z1 (t) =n x (1−ξ x 2 /n z 2 ) 0.5
tanα i1 =tanθ R2
tanα r1 =tanθ R2
tanα t1 =−ξ x ξ z1 (t) /(ξ x 2 −n z 2 ) である。}
T P2 =[(ξ z2 (r) −ξ z2 (i) )−ξ x (tanα r2 +tanα i2 )]
/[(ξ z2 (r) −ξ z2 (t) )−ξ x (tanα r2 +tanα t2 )]
×[(1+tan 2 α t2 )/(1+tan 2 α i2 )] 0.5
{但し、
ξ z2 (i) =n x (1−ξ x 2 /n z 2 ) 0.5
ξ z2 (r) =−ξ z2 (i)
ξ z2 (t) =n i cosθ R2
tanα i2 =−ξ x ξ z2 (i) /(ξ x 2 −n z 2 )
tanα r2 =ξ x ξ z2 (r) /(ξ x 2 −n z 2 )
tanα t2 =tanθ R2 である。} である。〕
Δ O2 =(n y (1−ξ O2 2 /n z 2 ) 0.5
−n x (1−ξ O2 2 /n x 2 ) 0.5 )×d 式(4’)
〔ただし、ξ O2 =sinθ O2 である。〕
Δ T2 =(n y (1−ξ T2 2 /n z 2 ) 0.5
−n x (1−ξ T2 2 /n x 2 ) 0.5 )×d 式(5’)
〔ただし、ξ T2 =sinθ T2 である。〕
tanΨ T2 =|T P1 ・T P2 /T S1 ・T S2 | 式(6’)
〔ただし、
T S1 =2n i cosθ R2
/(n i cosθ R2 +n x (1−(n i sinθ R2 /n x ) 2 ) 0.5 )
T S2 =2n x (1−(n i sinθ R2 /n x ) 2 ) 0.5
/(n x (1−(n i sinθ R2 /n x ) 2 ) 0.5 +n i cosθ R2 )
T P1 =[(ξ z1 (r) −ξ z1 (i) )−ξ y (tanα r1 +tanα i1 )]
/[(ξ z1 (r) −ξ z1 (t) )−ξ y (tanα r1 +tanα t1 )]
×[(1+tan 2 α t1 )/(1+tan 2 α i1 )] 0.5
{但し、
ξ y =n i sinθ R2
ξ z1 (i) =n i cosθ R2
ξ z1 (r) =−n i cosθ R2
ξ z1 (t) =n y (1−ξ y 2 /n z 2 ) 0.5
tanα i1 =tanθ R2
tanα r1 =tanθ R2
tanα t1 =−ξ y ξ z1 (t) /(ξ y 2 −n z 2 ) である。}
T P2 =[(ξ z2 (r) −ξ z2 (i) )−ξ y (tanα r2 +tanα i2 )]
/[(ξ z2 (r) −ξ z2 (t) )−ξ y (tanα r2 +tanα t2 )]
×[(1+tan 2 α t2 )/(1+tan 2 α i2 )] 0.5
{但し、
ξ z2 (i) =n y (1−ξ y 2 /n z 2 ) 0.5
ξ z2 (r) =−ξ z2 (i)
ξ z2 (t) =n i cosθ R2
tanα i2 =−ξ y ξ z2 (i) /(ξ y 2 −n z 2 )
tanα r2 =ξ y ξ z2 (r) /(ξ y 2 −n z 2 )
tanα t2 =tanθ R2 である。} である。〕 X-axis and y-axis is taken in a direction parallel to the optically anisotropic film surface, the z-axis is taken in a direction perpendicular to the membrane, and the in-plane slow axis (x-axis of the optically anisotropic film a n x orthogonal to each other ) Direction refractive index, ny is the in-plane orthogonal refractive index of the optical anisotropic film (y axis), and nz is the optical anisotropic film thickness (z axis) direction. When the refractive index is
The optically anisotropic film, a step of measuring the transmission phase difference delta O2 when the light of wavelength λ at an incident angle theta O2,
The optically anisotropic film, comprising the steps of: transmitting a phase difference delta T2 measurement when the incident light of the wavelength λ at an incident angle theta T2,
A step of measuring a transmission amplitude ratio angle Ψ T2 when light having the wavelength λ is incident on the optical anisotropic film at an incident angle θ R2 ;
(However, the incident surfaces of light in the measurement of Δ O2 , Δ T2 and Ψ T2 are the same and are either the xz plane or the yz plane of the optical anisotropic film, and the incident angles θ O2 , θ T2 and θ R2 are Represents the angle that the light makes with the z-axis in the plane of incidence, and θ O2 and θ T2 are not equal.)
Using the measured transmission phase difference Δ O2 , transmission phase difference Δ T2, and transmission amplitude ratio angle Ψ T2 , when the incident surface is the xz plane, the incident surface is yz based on the equations (4) to (6). If the surface is a surface, the refractive index n x , ny and nz of the optical anisotropic film is obtained based on the formulas (4 ′) to (6 ′) , and an optical anisotropic film comprising: Test method.
Δ O2 = (n x (1 -ξ O2 2 / n z 2) 0.5
-N y (1-ξ O2 2 / n y 2) 0.5) × d Equation (4)
[However, ξ O2 = sin θ O2 . ]
Δ T2 = (n x (1-ξ T2 2 / nz 2 ) 0.5
-N y (1-ξ T2 2 / n y 2) 0.5) × d Formula (5)
[However, ξ T2 = sin θ T2 . ]
tan Ψ T2 = | T P1 · T P2 / T S1 · T S2 | Equation (6)
[However,
T S1 = 2n i cos θ R2
/ (N i cosθ R2 + n y (1- (n i sinθ R2 / n y) 2) 0.5)
T S2 = 2n y (1- ( n i sinθ R2 / n y) 2) 0.5
/ (N y (1- (n i sinθ R2 / n y) 2) 0.5 + n i cosθ R2)
T P1 = [(ξ z1 (r) −ξ z1 (i) ) − ξ x (tan α r1 + tan α i1 )]
/ [(Ξ z1 (r) −ξ z1 (t) ) − ξ x (tan α r1 + tan α t1 )]
× [(1 + tan 2 α t1 ) / (1 + tan 2 α i1 )] 0.5
{However,
ξ x = n i sin θ R2
ξ z1 (i) = n i cosθ R2
ξ z1 (r) = −n i cos θ R2
ξ z1 (t) = n x (1−ξ x 2 / n z 2 ) 0.5
tanα i1 = tanθ R2
tan α r1 = tan θ R2
tan α t1 = −ξ x ξ z1 (t) / (ξ x 2 −n z 2 ). }
T P2 = [(ξ z2 (r) −ξ z2 (i) ) − ξ x (tan α r2 + tan α i2 )]
/ [(Ξ z2 (r) −ξ z2 (t) ) − ξ x (tan α r2 + tan α t2 )]
× [(1 + tan 2 α t2 ) / (1 + tan 2 α i2 )] 0.5
{However,
ξ z2 (i) = n x (1-ξ x 2 / n z 2) 0.5
ξ z2 (r) = −ξ z2 (i)
ξ z2 (t) = n i cosθ R2
tan α i2 = −ξ x ξ z2 (i) / (ξ x 2 −n z 2 )
tan α r2 = ξ x ξ z2 (r) / (ξ x 2 −n z 2 )
It is a tanα t2 = tanθ R2. }. ]
Δ O2 = ( ny (1-ξ O2 2 / nz 2 ) 0.5
-N x (1-ξ O2 2 / n x 2) 0.5) × d Formula (4 ')
[However, ξ O2 = sin θ O2 . ]
Δ T2 = ( ny (1-ξ T2 2 / nz 2 ) 0.5
-N x (1-ξ T2 2 / n x 2) 0.5) × d Formula (5 ')
[However, ξ T2 = sin θ T2 . ]
tan Ψ T2 = | T P1 · T P2 / T S1 · T S2 | Formula (6 ′)
[However,
T S1 = 2n i cos θ R2
/ (N i cos θ R2 + n x (1− (n i sin θ R2 / n x ) 2 ) 0.5 )
T S2 = 2n x (1− (n i sin θ R2 / n x ) 2 ) 0.5
/ (N x (1− (n i sin θ R2 / n x ) 2 ) 0.5 + n i cos θ R2 )
T P1 = [(ξ z1 (r) −ξ z1 (i) ) − ξ y (tan α r1 + tan α i1 )]
/ [(Ξ z1 (r) −ξ z1 (t) ) − ξ y (tan α r1 + tan α t1 )]
× [(1 + tan 2 α t1 ) / (1 + tan 2 α i1 )] 0.5
{However,
ξ y = n i sin θ R2
ξ z1 (i) = n i cosθ R2
ξ z1 (r) = −n i cos θ R2
ξ z1 (t) = n y (1-ξ y 2 / n z 2) 0.5
tanα i1 = tanθ R2
tan α r1 = tan θ R2
tan α t1 = −ξ y ξ z1 (t) / (ξ y 2 −n z 2 ). }
T P2 = [(ξ z2 (r) −ξ z2 (i) ) − ξ y (tan α r2 + tan α i2 )]
/ [((Ξ z2 (r) −ξ z2 (t) ) − ξ y (tan α r2 + tan α t2 )]
× [(1 + tan 2 α t2 ) / (1 + tan 2 α i2 )] 0.5
{However,
ξ z2 (i) = n y (1-ξ y 2 / n z 2) 0.5
ξ z2 (r) = −ξ z2 (i)
ξ z2 (t) = n i cosθ R2
tan α i2 = −ξ y ξ z2 (i) / (ξ y 2 −n z 2 )
tan α r2 = ξ y ξ z2 (r) / (ξ y 2 −n z 2 )
It is a tanα t2 = tanθ R2. }. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006046576A JP4760442B2 (en) | 2006-02-23 | 2006-02-23 | Test method for optically anisotropic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006046576A JP4760442B2 (en) | 2006-02-23 | 2006-02-23 | Test method for optically anisotropic film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007225426A JP2007225426A (en) | 2007-09-06 |
JP4760442B2 true JP4760442B2 (en) | 2011-08-31 |
Family
ID=38547384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006046576A Expired - Fee Related JP4760442B2 (en) | 2006-02-23 | 2006-02-23 | Test method for optically anisotropic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4760442B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5728904B2 (en) * | 2010-11-29 | 2015-06-03 | 日本ゼオン株式会社 | Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film |
JP2012150107A (en) * | 2010-12-27 | 2012-08-09 | Nippon Zeon Co Ltd | Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0365637A (en) * | 1989-08-02 | 1991-03-20 | Ricoh Co Ltd | Method of measuring index of refraction and thickness of thin film |
JPH055699A (en) * | 1991-03-05 | 1993-01-14 | Ricoh Co Ltd | Refractive index and film thickness measuring method for anisotropic thin film |
JPH05302888A (en) * | 1992-04-24 | 1993-11-16 | New Oji Paper Co Ltd | Measuring method of principal index of refraction of sample |
JP3520379B2 (en) * | 1994-11-29 | 2004-04-19 | 東レエンジニアリング株式会社 | Optical constant measuring method and device |
JPH08201277A (en) * | 1995-01-31 | 1996-08-09 | New Oji Paper Co Ltd | Method and apparatus for measuring double refraction |
JP3275944B2 (en) * | 1995-12-05 | 2002-04-22 | 日本電気株式会社 | Anisotropic thin film inspection method, anisotropic thin film inspection device, liquid crystal alignment film inspection method, liquid crystal alignment film inspection device |
JP3196841B2 (en) * | 1998-11-18 | 2001-08-06 | 日本電気株式会社 | Anisotropic thin film evaluation method, evaluation apparatus and recording medium |
-
2006
- 2006-02-23 JP JP2006046576A patent/JP4760442B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007225426A (en) | 2007-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102279094B (en) | Apparatus and method for calibrating transmission axis of polaroid | |
US9989454B2 (en) | Method and apparatus for measuring parameters of optical anisotropy | |
US7477387B2 (en) | Method and apparatus for analyzing optical characteristics of optical medium and method for production monitoring | |
CN202024877U (en) | Device used for calibrating transmission axes of polaroid | |
CN106595501A (en) | Method of measuring thickness or uniformity of optical thin film | |
CN110285766A (en) | A method of nano-level thin-membrane thickness is measured using spin of photon Hall effect | |
Negara et al. | Simplified Stokes polarimeter based on division-of-amplitude | |
TWI615604B (en) | Calibration method for wide-band achromatic composite wave plate | |
KR19990077575A (en) | Method and apparatus for evaluating internal film stress at high lateral resolution | |
JP4760442B2 (en) | Test method for optically anisotropic film | |
JP2008268339A (en) | Retardation plate, method for manufacturing same, its manufacturing device, method for determining optical parameter, and polarization analyzer | |
CN107764748B (en) | Device and method for measuring linear birefringence of glass material | |
CN103674892B (en) | A kind of method carrying out monitoring film growth based on total internal reflection polarization phasic difference measurement | |
Lin et al. | Optical measurement in a curved optical medium with optical birefringence and anisotropic absorption | |
JPH055699A (en) | Refractive index and film thickness measuring method for anisotropic thin film | |
Jen et al. | Optical constant determination of an anisotropic thin film via surface plasmon resonance: analyzed by sensitivity calculation | |
JP3936712B2 (en) | Parameter detection method and detection apparatus for detection object | |
Tikhonov et al. | Refractometry of birefringent materials at Brewster angle | |
Negara | Thickness measurement of thin films on curved surfaces with ellipsometry | |
Dlugunovich et al. | Evaluation of Optical Anisotropy of Nanoporous Alumina Films by Stokes-Polarimetry and Matrix Coherence Methods | |
JPH04320904A (en) | Measuring method for refractive index and film thickness of thin film | |
Peng et al. | Transparent anisotropic films measurement with a polarized angle-resolved spectroscopy | |
Yeh et al. | Determining the thickness and refractive index of a birefringence by using an improved accurate measurement system | |
Yeh et al. | A high-precision optical metrology system for determining the thickness of birefringent wave plates | |
Konstantinova et al. | Determination of anisotropic optical parameters of thin films with allowance for multiple reflections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070611 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110523 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4760442 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |