JP4757457B2 - Soil purification treatment method and soil purification treatment apparatus - Google Patents

Soil purification treatment method and soil purification treatment apparatus Download PDF

Info

Publication number
JP4757457B2
JP4757457B2 JP2004197386A JP2004197386A JP4757457B2 JP 4757457 B2 JP4757457 B2 JP 4757457B2 JP 2004197386 A JP2004197386 A JP 2004197386A JP 2004197386 A JP2004197386 A JP 2004197386A JP 4757457 B2 JP4757457 B2 JP 4757457B2
Authority
JP
Japan
Prior art keywords
soil
slurry
water
pcb
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004197386A
Other languages
Japanese (ja)
Other versions
JP2006015287A (en
Inventor
和義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Kankyo Engineering Co Ltd
Original Assignee
Nippon Steel Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Kankyo Engineering Co Ltd filed Critical Nippon Steel Kankyo Engineering Co Ltd
Priority to JP2004197386A priority Critical patent/JP4757457B2/en
Publication of JP2006015287A publication Critical patent/JP2006015287A/en
Application granted granted Critical
Publication of JP4757457B2 publication Critical patent/JP4757457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、土壌中に含有されているPCBやダイオキシン類等の不揮発性の疎水性有機化合物で汚染された土壌を浄化するのに好適な汚染土壌の浄化処理方法及び土壌の浄化処理装置に関する。   The present invention relates to a contaminated soil purification treatment method and a soil purification treatment apparatus suitable for purifying soil contaminated with nonvolatile hydrophobic organic compounds such as PCBs and dioxins contained in the soil.

従来、その毒性が認識されていなかった時代にあっては、工場等で使用された化学物質に対して現在のような完全な廃液処理が行なわれていなかった。このため、工場跡地等には、PCBやダイオキシン類等に代表される不揮発性の疎水性有機化合物(以下、PCB等と呼ぶ)で汚染された土壌が存在しており、その浄化処理が問題となってきている。これに対し、PCB等によって汚染され土壌を浄化処理する場合には、PCB等が土壌に散在し混入しているので大量の土壌と共に処理しなければならず、大掛かりな処理が必要となり、容易なことではない。現在知られている方法としては、例えば、熱分解法、アルカリ触媒化学分解法、溶融固化法等がある。しかしながら、これらは、いずれも簡便で確実な処理方法とはいえず、汚染土壌が安全基準を満たすように浄化され、しかも処理工程数が少なく、経済的に浄化を行なうことができるシステムの開発が待望されている。   Conventionally, in an era when the toxicity was not recognized, a complete waste liquid treatment as in the present situation was not performed on chemical substances used in factories and the like. For this reason, there are soils contaminated with non-volatile hydrophobic organic compounds (hereinafter referred to as PCB, etc.) represented by PCBs and dioxins, etc. in the factory site, and the purification process is a problem. It has become to. On the other hand, when the soil contaminated with PCB or the like is subjected to purification treatment, PCB or the like is scattered and mixed in the soil, so it must be treated with a large amount of soil, and a large-scale treatment is required. Not that. Currently known methods include, for example, a thermal decomposition method, an alkali catalytic chemical decomposition method, a melt solidification method, and the like. However, none of these are simple and reliable treatment methods, and development of a system that can be purified economically so that contaminated soil can be purified so as to meet safety standards, and the number of treatment steps is small. Long-awaited.

これに対して、本願出願人は、既に、汚染土壌が安全基準を満たすように浄化できる簡便で確実な処理方法を提案している(特許文献1参照)。
しかしながら、本発明者らの更なる検討の結果、上記した方法では、鉄等の金属イオンを触媒として用いているため、処理後の土壌に触媒が残留し、処理後の土壌の用途によっては問題となることがあった。又、土壌の処理を行うためには、大量の触媒が必要となり、処理コストの面での問題もあった。
On the other hand, the present applicant has already proposed a simple and reliable treatment method capable of purifying contaminated soil so as to satisfy safety standards (see Patent Document 1).
However, as a result of further studies by the present inventors, the above-described method uses a metal ion such as iron as a catalyst, so the catalyst remains in the treated soil, and there is a problem depending on the use of the treated soil. There was sometimes. Further, in order to treat soil, a large amount of catalyst is required, and there is a problem in terms of treatment cost.

特開2000−80732号公報JP 2000-80732 A

従って、本発明の目的は、PCB等の不揮発性の疎水性有機化合物で汚染された土壌を、確実に、しかも、より経済的に処理し、更には、処理後の土壌を再利用する場合にも何らの問題もない汚染土壌の浄化処理方法、及び該方法を実際の土壌処理に応用できる土壌の浄化処理装置を提供することにある。   Accordingly, an object of the present invention is to reliably and more economically treat soil contaminated with a non-volatile hydrophobic organic compound such as PCB, and to recycle the treated soil. Another object of the present invention is to provide a method for purifying contaminated soil without any problems, and a soil purification apparatus capable of applying the method to actual soil treatment.

上記の目的は以下の本発明によって達成される。即ち、本発明は、土壌からPCBおよびダイオキシン類の少なくとも一方酸化分解して取り除き、無害化して再利用可能にするための汚染土壌の浄化処理方法であって、汚染土壌に水を加えて混合してスラリー状とし、該スラリーのpHを4以下に調整し、過酸化水素を添加した後、該スラリーを耐圧容器内に充填して、容器内温度を150〜200℃、容器内圧力を0.5〜10MPaとした条件下で、上記PCBおよびダイオキシン類の少なくとも一方水に溶解させ、触媒を使用することなく過酸化水素から生じたヒドロキシラジカルで酸化分解(酸化剤として酸素含有気体を使用して酸化分解することを除く)することを特徴とする土壌の浄化処理方法である。より好ましい形態としては、上記構成において、スラリーの、土壌と水との割合が、重量で、土壌:水=1:10〜1:2である土壌の浄化処理方法が挙げられる。 The above object is achieved by the present invention described below. That is, the present invention is a method for purifying contaminated soil for removing at least one of PCB and dioxins from soil by oxidizing and detoxifying them so that they can be reused. The slurry is adjusted to a pH of 4 or less , hydrogen peroxide is added , the slurry is filled in a pressure resistant container, the container temperature is 150 to 200 ° C., and the container pressure is adjusted. under conditions and 0.5 to 10 MPa, at least one of the PCB and dioxins are dissolved in water, without the use of a catalyst, oxidative decomposition by hydroxyl radicals generated from hydrogen peroxide (oxygen-containing gas as the oxidant A soil remediation treatment method characterized in that oxidative decomposition is used). As a more preferable embodiment, there is a soil purification method in which the ratio of soil to water in the slurry is soil: water = 1: 10 to 1: 2 in terms of weight.

本発明の別の実施形態は、土壌からPCBおよびダイオキシン類の少なくとも一方酸化分解して取り除き、無害化して再利用可能にできる汚染土壌の浄化処理装置であって、汚染土壌に水を加えて混合してスラリー状とし、該スラリーのpHを4以下に調整するためのスラリー槽と、スラリーに過酸化水素を混合するための少なくとも1のラインミキサーと、該ラインミキサーから送られてくるスラリーを充填する複数の耐圧性の反応容器とを有し、該容器は、スラリーを充填した状態で、容器内温度150〜200℃、容器内圧力0.5〜10MPaの条件下で、上記PCBおよびダイオキシン類の少なくとも一方水に溶解させ、触媒を使用することなく過酸化水素から生じたヒドロキシラジカルで酸化分解(酸化剤として酸素含有気体を使用して酸化分解することを除く)できる構造をしており、複数の反応容器で多段に渡って順次上記の処理が行われるように構成されていることを特徴とする土壌の浄化処理装置である。 Another embodiment of the present invention is an apparatus for purifying contaminated soil that can be oxidatively decomposed to remove at least one of PCBs and dioxins from the soil, detoxify them, and reusable. A slurry tank for mixing the slurry to adjust the pH of the slurry to 4 or less, at least one line mixer for mixing hydrogen peroxide with the slurry, and a slurry sent from the line mixer and a reaction vessel of the plurality of pressure resistance to be filled, the container is in a state filled with the slurry, temperature inside the container 150 to 200 ° C., under the conditions of container internal pressure 0.5 to 10 MPa, the PCB and dioxin at least one of s are dissolved in water, without the use of a catalyst, oxygen-containing as oxidative decomposition (oxidizing agent with a hydroxy radicals generated from hydrogen peroxide It has a structure capable of excluding oxidative decomposition using gas) and is configured to perform the above-mentioned treatment sequentially in multiple stages in a plurality of reaction vessels. Device.

PCB等の不揮発性の疎水性有機化合物で汚染された土壌を、確実に、しかも、より経済的に処理でき、更に、処理後の土壌を何らの問題もなく使用できる汚染土壌の浄化処理方法が提供される。   There is provided a purification method for contaminated soil that can reliably and more economically treat soil contaminated with non-volatile hydrophobic organic compounds such as PCB, and can use the treated soil without any problems. Provided.

以下、発明を実施するための最良の形態を挙げて本発明を更に詳細に説明する。本発明者らは、上記した従来技術の問題点を解決すべく鋭意検討の結果、汚染土壌に水を加えて混合してスラリー状とし、該スラリーを、加温及び加圧下で、触媒を使用することなく酸化剤、特に、過酸化水素によって酸化分解処理すれば、土壌中のPCB等が良好に分解できることを知見して本発明に至った。   Hereinafter, the present invention will be described in more detail with reference to the best mode for carrying out the invention. As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have added water to the contaminated soil and mixed to form a slurry, and the slurry is heated and pressurized, and a catalyst is used. Thus, the present inventors have found that PCBs and the like in soil can be satisfactorily decomposed by oxidative decomposition treatment with an oxidizing agent, particularly hydrogen peroxide, without damaging them.

過酸化水素等の分解反応で生じるOHラジカル(ヒドロキシラジカル)は、常温および加温(40〜60℃程度)条件でも生成するが、生成効率は低い。このため、通常は、金属触媒を併用することが行われている。これに対して、本発明者らの検討によれば、加温・加圧することで分解効率は著しく向上し、触媒を用いることなくOHラジカル生成効率を向上させることができることがわかった。更に、酸化剤として過酸化水素を用いる系で、PCB等の不揮発性の疎水性有機化合物で汚染された土壌に対する浄化処理を行うことについて検討した結果、容器内温度を100〜250℃、容器内圧力を0.5〜10MPaとした条件下で処理すれば、触媒を用いることなく過酸化水素で、土壌中のPCB等が分解できることを見いだした。本発明者らは、この理由は、以下のようであると考えている。   OH radicals (hydroxy radicals) generated by a decomposition reaction of hydrogen peroxide or the like are generated under normal temperature and warm (about 40 to 60 ° C.) conditions, but the generation efficiency is low. For this reason, usually a metal catalyst is used in combination. On the other hand, according to the study by the present inventors, it was found that the decomposition efficiency is remarkably improved by heating and pressurizing, and the OH radical generation efficiency can be improved without using a catalyst. Furthermore, as a result of investigating the purification treatment for soil contaminated with nonvolatile hydrophobic organic compounds such as PCB in a system using hydrogen peroxide as an oxidant, the temperature in the container was set to 100 to 250 ° C. It has been found that PCBs and the like in soil can be decomposed with hydrogen peroxide without using a catalyst if treated under conditions of pressure of 0.5 to 10 MPa. The present inventors consider that this reason is as follows.

湿式酸化ラジカル法は、加温・加圧下で水中に溶出してくる有害化学物質をOHラジカルの強力な酸化力を利用して分解する技術である。水を加温・加圧させると、図1に示すように、温度の上昇と共に誘電率が低下する。この誘電率は水の極性と相関関係があり、誘電率が低下するに従って水の極性も低下し、水は溶剤に類似した性質を示すことが知られている。水は200℃ではメタノール、250℃ではエタノール、300℃ではアセトンの性質に近い状態になっており、常温の水に比較して有機物に対する溶解度が向上する。本発明での温度領域である100〜250℃では、メタノール及びエタノールと同等の有機物溶解度になっている。   The wet oxidation radical method is a technique for decomposing harmful chemical substances eluted in water under heating and pressurization using the strong oxidizing power of OH radicals. When water is heated and pressurized, as shown in FIG. 1, the dielectric constant decreases with increasing temperature. This dielectric constant correlates with the polarity of water, and as the dielectric constant decreases, the polarity of water also decreases, and it is known that water exhibits properties similar to those of solvents. Water is in a state close to that of methanol at 200 ° C., ethanol at 250 ° C., and acetone at 300 ° C., and the solubility in organic matter is improved compared to water at normal temperature. In the temperature range of 100 to 250 ° C. in the present invention, the organic substance solubility is equivalent to that of methanol and ethanol.

ここで、土壌スラリーを加温・加圧すると、水の有機物溶解度が向上し、水中に有機物が溶解してくる。汚染物質がPCBやダイオキシン類の場合、汚染濃度が比較的低いときには土壌表面に吸着しているPCB等は水中に溶解してくる。一方、土壌中の有機物成分は、主に生物死骸、生物代謝生成物及び腐植物質といった高分子化合物から構成されているため、100〜250℃の温度領域においてはその一部は水に溶解してくるが、殆どは溶解せずにそのままの状態で存在している。   Here, when the soil slurry is heated and pressurized, the organic matter solubility of water is improved, and the organic matter is dissolved in water. When the pollutant is PCB or dioxins, PCB adsorbed on the soil surface dissolves in water when the contamination concentration is relatively low. On the other hand, organic matter components in the soil are mainly composed of macromolecular compounds such as biological carcasses, biological metabolites, and humic substances, and some of them are dissolved in water in the temperature range of 100 to 250 ° C. However, most of them are present without being dissolved.

ここで、OHラジカルは極めて高い反応性を持つラジカルであるが、反応基質濃度にもよるがその寿命は数10ns、拡散距離は数10nmである。又、OHラジカルは反応選択性が低く、ほとんどの物質と即座に反応する。このため、水中に溶解している物質と優先的に反応すると考えられる。以上のことから、100〜250℃、好ましくは150〜200℃の温度領域では、土壌中の有機物成分に邪魔されることなく、OHラジカルによって土壌中の有害化学物質(水に溶解してくる)が優先的に分解されることになる。   Here, the OH radical is a radical having extremely high reactivity, but its lifetime is several tens of ns and the diffusion distance is several tens of nm although it depends on the concentration of the reaction substrate. Also, OH radicals have low reaction selectivity and react immediately with most substances. For this reason, it is thought that it reacts preferentially with the substance dissolved in water. From the above, in the temperature range of 100 to 250 ° C., preferably 150 to 200 ° C., harmful chemical substances in soil (dissolved in water) by OH radicals without being disturbed by organic components in the soil. Will be decomposed preferentially.

上記の結果、本発明に規定する条件とすれば、水とOHラジカルの特性を利用した湿式酸化ラジカル法によって、土壌中に微量含有しているPCB等を極低濃度まで除去することが可能となるものと考えられる。   As a result of the above, if the conditions defined in the present invention are used, it is possible to remove PCBs and the like contained in trace amounts in the soil to a very low concentration by the wet oxidation radical method utilizing the characteristics of water and OH radicals. It is considered to be.

これに対して、処理温度を250℃よりも高くすると、加熱エネルギーが高くなり、経済的でないことに加えて、例えば、処理温度を300℃にすると、水の有機物溶解度がアセトンと同等程度になるため、土壌中の有機物もかなり水中に溶解してきてしまい、これにより殆どのOHラジカルは、水中に大量に存在する土壌有機物の分解反応に消費されることになる。従って、この場合には、土壌中に微量含有しているPCB、ダイオキシン類の除去率は著しく低下することになる。   On the other hand, if the treatment temperature is higher than 250 ° C., the heating energy becomes high, which is not economical. For example, if the treatment temperature is 300 ° C., the solubility of organic matter in water is comparable to that of acetone. For this reason, organic matter in the soil is also considerably dissolved in water, so that most of the OH radicals are consumed in the decomposition reaction of the soil organic matter present in large quantities in the water. Therefore, in this case, the removal rate of PCBs and dioxins contained in trace amounts in the soil is significantly reduced.

PCB等による汚染土壌の浄化処理では、上記した条件で、下記のような一連の処理方法を行うことが有効である。図2に、加温加圧下で酸化剤による酸化分解によって土壌の浄化処理を行う、本発明の土壌の浄化処理方法を実現するためのシステムを模式的に示した。先ず、浄化処理に先立ち、処理対象となる土壌に対して必要に応じて前処理を行なうことが好ましい。前処理としては、掘削された土壌に一緒に含まれる石やコンクリート塊や岩等を砕いた後、篩や土砂分離機を用いてゴミ等の夾雑物や小石や砂を除去して土だけにすることが好ましい。前処理するための装置としては、土壌に含まれる石やコンクリート塊等を砕くための、例えば、ハリケーン(商品名、新六精機(株)製)を好適に用いることができる。かかる装置を用いれば、石等を、その用途に応じて、解砕・解膠・摩砕等することができるため、土壌から分離されるこれらの材料の有効利用が図れる。更に、上記のようにして夾雑物等を取り除いた後、土を75μm以下に細粒化しておくことも好ましい。このようにすれば、PCB等の分解効率をより向上させることができる。   In the purification treatment of contaminated soil with PCB or the like, it is effective to perform the following series of treatment methods under the above-described conditions. FIG. 2 schematically shows a system for realizing the soil purification treatment method of the present invention in which soil purification treatment is performed by oxidative decomposition with an oxidizing agent under heating and pressure. First, prior to the purification treatment, it is preferable to pre-treat the soil to be treated as necessary. As pretreatment, after crushing stones, concrete blocks, rocks, etc. included in the excavated soil, trash and other foreign substances, pebbles and sand are removed using a sieve and earth and sand separator. It is preferable to do. As an apparatus for pretreatment, for example, a hurricane (trade name, manufactured by Shinroku Seiki Co., Ltd.) for crushing stones, concrete blocks, and the like contained in soil can be suitably used. If such an apparatus is used, stones and the like can be crushed, peptized, and ground according to their use, so that these materials separated from the soil can be effectively used. Furthermore, it is also preferable to make the soil finer to 75 μm or less after removing impurities and the like as described above. In this way, the decomposition efficiency of PCB or the like can be further improved.

本発明の汚染土壌の浄化処理方法においては、先ず、図2に示したように、スラリー槽4を用いて、必要に応じて上記したような前処理がされた土壌に水を加えて攪拌機6で混合撹拌して、スラリー状にする。この際の土壌と水との割合は、重量で、土壌:水=1:10〜1:2とすることが好ましい。この際、エタノールやメタノール等の水溶性の有機溶剤を添加してもよい。このようにすれば、その後に行なうPCB等の酸化分解効率をより向上させることができる。   In the method for purifying contaminated soil of the present invention, first, as shown in FIG. 2, using the slurry tank 4, water is added to the soil that has been pretreated as described above as necessary, and the agitator 6 is added. Mix and stir to form a slurry. In this case, the ratio of soil to water is preferably weight: soil: water = 1: 10 to 1: 2. At this time, a water-soluble organic solvent such as ethanol or methanol may be added. In this way, it is possible to further improve the oxidative decomposition efficiency of PCB and the like performed thereafter.

更に、本発明の汚染土壌の浄化処理方法では、上記のようにして水を加えてスラリー状とした土壌SのpHを4以下、より好ましくはpH3以下に調整し、この状態で酸化剤による酸化処理を行う。この際に使用するpH調整剤としては、硫酸、硝酸等を用いることが好ましい。   Further, in the method for purifying contaminated soil according to the present invention, the pH of the soil S which has been made into a slurry by adding water as described above is adjusted to 4 or less, more preferably to 3 or less, and in this state, oxidation with an oxidizing agent is performed. Process. As the pH adjuster used in this case, it is preferable to use sulfuric acid, nitric acid or the like.

次に、上記のようにして調整したスラリーSを、図中の1で示した内部を加圧状態にすることが可能な耐圧容器からなる反応槽内に充填して、該反応槽1の容器内の温度を100〜250℃、圧力を0.5〜10MPaとした条件下で、土壌中のPCB等を、触媒を使用することなく酸化剤で酸化分解する。酸化分解は、下記のようにして行う。   Next, the slurry S prepared as described above is filled into a reaction vessel composed of a pressure vessel capable of bringing the inside indicated by 1 in the figure into a pressurized state, and the vessel of the reaction vessel 1 is filled. Under the conditions of the inner temperature of 100 to 250 ° C. and the pressure of 0.5 to 10 MPa, the PCB in the soil is oxidatively decomposed with an oxidizing agent without using a catalyst. The oxidative decomposition is performed as follows.

本発明では、スラリーSを100〜250℃に加温し、且つ0.5〜10MPaの加圧条件下で処理を行う。反応槽1の形状或いは容量は、処理する土壌の量等に応じて適宜に決定すればよい。図中の2は、該反応槽1の内部を加温するためのヒーターである。スラリーが充填されている反応槽1内部を、該ヒーター2によって加温することで、反応槽1内は加圧状態となる。この際、反応槽1内の温度を反応槽1に設けた温度計で測定することで、温度条件及び加圧条件を制御する。   In the present invention, the slurry S is heated to 100 to 250 ° C. and treated under a pressurized condition of 0.5 to 10 MPa. What is necessary is just to determine the shape or capacity | capacitance of the reaction tank 1 suitably according to the quantity of the soil etc. to process. 2 in the figure is a heater for heating the inside of the reaction tank 1. By heating the inside of the reaction tank 1 filled with the slurry by the heater 2, the inside of the reaction tank 1 is in a pressurized state. At this time, the temperature condition and the pressurizing condition are controlled by measuring the temperature in the reaction tank 1 with a thermometer provided in the reaction tank 1.

本発明においては、上記のようにして反応槽1内の温度(より具体的にはスラリーの温度)を、100℃〜250℃、より好ましくは、150〜200℃として処理する。更に、反応槽1を構成している耐圧容器内の圧力を、0.5〜10MPaの範囲、より好ましくは、1.0〜2.5MPaの範囲の加圧状態にして処理を行う。又、反応槽1内には、酸化剤3を添加し、攪拌機で反応槽1内に充填したスラリーSを撹拌しながら処理を行うことが好ましい。   In the present invention, the temperature in the reaction vessel 1 (more specifically, the temperature of the slurry) is set to 100 ° C. to 250 ° C., more preferably 150 to 200 ° C. as described above. Furthermore, the pressure in the pressure vessel constituting the reaction tank 1 is set to a pressure state in the range of 0.5 to 10 MPa, and more preferably in the range of 1.0 to 2.5 MPa. Moreover, it is preferable to add the oxidizing agent 3 in the reaction tank 1 and perform the treatment while stirring the slurry S filled in the reaction tank 1 with a stirrer.

本発明において、酸化処理において使用する酸化剤としては、従来公知の化学酸化方法において使用されている酸化剤、例えば、過酸化水素、過酸化カルシウム、過硫酸アンモニウム、アルキルヒドロペルオキシド、過酸化エステル、過酸化ジアルキル又はジアシル等を使用することが可能であるが、コストや副生物等の点からみて過酸化水素が最も好ましい。過酸化水素等の酸化剤の使用量は、特に限定されず、処理するスラリーの性状によって変化するが、好ましい使用量としては、土壌1g(dry)に対して30%過酸化水素で0.05〜1.0gの範囲である。以下過酸化水素を代表例として説明する。   In the present invention, examples of the oxidizing agent used in the oxidation treatment include oxidizing agents used in conventionally known chemical oxidation methods such as hydrogen peroxide, calcium peroxide, ammonium persulfate, alkyl hydroperoxides, peroxide esters, peroxides, and the like. Although dialkyl oxide or diacyl oxide can be used, hydrogen peroxide is most preferable from the viewpoint of cost and by-products. The amount of the oxidizing agent such as hydrogen peroxide is not particularly limited and varies depending on the properties of the slurry to be treated. A preferable amount used is 0.05% of 30% hydrogen peroxide with respect to 1 g (dry) of soil. It is the range of -1.0g. Hereinafter, hydrogen peroxide will be described as a representative example.

過酸化水素等の酸化剤3は、スラリーSが反応槽1に入る直前にスラリーに添加するようにすることが好ましい。添加方法としてはポンプを使用し、スラリーへの混合は、ラインミキサー5を使用することで、酸化剤3をスラリーS全体に満遍なく混合させるとよい。   The oxidizing agent 3 such as hydrogen peroxide is preferably added to the slurry immediately before the slurry S enters the reaction vessel 1. As a method of addition, a pump is used, and mixing with the slurry is preferably performed by using the line mixer 5 to uniformly mix the oxidant 3 with the entire slurry S.

本発明においては、浄化処理を100〜250℃の範囲で行うが、処理温度が100℃未満である場合には、触媒を用いない酸化条件においては、酸化に時間がかかり、効率が不十分で且つ過酸化水素の利用効率も不十分である。又、250℃を超える温度の場合は、加熱エネルギー消費が大になると同時に、先に述べたような理由によってPCB等に対する処理効率が低下するため、経済的で効果的な処理が行えなくなる。酸化反応時間は、反応槽1の温度及び圧力、ラインミキサー5の性能等によって異なるが、例えば、スラリー(固形分約28.5質量%)Sを、温度150℃、圧力0.5〜2.0MPaの条件下で、酸化剤の充分な混合が行われた場合には、約15〜30分間の反応時間で充分である。本発明者らの検討によれば、汚染濃度によっても異なるが、このような条件で、PCB等の汚染物質の95質量%以上を分解することができることがわかった。   In the present invention, the purification treatment is performed in the range of 100 to 250 ° C., but when the treatment temperature is less than 100 ° C., oxidation takes time under oxidation conditions that do not use a catalyst, and the efficiency is insufficient. In addition, the utilization efficiency of hydrogen peroxide is insufficient. Further, when the temperature exceeds 250 ° C., the heating energy consumption increases, and at the same time, the processing efficiency with respect to PCB or the like decreases due to the reason described above, so that economical and effective processing cannot be performed. The oxidation reaction time varies depending on the temperature and pressure of the reaction vessel 1, the performance of the line mixer 5, and the like. When thorough mixing of the oxidizing agent is performed under the condition of 0 MPa, a reaction time of about 15 to 30 minutes is sufficient. According to the study by the present inventors, it was found that 95% by mass or more of the pollutant such as PCB can be decomposed under such conditions although it varies depending on the contamination concentration.

上記酸化処理が終了したスラリーは、圧搾機等によって水を絞り、その後、水酸化ナトリウム等のアルカリを加えてpH6.5〜7.5にして中和し、掘削した場所に埋戻せばよい。中和した後、再度、水を絞ってもよい。圧搾機により絞り出された水は、再度、土壌の浄化処理に用いればよい。   The slurry after the oxidation treatment may be squeezed with a squeezing machine or the like, then neutralized to pH 6.5 to 7.5 by adding an alkali such as sodium hydroxide, and backfilled to the excavated place. After neutralization, the water may be squeezed again. The water squeezed out by the press may be used again for soil purification treatment.

図3は、上記で説明した基本的な処理からなる本発明にかかる土壌の浄化処理方法を、実際の土壌処理に応用する場合の本発明にかかる土壌の浄化処理装置の概略図である。図に示したように、実際の処理においては、反応槽1を、複数の耐圧容器からなる反応容器1aの群で構成し、これらの反応容器1aで多段に渡って順次、スラリー中の不揮発性の疎水性有機性化合物を酸化分解処理できる構成とする。具体的に説明すると、先ず、土壌をスラリー槽4でスラリー状にする。この時、スラリー槽にpH調整剤を入れて、スラリーSのpHを4以下に調整する。スラリー槽4から、ポンプによって反応槽1へとスラリーSを送り、その途中の反応容器1aの入口近傍にラインミキサー5を設けておき、ここで、過酸化水素等の酸化剤とスラリーSとを混合する。反応容器1aの温度及び圧力は、温度調節機能を有するヒーター2によって、適宜に調整する。1の反応容器1aで酸化分解反応を行った後、スラリーSは次の反応容器1aへと送られるが、その際に、過酸化水素等の酸化剤を、上記したと同様にして添加する。   FIG. 3 is a schematic diagram of a soil purification treatment apparatus according to the present invention when the soil purification treatment method according to the present invention consisting of the basic treatment described above is applied to actual soil treatment. As shown in the figure, in the actual treatment, the reaction vessel 1 is constituted by a group of reaction vessels 1a composed of a plurality of pressure vessels, and the non-volatiles in the slurry are sequentially provided in multiple stages in these reaction vessels 1a. The hydrophobic organic compound can be oxidized and decomposed. More specifically, first, the soil is made into a slurry in the slurry tank 4. At this time, a pH adjuster is put in the slurry tank to adjust the pH of the slurry S to 4 or less. The slurry S is sent from the slurry tank 4 to the reaction tank 1 by a pump, and a line mixer 5 is provided in the vicinity of the inlet of the reaction vessel 1a in the middle of the slurry tank. Mix. The temperature and pressure of the reaction vessel 1a are appropriately adjusted by the heater 2 having a temperature adjusting function. After conducting the oxidative decomposition reaction in one reaction vessel 1a, the slurry S is sent to the next reaction vessel 1a, and at that time, an oxidizing agent such as hydrogen peroxide is added in the same manner as described above.

こうして、多段にわたる処理が行われた後のスラリーは、パイプラインで放出槽へと送られて、最終処理がなされる。その際に、スラリー槽4内をパイプラインが通過するように構成すれば、反応槽1で加熱された土壌の温度を下げることができると同時に、処理するスラリーの温度を上昇させることができ、処理に使用する熱エネルギーを有効に利用することができる。上記のようにしてパイプラインで放出槽へと送られた処理済のスラリーは、ガス分は、活性炭吸着による処理をした後、放出される。その他は、沈澱槽へと送られ、上澄み水は、pHを調整した後、処理水として放出される。又、沈澱した固形分は、処理済の土壌として埋戻し等される。   Thus, the slurry after the multi-stage processing is sent to the discharge tank by the pipeline, and the final processing is performed. At that time, if the pipeline passes through the slurry tank 4, the temperature of the soil heated in the reaction tank 1 can be lowered, and at the same time, the temperature of the slurry to be treated can be increased. The thermal energy used for processing can be used effectively. The treated slurry sent to the discharge tank by the pipeline as described above is discharged after the gas component is treated by activated carbon adsorption. Others are sent to the precipitation tank, and the supernatant water is discharged as treated water after adjusting the pH. Moreover, the precipitated solid content is backfilled as treated soil.

以下、実施例を挙げて本発明を更に具体的に説明する。
<実施例1>
PCBで汚染された土壌を細粒化して粒径が75μm以下となるように前処理した後、汚染土壌1.2kg(dry)に対して水3.0リットルを加えて10分間、混合撹拌してスラリーとした。使用した土壌中のPCBをGC−ECDによって測定したところ、汚染濃度は、乾燥土壌1kg当り22.73mgであった。
Hereinafter, the present invention will be described more specifically with reference to examples.
<Example 1>
After pre-treating the soil contaminated with PCB to a particle size of 75 μm or less, 3.0 liters of water is added to 1.2 kg (dry) of the contaminated soil and mixed and stirred for 10 minutes. To make a slurry. When PCB in the used soil was measured by GC-ECD, the contamination concentration was 22.73 mg per 1 kg of dry soil.

このスラリーを硫酸でpHを2.5に調整した後、図2に示したような装置を用いて加温加圧下、過酸化水素を用いて浄化処理を行った。耐圧容器に水1Lを入れた後密閉し、ヒーターで容器内温度を150℃まで昇温させた。次に、上記スラリーを耐圧容器からなる反応槽1内にポンプを使用して連続注入し、150〜200℃の範囲で処理した。過酸化水素はスラリーが耐圧容器に入る直前に薬注ポンプで添加し、ラインミキサーでスラリーと過酸化水素を混合した。反応時の容器内の圧力を測定したところ、0.5〜2.0MPaであった。過酸化水素としては30%のものを使用した。その使用量は、100%過酸化水素換算で、スラリー中の固形分量に対して4%となるように添加した(100g土壌(dry)に対して100%過酸化水素を4gを添加することを意味する)。この条件で30分間反応させた。上記のようにして酸化処理されたスラリーのPCB濃度は、乾燥乾物換算で1.25mg/kgに減少していた。更に溶出試験を実施して溶出液中のPCB濃度を測定したところ、PCBは検出されなかった。   The slurry was adjusted to pH 2.5 with sulfuric acid, and then purified using hydrogen peroxide under heating and pressurization using an apparatus as shown in FIG. After putting 1 L of water in the pressure vessel, it was sealed and the temperature in the vessel was raised to 150 ° C. with a heater. Next, the slurry was continuously injected into the reaction tank 1 composed of a pressure vessel using a pump, and was processed in the range of 150 to 200 ° C. Hydrogen peroxide was added with a chemical pump just before the slurry entered the pressure vessel, and the slurry and hydrogen peroxide were mixed with a line mixer. When the pressure in the container at the time of reaction was measured, it was 0.5 to 2.0 MPa. As hydrogen peroxide, 30% was used. The amount used was 4% of the solid content in the slurry in terms of 100% hydrogen peroxide (adding 4 g of 100% hydrogen peroxide to 100 g of soil (dry)). means). The reaction was performed for 30 minutes under these conditions. The PCB concentration of the slurry oxidized as described above was reduced to 1.25 mg / kg in terms of dry dry matter. Furthermore, when the dissolution test was conducted and the PCB concentration in the eluate was measured, no PCB was detected.

<実施例2>
実施例1と同様の前処理をしたPCB汚染土壌の浄化処理を行なった。使用した土壌のPCB濃度は95.64mg/kgであった。処理条件は実施例1と同様とし、この処理を土壌に対して3回繰り返した。処理後のスラリーのPCB濃度は、乾燥乾物換算で0.23mg/kgに減少していた。更に溶出試験を実施して溶出液中のPCB濃度を測定した結果、PCBは検出されなかった。
<Example 2>
The PCB-contaminated soil that had been pretreated in the same manner as in Example 1 was purified. The PCB concentration of the soil used was 95.64 mg / kg. The treatment conditions were the same as in Example 1, and this treatment was repeated 3 times on the soil. The PCB concentration of the slurry after the treatment was reduced to 0.23 mg / kg in terms of dry dry matter. Further, the dissolution test was performed and the PCB concentration in the eluate was measured. As a result, no PCB was detected.

参考
実施例1で処理したと同様のPCB汚染土壌について、容器内温度を100〜150℃の温度範囲で処理する以外は実施例1と同様にして行った。この結果、処理後のPCB濃度は、乾燥乾物換算で2.15mg/kgに減少していた。
< Reference Example 1 >
The same PCB-contaminated soil as that treated in Example 1 was treated in the same manner as in Example 1 except that the container internal temperature was treated in a temperature range of 100 to 150 ° C. As a result, the PCB concentration after the treatment was reduced to 2.15 mg / kg in terms of dry dry matter.

参考
実施例1で処理したと同様のPCB汚染土壌について、容器内温度を200〜250℃の温度範囲で処理する以外は実施例1と同様にして行った。この結果、処理後のPCB濃度は、乾燥乾物換算で1.42mg/kgに減少していた。
< Reference Example 2 >
The same PCB contaminated soil as that treated in Example 1 was treated in the same manner as in Example 1 except that the container internal temperature was treated in the temperature range of 200 to 250 ° C. As a result, the PCB concentration after the treatment was reduced to 1.42 mg / kg in terms of dry dry matter.

<実施例5>
実施例1と同様の前処理をしたダイオキシン類模擬汚染土壌の浄化処理を行なった。模擬汚染土壌は、ダイオキシン類を溶解したヘキサンを土壌に混合した後、2日間常温で乾燥、更に2週間以上ステンレス容器に保存した土壌を使用した。使用した土壌のダイオキシン類濃度は4,000ng/g(注;TEQではなく含有量)であった。処理条件は実施例1と同様とし、この処理を土壌に対して2回繰り返した。処理後のダイオキシン類濃度は、乾燥乾物換算で11ng/gに減少していた。
<Example 5>
The purification treatment of the dioxin simulated contaminated soil that had been pretreated in the same manner as in Example 1 was performed. As the simulated contaminated soil, hexane in which dioxins were dissolved was mixed with the soil, dried at room temperature for 2 days, and further stored in a stainless steel container for 2 weeks or more. The concentration of dioxins in the soil used was 4,000 ng / g (note: content rather than TEQ). The treatment conditions were the same as in Example 1, and this treatment was repeated twice on the soil. The dioxin concentration after the treatment was reduced to 11 ng / g in terms of dry dry matter.

<比較例1>
実施例1で処理したと同様のPCB汚染土壌について、鉄触媒をスラリーに添加する以外は実施例1と同様にして行なった。鉄触媒として、試験開始当初のスラリー中の鉄イオン濃度が1,000mg/lになるようにFe(OH)3を添加した。上記のようにして酸化処理されたスラリーのPCB濃度は、乾燥乾物換算で0.94mg/kgに減少していた。更に、溶出試験を実施して溶出液中のPCB濃度を測定したところ、PCBは検出されなかった。本比較例と、実施例を比較した結果、本発明にかかる方法は、触媒を用いていないにもかかわらず、触媒を用いる従来の方法と同程度の処理が可能であることが確認できた。
<Comparative Example 1>
The same PCB-contaminated soil treated in Example 1 was performed in the same manner as in Example 1 except that the iron catalyst was added to the slurry. As an iron catalyst, Fe (OH) 3 was added so that the iron ion concentration in the slurry at the beginning of the test was 1,000 mg / l. The PCB concentration of the slurry oxidized as described above was reduced to 0.94 mg / kg in terms of dry dry matter. Furthermore, when the dissolution test was carried out and the PCB concentration in the eluate was measured, no PCB was detected. As a result of comparing the present comparative example with the examples, it was confirmed that the method according to the present invention can be processed to the same degree as the conventional method using a catalyst, although no catalyst is used.

<比較例2>
反応時の容器内の温度を90℃とした以外は、実施例1と同様にして汚染土壌の浄化処理を行った。この結果、処理後のPCB濃度は、乾燥乾物換算で17.63mg/kgであり、充分には浄化が行われていなかった。
<Comparative example 2>
The contaminated soil was purified in the same manner as in Example 1 except that the temperature in the container during the reaction was 90 ° C. As a result, the PCB concentration after the treatment was 17.63 mg / kg in terms of dry dry matter, and the purification was not sufficiently performed.

<比較例3>
反応時の容器内の温度を280〜300℃とした以外は、実施例1と同様にして汚染土壌の浄化処理を行った。この結果、処理後のPCB濃度は、乾燥乾物換算で9.82mg/kgであり、充分には浄化が行われていなかった。
<Comparative Example 3>
The contaminated soil was purified in the same manner as in Example 1 except that the temperature in the container during the reaction was 280 to 300 ° C. As a result, the PCB concentration after the treatment was 9.82 mg / kg in terms of dry dry matter, and the purification was not sufficiently performed.

以上の如き本発明によれば、PCB等で汚染された土壌からPCB等の汚染物質を効率よく、経済的に取り除き、無害化することができる汚染土壌の浄化処理方法が提供される。   According to the present invention as described above, there is provided a method for purifying contaminated soil, which can efficiently and economically remove contaminants such as PCB from soil contaminated with PCB or the like and make them harmless.

水の温度上昇と誘電率の変化の関係を示す図である。It is a figure which shows the relationship between the temperature rise of water, and the change of a dielectric constant. 本発明の土壌の浄化処理方法を説明するための模式的なシステム図である。It is a typical system diagram for demonstrating the soil purification processing method of this invention. 本発明にかかる土壌の浄化処理方法を、実際の土壌処理に応用する場合の装置の概略図である。It is the schematic of the apparatus in the case of applying the soil purification processing method concerning this invention to an actual soil treatment.

符号の説明Explanation of symbols

1:反応槽
1a:反応容器
2:ヒーター
3:酸化剤
4:スラリー槽
5:ラインミキサー
6:攪拌機
S:土壌(スラリー)
1: Reaction tank 1a: Reaction vessel 2: Heater 3: Oxidizing agent 4: Slurry tank 5: Line mixer 6: Stirrer S: Soil (slurry)

Claims (3)

土壌からPCBおよびダイオキシン類の少なくとも一方酸化分解して取り除き、無害化して再利用可能にするための汚染土壌の浄化処理方法であって、汚染土壌に水を加えて混合してスラリー状とし、該スラリーのpHを4以下に調整し、過酸化水素を添加した後、該スラリーを耐圧容器内に充填して、容器内温度を150〜200℃、容器内圧力を0.5〜10MPaとした条件下で、上記PCBおよびダイオキシン類の少なくとも一方水に溶解させ、触媒を使用することなく過酸化水素から生じたヒドロキシラジカルで酸化分解(酸化剤として酸素含有気体を使用して酸化分解することを除く)することを特徴とする土壌の浄化処理方法。 A method for purifying contaminated soil for removing at least one of PCB and dioxins from soil by oxidative decomposition, making it harmless and reusable, adding water to the contaminated soil and mixing it into a slurry, After adjusting the pH of the slurry to 4 or less and adding hydrogen peroxide , the slurry is filled in a pressure resistant container, the temperature in the container is 150 to 200 ° C., and the pressure in the container is 0.5 to 10 MPa. in the conditions, at least one of the PCB and dioxins are dissolved in water, without the use of a catalyst, oxidative decomposition by hydroxyl radicals generated from hydrogen peroxide (oxidative decomposition using an oxygen-containing gas as the oxidant A soil refining treatment method characterized by comprising: スラリーの、土壌と水との割合が、重量で、土壌:水=1:10〜1:2である請求項1に記載の土壌の浄化処理方法。   The soil purification method according to claim 1, wherein a ratio of the soil to the water in the slurry is, by weight, soil: water = 1: 10 to 1: 2. 土壌からPCBおよびダイオキシン類の少なくとも一方酸化分解して取り除き、無害化して再利用可能にできる汚染土壌の浄化処理装置であって、汚染土壌に水を加えて混合してスラリー状とし、該スラリーのpHを4以下に調整するためのスラリー槽と、スラリーに過酸化水素を混合するための少なくとも1のラインミキサーと、該ラインミキサーから送られてくるスラリーを充填する複数の耐圧性の反応容器とを有し、該容器は、スラリーを充填した状態で、容器内温度150〜200℃、容器内圧力0.5〜10MPaの条件下で、上記PCBおよびダイオキシン類の少なくとも一方水に溶解させ、触媒を使用することなく過酸化水素から生じたヒドロキシラジカルで酸化分解(酸化剤として酸素含有気体を使用して酸化分解することを除く)できる構造をしており、複数の反応容器で多段に渡って順次上記の処理が行われるように構成されていることを特徴とする土壌の浄化処理装置。 A device for purifying contaminated soil, which can be made reusable by oxidizing and removing at least one of PCB and dioxins from the soil, adding water to the contaminated soil and mixing it into a slurry, and the slurry A slurry tank for adjusting the pH of the slurry to 4 or less, at least one line mixer for mixing the slurry with hydrogen peroxide, and a plurality of pressure-resistant reaction vessels filled with the slurry sent from the line mixer The container is prepared by dissolving at least one of the above PCBs and dioxins in water under conditions of a container internal temperature of 150 to 200 ° C. and a container internal pressure of 0.5 to 10 MPa in a state where the slurry is filled. , without using a catalyst, to oxidative decomposition using an oxygen-containing gas as the oxidizing decomposition (oxidizing agent with a hydroxy radicals generated from hydrogen peroxide A soil refining treatment apparatus characterized in that the above-described treatment is performed sequentially in multiple stages in a plurality of reaction vessels.
JP2004197386A 2004-07-02 2004-07-02 Soil purification treatment method and soil purification treatment apparatus Expired - Fee Related JP4757457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197386A JP4757457B2 (en) 2004-07-02 2004-07-02 Soil purification treatment method and soil purification treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197386A JP4757457B2 (en) 2004-07-02 2004-07-02 Soil purification treatment method and soil purification treatment apparatus

Publications (2)

Publication Number Publication Date
JP2006015287A JP2006015287A (en) 2006-01-19
JP4757457B2 true JP4757457B2 (en) 2011-08-24

Family

ID=35789996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197386A Expired - Fee Related JP4757457B2 (en) 2004-07-02 2004-07-02 Soil purification treatment method and soil purification treatment apparatus

Country Status (1)

Country Link
JP (1) JP4757457B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276779B2 (en) * 2006-06-09 2013-08-28 五洋建設株式会社 Purification method for sediment and soil contaminated with dioxins
JP4825714B2 (en) * 2007-03-30 2011-11-30 株式会社神鋼環境ソリューション Heat treatment method of PCB with high water content

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK71987D0 (en) * 1987-02-13 1987-02-13 Nordiske Kabel Traad PROCEDURE FOR CLEANING OIL AND CHEMICAL POLLUTANTS
DE4400242A1 (en) * 1994-01-07 1995-07-13 Bayer Ag Process for the oxidative cleaning of contaminated sludge or slurried earth
JPH0975956A (en) * 1995-09-08 1997-03-25 Kurita Water Ind Ltd Decomposition removing method of organic material
JP3131626B2 (en) * 1996-06-10 2001-02-05 工業技術院長 Decomposition method of dioxins by supercritical water
JP2000167572A (en) * 1998-12-03 2000-06-20 Hitachi Zosen Corp Decomposition of organic harmful substance in water or sludge
JP2000246231A (en) * 1998-12-28 2000-09-12 Kobe Steel Ltd Method and apparatus for purifying solid substance containing organic halogen compound
JP2000197867A (en) * 1999-01-08 2000-07-18 Ebara Corp Decomposition of dioxins in solid
JP4024999B2 (en) * 1999-08-09 2007-12-19 月島環境エンジニアリング株式会社 Treatment method of dioxin-containing liquid
JP3553454B2 (en) * 2000-03-22 2004-08-11 環境エンジニアリング株式会社 Purification method for contaminated soil
JP2003144899A (en) * 2001-11-15 2003-05-20 Mitsubishi Heavy Ind Ltd Halogenated organic compound decomposition equipment

Also Published As

Publication number Publication date
JP2006015287A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
Al-Bsoul et al. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes
Lin et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study
CN101648207B (en) Chemical oxidation remediation method for organism-contaminated soil and remediation device
CN107470344B (en) Method for restoring organic contaminated soil by combining nano humic acid with ferrous ion activated persulfate
US7479259B2 (en) System for destroying hazardous waste resultant from the production of energetics such as explosives
US5304710A (en) Method of detoxification and stabilization of soils contaminated with chromium ore waste
DK1755799T3 (en) COMBINED CHEMICAL OXIDATION / ASSISTED POLLUTANTS BIOREMEDIATION
CA2947818C (en) Remediation of contaminated soils
CN104556597B (en) A kind of processing method of sludge
US10435317B2 (en) Composite material for catalytic treatment of contaminated soil and water and catalytic treatment method thereof
JP2008229415A (en) Method and apparatus for water treatment
CN104556596B (en) A kind of processing method of sludge
CN106623382A (en) Method for repairing organochlorine pesticide-polluted soil through microwave-enhanced sodium percarbonate
US20140116959A1 (en) Manganese-mediated redox processes for environmental contaminant remediation
CN106583441A (en) Method for recovery of organic chloride-polluted soil through ultrasonic intensified potassium ferrate/hydrogen peroxide
JP4167052B2 (en) Purification method for organic compound contamination
CN115231680A (en) Preparation method and application of biochar loaded nano zero-valent iron material
JP4757457B2 (en) Soil purification treatment method and soil purification treatment apparatus
JP2006247483A (en) Treatment method of contaminated soil
JP3969114B2 (en) Organic halogen compound decomposition method and decomposition apparatus.
AU2005232901A1 (en) Process for the treatment of sludge
JP3236219B2 (en) Soil purification method and equipment
JP3221558B2 (en) Soil purification method and equipment
JP3553454B2 (en) Purification method for contaminated soil
JP2001334251A (en) Method for cleaning polluted soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees