JP4759624B2 - Manufacturing method of plastic optical fiber - Google Patents

Manufacturing method of plastic optical fiber Download PDF

Info

Publication number
JP4759624B2
JP4759624B2 JP2009033153A JP2009033153A JP4759624B2 JP 4759624 B2 JP4759624 B2 JP 4759624B2 JP 2009033153 A JP2009033153 A JP 2009033153A JP 2009033153 A JP2009033153 A JP 2009033153A JP 4759624 B2 JP4759624 B2 JP 4759624B2
Authority
JP
Japan
Prior art keywords
transparent plastic
rod
optical fiber
shaped body
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009033153A
Other languages
Japanese (ja)
Other versions
JP2009104208A (en
Inventor
堅 斎藤
修 新治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009033153A priority Critical patent/JP4759624B2/en
Publication of JP2009104208A publication Critical patent/JP2009104208A/en
Application granted granted Critical
Publication of JP4759624B2 publication Critical patent/JP4759624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は透明プラスチック線状体の製造方法、特にプラスチック光ファイバの製造方法に関する。   The present invention relates to a method for producing a transparent plastic linear body, and more particularly to a method for producing a plastic optical fiber.

従来、透明プラスチックの線状体(モノフィラメント)を製造する方法として、透明プラスチックを溶融し、細いノズルから押し出して行う溶融押出紡糸法が採用されることが多い。溶融押出紡糸法を利用したプラスチック光ファイバの製造方法の一例として、例えば、メチルメタクリレートモノマを塊状重合し、ペレットを経由しないで連続的にファイバを押し出して製造する方法がある。溶融押出紡糸法に用いられる押出機は大型の装置であり、高価格であるが、この方法のように溶融押出紡糸法は大量生産に適している。しかし、押出機の運転を開始してから定常運転に入るまでに長い時間が必要であり、時間や素材のロスが大きい。このため、素材の樹脂の種類を変える、添加剤の種類を変えるなど、素材を変更しようとすると、切替のためのロスが大きく、溶融押出紡糸法は少量多品種生産には必ずしも適当でない。   Conventionally, as a method for producing a transparent plastic linear body (monofilament), a melt extrusion spinning method in which a transparent plastic is melted and extruded from a thin nozzle is often employed. As an example of a method for producing a plastic optical fiber using the melt extrusion spinning method, for example, there is a method in which methyl methacrylate monomer is bulk polymerized and the fiber is continuously extruded without going through pellets. The extruder used for the melt extrusion spinning method is a large-sized apparatus and is expensive, but like this method, the melt extrusion spinning method is suitable for mass production. However, a long time is required from the start of the operation of the extruder to the start of the steady operation, and the loss of time and material is large. For this reason, when changing the material, such as changing the type of resin of the material or changing the type of additive, there is a large loss for switching, and the melt extrusion spinning method is not necessarily suitable for the production of a small variety of products.

透明プラスチックのモノフィラメントを製造する他の方法として、透明プラスチックの棒状体を成形後、先端を加熱して細いモノフィラメントに線引する方法がある(以後、この方法を「延伸法」と称する。)。この延伸法は量産には適さないが、円形の断面形状のもののみならず、矩形などの異形のものを製造することが容易であり、また素材の変更なども容易であり、多品種の生産に適している。延伸法によるプラスチック光ファイバの製造方法は、蛍光ファイバ、シンチレーションファイバなどの特殊用途向けのプラスチック光ファイバの製造に利用されることが多い。延伸法では、一般に200〜350℃程度の鋳込ヒーター等により、透明プラスチック棒状体の先端を加熱することが行われている。この加熱方法によれば、ヒータからの熱の一部が空気や不活性ガスを媒体にして棒状体の表面まで伝導することによって棒状体を加熱し、また、ヒータ表面から放射された遠赤外線が棒状体の表面を直接に加熱する。透明プラスチックは遠赤外線の吸収効率が高いことから、ヒーターを用いた場合、空気等を媒体にする加熱によっても、遠赤外線による加熱によっても棒状体の表面のみが加熱される。   As another method for producing a transparent plastic monofilament, there is a method in which a transparent plastic rod-shaped body is molded, and then the tip is heated to draw a thin monofilament (hereinafter, this method is referred to as “stretching method”). Although this drawing method is not suitable for mass production, it is easy to produce not only circular cross-sectional shapes but also irregular shapes such as rectangles, and it is easy to change materials, producing a wide variety of products. Suitable for The method for producing a plastic optical fiber by the drawing method is often used for producing a plastic optical fiber for special applications such as a fluorescent fiber and a scintillation fiber. In the stretching method, generally, the tip of a transparent plastic rod is heated by a cast heater of about 200 to 350 ° C. or the like. According to this heating method, a part of the heat from the heater is conducted to the surface of the rod-shaped body using air or an inert gas as a medium, the rod-shaped body is heated, and far infrared rays radiated from the heater surface are The surface of the rod is heated directly. Since the transparent plastic has high absorption efficiency of far infrared rays, when a heater is used, only the surface of the rod-like body is heated by heating using air or the like as well as heating by far infrared rays.

一般にプラスチックの熱伝導率は小さいことから、延伸法においてヒーターや熱風を用いて太い棒状体を加熱しようとすると、表面ばかりが加熱され、棒状体の中心部まで熱が伝わらず中心部の温度が上がらず、延伸をすることができなかった。太い棒状体の中心部まで温度を上げるために、ヒーターや熱風の温度を上げると棒状体の表面温度のみが過剰に上昇することになって、棒状体表面に発泡や加熱劣化が起こってしまう。このような棒状体から光ファイバを製造すると、光ファイバに欠陥や線径むらが生じ、導光損失に劣る光ファイバしか得られなかった。   In general, since the thermal conductivity of plastic is small, when trying to heat a thick rod-shaped body using a heater or hot air in the stretching method, only the surface is heated, and heat is not transmitted to the center of the rod-shaped body, so the temperature of the center is It did not rise and could not be stretched. If the temperature of the heater or hot air is raised in order to raise the temperature to the center of the thick rod-shaped body, only the surface temperature of the rod-shaped body will rise excessively, and foaming or heat deterioration will occur on the surface of the rod-shaped body. When an optical fiber is manufactured from such a rod-shaped body, defects and wire diameter irregularities are generated in the optical fiber, and only an optical fiber inferior in light guide loss can be obtained.

本発明は上記の課題に鑑みてなされたものであり、延伸法による透明プラスチック線状体の製造において表面の発泡や加熱劣化を抑え、高い生産速度で高品質の透明プラスチック線状体を製造する方法を提供することを目的とする。   The present invention has been made in view of the above problems, and suppresses foaming and heat deterioration of the surface in the production of a transparent plastic linear body by a stretching method, and produces a high-quality transparent plastic linear body at a high production rate. It aims to provide a method.

上記の課題を解決する透明プラスチック光ファイバの製造方法に関する本件の発明は、透明プラスチック棒状体の先端部を加熱し、線引きすることによって、該透明プラスチック棒状体と概ね相似する断面形状を持つ透明プラスチック線状体を製造する方法において、前記透明プラスチック棒状体が、アクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、PET樹脂から選ばれる1種を少なくとも含み、前記透明プラスチック棒状体の直径が70mm〜200mmの範囲内、好ましくは70mm〜100mmの範囲内であり、透明プラスチック棒状体の加熱に近赤外線源を主として用い、前記透明プラスチック棒状体の加熱に用いられる近赤外線源は色温度が1500〜4000Kの近赤外放射体であって、近赤外線源と加熱される透明プラスチック棒状体との間に、700〜800nm以下の短波長の光を遮断する短波長遮断フィルタが設けられていることを特徴とする。
The invention of the present invention relating to a method of manufacturing a transparent plastic optical fiber that solves the above-mentioned problems is a transparent plastic having a cross-sectional shape substantially similar to that of the transparent plastic rod-shaped body by heating and drawing the tip of the transparent plastic rod-shaped body. In the method for producing a linear body, the transparent plastic rod-shaped body includes at least one selected from an acrylic resin, a polystyrene resin, a polycarbonate resin, and a PET resin, and the diameter of the transparent plastic rod-shaped body is in a range of 70 mm to 200 mm. , preferably in the range of 70Mm~100mm, mainly using a near infrared ray source for heating the transparent plastic rod-shaped body, the near infrared source used to heat the transparent plastic rod-like body near infrared color temperature 1500~4000K A radiator that is heated with a near infrared source Between the plastic rod-like body, characterized in that the short-wavelength cutoff filter for blocking light of a wavelength shorter than 700~800nm is provided.

この透明プラスチック線状体の製造方法の発明において、透明プラスチック棒状体の加熱に用いられる近赤外線源が、0.7〜3μmのピーク波長を持つ、色温度が1000〜4000Kの近赤外放射体であることが、棒状体の内部まで均一に加熱できしかも加熱効率を損なわないことから好ましい。また、近赤外線源と加熱される透明プラスチック棒状体との間に、可視波長もしくは紫外波長以下の短波長以下の短波長の光を遮断する短波長遮断フィルタを設けることにより、可視光や紫外光による棒状体の材料劣化を防止することができる。 In the invention of the method for producing a transparent plastic linear body, the near infrared source used for heating the transparent plastic rod has a peak wavelength of 0.7 to 3 μm and a color temperature of 1000 to 4000 K. It is preferable that the inside of the rod-shaped body can be heated uniformly and the heating efficiency is not impaired. Further, between the transparent plastic rod-like body to be heated and the near infrared source, by providing a short wavelength cutoff filter for blocking light having a short wavelength less short wavelength than that of visible wavelength or ultraviolet wavelength, visible light or ultraviolet light Ru can be prevented material degradation of the rod-like body according to.

明プラスチック棒状体として、多数のプラスチック光ファイバの束からなるものを用いることができ、また、プラスチック棒状体が、蛍光剤を含有しても良い。棒状体としては円柱形状に限定されず、棒状体を例えば矩形や三角形などの異形に成形しておくことによって、異形断面線状体を製造することができる。 As transparency plastic rod-like body, there can be used those composed of a bundle of a number of plastic optical fiber, also plastic rod-shaped body, may contain a fluorescent agent. The rod-shaped body is not limited to a cylindrical shape, and a deformed cross-section linear body can be manufactured by forming the rod-shaped body into a deformed shape such as a rectangle or a triangle.

本発明によれば、延伸法による透明プラスチック光ファイバの製造において表面の発泡や加熱劣化および光劣化を抑え、高品質の透明プラスチック光ファイバを製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a high-quality transparent plastic optical fiber by suppressing surface foaming, heat degradation and light degradation in the production of a transparent plastic optical fiber by a stretching method.

本件発明に用いられる近赤外線加熱炉および延伸装置の一例を示す概略図である。It is the schematic which shows an example of the near-infrared heating furnace and extending | stretching apparatus which are used for this invention. ハロゲンランプの放射エネルギー分布を示す図である。It is a figure which shows the radiant energy distribution of a halogen lamp. アクリル樹脂の吸光係数を示す図である。It is a figure which shows the light absorption coefficient of an acrylic resin. 近赤外線を用いた加熱実験の方法および結果を示す図である。It is a figure which shows the method and result of a heating experiment using near infrared rays. ハロゲンランプと組み合わして用いることが適当な短波長遮断フィルタの波長特性の一例を示す図である。It is a figure which shows an example of the wavelength characteristic of a short wavelength cut off filter suitable for using in combination with a halogen lamp.

本件の発明に用いられる近赤外線加熱炉および延伸装置を図1に示す。近赤外線加熱炉は、近赤外線源2を備え、近赤外線源2から発せられた近赤外線が炉心管4を通って透明プラスチック棒状体6に照射される。近赤外線源2は炉心管4を内側にして透明プラスチック棒状体6の外周に等間隔で配置される。近赤外線源2を等間隔で配置しておかないと、透明プラスチック棒状体が真円であっても、延伸後の透明プラスチック線状体が楕円になったり、異形になったりすることがある。真円の透明プラスチック線状体を得るために、近赤外線源2を多数(例えば、8個以上、好ましくは10個以上)配置することが良い。必要に応じて、近赤外線源2は上下に2段以上の多段に配置しても良い。   A near-infrared heating furnace and stretching apparatus used in the present invention are shown in FIG. The near-infrared heating furnace includes a near-infrared ray source 2, and near-infrared rays emitted from the near-infrared ray source 2 are irradiated to the transparent plastic rod 6 through the furnace core tube 4. The near-infrared ray source 2 is disposed at equal intervals on the outer periphery of the transparent plastic rod-like body 6 with the furnace core tube 4 inside. If the near-infrared ray sources 2 are not arranged at equal intervals, even if the transparent plastic rod-like body is a perfect circle, the stretched transparent plastic linear body may become an ellipse or an irregular shape. In order to obtain a perfect circular transparent plastic linear body, a large number (for example, 8 or more, preferably 10 or more) of the near-infrared sources 2 are preferably arranged. If necessary, the near-infrared ray source 2 may be arranged in two or more stages in the vertical direction.

近赤外線源としては、いわゆるプランクの黒体放射に類する放射伝熱源が用いられる。タングステンフィラメントを放射源とする照明用の白熱電球やハロゲンランプなどが放射伝熱源として好適に用いられる。図2は、放射源の温度(色温度)とプランクの黒体放射エネルギーの波長分布を示したものであり、放射エネルギーの最大値を与える波長λmaxと絶対温度Tとの関係は下記の式(1)で、全放射エネルギーEは下記の式(2)でそれぞれ示される。式(2)はステファン・ボルツマンの法則と呼ばれる。
λmax・T=2884(μm・K) (1)
E=σT4 (σ:定数) (2)
図2、式(1)および式(2)より、温度が高いほど放射ピーク波長が短くなり、しかも放射エネルギーが急激に増加していくことが示されている。例えば、ハロゲンランプの色温度が3000Kの場合、図2および式(1)から、ハロゲンランプの放射ピークは1μm付近にある。ここで、透明棒状体の素材の一例であるアクリル樹脂について、吸光係数を図3に示す(出典:Toshikuni KAINO, et al., Review of the Electrical Communication Laboratories Vol.32 No.3 (1984) P478-488)。アクリル樹脂は波長が0.7μm以下では透明であり吸収が少ないが、0.7μmの可視波長から波長3μmまで徐々に吸収が大きくなり、3μmを越える遠赤外波長では、1cm当たりの吸光度が10以上(すなわち、1cm通過で99%吸収)となり、ほとんど不透明になることが図3から分かる。すなわち、数cm〜10cmの深さまで内部加熱するためには、波長が1μm前後で、アクリル樹脂に対して半透明であり、半分程度が吸収される近赤外線で加熱することが好ましい。これに対し、放射ピークが3μmを超える遠赤外線を加熱に用いると、吸光係数が大きいために、遠赤外線がアクリル樹脂透明体の表面でほとんど吸収されて熱になり、表面の発泡や加熱劣化を起こし易い。一方、放射ピークが0.7μmに満たない可視光線を加熱に用いると、吸光係数が小さいために、可視光線が透過してしまい、アクリル樹脂透明体が加熱されないばかりか、被加熱体の光劣化を起こす恐れも高い。
As the near-infrared source, a radiant heat transfer source similar to so-called Planck's blackbody radiation is used. An incandescent light bulb or a halogen lamp for illumination using a tungsten filament as a radiation source is preferably used as the radiation heat transfer source. FIG. 2 shows the wavelength distribution of the radiation source temperature (color temperature) and Planck's blackbody radiant energy. The relationship between the wavelength λmax giving the maximum value of the radiant energy and the absolute temperature T is expressed by the following equation ( In 1), the total radiant energy E is expressed by the following formula (2), respectively. Equation (2) is called Stefan Boltzmann's law.
λmax · T = 2882 (μm · K) (1)
E = σT 4 (σ: constant) (2)
FIG. 2, formula (1) and formula (2) show that the higher the temperature, the shorter the emission peak wavelength, and the more suddenly the radiant energy increases. For example, when the color temperature of the halogen lamp is 3000 K, the emission peak of the halogen lamp is in the vicinity of 1 μm from FIG. 2 and formula (1). Here, the absorption coefficient of an acrylic resin, which is an example of a transparent rod-shaped material, is shown in FIG. 3 (Source: Toshikuni KAINO, et al., Review of the Electrical Communication Laboratories Vol.32 No.3 (1984) P478- 488). Acrylic resin is transparent at wavelengths below 0.7 μm and absorbs little, but the absorption gradually increases from a visible wavelength of 0.7 μm to a wavelength of 3 μm. At far-infrared wavelengths exceeding 3 μm, the absorbance per cm is 10 It can be seen from FIG. 3 that the above (that is, 99% absorption after passing 1 cm) becomes almost opaque. That is, for internal heating to a depth of several centimeters to 10 centimeters, it is preferable to heat with near infrared rays having a wavelength of about 1 μm, translucent to acrylic resin, and about half of which is absorbed. On the other hand, when far infrared rays having a radiation peak exceeding 3 μm are used for heating, since the absorption coefficient is large, the far infrared rays are almost absorbed by the surface of the acrylic resin transparent body and become heat, which causes foaming and heat deterioration of the surface. Easy to wake up. On the other hand, when visible light having a radiation peak of less than 0.7 μm is used for heating, the light absorption coefficient is small, so that visible light is transmitted, and the acrylic resin transparent body is not heated. There is a high risk of

図3にはアクリル樹脂の吸光係数を示したが、ポリスチレン樹脂、ポリカーボネート樹脂、PET樹脂などの一般的な透明プラスチックであれば同様に赤外波長領域で光が吸収される特性を持つことから、本発明において好適に用いることができる。本件の発明により、透明プラスチック棒状体の加熱に近赤外線を用いることにより、棒状体を内部から加熱することができ、従来の鋳込みヒーター等の伝導伝熱加熱源を用いた場合のように、透明プラスチック棒状体の表面温度が必要以上に上昇することが避けられ、発泡や加熱劣化を抑えることがきる。また、近赤外線源による内部加熱によれば、伝導伝熱加熱源を用いた場合よりも短時間で棒状体の内部を加熱することが可能であり、透明プラスチック線状体の延伸速度を従来よりも速めること、従来よりも大きな直径の透明プラスチック棒状体を延伸することが可能となる。   FIG. 3 shows the extinction coefficient of the acrylic resin. However, since it has a characteristic that light is absorbed in the infrared wavelength region in the case of a general transparent plastic such as polystyrene resin, polycarbonate resin, and PET resin, It can be suitably used in the present invention. According to the present invention, by using near-infrared rays for heating the transparent plastic rod-like body, the rod-like body can be heated from the inside, and it is transparent as in the case of using a conventional heat transfer heat source such as a cast-in heater. The surface temperature of the plastic rod-like body can be prevented from rising more than necessary, and foaming and heat deterioration can be suppressed. Also, according to the internal heating by the near-infrared source, it is possible to heat the inside of the rod-shaped body in a shorter time than the case of using the conduction heat transfer heating source, and the stretching speed of the transparent plastic linear body is conventionally increased. It is possible to stretch a transparent plastic rod having a larger diameter than before.

透明プラスチック棒状体の加熱に用いられる近赤外線源としては、0.7〜3μmのピーク波長を持つ、色温度が1000〜4000Kの黒体放射体であればどのような加熱源でもよいが、ピーク波長が0.8〜2μm(色温度1500〜3500K)のものがより好ましい。例えば輻射効率の高いハロゲンランプが好適に用いることができる。   The near-infrared source used for heating the transparent plastic rod may be any heating source as long as it is a black body radiator having a peak wavelength of 0.7 to 3 μm and a color temperature of 1000 to 4000 K. Those having a wavelength of 0.8 to 2 μm (color temperature 1500 to 3500 K) are more preferable. For example, a halogen lamp with high radiation efficiency can be preferably used.

近赤外線を加熱に用いることによって効果的にプラスチック透明体の内部が加熱されることを図4(a)に概略を示す試験方法により確認した。ここでは、縦寸法が70mm、横寸法が90mmで、厚さが10mmのアクリル樹脂板(透明および黒色の2種類)の表面及び裏面の中心部にそれぞれ熱電体を取り付け、このアクリル樹脂板から7cm離れたところからハロゲンランプ(100V500W、色温度2950K)を用いて近赤外線を照射し、温度変化を測定した(測定結果を図4(b)に示す。)。図4(b)に基づいて考察すると、透明アクリル樹脂板の場合、照射開始3分後の表面の温度は80℃、裏面の温度は28℃であり、加熱効率は高くないが表裏の温度差は52℃と小さい。これは内部の加熱が進んでいることを示している。これに対し、黒色アクリル樹脂板を用いた試験の結果を比較のために図4に示したが、これは伝導伝熱や遠赤外線加熱の模擬として示したものである。黒色アクリル樹脂板の場合では照射開始3分後の表面の温度は143℃、裏面の温度は26℃であり、表裏の温度差は117℃と大きく、加熱効率は高いが表面の加熱が過度に進んでいることを示している。また、黒色アクリル樹脂板の場合、照射開始1分程度は裏面の温度上昇がないのに対し、透明アクリル樹脂板の場合、照射開始と同時に裏面の温度上昇が始まっている。このことも、熱伝導ではなく、近赤外線により直接に内部が加熱されていることを示している。   It was confirmed by the test method schematically shown in FIG. 4A that the inside of the plastic transparent body is effectively heated by using near infrared rays for heating. Here, a thermoelectric body is attached to the center of the front and back surfaces of an acrylic resin plate (two types of transparent and black) having a vertical dimension of 70 mm, a horizontal dimension of 90 mm, and a thickness of 10 mm. Near-infrared rays were irradiated from a distance using a halogen lamp (100 V 500 W, color temperature 2950 K), and the temperature change was measured (measurement results are shown in FIG. 4B). Considering based on FIG. 4 (b), in the case of a transparent acrylic resin plate, the surface temperature 3 minutes after the start of irradiation is 80 ° C., the back surface temperature is 28 ° C., and the heating efficiency is not high, but the temperature difference between the front and back sides Is as small as 52 ° C. This indicates that internal heating is progressing. On the other hand, although the result of the test using a black acrylic resin board was shown in FIG. 4 for the comparison, this is shown as simulation of conduction heat transfer or far-infrared heating. In the case of a black acrylic resin plate, the temperature of the surface 3 minutes after the start of irradiation is 143 ° C., the temperature of the back surface is 26 ° C., the temperature difference between the front and back is as large as 117 ° C., and the heating efficiency is high, but the surface heating is excessive. Indicates that it is progressing. In the case of a black acrylic resin plate, the temperature on the back surface does not increase for about 1 minute from the start of irradiation, whereas in the case of a transparent acrylic resin plate, the temperature increase on the back surface starts simultaneously with the start of irradiation. This also indicates that the inside is directly heated by near infrared rays rather than heat conduction.

ハロゲンランプからは、場合によっては有害な可視光線及び紫外線も発生することから、ハロゲンランプと透明プラスチック棒状体との間に、透明プラスチック棒状体の加熱に不要な可視光線及び紫外線を除去するため、700〜800nm以下の短波長を遮断する短波長遮断フィルタ1を配置すれば良い(図1参照)。ハロゲンランプと組み合わせて用いることが適当な短波長遮断フィルタの波長特性の一例を図5に示す。本件の発明によりプラスチックシンチレーションファイバを製造する場合には、短波長遮断フィルタを配置することが特に好ましい。加熱延伸時に棒状体に紫外線が照射されたことによって蛍光剤が劣化退色したり、蛍光剤のために樹脂が着色することがあるからである。   Since halogen lamps sometimes generate harmful visible light and ultraviolet rays, in order to remove visible light and ultraviolet rays unnecessary for heating the transparent plastic rods between the halogen lamp and the transparent plastic rods, What is necessary is just to arrange | position the short wavelength cutoff filter 1 which interrupts | blocks a short wavelength of 700-800 nm or less (refer FIG. 1). An example of the wavelength characteristics of a short wavelength cutoff filter suitable for use in combination with a halogen lamp is shown in FIG. When manufacturing a plastic scintillation fiber according to the present invention, it is particularly preferable to dispose a short wavelength cutoff filter. This is because the fluorescent material may be deteriorated and faded or the resin may be colored due to the fluorescent agent when the rod-shaped body is irradiated with ultraviolet rays at the time of heating and stretching.

図1に示す本件の発明に用いられる近赤外線加熱炉および延伸装置において、加熱炉内の電線や短波長遮断フィルタを保護するとともに、近赤外線加熱の効果を高めるために炉心管を含め周辺部材の温度を過度に上昇させないため、近赤外線加熱炉には冷却ファン3が取り付けられている。炉心管4によって、透明プラスチック棒状体6に近赤外線加熱炉の冷却ファン3からの冷却風が当たって延伸径が変動することを防ぐことができる。   In the near-infrared heating furnace and stretching apparatus used in the present invention shown in FIG. 1, while protecting the electric wire and the short-wavelength cutoff filter in the heating furnace, in order to enhance the effect of near-infrared heating, In order not to raise the temperature excessively, a cooling fan 3 is attached to the near infrared heating furnace. The core tube 4 can prevent the drawing diameter from fluctuating due to the transparent plastic rod 6 hitting the cooling air from the cooling fan 3 of the near infrared heating furnace.

透明プラスチック棒状体6は定速昇降装置5によって一定の速度で下げられる。近赤外線加熱炉の下部には引き取り機9が設けられており、透明プラスチック棒状体6と概ね相似する形状に延伸された線状体が引き取り機9を通って、切断機、巻き取り機等に送られる。透明プラスチック線状体の外径は外径測定器検知部7で測定され、その結果は外径測定器表示部8で表示されるとともに、所定の外径(目標値)と差に応じて引き取り機9での引き取り速度が制御される。   The transparent plastic rod 6 is lowered at a constant speed by the constant speed lifting device 5. A take-up machine 9 is provided at the lower part of the near-infrared heating furnace, and a linear body stretched in a shape substantially similar to the transparent plastic rod-like body 6 passes through the take-up machine 9 to be used as a cutting machine, a winder, or the like. Sent. The outer diameter of the transparent plastic linear body is measured by the outer diameter measuring device detection unit 7 and the result is displayed on the outer diameter measuring device display unit 8 and is taken out according to the predetermined outer diameter (target value) and the difference. The take-up speed at the machine 9 is controlled.

このような近赤外線加熱炉および延伸装置を用いた本件の透明プラスチック線状体の製造方法の発明は、プラスチック光ファイバの製造に利用することができる。その他、細径や太径のモノフィラメントの製造にも利用することができる。プラスチック光ファイバを製造する場合には、その製造に用いられる透明プラスチック棒状体として、例えば、コア材/クラッド材がスチレン樹脂/アクリル樹脂、アクリル樹脂/フッ素樹脂、ポリカーボネート樹脂/アクリル樹脂からなるものが挙げられる。また、透明プラスチック棒状体は多数のプラスチック光ファイバの束からなるものでも良く、透明プラスチック棒状体に蛍光剤を添加しておけば、蛍光ファイバやシンチレーションファイバを好適に製造することもできる。   The invention of the present method for producing a transparent plastic linear body using such a near-infrared heating furnace and a stretching apparatus can be used for producing a plastic optical fiber. In addition, it can be used for the production of monofilaments having a small diameter or a large diameter. In the case of manufacturing a plastic optical fiber, as a transparent plastic rod used for the manufacturing, for example, a core material / cladding material made of styrene resin / acrylic resin, acrylic resin / fluorine resin, polycarbonate resin / acrylic resin is used. Can be mentioned. Further, the transparent plastic rod-like body may be composed of a bundle of a large number of plastic optical fibers, and if a fluorescent agent is added to the transparent plastic rod-like body, a fluorescent fiber or a scintillation fiber can be suitably produced.

(実施例1)
図1に示す近赤外線加熱炉および延伸装置において、近赤外線源2として、半径120mmの円周上に12個のハロゲンランプ(100V供給時の色温度が2750K。ランプ供給電圧75V、電流19.5A)を等間隔に2段(計24個)配置した。ハロゲンランプの内側には、図5に示す透過性をもつ赤外線透過フィルタ(シグマ光機製ITF−50S−80IR)を取り付けた。この紡糸装置にポリスチレン樹脂(コア材)およびアクリル樹脂(クラッド材)から構成される直径が70mmのプラスチック光ファイバ用棒状体をセットして、1.65mm/minの速度で棒状体の先端をハロゲン加熱炉に導入し、加熱され軟化して垂れ下がった樹脂を外径測定器検知部を通して引き取り機に導くことにより(引き取り速度7.2m/min)、直径1mmの発泡のないプラスチック光ファイバに延伸することができた。このプラスチック光ファイバの導光損失は波長670nmにおいて195dB/kmで良好であった。
Example 1
In the near-infrared heating furnace and drawing apparatus shown in FIG. 1, as the near-infrared source 2, 12 halogen lamps (color temperature when supplying 100V is 2750K on a circumference of 120 mm radius. Lamp supply voltage 75V, current 19.5A). ) Are arranged at equal intervals in two stages (a total of 24). Inside the halogen lamp, an infrared transmission filter (ITF-50S-80IR manufactured by Sigma Koki Co., Ltd.) having transparency shown in FIG. 5 was attached. A plastic optical fiber rod-shaped body made of polystyrene resin (core material) and acrylic resin (cladding material) having a diameter of 70 mm is set in this spinning device, and the tip of the rod-shaped body is halogenated at a speed of 1.65 mm / min. The resin that has been introduced into the heating furnace, heated, softened, and hung down is guided to the take-out machine through the outer diameter measuring device detector (take-off speed: 7.2 m / min), and drawn into a plastic optical fiber having a diameter of 1 mm and no foam. I was able to. The light guide loss of this plastic optical fiber was good at 195 dB / km at a wavelength of 670 nm.

(実施例2)
実施例1で用いた装置に、プラスチックシンチレータ用蛍光剤を含有するポリスチレン樹脂(コア材)およびアクリル樹脂(クラッド材)から構成された直径が70mmのプラスチックシンチレーションファイバ用棒状体を導入して、実施例1と同じ棒状体の引き下げ速度、および加熱条件で加熱延伸することにより、発泡のない直径が1mmのプラスチックシンチレーションファイバを製造することができた。ポリスチレン樹脂に含有された蛍光剤は2−(4−tブチルフェニル)−5−(4−ビフェニル)1,3,4オキサジアゾール1%(チバガイギー製)、4−4’ビス(2,5ジメチルスチリル)ジフェニル0.02%である。実施例2において、引き取り機での引き取り速度は7.5m/minであった。このプラスチックシンチレーションファイバの発光量は問題なく良好であり、シンチレーションファイバの透明性の指標である減衰長は380cmと良好であった。
(Example 2)
The apparatus used in Example 1 was introduced by introducing a rod for plastic scintillation fiber having a diameter of 70 mm composed of polystyrene resin (core material) and acrylic resin (cladding material) containing a fluorescent agent for plastic scintillator. A plastic scintillation fiber having a diameter of 1 mm without foaming could be produced by heating and drawing under the same rod-like body pulling-down rate and heating conditions as in Example 1. The fluorescent agent contained in the polystyrene resin is 2- (4-tbutylphenyl) -5- (4-biphenyl) 1,3,4 oxadiazole 1% (manufactured by Ciba Geigy), 4-4′bis (2,5 Dimethylstyryl) diphenyl 0.02%. In Example 2, the take-up speed with the take-up machine was 7.5 m / min. The amount of light emitted from this plastic scintillation fiber was satisfactory without any problem, and the attenuation length, which is an index of transparency of the scintillation fiber, was as good as 380 cm.

(実施例3)
実施例1で用いた装置に、ポリスチレン樹脂(コア材)およびポリメタクリル樹脂(クラッド材)から構成された直径が100mmの太径のプラスチック光ファイバ用棒状体を導入して、加熱延伸することにより、発泡のない直径が1mmのプラスチック光ファイバを製造することができた。実施例3において、ハロゲンランプのランプ供給電圧は85V、電流は22.5Aである。棒状体の引き下げ速度は2.0mm/minであり、引き取り機での引き取り速度は19.5m/minであった。このプラスチック光ファイバの導光損失を測定したところ、波長670nmで185dB/kmであった。
(Example 3)
By introducing into the apparatus used in Example 1 a rod-shaped body for a plastic optical fiber having a diameter of 100 mm and made of polystyrene resin (core material) and polymethacrylic resin (cladding material), and heating and stretching. A plastic optical fiber having a diameter of 1 mm without foaming could be produced. In Example 3, the lamp supply voltage of the halogen lamp is 85V, and the current is 22.5A. The pulling-down speed of the rod-shaped body was 2.0 mm / min, and the pulling speed with the pulling machine was 19.5 m / min. When the light guide loss of this plastic optical fiber was measured, it was 185 dB / km at a wavelength of 670 nm.

(比較例1)
図1に示すものと同様の構造を有し、加熱源としてハロゲンランプに替えて内径が150mmの真鍮鋳込みヒーターを組み込んだ延伸装置(ヒーター温度320℃)を用いた。実施例1と同様に、ポリスチレン樹脂(コア材)およびポリメタクリル樹脂(クラッド材)から構成された直径が70mmのプラスチック光ファイバ用棒状体を延伸装置に導入して、加熱延伸することにより、直径が1mmのプラスチック光ファイバの製造を試みた。このときの棒状体の引き下げ速度は1.1mm/minであり、引き取り機での引き取り速度は4.8m/minであった。次に、延伸速度を早めるため棒状体の引き下げ速度を1.65m/分(実施例1と同じ延伸速度)に変更したところ、棒状体の内部加熱が十分に加熱されなかったため延伸ができなかった。そこで、真鍮鋳込みヒーターの温度を340℃に上げたところ、棒状体表面の加熱部分に発泡が起こり、線径むらが小さく欠陥のない良好な光ファイバが得られなかった。このプラスチック光ファイバの導光損失を測定したところ、導光損失は450dB/kmで低いものであった。
(Comparative Example 1)
A stretching apparatus (heater temperature of 320 ° C.) having a structure similar to that shown in FIG. 1 and incorporating a brass cast heater with an inner diameter of 150 mm instead of a halogen lamp as a heating source was used. In the same manner as in Example 1, a 70 mm diameter plastic optical fiber rod made of polystyrene resin (core material) and polymethacrylic resin (cladding material) was introduced into a stretching apparatus, and heated and stretched to obtain a diameter. Attempted to produce a 1 mm plastic optical fiber. The pulling-down speed of the rod-shaped body at this time was 1.1 mm / min, and the pulling speed with the take-up machine was 4.8 m / min. Next, when the pulling speed of the rod-shaped body was changed to 1.65 m / min (the same stretching speed as in Example 1) in order to increase the stretching speed, stretching could not be performed because the internal heating of the rod-shaped body was not sufficiently heated. . Therefore, when the temperature of the brass casting heater was raised to 340 ° C., foaming occurred in the heated portion on the surface of the rod-like body, and a good optical fiber with little wire diameter unevenness and no defects could not be obtained. When the light guide loss of this plastic optical fiber was measured, the light guide loss was as low as 450 dB / km.

(比較例2)
比較例1で用いた装置に、実施例3と同じ直径が100mmの太径の光ファイバ用棒状体を導入して、加熱延伸することにより、プラスチック光ファイバの製造を試みた。真鍮鋳込みヒーターの温度を340℃、棒状体の引き下げ速度を0.5mm/minとしたが、棒状体の内部加熱が十分に加熱されなかったため延伸ができなかった。そこで、ヒーターの温度を360℃に温度を上昇させたところ、棒状体の表面部分が発泡し、線径むらが小さく欠陥のない良好な光ファイバが得られなかった。
(Comparative Example 2)
An optical fiber rod having a diameter of 100 mm, which is the same as that of Example 3, was introduced into the apparatus used in Comparative Example 1, and the plastic optical fiber was manufactured by heating and stretching. The temperature of the brass casting heater was 340 ° C. and the pulling speed of the rod-shaped body was 0.5 mm / min. However, since the internal heating of the rod-shaped body was not sufficiently heated, stretching could not be performed. Therefore, when the temperature of the heater was raised to 360 ° C., the surface portion of the rod-shaped body foamed, and a good optical fiber with little wire diameter unevenness and no defects could not be obtained.

1:短波長遮断フィルタ
2:近赤外線源
4:炉心管
5:定速昇降装置
6:透明プラスチック棒状体
7:外径測定器検知部
8:外径測定器表示部
9:引き取り機
1: Short wavelength cut filter 2: Near-infrared ray source 4: Core tube 5: Constant speed elevating device 6: Transparent plastic rod 7: Outer diameter measuring device detection unit 8: Outer diameter measuring device display unit 9: Take-out machine

Claims (4)

透明プラスチック棒状体の先端部を加熱し、線引きすることによって、該透明プラスチック棒状体と概ね相似する断面形状を持つ透明プラスチック光ファイバを製造する方法において、前記透明プラスチック棒状体が、アクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、PET樹脂から選ばれる1種を少なくとも含み、前記透明プラスチック棒状体の直径が70mm〜200mmの範囲内であり、透明プラスチック棒状体の加熱に近赤外線源を主として用い、前記透明プラスチック棒状体の加熱に用いられる近赤外線源は色温度が1500〜4000Kの近赤外放射体であって、近赤外線源と加熱される透明プラスチック棒状体との間に、700〜800nm以下の短波長の光を遮断する短波長遮断フィルタが設けられているプラスチック光ファイバの製造方法。 In the method of manufacturing a transparent plastic optical fiber having a cross-sectional shape substantially similar to the transparent plastic rod-shaped body by heating and drawing the tip of the transparent plastic rod-shaped body, the transparent plastic rod-shaped body is made of acrylic resin, polystyrene At least one selected from a resin, a polycarbonate resin, and a PET resin, the diameter of the transparent plastic rod is in a range of 70 mm to 200 mm, and a near infrared source is mainly used for heating the transparent plastic rod, and the transparent plastic The near-infrared source used for heating the rod-shaped body is a near-infrared radiator having a color temperature of 1500 to 4000 K, and has a short wavelength of 700 to 800 nm or less between the near-infrared source and the heated transparent plastic rod-shaped body. Plus a short-wavelength cutoff filter that blocks light Method of manufacturing a click optical fiber. 前記透明プラスチック棒状体の直径が70mm〜100mmの範囲内である請求項1記載のプラスチック光ファイバの製造方法。   2. The method for producing a plastic optical fiber according to claim 1, wherein the diameter of the transparent plastic rod is in a range of 70 mm to 100 mm. 前記近赤外線源がハロゲンランプである請求項1または2に記載のプラスチック光ファイバの製造方法。   The method for producing a plastic optical fiber according to claim 1, wherein the near infrared ray source is a halogen lamp. 透明プラスチック棒状体が、多数のプラスチック光ファイバの束からなる請求項1〜3のいずれか1項に記載のプラスチック光ファイバの製造方法。   The method for producing a plastic optical fiber according to any one of claims 1 to 3, wherein the transparent plastic rod-shaped body is made of a bundle of a large number of plastic optical fibers.
JP2009033153A 2009-02-16 2009-02-16 Manufacturing method of plastic optical fiber Expired - Lifetime JP4759624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033153A JP4759624B2 (en) 2009-02-16 2009-02-16 Manufacturing method of plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033153A JP4759624B2 (en) 2009-02-16 2009-02-16 Manufacturing method of plastic optical fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000310110A Division JP4312365B2 (en) 2000-10-11 2000-10-11 Method for producing transparent plastic linear body

Publications (2)

Publication Number Publication Date
JP2009104208A JP2009104208A (en) 2009-05-14
JP4759624B2 true JP4759624B2 (en) 2011-08-31

Family

ID=40705861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033153A Expired - Lifetime JP4759624B2 (en) 2009-02-16 2009-02-16 Manufacturing method of plastic optical fiber

Country Status (1)

Country Link
JP (1) JP4759624B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428714B2 (en) * 2019-07-30 2024-02-06 株式会社クラレ plastic wavelength conversion fiber
JPWO2022154071A1 (en) 2021-01-15 2022-07-21

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287907A (en) * 1987-05-21 1988-11-25 Mitsubishi Rayon Co Ltd Production of plastic optical fiber

Also Published As

Publication number Publication date
JP2009104208A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4312365B2 (en) Method for producing transparent plastic linear body
US5928575A (en) Methods for eyeglass lens curing using ultraviolet light
EP1609768A1 (en) Hot formed articles and method and apparatus for hot-forming
US6280171B1 (en) El apparatus for eyeglass lens curing using ultraviolet light
US6712596B1 (en) System for producing ultraviolet blocking lenses
JP2021039360A (en) Photonic crystal fiber, fabrication method thereof, and super continuum light source
CN106521712B (en) A kind of controllable laser type superhigh temperature graphitizing device of carbon fiber
WO1997039880A9 (en) Methods and apparatus for eyeglass lens curing using ultraviolet light and improved cooling
JP2005162610A5 (en)
JP2011012954A (en) Method and device for homogeneous heating of glass and/or glass-ceramic using infrared radiation
JP4759624B2 (en) Manufacturing method of plastic optical fiber
JP2007197273A (en) Optical fiber strand and production method therefor
ES2223471T3 (en) FUSION SPINNING AT HIGH SPEED FIBERS OF FLUOROPOLIMEROS.
JP2010168247A (en) Method and apparatus for producing optical fiber
CN111016024A (en) Ultraviolet light crosslinked cable production line and production process
KR20070004018A (en) Method and apparatus for manufacturing plastic optical fiber
CN111497398A (en) Extrusion type flexible end point light-emitting optical fiber and preparation method thereof
CN204249347U (en) For the fiber drawing furnace of plastic optical fiber prefabricated stick wire drawing
KR20040045347A (en) Plastic optical fiber preform
KR102256589B1 (en) UV LED Lamp Having Surface Lighting Source and Manufacturing Method thereof
JP2000321444A (en) Optical fiber
US6279352B1 (en) Long hot zone furnace element and optical fiber drawing method practiced therewith
JP2014152077A (en) Heating furnace for drawing optical fiber preform
JP4975588B2 (en) Manufacturing method of resin hollow tube
KR101813199B1 (en) A method of high efficiency diffuser cover with surface relief for LED lighting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100514

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3