JP4759325B2 - Movable breakwater and moving speed adjustment method of movable breakwater - Google Patents

Movable breakwater and moving speed adjustment method of movable breakwater Download PDF

Info

Publication number
JP4759325B2
JP4759325B2 JP2005176968A JP2005176968A JP4759325B2 JP 4759325 B2 JP4759325 B2 JP 4759325B2 JP 2005176968 A JP2005176968 A JP 2005176968A JP 2005176968 A JP2005176968 A JP 2005176968A JP 4759325 B2 JP4759325 B2 JP 4759325B2
Authority
JP
Japan
Prior art keywords
steel pipe
internal
sea
pipe
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005176968A
Other languages
Japanese (ja)
Other versions
JP2006348611A (en
JP2006348611A5 (en
Inventor
修一 内橋
和文 井出
琢也 増山
幸雄 亀井
政司 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Toa Corp
MM Bridge Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
Obayashi Corp
Toa Corp
Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Toa Corp, Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd, Nippon Steel Engineering Co Ltd filed Critical Obayashi Corp
Priority to JP2005176968A priority Critical patent/JP4759325B2/en
Publication of JP2006348611A publication Critical patent/JP2006348611A/en
Publication of JP2006348611A5 publication Critical patent/JP2006348611A5/ja
Application granted granted Critical
Publication of JP4759325B2 publication Critical patent/JP4759325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Revetment (AREA)

Description

本発明は、昇降可能な可動式防波堤及びこの可動式防波堤の昇降速度調整方法に関する。 The present invention relates to a movable breakwater that can be moved up and down and a method for adjusting the lifting speed of the movable breakwater.

従来より、例えば、特許文献1には、港口の海底地盤に連続して埋設した複数の鋼管矢板の外部鋼管の内部に、この鋼管矢板の内径よりも外径がわずかに小さく、かつ上部を閉塞した鋼管杭の内部鋼管が各外部鋼管に上下移動可能に挿入され、各内部鋼管の天端部に圧縮空気の注入及び排出が可能な圧縮空気出し入れ口が設けられた緊急対応式防波堤が開示されている。この構造においては、凪の時には内部鋼管の柱列を海底面に埋伏させて港外と港内とを完全開放し、荒天時にはコンプレッサなどの駆動機構により各内部鋼管内に空気を送り、その浮力により海底面から上昇させ、内部鋼管の柱列を海面上に突出させた状態で港口を閉塞し、波浪の入射を防止して港内を静穏な状態に保持するものである。   Conventionally, for example, in Patent Document 1, the outer diameter of a plurality of steel pipe sheet piles continuously embedded in the seabed ground at a port entrance is slightly smaller than the inner diameter of the steel pipe sheet pile, and the upper portion is closed. An emergency response type breakwater is disclosed in which the inner steel pipe of the steel pipe pile is inserted into each outer steel pipe so as to be movable up and down, and the top end of each inner steel pipe is provided with a compressed air inlet / outlet capable of injecting and discharging compressed air. ing. In this structure, during dredging, the columns of internal steel pipes are buried in the bottom of the sea to completely open the outside of the port and the inside of the port, and in stormy weather, air is sent into each internal steel pipe by a drive mechanism such as a compressor. It is lifted from the bottom of the sea, and the port entrance is closed with the column of internal steel pipes protruding above the sea surface, preventing the incidence of waves and keeping the port calm.

また、特許文献2には、港口の海底地盤に上下方向に延在し、間隔を隔てて埋設される複数の鞘管の外部鋼管と、この鞘管内部に形成された中空部を上下方向に移動可能となるように外部鋼管に挿入される内部鋼管と、隣接する内部鋼管間に配設されて海底上に折り畳まれて設けられる膜体と、空気供給装置から供給される空気を各内部鋼管内部に送気する配管と、膜体の海底側端部を海底に固定するアンカーとから構成される可撓防波堤が開示されている。この構造においては、凪の時には内部鋼管の柱列及び膜体を海底面に埋伏させて港外と港内とを完全開放し、荒天時には駆動機構により各内部鋼管内に空気を送り、その浮力により海底面から上昇させ、内部鋼管の柱列及び各支柱間にわたって張られた膜体を海面上に突出させた状態で港口を閉塞し、波浪の入射を防止するものである。
特開平10−37153号公報 特開2004−116131号公報
Further, in Patent Document 2, an outer steel pipe of a plurality of sheath pipes extending in the vertical direction on the seabed ground at the port entrance and embedded at intervals, and a hollow portion formed inside the sheath pipe in the vertical direction. An internal steel pipe inserted into an external steel pipe so as to be movable, a film body provided between adjacent internal steel pipes and folded on the seabed, and air supplied from an air supply device is supplied to each internal steel pipe There is disclosed a flexible breakwater composed of a pipe that feeds air inside and an anchor that fixes an end of the membrane on the seabed side to the seabed. In this structure, the columns and membranes of the inner steel pipes are buried on the sea bottom during dredging to completely open the outside of the port and the inside of the port, and in stormy weather, air is sent into each internal steel pipe by the drive mechanism, It is raised from the bottom of the sea, and the port entrance is closed in a state where the film body stretched between the column of inner steel pipes and between the pillars protrudes above the sea surface, thereby preventing the incidence of waves.
Japanese Patent Laid-Open No. 10-37153 JP 2004-116131 A

しかしながら、特許文献1及び2に記載されている防波堤では、外部鋼管及び内部鋼管の製作過程において生じる径の誤差や外部鋼管が海底に打設される際に生じる鋼管本体の変形等を考慮すると、設計段階で外部鋼管と内部鋼管との隙間をやや大きめに確保する必要がある。しかし、この隙間を大きくした場合においては、内部鋼管が昇降する際に生じる外部鋼管と内部鋼管との摩擦抵抗が小さく、内部鋼管の昇降速度が大きくなるために、内部鋼管の昇降範囲を規制するためのストッパー等の部品を大きくしなければならず、コストがかかるという問題点があった。また、このストッパーを設置するための広いスペースを確保するために、鋼管の径又は長さが長くなり、設置に手間がかかるという問題点があった。   However, in the breakwaters described in Patent Documents 1 and 2, in consideration of the diameter error that occurs in the manufacturing process of the outer steel pipe and the inner steel pipe, the deformation of the steel pipe body that occurs when the outer steel pipe is driven on the sea floor, It is necessary to ensure a slightly large gap between the outer steel pipe and the inner steel pipe at the design stage. However, when this gap is increased, the frictional resistance between the outer steel pipe and the inner steel pipe generated when the inner steel pipe is raised and lowered is small, and the raising and lowering speed of the inner steel pipe is increased. Therefore, there is a problem in that parts such as a stopper have to be enlarged and cost is increased. Moreover, in order to ensure the wide space for installing this stopper, there existed a problem that the diameter or length of a steel pipe became long and installation took time.

さらに、特許文献1及び2に記載されている防波堤では、内部鋼管の上端部にはそれぞれ圧縮空気出し入れ口、バルブが設けられ、内部鋼管内の空気を外部に放出して内部鋼管を下降させる機構となっているが、これらの圧縮空気出し入れ口、バルブは海中に敷設されており、点検等の維持管理に手間とコストがかかるという問題点があった。   Further, in the breakwater described in Patent Documents 1 and 2, a mechanism for lowering the internal steel pipe by releasing compressed air and a valve at the upper end of the internal steel pipe, respectively, and releasing the air in the internal steel pipe to the outside However, since these compressed air inlets and outlets and valves are laid in the sea, there is a problem in that maintenance and management such as inspection takes time and cost.

そこで、本発明は、上記の問題点を鑑みてなされたものであり、その目的は、凪等の平穏時の海底に埋伏させた状態から荒天時や津波警報発令時等の異常時の海上に突出させた状態への上昇時、及び異常時の海上へ突出させた状態から平穏時の海底に埋伏させた状態への下降時の堤体の昇降速度を調整可能とし、かつ維持管理の容易な可動式防波堤を提供するものである。   Therefore, the present invention has been made in view of the above-mentioned problems, and its purpose is from being buried on a calm seabed such as a dredge to the sea at the time of abnormalities such as during stormy weather or when a tsunami warning is issued. The ascending / descending speed of the levee body can be adjusted at the time of ascent to the projecting state and from the state of projecting to the sea at the time of abnormality to the state where it was buried on the seabed at the time of calm, and easy to maintain A movable breakwater is provided.

前記目的を達成するため、本発明の可動式防波堤は、港の内外を仕切る位置の海底面に設けた基礎コンクリートを貫通して海底地盤内に鉛直に挿通され、前記基礎コンクリートの表面に上面を開口させて直線配列された複数の外部鋼管と、各外部鋼管に昇降可能に挿通され、かつ下面が開口して上部が閉塞された内部鋼管と、前記各外部鋼管の底部に接続された給気用管と、該給気用管を通じて各内部鋼管に給気するための給気装置とを備え、前記内部鋼管内への給気により内部鋼管に浮力を生じさせて海面上に突出させることにより港内外を仕切る可動式防波堤において、
前記内部鋼管の外周と前記外部鋼管の内周との間に形成される隙間の開口率を調整するための板状の開口率調整材を前記外部鋼管の内周上端部に脱着可能に設けたことを特徴とする(第1の発明)。
In order to achieve the above-mentioned object, the movable breakwater of the present invention penetrates through the foundation concrete provided on the bottom of the sea at a position separating the inside and outside of the port and is vertically inserted into the seabed ground, and the top surface of the foundation concrete is covered. A plurality of external steel pipes that are opened and linearly arranged, an internal steel pipe that is inserted into each external steel pipe so as to be movable up and down, and whose bottom is open and whose upper part is closed, and air supply that is connected to the bottom of each of the external steel pipes A supply pipe and an air supply device for supplying air to each internal steel pipe through the supply pipe, and buoyancy is generated in the internal steel pipe by the supply of air into the internal steel pipe to project it onto the sea surface. In the movable breakwater that partitions the inside and outside of the port,
A plate-like opening ratio adjusting material for adjusting the opening ratio of the gap formed between the outer periphery of the inner steel pipe and the inner periphery of the outer steel pipe is provided detachably on the inner peripheral upper end of the outer steel pipe (First invention).

本発明において、前記内部鋼管は、前記外部鋼管に対するがたつきを抑えるための脱着可能な調整板を下端部外周に備えることを特徴とする。 In the present invention, the inner steel pipe is provided with a detachable adjusting plate on an outer periphery of a lower end portion for suppressing rattling with respect to the outer steel pipe.

本発明は、可動式防波堤の昇降速度調整方法であって、港の内外を仕切る位置の海底面に設けた基礎コンクリートを貫通して海底地盤内に鉛直に挿通され、前記基礎コンクリートの表面に上面を開口させて直線配列された複数の外部鋼管と、各外部鋼管に昇降可能に挿通され、かつ下面が開口し上部が閉塞された内部鋼管と、前記各外部鋼管の底部に接続された給気用管と、該給気用管を通じて各内部鋼管に給気するための給気装置とを備え、前記内部鋼管内への給気により内部鋼管に浮力を生じさせて海面上に突出させることにより港内外を仕切る可動式防波堤の昇降速度調整方法において、
前記外部鋼管の内周に板状の開口率調整材を貼付し、該開口率調整材の板厚及び板の幅を変更することにより前記内部鋼管の外周と前記外部鋼管の内周との間に形成される隙間の開口率を調整して前記内部鋼管の昇降速度を調整することを特徴とする。
The present invention relates to a lifting speed adjustment method of the movable breakwater, is vertically inserted into the seabed through the foundation concrete provided on seafloor position for partitioning the inside and outside of the harbor, the upper surface on the surface of the concrete foundation A plurality of external steel pipes arranged in a straight line with the openings, an internal steel pipe that is inserted into each external steel pipe so as to be movable up and down, and whose bottom is open and whose top is closed, and air supply that is connected to the bottom of each of the external steel pipes A supply pipe and an air supply device for supplying air to each internal steel pipe through the supply pipe, and buoyancy is generated in the internal steel pipe by the supply of air into the internal steel pipe to project it onto the sea surface. In the method of adjusting the lifting speed of the movable breakwater that partitions the inside and outside of the port,
By attaching a plate-like opening ratio adjusting material to the inner periphery of the outer steel pipe, and changing the thickness and width of the opening ratio adjusting material , between the outer periphery of the inner steel pipe and the inner periphery of the outer steel pipe The raising / lowering speed of the internal steel pipe is adjusted by adjusting the opening ratio of the gap formed in the inner steel pipe.

本発明による可動式防波堤によれば、内部鋼管の外周と外部鋼管の内周との間に形成される隙間の開口率を調整することにより、内部鋼管の昇降速度を調整することが可能となる。したがって、例えば、津波警報等の警報が発せられる緊急時や波浪警報等の警報が発せられる荒天時においては港湾毎に決められた所定の時間内に速やかに内部鋼管を上昇させ、港口を閉塞して波浪の入射を防止することが可能となる。   According to the movable breakwater according to the present invention, it is possible to adjust the lifting speed of the inner steel pipe by adjusting the opening ratio of the gap formed between the outer periphery of the inner steel pipe and the inner periphery of the outer steel pipe. . Therefore, for example, in an emergency where a warning such as a tsunami warning is issued or in a stormy weather where a warning such as a wave warning is issued, the internal steel pipe is quickly raised within a predetermined time determined for each port and the port entrance is closed. This makes it possible to prevent the incidence of waves.

また、開口率調整材が外部鋼管の内周上端部に脱着可能に設置されることにより、打設により外部鋼管が変形し、所定の位置に開口率調整材を設置できない、又は所定の厚みの開口率調整材を設置できない等の問題が生じても、開口率調整材の設置位置、又は厚み等を適宜変更して所定の開口率を確保できるために、所定の昇降速度にて昇降することが可能となる。さらに、開口率調整材が摩擦等にて摩耗した場合においては、新しい開口率調整材に交換することにより所定の開口率を確保できるために、所定の昇降速度にて昇降することが可能となる。また、開口率調整材の板厚及び板の幅を変更することにより、開口率の設定値を細かく変更することができ、様々な昇降速度を設定することが可能となる。   In addition, since the opening ratio adjusting material is detachably installed at the inner peripheral upper end of the outer steel pipe, the outer steel pipe is deformed by the placement, and the opening ratio adjusting material cannot be installed at a predetermined position or has a predetermined thickness. Even if a problem such as the inability to install the aperture ratio adjusting material occurs, it is necessary to change the installation position or thickness of the aperture ratio adjusting material as appropriate to ensure a predetermined aperture ratio, so that it can be moved up and down at a predetermined lifting speed Is possible. Furthermore, when the aperture ratio adjusting material is worn due to friction or the like, the predetermined aperture ratio can be secured by replacing with a new aperture ratio adjusting material. . Further, by changing the plate thickness and the plate width of the aperture ratio adjusting material, the set value of the aperture ratio can be finely changed, and various ascending / descending speeds can be set.

そして、外部鋼管に開口率調整材を、内部鋼管に調整材をそれぞれ取り付けることにより、内部鋼管が完全に上昇し、海面に屹立する際に生じる波浪によるがたつきが抑えられ、内部鋼管の折れ、外部鋼管の上端部破損等の損傷を防止することが可能となる。   By attaching the aperture ratio adjusting material to the outer steel pipe and the adjusting material to the inner steel pipe, the inner steel pipe completely rises, and the rattling caused by the waves generated when standing on the sea surface is suppressed, and the inner steel pipe breaks. It becomes possible to prevent damage such as breakage of the upper end of the external steel pipe.

以下、本発明に係る可動式防波堤の好ましい実施形態について図面を用いて詳細に説明する。図1〜3は、本発明の第一実施形態に係る可動式防波堤のそれぞれ平面図、正面図側断面図を示す。図1〜3に示すように、港の内外を仕切る可動式防波堤1の海底地盤E内には海底面GLを天端とする所定厚みの基礎コンクリート2が打設され、その周囲には根固め石3が敷設される。この基礎コンクリート2を鉛直に貫通して、海底地盤Eの深部にまで到達する外部鋼管4が密集して一直線上に埋設される。各外部鋼管4の底部は水中コンクリート5によって閉塞されるとともに、上部側は基礎コンクリート2の表面側に開口され、この各外部鋼管4内に内部鋼管6が昇降可能に挿通される。また、各内部鋼管6の底面は開口され、頂部は閉塞されている。外部鋼管4の内周上端部には、内部鋼管6の外周と外部鋼管4の内周との間に形成される隙間の開口率を調整して内部鋼管6の昇降速度を調整する開口率調整材7が脱着可能に設けられる。   Hereinafter, preferred embodiments of the movable breakwater according to the present invention will be described in detail with reference to the drawings. 1 to 3 show a plan view and a front sectional side view, respectively, of the movable breakwater according to the first embodiment of the present invention. As shown in FIGS. 1 to 3, a foundation concrete 2 having a predetermined thickness with the sea bottom GL as the top end is placed in the seabed ground E of the movable breakwater 1 that partitions the inside and outside of the port, and the surrounding area is solidified. Stone 3 is laid. The outer steel pipes 4 penetrating vertically through the foundation concrete 2 and reaching the deep portion of the seabed ground E are densely embedded in a straight line. The bottom of each outer steel pipe 4 is closed by underwater concrete 5 and the upper side is opened to the surface side of the foundation concrete 2, and the inner steel pipe 6 is inserted into each outer steel pipe 4 so as to be movable up and down. Moreover, the bottom face of each internal steel pipe 6 is opened, and the top is closed. Opening ratio adjustment for adjusting the opening / closing speed of the inner steel pipe 6 by adjusting the opening ratio of the gap formed between the outer periphery of the inner steel pipe 6 and the inner periphery of the outer steel pipe 4 at the inner peripheral upper end of the outer steel pipe 4 The material 7 is detachably provided.

各外部鋼管4の下部には、内部鋼管6を格納する際の受け台となるとともに、下降時の制動範囲の下限を決定するためのストッパー8が設置される。そして、ストッパー8よりも、さらに下端側に給排気口14が設けられ、内部鋼管6内の空気を給排気するための鋼管内給排気管15の一端と、海底地盤内に埋設される埋設用給排気管16の一端とが給排気口14を介して連通するように連結される。鋼管内給排気管15は、給排気口14から内部鋼管6内部の天端面近傍まで延び、その端部が固定用治具17にて固定される。この鋼管内給排気管15は、内部鋼管6の昇降に追随できるように蛇腹状の機構を有しており、折り畳み自在である。また、埋設用給排気管16の他端は、地上に設置されて圧縮空気を供給するコンプレッサ9及び圧縮空気を吸引する吸引機11に切換えバルブ10を介して接続されており、コンプレッサ9及び吸引機11の駆動制御、並びに切替えバルブ10の切替え制御は制御部12により行われる。なお、コンプレッサ9の供給圧力は埋設用給排気管16に設けた圧力計13の検知圧力に応じて制御部12により逐次制御される。   A stopper 8 for determining the lower limit of the braking range at the time of lowering is provided at the lower part of each outer steel pipe 4 while serving as a cradle for storing the inner steel pipe 6. Further, an air supply / exhaust port 14 is provided on the lower end side of the stopper 8, and one end of a steel pipe supply / exhaust pipe 15 for supplying / exhausting the air in the internal steel pipe 6 and an embedding buried in the seabed ground. One end of the air supply / exhaust pipe 16 is connected so as to communicate via the air supply / exhaust port 14. The steel pipe supply / exhaust pipe 15 extends from the supply / exhaust port 14 to the vicinity of the top end face inside the internal steel pipe 6, and the end thereof is fixed by a fixing jig 17. The steel pipe supply / exhaust pipe 15 has a bellows-like mechanism so that it can follow up and down of the internal steel pipe 6 and can be folded. The other end of the buried supply / exhaust pipe 16 is connected to a compressor 9 that is installed on the ground and supplies compressed air and a suction device 11 that sucks compressed air through a switching valve 10. The drive control of the machine 11 and the switching control of the switching valve 10 are performed by the control unit 12. The supply pressure of the compressor 9 is sequentially controlled by the control unit 12 according to the detected pressure of the pressure gauge 13 provided in the buried supply / exhaust pipe 16.

図4は、本実施形態に係る外部鋼管4の略断面図で、図5は、本実施形態に係る内部鋼管6の略断面図である。本実施形態では、例えば、外部鋼管4には外径1100mm、内径1076mmの鋼管を、内部鋼管6には外径1000mm、内径976mmの鋼管を用いている。ただし、外部鋼管4及び内部鋼管6の寸法はこれに限定されるものではなく、外部鋼管4及び内部鋼管6のそれぞれの外径、内径は適宜現場条件に応じて設計すればよい。   FIG. 4 is a schematic cross-sectional view of the outer steel pipe 4 according to the present embodiment, and FIG. 5 is a schematic cross-sectional view of the inner steel pipe 6 according to the present embodiment. In this embodiment, for example, a steel pipe having an outer diameter of 1100 mm and an inner diameter of 1076 mm is used for the outer steel pipe 4, and a steel pipe having an outer diameter of 1000 mm and an inner diameter of 976 mm is used for the inner steel pipe 6. However, the dimensions of the outer steel pipe 4 and the inner steel pipe 6 are not limited to this, and the outer diameter and inner diameter of the outer steel pipe 4 and the inner steel pipe 6 may be appropriately designed according to the field conditions.

図5に示すように、内部鋼管6は、完全に上昇して海面に一定高さで屹立する際に生じる波浪によるがたつきを抑えるための脱着可能な調整板21を外周下端部に備える。本実施形態では、調整板21は、内部鋼管6の外周に沿って、間隔をおいて複数枚取り付けられている。   As shown in FIG. 5, the inner steel pipe 6 is provided with a detachable adjusting plate 21 at the lower end of the outer periphery for suppressing the shakiness caused by waves that are generated when the steel pipe 6 is completely raised and standing at a certain height on the sea surface. In the present embodiment, a plurality of adjustment plates 21 are attached at intervals along the outer periphery of the internal steel pipe 6.

図6は、本実施形態に係る開口率調整材7を取り付けた外部鋼管の平面図で、図7は、本実施形態に係る開口率調整材7を取り付けた外部鋼管の断面図である。図6、7に示すように、開口率調整材7は外部鋼管4の内周の上端部に取付具18にて脱着可能に設置される。また、開口率調整材7の取付具18の上部には、この隙間への砂、石等の異物の侵入を防止し、先端が内部鋼管6の外周面に接するシール材19と、このシール材19及び開口率調整材7を保護する保護材20とが脱着可能に設置される。   FIG. 6 is a plan view of the external steel pipe to which the aperture ratio adjusting material 7 according to this embodiment is attached, and FIG. 7 is a cross-sectional view of the external steel pipe to which the aperture ratio adjusting material 7 according to this embodiment is attached. As shown in FIGS. 6 and 7, the opening ratio adjusting member 7 is detachably installed at the upper end portion of the inner periphery of the outer steel pipe 4 with a fixture 18. Further, on the upper portion of the fixture 18 of the aperture ratio adjusting material 7, a sealing material 19 that prevents intrusion of foreign matter such as sand and stone into the gap and whose tip is in contact with the outer peripheral surface of the internal steel pipe 6, and this sealing material 19 and the protective material 20 that protects the aperture ratio adjusting material 7 are detachably installed.

開口率調整材7を取り付けた場合における内部鋼管の昇降速度は、パラメータとして図8に示す各パラメータを用いて式(1)及び式(2)で計算することができる。すなわち、図8に示すように、内部鋼管自重をm、内部鋼管6の天端深度をZ、内部鋼管6の天端位置に作用する水圧Poutと空気圧Pinとの差をP、内部鋼管6の天端位置における自重W、内部鋼管6の断面積をAGi、内部鋼管6内の水位をZWG、外部鋼管4と内部鋼管6との間に開口率調整材7を取り付けた場合の隙間の断面積をA、外部鋼管4と内部鋼管6との間に開口率調整材7を取り付けた場合の隙間を通過する水の流速をvとすると、内部鋼管6の運動方程式、内部鋼管6内の水位変動式は、それぞれ式(1)、式(2)となる。 The ascending / descending speed of the internal steel pipe when the aperture ratio adjusting member 7 is attached can be calculated by the equations (1) and (2) using the parameters shown in FIG. 8 as parameters. That is, as shown in FIG. 8, the weight of the internal steel pipe is m G , the top end depth of the internal steel pipe 6 is Z G , the difference between the water pressure Pout acting on the top end position of the internal steel pipe 6 and the air pressure Pin is P, and the internal steel pipe 6 when the weight W at the top end position of the steel tube 6 is A Gi , the cross-sectional area of the internal steel pipe 6 is A Gi , the water level in the internal steel pipe 6 is Z WG , and the opening ratio adjusting material 7 is attached between the external steel pipe 4 and the internal steel pipe 6. If the cross-sectional area of the gap is A P , and the flow rate of water passing through the gap when the opening ratio adjusting material 7 is attached between the outer steel pipe 4 and the inner steel pipe 6 is v P , the equation of motion of the inner steel pipe 6, the inner The water level fluctuation formulas in the steel pipe 6 are the formulas (1) and (2), respectively.

なお、図8では、式(1)及び式(2)に使用するパラメータを図示するために、鋼管内給排気管15、固定用治具17等の図示を省略している。
・(d/dt)=P−W (1)
Gi・(dWG/dt)=A (2)
In FIG. 8, in order to illustrate the parameters used in the equations (1) and (2), the illustration of the steel pipe supply / exhaust pipe 15, the fixing jig 17, and the like is omitted.
m G · (d 2 Z G / dt 2 ) = P−W (1)
A Gi · (d 2 Z WG / dt) = A P v P (2)

式(1)及び式(2)により各時間における内部鋼管6の天端高さ及び内部鋼管6内の水位が算出される。ここで、外部鋼管4と内部鋼管6との間に開口率調整材7を取り付けた場合の隙間の断面積Aは、外部鋼管4と内部鋼管6との隙間部分の断面積から開口率調整材の断面積を減じて予め算出される。また、外部鋼管4と内部鋼管6との間に開口率調整材7を取り付けた場合の隙間を通過する水の流速vは、ベルヌーイの定理を利用して、海中から内部鋼管6内へ流れる場合、内部鋼管6から海中へ流れる場合においてそれぞれ式(3)、式(4)より予め算出される。
ここで、E0:基準比エネルギー、ze:通水部の入口損失係数 (ze=0.5)、zo:通水部の出口損失係数 (zo=1.0)、f:通水部の摩擦損失係数である。そして、通水部の摩擦係数fはマニングの粗度係数nを用いて式(5)より算出される。
ここで、n:マニングの粗度係数 、Rp:通水部の径深 (Rp = Ap/Pp )、Pp:通水部の潤辺である。
The top height of the inner steel pipe 6 and the water level in the inner steel pipe 6 at each time are calculated by the expressions (1) and (2). Here, the cross-sectional area A P of the gap when fitted with a numerical aperture adjusting material 7 between the outer steel pipe 4 and the inner steel tube 6, the aperture ratio adjustment from the cross-sectional area of the gap portion between the outer steel pipe 4 and an inner steel pipe 6 It is calculated in advance by reducing the cross-sectional area of the material. Further, the flow velocity v P of water passing through the gap when the opening ratio adjusting member 7 is attached between the outer steel pipe 4 and the inner steel pipe 6 flows from the sea into the inner steel pipe 6 using Bernoulli's theorem. In this case, when flowing from the internal steel pipe 6 into the sea, the values are calculated in advance from the equations (3) and (4), respectively.
Here, E 0 : Reference specific energy, z e : Entrance loss coefficient of the water passage (z e = 0.5), z o : Exit loss coefficient of the water passage (z o = 1.0), f: It is a friction loss coefficient. And the friction coefficient f of a water flow part is computed from Formula (5) using the roughness coefficient n of Manning.
Here, n is the Manning roughness coefficient, R p is the diameter of the water passage (R p = A p / P p ), and P p is the wet side of the water passage.

また、通水部全長Lpは式(6)より算出される。
=Z−(Z−H) (6)
ここで、zb:海底面(外管天端標高)、km:土砂侵入防止膜の透水係数、Lm:土砂侵入防止膜の厚さである。
Further, water communicating portion total length L p is calculated from the equation (6).
L p = Z b - (Z G -H G) (6)
Here, z b: sea bottom (outer tube crest elevation), k m: permeability of sediment penetration preventing film, L m: is the thickness of the sediment penetration preventing film.

図9は、式(1)及び式(2)により算出された各時間における内部鋼管6の天端高さの変化及び内部鋼管6内の水位の変化を示す。図9に示すように、式(1)及び式(2)により算出された各時間における内部鋼管6の天端高さから、内部鋼管6の天端が上昇を開始(T1)してから海面上に完全に突出(T2)するまでの経過時間(T2−T1)が港湾毎に設定された所定の時間内となるようにする。ここで、式(1)及び式(2)より算出される経過時間(T2−T1)が、港湾毎に設定された所定の時間よりも長くなる場合においては、開口率調整材7の板厚、板の幅を変更し、内部鋼管6と外部鋼管4との隙間を通過する水の流量を変化させて所定の時間内に内部鋼管6が完全に海面上に突出できるように、式(1)及び式(2)を利用して再度計算する。   FIG. 9 shows a change in the top height of the internal steel pipe 6 and a change in the water level in the internal steel pipe 6 at each time calculated by the expressions (1) and (2). As shown in FIG. 9, from the top end height of the inner steel pipe 6 at each time calculated by the formula (1) and the formula (2), the sea level after the top end of the inner steel pipe 6 starts to rise (T1). The elapsed time (T2-T1) until it completely protrudes (T2) is set within a predetermined time set for each port. Here, when the elapsed time (T2-T1) calculated from the equations (1) and (2) is longer than the predetermined time set for each port, the plate thickness of the aperture ratio adjusting material 7 The width of the plate is changed, and the flow rate of water passing through the gap between the inner steel pipe 6 and the outer steel pipe 4 is changed so that the inner steel pipe 6 can completely protrude above the sea surface within a predetermined time. ) And formula (2) to calculate again.

本実施形態では、開口率調整材7は、例えば、弧長が外部鋼管4の中心から28°となる扇形で、厚さは28mmとし、6枚の開口率調整材7を外部鋼管4の内周に等間隔に放射状となるように貼付して外部鋼管4と内部鋼管6との間に形成される隙間の開口率を67%としている。   In the present embodiment, the aperture ratio adjusting material 7 is, for example, a sector shape in which the arc length is 28 ° from the center of the outer steel pipe 4, the thickness is 28 mm, and the six aperture ratio adjusting materials 7 are included in the outer steel pipe 4. The opening ratio of the gap formed between the outer steel pipe 4 and the inner steel pipe 6 is set to 67% by being affixed radially around the circumference.

図10〜図16は、本実施形態に係る防波堤の昇降状態を示す図である。
図10に示すように、凪の時は内部鋼管6を下降し、外部鋼管4の内部に格納して海底面GLと同一レベルとして港外と港内とを完全解放することで開放水域となり、海上を航行する船舶は自由に港内外を出入りできる。
10-16 is a figure which shows the raising / lowering state of the breakwater which concerns on this embodiment.
As shown in FIG. 10, in the case of dredging, the inner steel pipe 6 is lowered and stored in the outer steel pipe 4 so as to be at the same level as the sea bottom GL and completely open to the outside of the port and the inside of the port. Vessels sailing on and off can freely enter and leave the port.

図11に示すように、凪の状態から荒天時期に移行し、海上のうねりが強くなった場合においては、付近を航行する船舶に対して電光掲示板、船舶無線、港内放送等の各種伝達手段を通じて港内を閉鎖する旨の警告を行い、船舶の安全を確認したうえで、制御部12(図示せず)にてコンプレッサ9を駆動させるとともに、コンプレッサ9からの空気を内部鋼管内6に供給できるように切替弁10を切換えて、圧縮空気を内部鋼管6内に注入すると内部鋼管6内の海水が内部鋼管6と外部鋼管4との間の隙間を介して海中に排出される。海中に排出される際に、海底面と内部鋼管6天端面との間に堆積している砂、石等の堆積物は、海水と共に噴出される。本実施形態においては、例えば、海水が内部鋼管6と外部鋼管4との間の隙間を海中に向かって流れる流速は、式(1)及び式(2)から0.2m/secと算出される。   As shown in FIG. 11, when the state of dredging shifts to a stormy season and the sea swell becomes strong, various kinds of transmission means such as an electric bulletin board, ship radio, and harbor broadcasting are used for ships navigating in the vicinity. The warning that the inside of the port is closed is performed, and after confirming the safety of the ship, the compressor 9 is driven by the control unit 12 (not shown), and the air from the compressor 9 can be supplied to the inner steel pipe 6 When the switching valve 10 is switched to inject compressed air into the inner steel pipe 6, the seawater in the inner steel pipe 6 is discharged into the sea through the gap between the inner steel pipe 6 and the outer steel pipe 4. When discharged into the sea, sediments such as sand and stone deposited between the bottom of the sea and the top surface of the inner steel pipe 6 are ejected together with the sea water. In the present embodiment, for example, the flow velocity at which seawater flows toward the sea through the gap between the inner steel pipe 6 and the outer steel pipe 4 is calculated as 0.2 m / sec from the expressions (1) and (2). .

そして、空気注入を続けると、図12に示すように、内部鋼管6は浮力を得て上昇すると海中から内部鋼管6と外部鋼管4との間の隙間に海水が流入し、内部鋼管6内の水位も上昇する。内部鋼管6が上昇するとともに、鋼管内給排気管15も伸張するために、鋼管内給排気管15の一端は、常に内部鋼管6の天端面近傍に位置した状態を保つ。本実施形態においては、例えば、海水が内部鋼管6と外部鋼管4との間の隙間を外部鋼管4の下方に向かって流れる流速は、式(1)及び式(2)から0.2〜2.0m/secと算出される。   When the air injection is continued, as shown in FIG. 12, when the internal steel pipe 6 gains buoyancy and rises, seawater flows into the gap between the internal steel pipe 6 and the external steel pipe 4 from the sea, The water level also rises. As the internal steel pipe 6 rises and the steel pipe supply / exhaust pipe 15 also expands, one end of the steel pipe supply / exhaust pipe 15 is always kept in the vicinity of the top end surface of the internal steel pipe 6. In the present embodiment, for example, the flow rate at which seawater flows through the gap between the inner steel pipe 6 and the outer steel pipe 4 toward the lower side of the outer steel pipe 4 is 0.2 to 2 from the expressions (1) and (2). Calculated as 0.0 m / sec.

図13に示すように、内部鋼管6が完全に上昇すると、内部鋼管6は海上に屹立して入射する波浪を受けとめて港内を静穏な状態に保持する。この状態においては、海中と内部鋼管6内との間の水の流れは無い。   As shown in FIG. 13, when the internal steel pipe 6 is completely raised, the internal steel pipe 6 stands up on the sea and receives the incoming waves to keep the harbor in a calm state. In this state, there is no flow of water between the sea and the inside steel pipe 6.

荒天状態が治まり、海上が凪いだと判断された場合は、港内を開放する旨の警報を発したうえで、図14に示すように、制御部12にて吸引機11を駆動させるとともに、内部鋼管6内の空気を吸引できるように切替弁10を切換えて、内部鋼管6内の圧縮空気を吸引すると内部鋼管6の柱列は浮力を失い、外部鋼管4内に下降を始める。この状態においては、内部鋼管6内の空気圧が減少するだけで、海中と内部鋼管6内との間の海水の流れは無い。   When it is determined that the stormy weather condition has subsided and the sea is crawling, an alarm to open the harbor is issued, and the suction unit 11 is driven by the controller 12 as shown in FIG. When the switching valve 10 is switched so that the air in the steel pipe 6 can be sucked and the compressed air in the inner steel pipe 6 is sucked, the column of the inner steel pipe 6 loses buoyancy and begins to descend into the outer steel pipe 4. In this state, only the air pressure in the internal steel pipe 6 is reduced, and there is no flow of seawater between the sea and the internal steel pipe 6.

そして、空気吸引を続けると、図15に示すように、内部鋼管6は浮力を失い下降すると内部鋼管6内の海水が内部鋼管6と外部鋼管4との間の隙間を介して海中に排出される。本実施形態においては、例えば、海水が内部鋼管6と外部鋼管4との間の隙間を海中に向かって流れる流速は、式(1)及び式(2)から0〜1.5m/secと算出される。   When the air suction is continued, as shown in FIG. 15, when the internal steel pipe 6 loses buoyancy and descends, the seawater in the internal steel pipe 6 is discharged into the sea through the gap between the internal steel pipe 6 and the external steel pipe 4. The In this embodiment, for example, the flow velocity at which seawater flows toward the sea through the gap between the inner steel pipe 6 and the outer steel pipe 4 is calculated as 0 to 1.5 m / sec from the expressions (1) and (2). Is done.

図16に示すように、内部鋼管6が完全に下降して外部鋼管4内に格納され、開放水域が形成されて船舶が自由に入出航可能となる。この状態においては、海中と内部鋼管6内との間の水の流れは無い。   As shown in FIG. 16, the inner steel pipe 6 is completely lowered and stored in the outer steel pipe 4, an open water area is formed, and the ship can freely enter and leave. In this state, there is no flow of water between the sea and the inside steel pipe 6.

上記実施形態によれば、内部鋼管6の外周と外部鋼管4の内周との間に形成される隙間の開口率を調整することにより、内部鋼管6の昇降速度を調整することが可能となる。例えば、波浪警報等の警報が発せられる荒天時において、港湾毎に決められた所定の時間内に速やかに内部鋼管6を上昇させ、港口を閉塞して波浪の入射を防止することが可能となる。   According to the above embodiment, by adjusting the opening ratio of the gap formed between the outer periphery of the inner steel pipe 6 and the inner periphery of the outer steel pipe 4, it is possible to adjust the lifting speed of the inner steel pipe 6. . For example, during a stormy weather when a warning such as a wave warning is issued, it is possible to quickly raise the internal steel pipe 6 within a predetermined time determined for each port and close the port entrance to prevent the incidence of waves. .

また、開口率調整材7が外部鋼管4の内周上端部に脱着可能に設置されることにより、打設により外部鋼管4が変形し、所定の位置に開口率調整材7を設置できない、又は所定の厚みの開口率調整材7を設置できない等の問題が生じても、開口率調整材7の設置位置、又は厚み等を適宜変更し、所定の開口率を確保できるために、所定の昇降速度にて昇降することが可能となる。さらに、開口率調整材7が摩擦等にて摩耗した場合においては、新しい開口率調整材7に交換することにより所定の開口率を確保できるために、所定の昇降速度にて昇降することが可能となる。   Further, the opening ratio adjusting material 7 is detachably installed on the inner peripheral upper end portion of the outer steel pipe 4, so that the outer steel pipe 4 is deformed by placing and the opening ratio adjusting material 7 cannot be installed at a predetermined position, or Even if a problem such as the inability to install the aperture ratio adjusting material 7 having a predetermined thickness occurs, the installation position or thickness of the aperture ratio adjusting material 7 can be appropriately changed to ensure the predetermined aperture ratio. It is possible to move up and down at a speed. Further, when the aperture ratio adjusting material 7 is worn due to friction or the like, it is possible to ascend and descend at a predetermined ascending / descending speed because a predetermined aperture ratio can be secured by replacing with a new aperture ratio adjusting material 7. It becomes.

また、開口率調整材7の板厚及び板の幅を変更することにより、開口率の設定値を細かく変更することができ、様々な昇降速度を設定することが可能となる。   Further, by changing the plate thickness and the plate width of the aperture ratio adjusting material 7, the set value of the aperture ratio can be finely changed, and various ascending / descending speeds can be set.

さらに、外部鋼管4に開口率調整材7を、内部鋼管6に調整材21をそれぞれ取り付けることにより、内部鋼管6が完全に上昇し、海面に一定高さで屹立する際に生じる波浪によるがたつきが抑えられ、内部鋼管6の折れ、外部鋼管4の上端部破損等の損傷を防止することが可能となる。
また、鋼管内給排気管15を外部鋼管4の底部から内部鋼管6内の上端面近傍まで設置することにより、海中での圧縮空気出し入れ口、バルブ等のメンテナンス作業が不要となるために、維持管理が容易となる。
Further, by attaching the aperture ratio adjusting material 7 to the outer steel pipe 4 and the adjusting material 21 to the inner steel pipe 6, the inner steel pipe 6 is completely raised and caused by waves generated when standing at a certain height on the sea surface. Sticking is suppressed, and damage such as breakage of the inner steel pipe 6 and breakage of the upper end portion of the outer steel pipe 4 can be prevented.
In addition, by installing the steel pipe supply / exhaust pipe 15 from the bottom of the outer steel pipe 4 to the vicinity of the upper end surface in the inner steel pipe 6, maintenance work such as a compressed air inlet / outlet and a valve in the sea is not required. Management becomes easy.

なお、本実施形態においては、開口率調整材7の厚さを28mmとしたが、これに限定されるものではなく、例えば、図17、図18に示すように、それぞれ厚さを9mm、19mmとしてもよく、要は港湾毎に定める所定の昇降時間に内部鋼管6が昇降できるような開口率とするために適宜板厚を変更する。   In the present embodiment, the thickness of the aperture ratio adjusting material 7 is 28 mm, but is not limited to this. For example, as shown in FIGS. 17 and 18, the thicknesses are 9 mm and 19 mm, respectively. In short, in order to obtain an opening ratio that allows the internal steel pipe 6 to be lifted and lowered during a predetermined lifting time determined for each port, the plate thickness is appropriately changed.

また、本実施形態においては、開口率を67%とするために、開口率調整材7の弧長の幅を28°、厚さを28mmとしたが、これに限定されるものではなく、例えば、図19に示すように、開口率調整材7の弧長の幅を41°、厚さを19mmとし、開口率を所定の値となるように適宜開口率調整材7の弧長の幅及び厚さを変更してもよい。   In the present embodiment, in order to set the aperture ratio to 67%, the width of the arc length of the aperture ratio adjusting member 7 is 28 ° and the thickness is 28 mm. However, the present invention is not limited to this. 19, the width of the arc length of the aperture ratio adjusting member 7 is 41 °, the thickness is 19 mm, and the width of the arc length of the aperture ratio adjusting member 7 is appropriately set so that the aperture ratio becomes a predetermined value. The thickness may be changed.

さらに、本実施形態においては、開口率調整材7の弧長の幅を28°とし、6枚の開口率調整材7を外部鋼管4の内周に等間隔に放射状となるように貼付する方法について説明したが、これに限定されるものではなく、リング状の1枚の開口率調整材7を外部鋼管4の内周に貼付する方法でもよい。   Furthermore, in this embodiment, the width of the arc length of the aperture ratio adjusting material 7 is 28 °, and the six aperture ratio adjusting materials 7 are attached to the inner circumference of the outer steel pipe 4 so as to be radially spaced. However, the present invention is not limited to this, and a method of sticking one ring-shaped aperture ratio adjusting material 7 to the inner periphery of the outer steel pipe 4 may be used.

本発明の第一実施形態に係る可動式防波堤の平面図である。It is a top view of the movable breakwater which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る可動式防波堤の正面図である。It is a front view of the movable breakwater which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る可動式防波堤の側断面図である。It is a sectional side view of the movable breakwater which concerns on 1st embodiment of this invention. 本実施形態に係る外部鋼管の略断面図である。It is a schematic sectional drawing of the external steel pipe concerning this embodiment. 本実施形態に係る内部鋼管の略断面図である。It is a schematic sectional drawing of the internal steel pipe which concerns on this embodiment. 本実施形態に係る開口率調整材を取り付けた外部鋼管の平面図である。It is a top view of the external steel pipe which attached the aperture ratio adjustment material which concerns on this embodiment. 本実施形態に係る開口率調整材を取り付けた外部鋼管の断面図である。It is sectional drawing of the external steel pipe which attached the aperture ratio adjustment material which concerns on this embodiment. 本実施形態に係る内部鋼管の昇降速度を算出するためのパラメータを記載した防波堤の概略断面図である。It is a schematic sectional drawing of the breakwater which described the parameter for calculating the raising / lowering speed of the internal steel pipe concerning this embodiment. 本実施形態に係る式(1)及び式(2)により算出された各時間における内部鋼管の天端高さ及び内部鋼管内の水位の変化を示す図である。It is a figure which shows the change of the top end height of the internal steel pipe in each time calculated by Formula (1) and Formula (2) which concern on this embodiment, and the water level in an internal steel pipe. 本実施形態に係る防波堤の昇降状態を示す説明図である。It is explanatory drawing which shows the raising / lowering state of the breakwater which concerns on this embodiment. 本実施形態に係る防波堤の昇降状態を示す説明図である。It is explanatory drawing which shows the raising / lowering state of the breakwater which concerns on this embodiment. 本実施形態に係る防波堤の昇降状態を示す説明図である。It is explanatory drawing which shows the raising / lowering state of the breakwater which concerns on this embodiment. 本実施形態に係る防波堤の昇降状態を示す説明図である。It is explanatory drawing which shows the raising / lowering state of the breakwater which concerns on this embodiment. 本実施形態に係る防波堤の昇降状態を示す説明図である。It is explanatory drawing which shows the raising / lowering state of the breakwater which concerns on this embodiment. 本実施形態に係る防波堤の昇降状態を示す説明図である。It is explanatory drawing which shows the raising / lowering state of the breakwater which concerns on this embodiment. 本実施形態に係る防波堤の昇降状態を示す説明図である。It is explanatory drawing which shows the raising / lowering state of the breakwater which concerns on this embodiment. 本実施形態に係る板厚の異なる開口率調整材の一例を示す図である。It is a figure which shows an example of the aperture ratio adjustment material from which board thickness differs which concerns on this embodiment. 本実施形態に係る板厚の異なる開口率調整材の一例を示す図である。It is a figure which shows an example of the aperture ratio adjustment material from which board thickness differs which concerns on this embodiment. 本実施形態に係る板厚及び板の幅の異なる開口率調整材の一例を示す図である。It is a figure which shows an example of the aperture ratio adjustment material from which the board thickness and board width which concern on this embodiment differ.

符号の説明Explanation of symbols

1 可動式防波堤 2 基礎コンクリート
3 根固め石 4 外部鋼管
5 水中コンクリート 6 内部鋼管
7 開口率調整材 8 ストッパー
9 エアコンプレッサ 10 切替えバルブ
11 吸引機 12 制御部
13 圧力計 14 給排気口
15 鋼管内給排気管 16 埋設用給排気管
17 固定用治具 18 取付具
19 シール材 20 保護材
21 調整材 E 海底地盤
WL 海面 GL 海底面
DESCRIPTION OF SYMBOLS 1 Movable breakwater 2 Foundation concrete 3 Root-hardening stone 4 External steel pipe 5 Underwater concrete 6 Internal steel pipe 7 Opening ratio adjustment material 8 Stopper 9 Air compressor 10 Switching valve 11 Suction machine 12 Control part 13 Pressure gauge 14 Supply / exhaust port 15 Supply in steel pipe Exhaust pipe 16 Buried air supply / exhaust pipe 17 Fixing jig 18 Mounting tool 19 Sealing material 20 Protective material 21 Adjustment material E Submarine ground WL Sea surface GL Sea bottom

Claims (3)

港の内外を仕切る位置の海底面に設けた基礎コンクリートを貫通して海底地盤内に鉛直に挿通され、前記基礎コンクリートの表面に上面を開口させて直線配列された複数の外部鋼管と、各外部鋼管に昇降可能に挿通され、かつ下面が開口して上部が閉塞された内部鋼管と、前記各外部鋼管の底部に接続された給気用管と、該給気用管を通じて各内部鋼管に給気するための給気装置とを備え、前記内部鋼管内への給気により内部鋼管に浮力を生じさせて海面上に突出させることにより港内外を仕切る可動式防波堤において、
前記内部鋼管の外周と前記外部鋼管の内周との間に形成される隙間の開口率を調整するための板状の開口率調整材を前記外部鋼管の内周上端部に脱着可能に設けたことを特徴とする可動式防波堤。
A plurality of external steel pipes that pass through the foundation concrete provided on the bottom of the sea at a location that divides the inside and outside of the port, are vertically inserted into the seabed ground, and are arranged in a straight line with the top surface opened to the surface of the foundation concrete. An internal steel pipe that is inserted into the steel pipe so as to be movable up and down, and whose bottom is open and whose top is closed, an air supply pipe connected to the bottom of each external steel pipe, and each internal steel pipe is supplied through the air supply pipe. A movable breakwater that divides the inside and outside of the harbor by generating buoyancy in the internal steel pipe and projecting it on the sea surface by supplying air into the internal steel pipe,
A plate-like opening ratio adjusting material for adjusting the opening ratio of the gap formed between the outer periphery of the inner steel pipe and the inner periphery of the outer steel pipe is provided detachably on the inner peripheral upper end of the outer steel pipe This is a movable breakwater.
前記内部鋼管は、前記外部鋼管に対するがたつきを抑えるための脱着可能な調整板を下端部外周に備えることを特徴とする請求項1に記載の可動式防波堤。 2. The movable breakwater according to claim 1, wherein the inner steel pipe includes a detachable adjusting plate on an outer periphery of a lower end portion for suppressing rattling with respect to the outer steel pipe. 港の内外を仕切る位置の海底面に設けた基礎コンクリートを貫通して海底地盤内に鉛直に挿通され、前記基礎コンクリートの表面に上面を開口させて直線配列された複数の外部鋼管と、各外部鋼管に昇降可能に挿通され、かつ下面が開口し上部が閉塞された内部鋼管と、前記各外部鋼管の底部に接続された給気用管と、該給気用管を通じて各内部鋼管に給気するための給気装置とを備え、前記内部鋼管内への給気により内部鋼管に浮力を生じさせて海面上に突出させることにより港内外を仕切る可動式防波堤の昇降速度調整方法において、
前記外部鋼管の内周に板状の開口率調整材を貼付し、該開口率調整材の板厚及び板の幅を変更することにより前記内部鋼管の外周と前記外部鋼管の内周との間に形成される隙間の開口率を調整して前記内部鋼管の昇降速度を調整することを特徴とする可動式防波堤の昇降速度調整方法。
A plurality of external steel pipes that pass through the foundation concrete provided on the bottom of the sea at a location that divides the inside and outside of the port, are vertically inserted into the seabed ground, and are arranged in a straight line with the top surface opened to the surface of the foundation concrete. An internal steel pipe that is inserted into the steel pipe so as to be movable up and down, and whose bottom is open and whose top is closed, an air supply pipe connected to the bottom of each of the external steel pipes, and an air supply to each internal steel pipe through the air supply pipe In the method for adjusting the ascending / descending speed of the movable breakwater that partitions the inside and outside of the port by generating buoyancy in the internal steel pipe and projecting it on the sea surface by supplying air into the internal steel pipe,
By attaching a plate-like opening ratio adjusting material to the inner periphery of the outer steel pipe, and changing the thickness and width of the opening ratio adjusting material , between the outer periphery of the inner steel pipe and the inner periphery of the outer steel pipe A method for adjusting the lifting speed of the movable breakwater, wherein the lifting speed of the inner steel pipe is adjusted by adjusting the opening ratio of the gap formed in the inner wall.
JP2005176968A 2005-06-16 2005-06-16 Movable breakwater and moving speed adjustment method of movable breakwater Active JP4759325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176968A JP4759325B2 (en) 2005-06-16 2005-06-16 Movable breakwater and moving speed adjustment method of movable breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176968A JP4759325B2 (en) 2005-06-16 2005-06-16 Movable breakwater and moving speed adjustment method of movable breakwater

Publications (3)

Publication Number Publication Date
JP2006348611A JP2006348611A (en) 2006-12-28
JP2006348611A5 JP2006348611A5 (en) 2008-09-25
JP4759325B2 true JP4759325B2 (en) 2011-08-31

Family

ID=37644738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176968A Active JP4759325B2 (en) 2005-06-16 2005-06-16 Movable breakwater and moving speed adjustment method of movable breakwater

Country Status (1)

Country Link
JP (1) JP4759325B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831498B2 (en) * 2008-06-26 2011-12-07 株式会社大林組 Movable breakwater
JP5378007B2 (en) * 2009-02-27 2013-12-25 三菱重工鉄構エンジニアリング株式会社 Movable breakwater and movable breakwater facility
JP5303313B2 (en) * 2009-02-27 2013-10-02 三菱重工鉄構エンジニアリング株式会社 Movable breakwater, movable breakwater facility, and method for estimating gas leak location of movable breakwater
JP5303312B2 (en) * 2009-02-27 2013-10-02 三菱重工鉄構エンジニアリング株式会社 Movable breakwater and movable breakwater facility
JP5389619B2 (en) * 2009-11-19 2014-01-15 日立造船株式会社 Air supply / exhaust system for undulating gate breakwater
JP6997497B2 (en) * 2018-01-15 2022-01-17 芦森工業株式会社 Tsunami control method and equipment
JP7141175B2 (en) * 2018-03-13 2022-09-22 芦森工業株式会社 Tsunami suppression method and device
JP7089827B2 (en) * 2018-03-13 2022-06-23 芦森工業株式会社 Tsunami control method and equipment
CN115110475A (en) * 2022-06-30 2022-09-27 中国交通建设股份有限公司 Wave dissipation facility, wave dissipation dam and system and construction method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554147U (en) * 1978-06-22 1980-01-11
JPS62268410A (en) * 1986-05-16 1987-11-21 Sato Kogyo Co Ltd Control system for tidal waves
JPH1037153A (en) * 1996-07-26 1998-02-10 Toa Harbor Works Co Ltd Emergency correspondence type wave-forcebreaking method at harbor entrance part and its breakwater
JP3958170B2 (en) * 2002-09-26 2007-08-15 三菱重工業株式会社 Protective equipment for embankments and structures

Also Published As

Publication number Publication date
JP2006348611A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4759325B2 (en) Movable breakwater and moving speed adjustment method of movable breakwater
JP6181668B2 (en) Method for installing foundation on the seabed and the above seabed foundation
GB2493720A (en) Gravity foundation for an offshore structure
JP5331518B2 (en) 浚 渫 System and 浚 渫 Method
JP2010236179A (en) Sampling device and sampling method for water bottom resource
JP4332609B2 (en) Movable breakwater and operating method of movable breakwater
JP5403796B2 (en) Movable breakwater and operating method of movable breakwater
EP2776633B1 (en) A footing for a marine structure support leg, and method of installing and removing a jack-up platform
KR100952910B1 (en) Floating gate dock and vessel construction method thereof
JP2022076730A (en) Construction method of pile
JP4650527B2 (en) Movable breakwater and operating method of movable breakwater
JP4043286B2 (en) Floating gate device
JPH1037153A (en) Emergency correspondence type wave-forcebreaking method at harbor entrance part and its breakwater
JP5614743B2 (en) Port entrance blocking structure
JP5684742B2 (en) Self-sinking device for floating body protection
JP4831498B2 (en) Movable breakwater
JP4903732B2 (en) Dredge equipment
JP4406679B2 (en) Movable breakwater
JP6406838B2 (en) Movable breakwater and movable breakwater facility
CN114016488B (en) Offshore booster station jacket construction process
JP6539815B2 (en) Mobile breakwater facility
KR101399605B1 (en) Floating dock device and method for building structure
KR102192138B1 (en) Water level control system of floating marine structure
JP6894609B2 (en) Floating and sinking fences and floating and sinking fence systems
JP2010285829A (en) Device for preventing water area contamination diffusion of sink-and-float type

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250