JP4760120B2 - Apparatus and method for treating water containing hardly biodegradable organic matter - Google Patents

Apparatus and method for treating water containing hardly biodegradable organic matter Download PDF

Info

Publication number
JP4760120B2
JP4760120B2 JP2005141476A JP2005141476A JP4760120B2 JP 4760120 B2 JP4760120 B2 JP 4760120B2 JP 2005141476 A JP2005141476 A JP 2005141476A JP 2005141476 A JP2005141476 A JP 2005141476A JP 4760120 B2 JP4760120 B2 JP 4760120B2
Authority
JP
Japan
Prior art keywords
biodegradable organic
inorganic adsorbent
solution
organic substance
hardly biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005141476A
Other languages
Japanese (ja)
Other versions
JP2006314952A (en
Inventor
信博 織田
奬吾 安財
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005141476A priority Critical patent/JP4760120B2/en
Publication of JP2006314952A publication Critical patent/JP2006314952A/en
Application granted granted Critical
Publication of JP4760120B2 publication Critical patent/JP4760120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は被処理水中の難生物分解性有機物を耐酸性及び耐酸化性の無機吸着剤に吸着させて除去し、難生物分解性有機物を吸着した無機吸着剤を再生して難生物分解性有機物の吸着に再使用するようにした難生物分解性有機物含有水の処理装置及び処理方法に関する。   The present invention removes the hardly biodegradable organic substances in the water to be treated by adsorbing them on acid- and oxidation-resistant inorganic adsorbents and regenerating the inorganic adsorbents adsorbing the hardly-biodegradable organic substances. The present invention relates to a treatment apparatus and a treatment method for water containing hardly biodegradable organic substances that are reused for adsorption of water.

ノニオン性界面活性剤などの難生物分解性有機物は、人体に健康障害を引き起こしたり、魚など水生動物への悪影響の問題があるため、水質汚濁に係る環境基準に基き、環境水への排出が規制されているものがある。   Non-biodegradable organic substances such as nonionic surfactants cause health problems in the human body and have problems of adverse effects on aquatic animals such as fish.Therefore, they are discharged into environmental water based on environmental standards related to water pollution. Some are regulated.

従来、難生物分解性有機物含有水の処理方法としては
1)活性炭による吸着
2)過酸化ニッケル系触媒の存在下、次亜塩素酸ナトリウムなどの塩素系酸化剤による分解(例えば特開2003−80276号公報)
などが知られている。
Conventionally, as a method for treating water containing hardly biodegradable organic substances, 1) adsorption by activated carbon 2) decomposition by a chlorine-based oxidizing agent such as sodium hypochlorite in the presence of a nickel peroxide-based catalyst (for example, JP-A-2003-80276) Issue)
Etc. are known.

しかし、1)活性炭吸着法では、吸着量が少なく、吸着飽和後の活性炭の再生賦活費が高価であるなどの問題がある。   However, 1) the activated carbon adsorption method has a problem that the adsorption amount is small and the regeneration activation cost of activated carbon after adsorption saturation is expensive.

一方、2)過酸化ニッケル系触媒の存在下に次亜塩素酸ナトリウムなどの塩素系酸化剤で分解する方法では、トリハロメタンのような有害な有機塩素化合物が発生するという問題があり、塩素化合物を発生しない方法が求められていた。
特開2003−80276号公報
On the other hand, 2) The method of decomposing with a chlorine-based oxidizing agent such as sodium hypochlorite in the presence of a nickel peroxide-based catalyst has a problem that harmful organic chlorine compounds such as trihalomethane are generated. There was a need for a method that would not occur.
JP 2003-80276 A

本発明は、有害塩素化合物を発生することなく、被処理水中のノニオン性界面活性剤のような難生物分解性有機物を含む有機物を低濃度にまで効率的に除去する技術を提供することを目的とする。   It is an object of the present invention to provide a technique for efficiently removing organic substances including non-biodegradable organic substances such as nonionic surfactants in water to be treated to a low concentration without generating harmful chlorine compounds. And

被処理水中に低濃度で含まれる難生物分解性有機物、例えば、ノニオン性界面活性剤、フェノール類、トリハロメタン類等を濃縮して分解するには、技術的困難が多い。本発明者らは、このような難生物分解性有機物の分解処理技術について鋭意検討した結果、難生物分解性有機物を耐酸性及び耐酸化性の無機吸着剤に吸着させることにより無機吸着剤上に濃縮し、無機吸着剤に吸着された難生物分解性有機物を過硫酸(ペルオキソ二硫酸:H)及び/又は過硫酸塩を含む溶液に接触させることにより、容易に難生物分解性有機物を剥離・分解できることを見出した。即ち、過硫酸や過硫酸塩は、自己分解して強い酸化力を発揮し、この酸化力で無機吸着剤上の難生物分解性有機物を効率的に溶液側に溶解させて脱着すると共に酸化分解する。更に、本発明者らは、難生物分解性有機物の酸化分解により過硫酸イオンが還元されて生成した硫酸イオンは、電解反応により過硫酸イオンに酸化して再生することができ、これを無機吸着剤に吸着された難生物分解性有機物の剥離・分解に再利用できることを知見し、本発明を完成させた。
即ち、本発明は以下を要旨とするものである。
There are many technical difficulties in concentrating and decomposing non-biodegradable organic substances, such as nonionic surfactants, phenols, and trihalomethanes, contained in the water to be treated at low concentrations. As a result of intensive studies on the decomposition treatment technique of such a hardly biodegradable organic substance, the present inventors have made it adsorbed on an inorganic adsorbent by adsorbing the hardly biodegradable organic substance to an acid-resistant and oxidation-resistant inorganic adsorbent. Concentrated and easily biodegradable by bringing the hardly biodegradable organic substance adsorbed on the inorganic adsorbent into contact with a solution containing persulfuric acid (peroxodisulfuric acid: H 2 S 2 O 8 ) and / or persulfate. It has been found that organic substances can be peeled and decomposed. In other words, persulfuric acid and persulfate self-decompose and exert strong oxidizing power, and with this oxidizing power, the non-biodegradable organic matter on the inorganic adsorbent is efficiently dissolved on the solution side and desorbed and oxidatively decomposed. To do. Furthermore, the present inventors can regenerate the sulfate ions generated by reducing persulfate ions by oxidative decomposition of the hardly biodegradable organic substances by oxidizing them into persulfate ions by an electrolytic reaction, which can be recovered by inorganic adsorption. The present invention was completed by discovering that it can be reused for peeling and decomposition of the hardly biodegradable organic substances adsorbed on the agent.
That is, the gist of the present invention is as follows.

(1) 難生物分解性有機物含有水を耐酸性及び耐酸化性の無機吸着剤と接触させて、該難生物分解性有機物を該無機吸着剤に吸着させる吸着手段と、難生物分解性有機物を吸着した無機吸着剤を過硫酸及び/又は過硫酸塩を含有する溶液(以下「過硫酸(塩)溶液」と称す。)と接触させて、該無機吸着剤に吸着している難生物分解性有機物を剥離・分解して無機吸着剤を再生させる再生手段と、前記無機吸着剤を再生した後の溶液中の硫酸イオンから電解反応により過硫酸イオンを生成させて過硫酸(塩)溶液を再生させる電解反応装置と、前記再生手段と電解反応装置との間で溶液を循環させる循環ラインとを具備する難生物分解性有機物含有水の処理装置であって、前記難生物分解性有機物がノニオン性界面活性剤であり、前記無機吸着剤が多孔質シリカ、シリカ系ゼオライト及びスメクタイトよりなる群から選ばれる1種又は2種以上であり、前記吸着手段が、前記無機吸着剤が充填された充填塔に前記難生物分解性有機物含有水を通水する手段であり、前記再生手段が、前記難生物分解性有機物を吸着した無機吸着剤が充填された充填塔に前記過硫酸(塩)溶液を通水する手段であり、前記再生手段で再生された無機吸着剤を前記吸着手段における吸着処理に繰り返し使用することを特徴とする難生物分解性有機物含有水の処理装置。 (1) An adsorbing means for contacting water containing a hardly biodegradable organic substance with an acid-resistant and oxidation-resistant inorganic adsorbent to adsorb the hardly biodegradable organic substance onto the inorganic adsorbent; The hardly biodegradable substance adsorbed on the inorganic adsorbent by contacting the adsorbed inorganic adsorbent with a solution containing persulfuric acid and / or persulfate (hereinafter referred to as “persulfuric acid (salt) solution”). A regeneration means for regenerating the inorganic adsorbent by peeling and decomposing the organic matter, and a persulfate (salt) solution is regenerated by generating a persulfate ion from the sulfate ion in the solution after regenerating the inorganic adsorbent by an electrolytic reaction. A non- degradable organic substance containing non-biodegradable organic substance, comprising: an electrolytic reaction apparatus to be treated; and a circulation line for circulating a solution between the regeneration means and the electrolytic reaction apparatus . A surfactant and the inorganic absorbent The adsorbent is one or more selected from the group consisting of porous silica, silica-based zeolite and smectite, and the adsorbing means contains the hardly biodegradable organic substance in a packed tower packed with the inorganic adsorbent. Means for passing water, and the regeneration means is means for passing the persulfuric acid (salt) solution through a packed tower filled with an inorganic adsorbent adsorbing the hardly biodegradable organic matter, and the regeneration A treatment apparatus for water containing hardly biodegradable organic substances, wherein the inorganic adsorbent regenerated by the means is repeatedly used for the adsorption treatment in the adsorption means.

(2) (1)において、前記無機吸着剤がシリカ系ゼオライトであることを特徴とする難生物分解性有機物含有水の処理装置 (2) In (1), the said inorganic adsorbent is a silica-type zeolite, The processing apparatus of the hardly biodegradable organic substance containing water characterized by the above-mentioned .

(3) (又は(2)において、前記電解反応装置の電極のうち、少なくとも陽極が導電性ダイヤモンド電極であることを特徴とする難生物分解性有機物含有水の処理装置。 (3 ) The processing apparatus for water containing hardly biodegradable organic substances according to ( 1 ) or (2) , wherein at least an anode of the electrodes of the electrolytic reaction apparatus is a conductive diamond electrode.

) 難生物分解性有機物含有水を耐酸性及び耐酸化性の無機吸着剤と接触させて、該難生物分解性有機物を該無機吸着剤に吸着させた後、難生物分解性有機物を吸着した無機吸着剤を過硫酸(塩)溶液と接触させて、該無機吸着剤に吸着している難生物分解性有機物を剥離・分解して無機吸着剤を再生させ、前記無機吸着剤を再生した後の溶液中の硫酸イオンから電解反応により過硫酸イオンを生成させて過硫酸(塩)溶液を再生させ、該過硫酸(塩)溶液を前記無機吸着剤の再生に再利用する難生物分解性有機物含有水の処理方法であって、前記難生物分解性有機物がノニオン性界面活性剤であり、前記無機吸着剤が多孔質シリカ、シリカ系ゼオライト及びスメクタイトよりなる群から選ばれる1種又は2種以上であり、前記無機吸着剤が充填された充填塔に前記難生物分解性有機物含有水を通水して該難生物分解性有機物を該無機吸着剤に吸着させた後、難生物分解性有機物を吸着した無機吸着剤が充填された充填塔に前記過硫酸(塩)溶液を通水して該無機吸着剤を再生し、再生された無機吸着剤を難生物分解性有機物の吸着処理に繰り返し使用することを特徴とする難生物分解性有機物含有水の処理方法。 ( 4 ) Contacting water containing a non-biodegradable organic substance with an acid- and oxidation-resistant inorganic adsorbent to adsorb the non-biodegradable organic substance to the inorganic adsorbent, and then adsorbing the non-biodegradable organic substance The inorganic adsorbent was brought into contact with a persulfuric acid (salt) solution, the non-biodegradable organic matter adsorbed on the inorganic adsorbent was peeled and decomposed to regenerate the inorganic adsorbent, and the inorganic adsorbent was regenerated. after the electrolytic reaction from sulfate ions in solution to produce persulfate ions to regenerate the persulfuric acid (salt) solution, flame biodegradation you reuse該過sulfate (salt) solution in playing of the inorganic adsorbent 1 or 2 wherein the non-biodegradable organic substance is a nonionic surfactant and the inorganic adsorbent is selected from the group consisting of porous silica, silica-based zeolite and smectite. More than species, the inorganic adsorption After passing the water containing the non-biodegradable organic substance through the packed tower packed with the non-degradable organic substance to adsorb the non-biodegradable organic substance to the inorganic adsorbent, the inorganic adsorbent adsorbing the non-biodegradable organic substance is packed. The persulfuric acid (salt) solution is passed through the packed tower to regenerate the inorganic adsorbent, and the regenerated inorganic adsorbent is repeatedly used for the adsorption treatment of the non-biodegradable organic matter. A method for treating water containing biodegradable organic matter.

) ()において、前記無機吸着剤がシリカ系ゼオライトであることを特徴とする難生物分解性有機物含有水の処理方法 ( 5 ) In ( 4 ), the said inorganic adsorbent is a silica-type zeolite, The processing method of the hardly biodegradable organic substance containing water characterized by the above-mentioned .

(6) (又は(5)において、前記電解反応に用いる電極のうち、少なくとも陽極が導電性ダイヤモンド電極であることを特徴とする難生物分解性有機物含有水の処理方法。 (6 ) The method for treating water containing hardly biodegradable organic substances according to ( 4 ) or (5) , wherein at least an anode of the electrodes used for the electrolytic reaction is a conductive diamond electrode.

本発明によれば、人への悪影響の少ない珪素などの無機化合物よりなる耐酸性及び耐酸化性の無機吸着剤(以下「耐酸/耐酸化性無機吸着剤」と称す場合がある。)と、無機物である過硫酸及び/又は過硫酸塩(以下「過硫酸(塩)」と称す場合がある。)とを用いて、被処理水中の難生物分解性有機物を容易に分解除去することができ、その際に排出されるものは硫酸イオンのみであり、工業的に極めて有利である。   According to the present invention, an acid-resistant and oxidation-resistant inorganic adsorbent (hereinafter sometimes referred to as “acid-resistant / oxidation-resistant inorganic adsorbent”) made of an inorganic compound such as silicon that has little adverse effects on humans, and Using inorganic persulfuric acid and / or persulfate (hereinafter sometimes referred to as “persulfuric acid (salt)”), it is possible to easily decompose and remove non-biodegradable organic substances in the water to be treated. In this case, only sulfate ions are discharged, which is extremely advantageous industrially.

即ち、過硫酸(塩)は難生物分解性有機物の分解に非常に有効であるが、被処理水中に低濃度で含まれる難生物分解性有機物に直接過硫酸(塩)を添加して難生物分解性有機物を酸化分解しようとすると、被処理水全体を過硫酸(塩)による難生物分解性有機物の酸化分解に好適な温度に加熱する必要があり、加熱コストが高くつく。   In other words, persulfuric acid (salt) is very effective in decomposing difficult biodegradable organic substances, but persulfuric acid (salt) is added directly to difficult biodegradable organic substances contained at low concentrations in the water to be treated. In order to oxidatively decompose the decomposable organic substance, it is necessary to heat the entire water to be treated to a temperature suitable for oxidative decomposition of the hardly biodegradable organic substance with persulfuric acid (salt), and the heating cost is high.

しかし、本発明によれば、被処理水中の難生物分解性有機物を耐酸/耐酸化性無機吸着剤に吸着させて無機吸着剤上に濃縮し、この無機吸着剤上の難生物分解性有機物を過硫酸(塩)溶液と接触させて酸化分解すると共に無機吸着剤を再生するため、無機吸着剤の再生に用いる過硫酸(塩)溶液のみを加熱すれば良く、加熱のための熱源ないし熱交換器は小さくて足りる。   However, according to the present invention, the hardly biodegradable organic matter in the water to be treated is adsorbed on the acid / oxidation resistant inorganic adsorbent and concentrated on the inorganic adsorbent, and the hardly biodegradable organic matter on the inorganic adsorbent is In order to regenerate inorganic adsorbent by contacting with persulfuric acid (salt) solution and regenerating inorganic adsorbent, it is only necessary to heat the persulfuric acid (salt) solution used for regeneration of inorganic adsorbent. Heat source or heat exchange for heating The vessel is small and sufficient.

なお、難生物分解性有機物を吸着する無機吸着剤は耐酸/耐酸化性無機吸着剤であるため、再生時に過硫酸(塩)溶液と接触しても劣化することはない。これに対して、例えば、従来、難生物分解性有機物の吸着に用いられている活性炭は、耐酸化性がないため、過硫酸(塩)溶液を用いて活性炭の再生を行うことはできない。   Since the inorganic adsorbent that adsorbs the hardly biodegradable organic substance is an acid / oxidation resistant inorganic adsorbent, it does not deteriorate even when it comes into contact with a persulfuric acid (salt) solution during regeneration. On the other hand, for example, activated carbon conventionally used for adsorption of hardly biodegradable organic substances has no oxidation resistance, and therefore cannot be regenerated using a persulfuric acid (salt) solution.

本発明において用いる耐酸/耐酸化性無機吸着剤はシリカ系ゼオライトが好ましいが(請求項2,)、何らこれに限定されるものではない。 The acid / oxidation resistant inorganic adsorbent used in the present invention is preferably a silica-based zeolite (claims 2 and 5 ), but is not limited thereto.

無機吸着剤を再生した後の溶液(以下「再生廃液」と称す場合がある。)中の硫酸イオンは電解反応により容易に過硫酸イオンとすることができるため、これにより過硫酸(塩)溶液を無機吸着剤の再生に循環再利用することができ、廃液を排出しないシステムとすることができる(請求項)。 Since the sulfate ion in the solution after regenerating the inorganic adsorbent (hereinafter sometimes referred to as “recycled waste liquid”) can be easily converted to a persulfate ion by an electrolytic reaction, a persulfate (salt) solution is thereby obtained. Can be recycled in the regeneration of the inorganic adsorbent, and a system that does not discharge the waste liquid can be obtained (claims 1 , 4 ).

電解反応に供する再生廃液の温度は10〜90℃であることが好ましく、無機吸着剤の再生に用いる過硫酸(塩)溶液の温度は80〜130℃であることが好ましい。また、電解反応に供される溶液の硫酸イオン濃度は0.1〜18Mであることが好ましい。この電解反応装置の電極のうち、少なくとも陽極は導電性ダイヤモンド電極であることが好ましい(請求項)。 The temperature of the regenerated waste solution used for the electrolytic reaction is preferably 10 to 90 ° C, and the temperature of the persulfuric acid (salt) solution used for regenerating the inorganic adsorbent is preferably 80 to 130 ° C. Moreover, it is preferable that the sulfate ion density | concentration of the solution used for an electrolytic reaction is 0.1-18M. Of the electrodes of the electrolytic reaction apparatus, at least the anode is preferably a conductive diamond electrode (claims 3 and 6 ).

また、難生物分解性有機物を吸着した無機吸着剤は過硫酸(塩)溶液による再生に先立ち、乾燥後、酸素含有気体中で酸化反応(燃焼)させることにより、過硫酸(塩)溶液により酸化分解する難生物分解性有機物量を低減し、過硫酸(塩)溶液使用量、再生廃液排出量等を低減することができる。   In addition, the inorganic adsorbent that has adsorbed the hardly biodegradable organic matter is oxidized by the persulfuric acid (salt) solution by drying and then oxidizing (burning) in an oxygen-containing gas prior to regeneration with the persulfuric acid (salt) solution. It is possible to reduce the amount of difficult-to-decompose organic matter to be decomposed, and to reduce the amount of persulfuric acid (salt) solution used, the amount of recycled waste liquid discharged, and the like.

本発明では、無機吸着剤を充填した吸着塔に難生物分解性有機物含有水を通水して難生物分解性有機物の吸着処理を行った後、この吸着塔に過硫酸(塩)溶液を通水して無機吸着剤の再生を行うようにしても良く、無機吸着剤を充填した吸着塔に難生物分解性有機物含有水を通水して難生物分解性有機物の吸着処理を行った後、この吸着塔から無機吸着剤を抜き出して無機吸着剤と過硫酸(塩)溶液とを接触させた後、吸着塔に返送するようにしても良い。   In the present invention, after water containing hardly biodegradable organic substances is passed through an adsorption tower filled with an inorganic adsorbent to carry out adsorption treatment of the hardly biodegradable organic substances, a persulfuric acid (salt) solution is passed through the adsorption tower. Water may be used to regenerate the inorganic adsorbent. After the water containing the hardly biodegradable organic substance is passed through the adsorption tower filled with the inorganic adsorbent, the adsorption process of the hardly biodegradable organic substance is performed. The inorganic adsorbent may be extracted from the adsorption tower, brought into contact with the inorganic adsorbent and the persulfuric acid (salt) solution, and then returned to the adsorption tower.

以下に本発明の難生物分解性有機物含有水の処理装置及び処理方法の実施の形態を詳細に説明する。   Embodiments of the treatment apparatus and treatment method for water containing hardly biodegradable organic substances according to the present invention will be described in detail below.

本発明において、処理する難生物分解性有機物としては、ノニオン性界面活性剤、フェノール類、トリハロメタン類等が挙げられ、本発明は、これらの難生物分解性有機物を例えば0.5〜100mg/L程度の濃度で含有する排水や湖沼、河川水、工水等に適用される。   In the present invention, the non-biodegradable organic substances to be treated include nonionic surfactants, phenols, trihalomethanes and the like. In the present invention, these non-biodegradable organic substances are, for example, 0.5 to 100 mg / L. Applicable to wastewater, lakes, river water, industrial water, etc., contained at moderate concentrations.

被処理水中の難生物分解性有機物の吸着に用いられる耐酸/耐酸化性無機吸着剤としては、耐酸性及び耐酸化性に優れたものであり、多孔質シリカ、シリカ系ゼオライト、スメクタイトが挙げられ、これらは1種を単独で用いても良く、2種以上を併用しても良い。   Acid / oxidation-resistant inorganic adsorbents used for adsorption of hardly biodegradable organic substances in the treated water are excellent in acid resistance and oxidation resistance, and include porous silica, silica-based zeolite, and smectite. These may be used alone or in combination of two or more.

耐酸/耐酸化性無機吸着剤の粒径は、その使用形態により適宜選定され、充填塔に充填して被処理水を通水して吸着処理する場合には平均粒径300〜3000μm程度の粒状のものが好適に用いられる。   The particle size of the acid / oxidation-resistant inorganic adsorbent is appropriately selected depending on the use form, and when the adsorption treatment is performed by filling the packed tower and passing the water to be treated, the particles have an average particle size of about 300 to 3000 μm. Are preferably used.

被処理水中の難生物分解性有機物を吸着した無機吸着剤の再生に用いる過硫酸(塩)溶液の過硫酸塩としては、過硫酸ナトリウム、過硫酸カリウム等が挙げられる。過硫酸(塩)溶液中の過硫酸(塩)濃度は、過度に高いと後述の電解反応において、硫酸イオンからの過硫酸イオンの生成効率が悪くなり、過度に低いと難生物分解性有機物の溶解度が低くなり、無機吸着剤から難生物分解性有機物を剥離しにくくなる。また、難生物分解性有機物の酸化分解効率も悪くなる。このため、過硫酸(塩)溶液の過硫酸(塩)濃度は、10〜30重量%程度で、硫酸イオン換算濃度で0.1〜18M、特に0.2〜3.0Mであることが好ましい。   Examples of the persulfate in the persulfuric acid (salt) solution used for the regeneration of the inorganic adsorbent that has adsorbed the hardly biodegradable organic matter in the treated water include sodium persulfate and potassium persulfate. If the concentration of persulfuric acid (salt) in the persulfuric acid (salt) solution is excessively high, the production efficiency of persulfate ions from sulfate ions deteriorates in the electrolytic reaction described later. The solubility becomes low and it becomes difficult to peel off the hardly biodegradable organic substance from the inorganic adsorbent. In addition, the oxidative decomposition efficiency of the hardly biodegradable organic matter also deteriorates. For this reason, the persulfuric acid (salt) concentration of the persulfuric acid (salt) solution is about 10 to 30% by weight, and is preferably 0.1 to 18M, particularly preferably 0.2 to 3.0M in terms of sulfate ion. .

過硫酸や過硫酸塩は高温であるほど自己分解速度が速く、強い酸化力を示すため、無機吸着剤の再生に用いる過硫酸(塩)溶液の温度は高い方が再生効率、即ち、無機吸着剤に吸着されている難生物分解性有機物の剥離・分解効率が良くなるが、高過ぎると製造コストや加熱コストが高くなるうえ過硫酸(塩)の自己分解により効率低下することから、無機吸着剤の再生に用いる過硫酸(塩)溶液の温度は80〜130℃程度、特に90〜120℃であることが好ましい。無機吸着剤の再生に用いる過硫酸(塩)溶液は、必要に応じて熱交換器等により所定の温度に加熱することが好ましい。   Since persulfuric acid and persulfate have a higher self-decomposition rate and a stronger oxidizing power at higher temperatures, the higher the temperature of the persulfuric acid (salt) solution used to regenerate the inorganic adsorbent, the higher the regeneration efficiency, that is, inorganic adsorption Removal / decomposition efficiency of non-biodegradable organic substances adsorbed on the agent is improved. However, if it is too high, the production cost and heating cost increase, and the efficiency decreases due to the self-decomposition of persulfuric acid (salt). The temperature of the persulfuric acid (salt) solution used for the regeneration of the agent is preferably about 80 to 130 ° C, particularly 90 to 120 ° C. The persulfuric acid (salt) solution used for regeneration of the inorganic adsorbent is preferably heated to a predetermined temperature by a heat exchanger or the like as necessary.

過硫酸(塩)溶液は、無機吸着剤に吸着されている難生物分解性有機物を剥離・分解して無機吸着剤を再生するための必要量が用いられる。   The persulfuric acid (salt) solution is used in an amount necessary to regenerate the inorganic adsorbent by peeling off and decomposing the hardly biodegradable organic substances adsorbed on the inorganic adsorbent.

なお、難生物分解性有機物を吸着した無機吸着剤は過硫酸(塩)溶液による再生に先立ち、乾燥後、酸素含有気体中で酸化反応(燃焼)させても良く、これにより、無機吸着剤に吸着している難生物分解性有機物の一部を除去して、再生に用いる過硫酸(塩)量を低減することができる。この場合、無機吸着剤の乾燥条件としては60〜120℃で0.1〜2.0時間程度が好ましく、酸化反応は、空気、純酸素等の酸素含有気体中で600〜900℃で0.1〜2.0時間程度行うことが好ましい。   In addition, the inorganic adsorbent that has adsorbed the hardly biodegradable organic matter may be oxidized (combusted) in an oxygen-containing gas after drying prior to regeneration with a persulfuric acid (salt) solution. A part of the adsorbed hardly biodegradable organic matter can be removed, and the amount of persulfuric acid (salt) used for regeneration can be reduced. In this case, the drying conditions of the inorganic adsorbent are preferably 60 to 120 ° C. and about 0.1 to 2.0 hours, and the oxidation reaction is carried out at 600 to 900 ° C. in an oxygen-containing gas such as air or pure oxygen. It is preferable to carry out for about 1 to 2.0 hours.

なお、このような酸化反応で、無機吸着剤に吸着している難生物分解性有機物の一部を燃焼除去することができるが、無機吸着剤の細孔内に入り込んだ難生物分解性有機物を除去することは困難であり、また、燃焼による煤の残留や気体の侵入による再利用時の利用効率低下等の問題があり、燃焼処理のみでなく、過硫酸(塩)溶液による処理の併用が望ましい。   In addition, by such an oxidation reaction, a part of the hardly biodegradable organic substance adsorbed on the inorganic adsorbent can be burned and removed, but the hardly biodegradable organic substance that has entered the pores of the inorganic adsorbent is removed. It is difficult to remove, and there are problems such as residue of soot due to combustion and reduction in utilization efficiency at the time of reuse due to gas intrusion, and not only combustion treatment but also treatment with persulfuric acid (salt) solution can be used together desirable.

過硫酸(塩)溶液を用いて無機吸着剤を再生すると、過硫酸(塩)溶液内の過硫酸イオンは、難生物分解性有機物を酸化することにより還元されて硫酸イオンとなる。従って、無機吸着剤を再生した後の再生廃液は、硫酸イオンを含むものとなるが、この溶液は、電解反応により硫酸イオンを過硫酸イオンに変えることで再び過硫酸(塩)溶液として無機吸着剤の再生に用いることができるようになる。   When the inorganic adsorbent is regenerated using a persulfuric acid (salt) solution, persulfate ions in the persulfuric acid (salt) solution are reduced to oxidized sulfates by oxidizing the hardly biodegradable organic matter. Therefore, the reclaimed waste liquid after regenerating the inorganic adsorbent contains sulfate ions, but this solution is again converted into a persulfuric acid (salt) solution by converting sulfate ions to persulfate ions by electrolytic reaction. It can be used for the regeneration of the agent.

この電解反応は、低温である程過硫酸イオンの生成効率が良く、また、電極の消耗も少ないので、この電解反応に供する再生廃液の温度は、10〜90℃、特に40〜80℃程度であることが好ましい。この温度範囲を超えると、電解効率が低下し、電極の損耗も大きくなる。一方、この温度を下回ると、無機吸着剤の再生のための再使用時の加熱エネルギーが大きくなり、好ましくない。電解反応に供する再生廃液は必要に応じて冷却するが、この際、無機吸着剤の再生に用いられる過硫酸(塩)溶液と熱交換して冷却することもできる。   In this electrolytic reaction, the lower the temperature, the better the generation efficiency of persulfate ions, and the less the electrode is consumed. The temperature of the regenerated waste liquid used for this electrolytic reaction is about 10 to 90 ° C, especially about 40 to 80 ° C. Preferably there is. Beyond this temperature range, the electrolysis efficiency decreases and the wear of the electrode also increases. On the other hand, if the temperature is below this temperature, the heating energy at the time of reuse for regeneration of the inorganic adsorbent becomes large, which is not preferable. The regenerated waste liquid used for the electrolytic reaction is cooled as necessary. At this time, it can be cooled by exchanging heat with a persulfuric acid (salt) solution used for regenerating the inorganic adsorbent.

また、電解反応に供する再生廃液中の硫酸イオン濃度は低いほど過硫酸イオンの生成効率は大きくなる。一方で、硫酸イオン濃度を低くすると、難生物分解性有機物の酸化が進みにくくなり、無機吸着剤から剥離しにくくなる。これらの観点から、再生廃液の硫酸イオン濃度は、0.1〜18Mの範囲、特に0.2〜3.0Mであるのが望ましい。   In addition, the lower the sulfate ion concentration in the regenerated waste solution used for the electrolytic reaction, the greater the efficiency of producing persulfate ions. On the other hand, when the sulfate ion concentration is lowered, the oxidation of the hardly biodegradable organic matter is difficult to proceed and it is difficult to peel from the inorganic adsorbent. From these viewpoints, it is desirable that the concentration of sulfate ion in the recycled waste liquid is in the range of 0.1 to 18M, particularly 0.2 to 3.0M.

以下に、この再生廃液の電解反応に供される電解反応装置について説明する。   Below, the electrolytic reaction apparatus used for the electrolytic reaction of this regeneration waste liquid is demonstrated.

電解反応装置では、陽極と陰極とを対にして電解がなされる。これら電極の材質には特に制限はないが、電極として一般に広く利用されている白金を電解反応装置の陽極として使用した場合、過硫酸イオンを効率的に生成させることができず、白金が溶出するという問題がある。これに対し、ダイヤモンド電極は、過硫酸イオンの生成を効率よく行えるとともに、電極の損耗が小さい。従って、電解反応装置の電極のうち、少なくとも、過硫酸イオンが生成する陽極は導電性ダイヤモンド電極で構成するのが望ましく、陽極、陰極ともに導電性ダイヤモンド電極で構成するのが一層望ましい。   In the electrolytic reaction apparatus, electrolysis is performed by pairing an anode and a cathode. There are no particular restrictions on the material of these electrodes, but when platinum, which is widely used as an electrode, is used as the anode of an electrolysis reactor, persulfate ions cannot be generated efficiently and platinum is eluted. There is a problem. On the other hand, the diamond electrode can efficiently generate persulfate ions and has little electrode wear. Therefore, it is desirable that at least the anode for generating persulfate ions among the electrodes of the electrolytic reaction apparatus is composed of a conductive diamond electrode, and it is more desirable that both the anode and the cathode are composed of a conductive diamond electrode.

導電性ダイヤモンド電極は、シリコンウエハ等の半導体材料を基板とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させた後に、ウエハを溶解させたものや、基板を用いない条件で板状に析出合成したセルフスタンド型導電性多結晶ダイヤモンドを挙げることができる。また、Nb,W,Tiなどの金属基板上に積層したものも利用できるが、電流密度を大きくした場合には、ダイヤモンド膜が基板から剥離するという問題が生じやすい。   The conductive diamond electrode is a semiconductor material such as a silicon wafer used as a substrate, and after synthesizing a conductive diamond thin film on the wafer surface, the wafer is dissolved or synthesized in a plate shape under the condition that the substrate is not used. Mention may be made of self-standing conductive polycrystalline diamond. In addition, a laminate formed on a metal substrate such as Nb, W, or Ti can be used. However, when the current density is increased, a problem that the diamond film is peeled off from the substrate tends to occur.

導電性ダイヤモンド電極によって、硫酸イオンから過硫酸イオンを生成させることは、電流密度を0.2A/cm程度にした場合については報告されている(Ch.Comninellis et al.,Electrochemical and Solid−State Letters,Vol.3(2)77−79(2000),特表2003−511555号)。 It has been reported that persulfate ions are generated from sulfate ions with a conductive diamond electrode when the current density is about 0.2 A / cm 2 (Ch. Cominellis et al., Electrochemical and Solid-State). Letters, Vol. 3 (2) 77-79 (2000), Special Table 2003-511555).

なお、導電性ダイヤモンド薄膜は、ダイヤモンド薄膜の合成の際にボロン、窒素などの所定量をドープして導電性を付与したものであり、通常はボロンドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50〜20,000ppmの範囲のものが適している。   The conductive diamond thin film is a conductive thin film that is doped with a predetermined amount of boron, nitrogen, or the like during synthesis of the diamond thin film, and is generally boron-doped. If the doping amount is too small, technical significance does not occur. If the doping amount is too large, the doping effect is saturated. Therefore, a doping amount in the range of 50 to 20,000 ppm with respect to the carbon amount of the diamond thin film is suitable. .

導電性ダイヤモンド電極は、通常は板状のものを使用するが、網目構造物を板状にしたものも使用できる。電極の形状や数は特に限定されるものではない。   As the conductive diamond electrode, a plate-like one is usually used, but a plate having a network structure can also be used. The shape and number of electrodes are not particularly limited.

この導電性ダイヤモンド電極を用いて行う電解反応は、導電性ダイヤモンド電極表面の電流密度を10〜100,000A/mとし、硫酸イオンを含む再生廃液をダイヤモンド電極面と平行方向に、通液線速度を1〜10,000m/hrで接触処理させることが望ましい。 In the electrolytic reaction performed using this conductive diamond electrode, the current density on the surface of the conductive diamond electrode is set to 10 to 100,000 A / m 2, and the regenerated waste liquid containing sulfate ions is passed through in a direction parallel to the diamond electrode surface. It is desirable to perform the contact treatment at a speed of 1 to 10,000 m / hr.

本発明における耐酸/耐酸化性無機吸着剤による被処理水中の難生物分解性有機物の吸着処理、過硫酸(塩)溶液による耐酸/耐酸化性無機吸着剤の再生処理、再生廃液の電解処理の具体的な手法については特に制限はない。   In the present invention, the acid-resistant / oxidation-resistant inorganic adsorbent is used to adsorb the hardly biodegradable organic matter in the water to be treated, the acid-resistant / oxidation-resistant inorganic adsorbent is regenerated using a persulfuric acid (salt) solution, and the waste solution is electrolyzed There are no particular restrictions on the specific method.

以下に図1〜5を参照して本発明による難生物分解性有機物の処理の具体例を説明するが、本発明の装置及び方法は何ら図示のものに限定されるものではない。図1〜5では、耐酸/耐酸化性無機吸着剤を充填した吸着塔に被処理水を通水して難生物分解性有機物の吸着処理を行う例を示す。充填塔の通水方式は下向流に限らず、上向流であっても良い。また、充填塔は流動層方式、固定層方式のいずれであっても良い。また、無機吸着剤の再生処理についても塔通水方式とする。   Specific examples of the processing of the hardly biodegradable organic material according to the present invention will be described below with reference to FIGS. 1 to 5, but the apparatus and method of the present invention are not limited to those shown in the drawings. FIGS. 1 to 5 show an example in which water to be treated is passed through an adsorption tower filled with an acid / oxidation resistant inorganic adsorbent to carry out an adsorption treatment of a hardly biodegradable organic substance. The water flow system of the packed tower is not limited to the downward flow, and may be an upward flow. The packed tower may be either a fluidized bed system or a fixed bed system. In addition, the regeneration method of the inorganic adsorbent is also a tower water flow system.

図1の方法では、耐酸/耐酸化性無機吸着剤を充填した吸着塔1に被処理水を通水して難生物分解性有機物を吸着除去し、処理水を得る。被処理水の通水により難生物分解性有機物を吸着した無機吸着剤の再生に当っては、被処理水の通水を停止し、この吸着塔1に過硫酸(塩)貯槽2から過硫酸(塩)溶液を熱交換器3で加熱して通水し、無機吸着剤を再生する。再生廃液は、必要に応じて、中和、還元処理等の処理を施した後系外へ排出する。   In the method of FIG. 1, treated water is passed through an adsorption tower 1 filled with an acid / oxidation resistant inorganic adsorbent to absorb and remove hardly biodegradable organic substances, thereby obtaining treated water. In the regeneration of the inorganic adsorbent that adsorbs the hardly biodegradable organic substances by passing the water to be treated, the water to be treated is stopped, and the persulfuric acid (salt) storage tank 2 is passed to the adsorption tower 1 to persulfate. The (salt) solution is heated by the heat exchanger 3 and passed through to regenerate the inorganic adsorbent. The regenerated waste liquid is discharged out of the system after being subjected to treatment such as neutralization and reduction treatment as necessary.

図1では、吸着塔1に過硫酸(塩)溶液を通水して、吸着塔1内で無機吸着剤の再生を行うが、図2では、別途、再生塔4を設け、難生物分解性有機物を吸着した無機吸着剤を再生塔4に移送し、この再生塔4に過硫酸(塩)溶液を通水して無機吸着剤の再生を行い、再生済無機吸着剤を再生塔4から吸着塔1に戻して再度難生物分解性有機物の吸着に使用する点が図1のものと異なる。   In FIG. 1, a persulfuric acid (salt) solution is passed through the adsorption tower 1 to regenerate the inorganic adsorbent in the adsorption tower 1. In FIG. The inorganic adsorbent adsorbing the organic matter is transferred to the regeneration tower 4, the persulfuric acid (salt) solution is passed through the regeneration tower 4 to regenerate the inorganic adsorbent, and the regenerated inorganic adsorbent is adsorbed from the regeneration tower 4. The point which returns to the tower 1 and uses again for adsorption | suction of a non-biodegradable organic substance differs from the thing of FIG.

図3に示すものは、図1のものにおいて、更に、再生廃液を電解反応させることにより、過硫酸(塩)溶液を得る電解槽5を設けたものであり、吸着塔1内の無機吸着剤の再生に当っては、過硫酸(塩)貯槽2内の過硫酸(塩)溶液を熱交換器3で再生廃液と熱交換して加熱した後吸着塔1に通水し、再生廃液を熱交換器3で過硫酸(塩)溶液と熱交換して冷却した後電解槽5に送給して廃液中の硫酸イオンから過硫酸イオンを生成させて過硫酸(塩)溶液を得、この過硫酸(塩)溶液を過硫酸(塩)貯槽2に循環させて無機吸着剤の再生に再利用する。   The structure shown in FIG. 3 is the same as that shown in FIG. 1 except that an electrolytic tank 5 for obtaining a persulfuric acid (salt) solution by electrolytic reaction of the regenerated waste liquid is provided. In the regeneration, the persulfuric acid (salt) solution in the persulfuric acid (salt) storage tank 2 is heated by exchanging heat with the regenerated waste liquid in the heat exchanger 3 and then passed through the adsorption tower 1 to heat the regenerated waste liquid. After exchanging heat with the persulfuric acid (salt) solution in the exchanger 3 and cooling, it is fed to the electrolytic cell 5 to generate persulfate ions from the sulfate ions in the waste liquid to obtain a persulfuric acid (salt) solution. The sulfuric acid (salt) solution is circulated in the persulfuric acid (salt) storage tank 2 and reused for regeneration of the inorganic adsorbent.

図4に示すものは、図3に示すものにおいて、図2に示す如く、別途再生塔4を設けたものであり、難生物分解性有機物を吸着した無機吸着剤を再生塔4に移送して再生した後、再生済無機吸着剤を吸着塔1に戻すこと以外は、図3と同様に吸着及び再生処理が行われる。   4 is different from that shown in FIG. 3 in that a regeneration tower 4 is separately provided as shown in FIG. 2, and an inorganic adsorbent adsorbing a hardly biodegradable organic substance is transferred to the regeneration tower 4. After regeneration, the adsorption and regeneration processes are performed in the same manner as in FIG. 3 except that the regenerated inorganic adsorbent is returned to the adsorption tower 1.

図5に示すものは、図4のものにおいて、無機吸着剤を過硫酸(塩)溶液で再生するに先立ち、乾燥、酸化反応させるための乾燥・燃焼装置6を設けたものであり、難生物分解性有機物を吸着した無機吸着剤は、吸着塔1から、まず、この乾燥・燃焼装置6に移送されて乾燥後、酸素含有気体中で酸化反応され、その後、再生塔4に移送されて再生処理されること以外は、図4と同様に吸着及び再生処理が行われる。   5 is the same as that shown in FIG. 4 except that a drying / combustion device 6 for drying and oxidizing reaction is provided prior to regeneration of the inorganic adsorbent with a persulfuric acid (salt) solution. The inorganic adsorbent adsorbing the decomposable organic matter is first transferred from the adsorption tower 1 to the drying / combustion device 6 and dried, and then oxidized in an oxygen-containing gas, and then transferred to the regeneration tower 4 for regeneration. Except for being processed, adsorption and regeneration processes are performed in the same manner as in FIG.

なお、乾燥・燃焼装置6としては電気炉、ロータリーキルン等を用いることができる。   As the drying / combustion device 6, an electric furnace, a rotary kiln, or the like can be used.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。なお、以下において、難生物分解性有機物含有水としては、ノニオン性界面活性剤「NS208.5」(日本油脂社製)を0.01g/Lの濃度に水に溶解したものを用いた。この溶液のTOCは7.1mg/Lであった。また、耐酸/耐酸化性無機吸着剤としては、東ソー製「ハイシリカゼオライト HSZ390HUA」(平均粒径2000μmに調整したもの。以下、単に「ゼオライト」と記す。)を用いた。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following, as the non-biodegradable organic substance-containing water, nonionic surfactant “NS208.5” (manufactured by NOF Corporation) dissolved in water at a concentration of 0.01 g / L was used. The TOC of this solution was 7.1 mg / L. As the acid / oxidation-resistant inorganic adsorbent, “High Silica Zeolite HSZ390HUA” manufactured by Tosoh (adjusted to an average particle size of 2000 μm, hereinafter simply referred to as “zeolite”) was used.

(実施例1)
上記ノニオン性界面活性剤溶液を、ゼオライト100mL(重量50g)を充填した通水カラム(耐熱ガラス製、内径:30mmφ、高さ:500mm、充填高さ:142mm)に1.0L/hの流量で通液した。
Example 1
The nonionic surfactant solution was applied to a water flow column (made of heat-resistant glass, inner diameter: 30 mmφ, height: 500 mm, packing height: 142 mm) filled with 100 mL of zeolite (weight 50 g) at a flow rate of 1.0 L / h. The liquid was passed.

処理水のTOCは約25日間1mg/L以下であった。このときのTOC吸着量は約35g−TOC/L−ゼオライトであった(1回目吸着処理)。   The TOC of treated water was 1 mg / L or less for about 25 days. The TOC adsorption amount at this time was about 35 g-TOC / L-zeolite (first adsorption treatment).

このTOCを吸着したゼオライト通水カラムに、10時間で95℃の5重量%過硫酸ナトリウム水溶液(硫酸イオン換算濃度0.45M)10Lを通水してゼオライトの再生を行った。その後水洗し、pHが中性になったのを確認後、再度ノニオン性界面活性剤溶液を通水したところ(2回目吸着処理)、1回目の吸着処理と同様に、TOC1mg/L以下の処理水を同様の期間得ることができた。   The zeolite was regenerated by passing 10 L of a 5 wt% sodium persulfate aqueous solution (sulfate ion conversion concentration: 0.45 M) at 95 ° C. in 10 hours through the zeolite flow column adsorbing the TOC. After washing with water and confirming that the pH became neutral, the nonionic surfactant solution was passed through again (second adsorption treatment). Similarly to the first adsorption treatment, the treatment with a TOC of 1 mg / L or less was performed. Water could be obtained for a similar period.

この操作を5回繰り返したが、いすれも同様の処理水質、処理水量が得られた。   This operation was repeated 5 times, and the same treated water quality and treated water amount were obtained for both.

この結果から、ゼオライトにノニオン性界面活性剤を吸着させ、ゼオライトに吸着しているノニオン性界面活性剤を過硫酸ナトリウムで剥離・分解してゼオライトを再生し、再生したゼオライトをノニオン性界面活性剤の吸着処理に繰り返し使用することができることが分かる。   From this result, the nonionic surfactant is adsorbed on the zeolite, the nonionic surfactant adsorbed on the zeolite is exfoliated and decomposed with sodium persulfate to regenerate the zeolite, and the regenerated zeolite is converted to the nonionic surfactant. It can be seen that it can be used repeatedly for the adsorption process.

(実施例2)
再生用の過硫酸ナトリウム水溶液を電解反応により次のようにして調製した。
(Example 2)
A sodium persulfate aqueous solution for regeneration was prepared by an electrolytic reaction as follows.

過硫酸生成用電解槽は、陽極にエレメントシックス社製の平板ダイアモンド電極、陰極にペルメレック社製のTi−Pt電極を用いた(電極面積:50×50mm)。電解液は硫酸と硫酸ナトリウムの1対1の混合液(硫酸イオン濃度で0.5M/L)10Lとした。電解条件は電流密度25A/dm、電圧10Vで100時間行ったところ、過硫酸ナトリウムの濃度は約5重量%となった。このときの電流効率は約30%であった。 In the electrolytic cell for persulfuric acid generation, a flat diamond electrode made by Element Six was used for the anode, and a Ti-Pt electrode made by Permerec was used for the cathode (electrode area: 50 × 50 mm). The electrolytic solution was 10 L of a one-to-one mixed solution of sulfuric acid and sodium sulfate (sulfate ion concentration: 0.5 M / L). When the electrolysis was performed at a current density of 25 A / dm 2 and a voltage of 10 V for 100 hours, the concentration of sodium persulfate was about 5% by weight. The current efficiency at this time was about 30%.

再生用の過硫酸ナトリウム水溶液として、この電解反応で調製した過硫酸ナトリウム水溶液を用いたこと以外は、実施例1と同様にして吸着処理と再生処理を行ったところ、実施例1と同様にTOC1mg/L以下の処理水が実施例1とほぼ同量得られた。   Except that the sodium persulfate aqueous solution prepared by this electrolytic reaction was used as the aqueous sodium persulfate solution for regeneration, the adsorption treatment and the regeneration treatment were performed in the same manner as in Example 1. As in Example 1, TOC 1 mg / L or less treated water was obtained in substantially the same amount as in Example 1.

ゼオライトを再生した後の再生廃液を回収し、これを電解液として上記と同様に電解反応を行ったところ、同様に過硫酸ナトリウム水溶液を得ることができ、この過硫酸ナトリウム水溶液を用いて、吸着、再生を繰り返し行うことができた。   The regeneration waste solution after regeneration of the zeolite was recovered, and an electrolytic reaction was performed in the same manner as described above using this as an electrolytic solution. As a result, a sodium persulfate aqueous solution was obtained in the same manner, and this sodium persulfate aqueous solution was used for adsorption. , Could play repeatedly.

この結果から、ゼオライトの再生に用いた過硫酸(塩)溶液を電解反応で再生して、ゼオライトの再生に繰り返し再利用することができ、再生廃液の排出されないシステムとすることができることが分かる。   From this result, it can be seen that the persulfuric acid (salt) solution used for the regeneration of the zeolite can be regenerated by electrolytic reaction, and can be repeatedly reused for the regeneration of the zeolite, so that a system in which the regeneration waste liquid is not discharged can be obtained.

(比較例1)
ゼオライトの代りに活性炭(クラレ(株)製「クラレコールKW 10×40」)を同様のカラムに充填したこと以外は実施例1と同様にして吸着と再生を繰り返し行ったところ、2回目の吸着処理で、活性炭の微粉と界面活性剤の流出が観察された。
(Comparative Example 1)
Adsorption and regeneration were repeated in the same manner as in Example 1 except that a similar column was packed with activated carbon (“Kuraray Coal KW 10 × 40” manufactured by Kuraray Co., Ltd.) instead of zeolite. During the treatment, activated carbon fine powder and surfactant efflux were observed.

これは、過硫酸ナトリウムが、活性炭を酸化したため活性炭が弱くなったこと、並びに、活性炭の酸化で過硫酸ナトリウムが消費されたために活性炭に吸着された界面活性剤を十分に酸化分解できなかったことによると考えられる。即ち、活性炭では過硫酸(塩)による再生を適用することができない。   This is because sodium persulfate oxidized activated carbon and activated carbon became weak, and sodium persulfate was consumed due to the oxidation of activated carbon, and the surfactant adsorbed on the activated carbon could not be oxidatively decomposed sufficiently. It is thought that. In other words, regeneration with persulfuric acid (salt) cannot be applied to activated carbon.

(比較例2)
実施例1において、通水カラム中のゼオライトに過酸化ニッケルを担持させ、この通水カラムに、次亜塩素酸ナトリウム濃度が400mg/Lとなるように注入しながら界面活性剤溶液を通水したこと以外は、実施例1と同様に処理したところ、処理水のTOCは原水とほぼ同等の7mg/Lであり、TOX(有機ハロゲン化合物)は0.5〜1mg/Lであった。即ち、この方法では有機物を分解できないだけでなく、有機塩素化合物の生成が見られた。
(Comparative Example 2)
In Example 1, nickel peroxide was supported on the zeolite in the water flow column, and the surfactant solution was passed through the water flow column while being injected so that the sodium hypochlorite concentration was 400 mg / L. Except for this, when treated in the same manner as in Example 1, the TOC of the treated water was 7 mg / L, which was almost equivalent to that of the raw water, and the TOX (organic halogen compound) was 0.5-1 mg / L. That is, in this method, not only organic substances could not be decomposed, but also organic chlorine compounds were produced.

本発明の難生物分解性有機物含有水の処理装置及び処理方法は、化学工場、製紙工場、食品飲料製造工場、ゴミ焼却場、し尿処理場、下水処理場などから排出される有機物、COD、界面活性剤を含む排水中の有機成分の除去や、ノニオン性界面活性剤などの難生物分解性の有機物で汚染された湖沼、河川水の処理や、工場排水の再利用のための逆浸透膜処理の目詰まり防止技術として、工業的に極めて有用である。   The apparatus and method for treating water containing hardly biodegradable organic substances of the present invention include organic substances discharged from chemical factories, paper factories, food and beverage production factories, garbage incineration plants, human waste treatment plants, sewage treatment plants, COD, interfaces, etc. Removal of organic components in wastewater containing activators, treatment of lakes and rivers contaminated with non-biodegradable organic substances such as nonionic surfactants, and reverse osmosis membrane treatment for reuse of industrial wastewater It is extremely useful industrially as a clogging prevention technique.

本発明の難生物分解性有機物含有水の処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention. 本発明の難生物分解性有機物含有水の処理装置の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention. 本発明の難生物分解性有機物含有水の処理装置の別の実施の形態を示す系統図である。It is a systematic diagram which shows another embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention. 本発明の難生物分解性有機物含有水の処理装置の異なる実施の形態を示す系統図である。It is a systematic diagram which shows different embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention. 本発明の難生物分解性有機物含有水の処理装置の異なる実施の形態を示す系統図である。It is a systematic diagram which shows different embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention.

1 吸着塔
2 過硫酸(塩)貯槽
3 熱交換器
4 再生塔
5 電解槽
6 乾燥・燃焼装置
DESCRIPTION OF SYMBOLS 1 Adsorption tower 2 Persulfuric acid (salt) storage tank 3 Heat exchanger 4 Regeneration tower 5 Electrolysis tank 6 Drying / combustion device

Claims (6)

難生物分解性有機物含有水を耐酸性及び耐酸化性の無機吸着剤と接触させて、該難生物分解性有機物を該無機吸着剤に吸着させる吸着手段と、
難生物分解性有機物を吸着した無機吸着剤を過硫酸及び/又は過硫酸塩を含有する溶液(以下「過硫酸(塩)溶液」と称す。)と接触させて、該無機吸着剤に吸着している難生物分解性有機物を剥離・分解して無機吸着剤を再生させる再生手段

前記無機吸着剤を再生した後の溶液中の硫酸イオンから電解反応により過硫酸イオンを生成させて過硫酸(塩)溶液を再生させる電解反応装置と、前記再生手段と電解反応装置との間で溶液を循環させる循環ラインとを具備する難生物分解性有機物含有水の処理装置であって、
前記難生物分解性有機物がノニオン性界面活性剤であり、
前記無機吸着剤が多孔質シリカ、シリカ系ゼオライト及びスメクタイトよりなる群から選ばれる1種又は2種以上であり、
前記吸着手段が、前記無機吸着剤が充填された充填塔に前記難生物分解性有機物含有水を通水する手段であり、
前記再生手段が、前記難生物分解性有機物を吸着した無機吸着剤が充填された充填塔に前記過硫酸(塩)溶液を通水する手段であり、
前記再生手段で再生された無機吸着剤を前記吸着手段における吸着処理に繰り返し使用することを特徴とする難生物分解性有機物含有水の処理装置。
An adsorption means for contacting the water containing the hardly biodegradable organic substance with an acid-resistant and oxidation-resistant inorganic adsorbent to adsorb the hardly biodegradable organic substance onto the inorganic adsorbent;
The inorganic adsorbent adsorbing the hardly biodegradable organic substance is brought into contact with a solution containing persulfuric acid and / or persulfate (hereinafter referred to as “persulfuric acid (salt) solution”) and adsorbed on the inorganic adsorbent. Regenerating means for regenerating and regenerating the inorganic adsorbent by peeling and decomposing the difficult biodegradable organic matter ,
An electrolytic reaction device that regenerates a persulfuric acid (salt) solution by generating persulfate ions from the sulfate ions in the solution after regenerating the inorganic adsorbent by an electrolytic reaction, and between the regeneration means and the electrolytic reaction device. A treatment apparatus for water containing hardly biodegradable organic matter, comprising a circulation line for circulating the solution ,
The non-biodegradable organic substance is a nonionic surfactant;
The inorganic adsorbent is one or more selected from the group consisting of porous silica, silica-based zeolite and smectite,
The adsorbing means is means for passing the hardly biodegradable organic substance-containing water through a packed tower filled with the inorganic adsorbent;
The regeneration means is means for passing the persulfuric acid (salt) solution through a packed tower packed with an inorganic adsorbent that has adsorbed the hardly biodegradable organic matter,
A treatment apparatus for water containing hardly biodegradable organic substances, wherein the inorganic adsorbent regenerated by the regeneration means is repeatedly used for the adsorption treatment in the adsorption means.
請求項1において、前記無機吸着剤がシリカ系ゼオライトであることを特徴とする難生物分解性有機物含有水の処理装置。   The treatment apparatus for water containing hardly biodegradable organic substances according to claim 1, wherein the inorganic adsorbent is silica-based zeolite. 請求項1又は2において、前記電解反応装置の電極のうち、少なくとも陽極が導電性ダイヤモンド電極であることを特徴とする難生物分解性有機物含有水の処理装置。 3. The apparatus for treating hardly biodegradable organic substance-containing water according to claim 1 , wherein at least an anode of the electrodes of the electrolytic reaction apparatus is a conductive diamond electrode. 難生物分解性有機物含有水を耐酸性及び耐酸化性の無機吸着剤と接触させて、該難生物分解性有機物を該無機吸着剤に吸着させた後、難生物分解性有機物を吸着した無機吸着剤を過硫酸(塩)溶液と接触させて、該無機吸着剤に吸着している難生物分解性有機物を剥離・分解して無機吸着剤を再生させ
前記無機吸着剤を再生した後の溶液中の硫酸イオンから電解反応により過硫酸イオンを生成させて過硫酸(塩)溶液を再生させ、該過硫酸(塩)溶液を前記無機吸着剤の再生に再利用する難生物分解性有機物含有水の処理方法であって、
前記難生物分解性有機物がノニオン性界面活性剤であり、
前記無機吸着剤が多孔質シリカ、シリカ系ゼオライト及びスメクタイトよりなる群から選ばれる1種又は2種以上であり、
前記無機吸着剤が充填された充填塔に前記難生物分解性有機物含有水を通水して該難生物分解性有機物を該無機吸着剤に吸着させた後、
難生物分解性有機物を吸着した無機吸着剤が充填された充填塔に前記過硫酸(塩)溶液を通水して該無機吸着剤を再生し、
再生された無機吸着剤を難生物分解性有機物の吸着処理に繰り返し使用することを特徴とする難生物分解性有機物含有水の処理方法。
Inorganic adsorption that adsorbs the non-biodegradable organic substance after contacting the non-biodegradable organic substance-containing water with the acid- and oxidation-resistant inorganic adsorbent, adsorbing the non-biodegradable organic substance to the inorganic adsorbent The agent is brought into contact with a persulfuric acid (salt) solution, and the non-biodegradable organic matter adsorbed on the inorganic adsorbent is peeled and decomposed to regenerate the inorganic adsorbent .
After regenerating the inorganic adsorbent, persulfate ions are generated from the sulfate ions in the solution by an electrolytic reaction to regenerate the persulfuric acid (salt) solution, and the persulfuric acid (salt) solution is used to regenerate the inorganic adsorbent. a processing method hardly biodegradable organic substance-containing water you reuse,
The non-biodegradable organic substance is a nonionic surfactant;
The inorganic adsorbent is one or more selected from the group consisting of porous silica, silica-based zeolite and smectite,
After passing the hardly biodegradable organic substance-containing water through the packed tower packed with the inorganic adsorbent to adsorb the hardly biodegradable organic substance to the inorganic adsorbent,
Regenerating the inorganic adsorbent by passing the persulfuric acid (salt) solution through a packed tower packed with an inorganic adsorbent adsorbing a hardly biodegradable organic substance;
A method for treating water containing hardly biodegradable organic substances, characterized by repeatedly using the regenerated inorganic adsorbent for adsorption treatment of hardly biodegradable organic substances.
請求項において、前記無機吸着剤がシリカ系ゼオライトであることを特徴とする難生物分解性有機物含有水の処理方法。 5. The method for treating hardly biodegradable organic substance-containing water according to claim 4 , wherein the inorganic adsorbent is silica-based zeolite. 請求項4又は5において、前記電解反応に用いる電極のうち、少なくとも陽極が導電性ダイヤモンド電極であることを特徴とする難生物分解性有機物含有水の処理方法。 6. The method for treating hardly biodegradable organic substance-containing water according to claim 4 , wherein at least an anode of the electrodes used for the electrolytic reaction is a conductive diamond electrode.
JP2005141476A 2005-05-13 2005-05-13 Apparatus and method for treating water containing hardly biodegradable organic matter Expired - Fee Related JP4760120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141476A JP4760120B2 (en) 2005-05-13 2005-05-13 Apparatus and method for treating water containing hardly biodegradable organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141476A JP4760120B2 (en) 2005-05-13 2005-05-13 Apparatus and method for treating water containing hardly biodegradable organic matter

Publications (2)

Publication Number Publication Date
JP2006314952A JP2006314952A (en) 2006-11-24
JP4760120B2 true JP4760120B2 (en) 2011-08-31

Family

ID=37536079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141476A Expired - Fee Related JP4760120B2 (en) 2005-05-13 2005-05-13 Apparatus and method for treating water containing hardly biodegradable organic matter

Country Status (1)

Country Link
JP (1) JP4760120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101284704A (en) * 2007-04-09 2008-10-15 株式会社日立制作所 A treatment method, device and system of organic compounds included in waste water, and asphaltum recovering system
JP5093135B2 (en) * 2008-12-22 2012-12-05 東ソー株式会社 COD removal method and COD cracking catalyst packed tower

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113290A (en) * 1999-10-19 2001-04-24 Kurita Water Ind Ltd Apparatus for treating organic matter-containing water
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2003511555A (en) * 1999-10-06 2003-03-25 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for electrochemical production of peroxodisulfuric acid using a diamond-coated electrode
JP2004073931A (en) * 2002-08-12 2004-03-11 Kurita Water Ind Ltd Method for removing surfactant
JP2004099914A (en) * 2002-09-04 2004-04-02 Permelec Electrode Ltd Method for producing peroxodisulfate
JP2004261631A (en) * 2002-02-04 2004-09-24 Idemitsu Kosan Co Ltd Method of decomposing hardly decomposable substance, method of regenerating absorbent using the same, and treatment method for waste water
JP2006192378A (en) * 2005-01-14 2006-07-27 Idemitsu Kosan Co Ltd Hardly decomposable substances-containing water treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511555A (en) * 1999-10-06 2003-03-25 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for electrochemical production of peroxodisulfuric acid using a diamond-coated electrode
JP2001113290A (en) * 1999-10-19 2001-04-24 Kurita Water Ind Ltd Apparatus for treating organic matter-containing water
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2004261631A (en) * 2002-02-04 2004-09-24 Idemitsu Kosan Co Ltd Method of decomposing hardly decomposable substance, method of regenerating absorbent using the same, and treatment method for waste water
JP2004073931A (en) * 2002-08-12 2004-03-11 Kurita Water Ind Ltd Method for removing surfactant
JP2004099914A (en) * 2002-09-04 2004-04-02 Permelec Electrode Ltd Method for producing peroxodisulfate
JP2006192378A (en) * 2005-01-14 2006-07-27 Idemitsu Kosan Co Ltd Hardly decomposable substances-containing water treatment method

Also Published As

Publication number Publication date
JP2006314952A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
CN109081401B (en) Method for degrading pollutants in water by synchronously exciting persulfate-ozone by cathode and anode
CN108358363A (en) A kind of deep treatment method of organic sewage with high salt
da Silva Santos et al. Regeneration of dye-saturated activated carbon through advanced oxidative processes: A review
CN111825168B (en) Copper-modified carbon fiber electrode and preparation method and application thereof
CN101913693A (en) Device and method for activating molecular oxygen by electrocatalysis to treat persistent organic wastewater
CN110526343B (en) Electrocatalysis coupling advanced oxidation system and application thereof
JPS6097089A (en) Method of electrochemically removing contamination of water
JP4760120B2 (en) Apparatus and method for treating water containing hardly biodegradable organic matter
KR101623032B1 (en) catalytic composite for catalytic ozonation process and the method of removing non-degradable organic material using the same
CN108178286B (en) Device and method for cooperatively treating sewage and wastewater by three-dimensional electrode biomembrane and photoelectric reoxygenation
JP2012213764A (en) Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater
JP3988483B2 (en) Treatment of free chlorine in water
JP4859201B2 (en) Water treatment method and system
CN108503097B (en) Treatment method of organic matter polluted water
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
CN113501498A (en) Hydrochloric acid purification system and process
JP3988473B2 (en) Treatment method for water containing oxidizable substances
JPH1110160A (en) Method for treating water by electrolytic oxidation
JP2005193196A (en) Waste water treatment method and system
JPS5834080A (en) Treatment of acid-digested waste liquid
CN111056598A (en) Electrochemical oxygen catalytic reduction cathode material for water treatment and preparation method thereof
JP2006231177A (en) Endocrine disrupting chemical substance decomposing method and apparatus
Dou et al. Removal of Cl (− I) from acidic industrial wastewater through oxidation: a review on methods and mechanisms
CN215249553U (en) Hydrochloric acid clean system
JP4465696B2 (en) Method and apparatus for decomposing organic substances in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees