JP4756233B2 - Pillarized clay composed of rod-like polysiloxane with ammonium cation on the surface and layered clay mineral, its production method and its use - Google Patents

Pillarized clay composed of rod-like polysiloxane with ammonium cation on the surface and layered clay mineral, its production method and its use Download PDF

Info

Publication number
JP4756233B2
JP4756233B2 JP2004260491A JP2004260491A JP4756233B2 JP 4756233 B2 JP4756233 B2 JP 4756233B2 JP 2004260491 A JP2004260491 A JP 2004260491A JP 2004260491 A JP2004260491 A JP 2004260491A JP 4756233 B2 JP4756233 B2 JP 4756233B2
Authority
JP
Japan
Prior art keywords
clay
rod
chemical formula
anion
polysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004260491A
Other languages
Japanese (ja)
Other versions
JP2006076810A (en
JP2006076810A5 (en
Inventor
芳郎 金子
伸夫 井伊
太輝 松本
健二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004260491A priority Critical patent/JP4756233B2/en
Publication of JP2006076810A publication Critical patent/JP2006076810A/en
Publication of JP2006076810A5 publication Critical patent/JP2006076810A5/ja
Application granted granted Critical
Publication of JP4756233B2 publication Critical patent/JP4756233B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、表面にアンモニウム陽イオンを持つロッド状ポリシロキサンと層状粘土鉱物からなるピラー化粘土と、それらの製造方法、および用途発明に関する。   The present invention relates to a pillared clay composed of a rod-like polysiloxane having an ammonium cation on the surface and a layered clay mineral, a production method thereof, and a use invention.

粘土鉱物の二次元ケイ酸塩層に適当な支柱(ピラー)を立て、そのサイズや種類、数を変えて層間に細孔を構築して得られる、粘土架橋体(ピラー化粘土)が、新しいタイプの多孔質材料として注目されている(非特許文献1参照)。この材料は元の粘土鉱物に比べて、大きな比表面積や細孔容積を持ち、また熱的安定性や触媒活性も向上するため、触媒・吸着剤・イオン交換体など様々な分野で展開されている。   A new clay cross-linked body (pillared clay) is obtained by setting up appropriate pillars (pillars) on the two-dimensional silicate layer of clay minerals and changing the size, type, and number of pores between the layers. It attracts attention as a type of porous material (see Non-Patent Document 1). Compared to the original clay mineral, this material has a large specific surface area and pore volume, and also has improved thermal stability and catalytic activity, so it has been developed in various fields such as catalysts, adsorbents, and ion exchangers. Yes.

通常これらピラー化粘土は、様々なナノサイズを持つ有機イオン(非特許文献2、3参照)、無機イオン(非特許文献4,5参照)、ゾル粒子(非特許文献6,7参照)などを、イオン交換反応(インターカレーション)により粘土層間に挿入することで合成され、これまで多種多様なピラー化粘土が得られている。しかし、高分子と粘土鉱物からなるナノ複合体はこれまで数多く報告されているにもかかわらず(非特許文献8参照)、粘土層間のピラー化剤として高分子を用いた例はこれまで報告されていない。通常の高分子では粘土層間に挿入されたとき、その層間を押し広げるだけの剛直さ、あるいは十分な層間距離を維持し、持たせるための嵩高さがない場合には、粘土層間を離間、維持し、層間に空間を持たせることができないのであろう。   Usually, these pillared clays contain organic ions having various nano sizes (see Non-Patent Documents 2 and 3), inorganic ions (see Non-Patent Documents 4 and 5), sol particles (see Non-Patent Documents 6 and 7), and the like. So far, a variety of pillared clays have been obtained by intercalation. However, although many nanocomposites composed of polymers and clay minerals have been reported so far (see Non-Patent Document 8), examples using polymers as pillaring agents between clay layers have been reported so far. Not. In ordinary polymers, when inserted between clay layers, the stiffness between the layers is widened, or the distance between the clay layers is maintained if there is no bulk to maintain and maintain a sufficient distance between layers. However, there may be no space between the layers.

これまでに報告されている高分子と粘土鉱物を用いた多孔体の合成例はあるが、この合成例は、高分子と粘土鉱物からなるナノ複合体を合成した後、焼成して高分子を取り除く手法によるものである(非特許文献9参照)。これは高分子自体がピラー化剤として振る舞うわけではなく、高分子を焼成によって取り除いた後の空間として働く。つまり高分子をピラー化剤として用いた例はこれまで報告されていない。   There are examples of the synthesis of porous bodies using polymers and clay minerals that have been reported so far. In this synthesis example, nanocomposites composed of polymers and clay minerals were synthesized, and then the polymers were baked. This is due to the removal method (see Non-Patent Document 9). This does not mean that the polymer itself acts as a pillaring agent, but acts as a space after the polymer is removed by baking. That is, no examples using a polymer as a pillaring agent have been reported so far.

高分子の持つ特徴に、それ自体で空間形態を形成する能力がある。それゆえ、高分子でピラー化された粘土は、これまでにないおもしろい性質を有するものと期待される。   One of the characteristics of a polymer is the ability to form a spatial form on its own. Therefore, the polymer pillared clay is expected to have an interesting property that has never existed before.

山中昭二,「層状ケイ酸塩の層間架橋と細孔構造の設計」:“マイクロポーラス・クリスタル”、編集者;島田昌彦・阿部光雄・小野嘉夫・富永博夫・諸岡良彦,ページ:39−48,(1994・1)Shoji Yamanaka, “Interlayer cross-linking and pore structure design of layered silicates”: “Microporous Crystal”, Editor: Masahiko Shimada, Mitsuo Abe, Yoshio Ono, Hiroo Tominaga, Yoshihiko Morooka, pages: 39-48, (1994/1) M.Ogawa ほか4名,“Photochemical hole burning of 1,4-dihydroxyanthraquinone intercalated in a pillared layered clay mineral”,The Journal of Physical Chemistry,VoL:96,ページ:8116−8119,(1992)M.M. Ogawa and 4 others, “Photochemical hole burning of 1, 4-dihydroxyanthraquinone intercalated in a pillared layered cray minor”, The Journal of Phar. M.Ogawa ほか3名,“Oriented microporous film of tetramethylammonium pillared saponite”,Journal of Materials Chemistry,VoL:4,ページ:519−523,(1994)M.M. Ogawa and 3 others, “Oriented microporous film of tetramethylammonium pillar saponite”, Journal of Materials Chemistry, VoL: 4, page: 519-523. S.-R.Lee ほか4名,“Nanocrystalline sodalite from Al2O3 pillared clay by solid-solid transformation”,Chemistry of Materials ,VoL:15,ページ:4841−4845,(2003)S. -R. Lee and four others, “Nanocrystalline solid from form Al2O3 pillared by solid-solid transformation”, Chemistry of Materials, VoL: 15, page 484-484. M.Pichowicz ほか1名,“Stability of pillared clays: effect of compaction on the physicochemical properties of Al-pillared clays”,Chemistry of Materials ,VoL:16,ページ:263−269,(2004)M.M. Pichowicz and 1 other person, “Stability of Pillared Clays: effect of compaction on the physical chemicals of Al-pillared leys6, Chemistry 26, Chem. S.Yamanaka ほか4名,“Preparation and properties of clays pillared with SiO2-TiO2 sol particles”,Bulletin of the Chemical Society of Japan ,VoL:65,ページ:2494−2500,(1992)S. Yamanaka et al., 4 people, “Preparation and properties of clays pillared with SiO 2 —TiO 2 sol particles”, Bulletin of the Chemical Society, 492: 1925 J.-H.Choy ほか5名,“New CoO-SiO2-sol pillared clays as catalysts for NOx conversion”,Chemistry of Materials ,VoL:14,ページ:3823−3828,(2002)J. et al. -H. Choy et al., "New CoO-SiO2-sol pillared ass for NOx conversion", Chemistry of Materials, Vol. 14, page: 3823-3828, (2002) “Polymer-Clay Nanocomposites”,edited by T.J.Pinnavaia and G.W.Beall,John Wiley & Sons,Chichester,(2000)“Polymer-Clay Nanocomposites”, edited by T.M. J. et al. Pinnavaia and G.M. W. Beall, John Wiley & Sons, Chichester, (2000) K.A.Carrado ほか1名,“Materials with controlled mesoporosity derived from synthetic polyvinylpyrrolidone-clay composites”,Microporous and Mesoporous Materials ,VoL:27,ページ:87−94,(1999)K. A. Carrado et al., “Materials with controlled mesoporosity-derived from synthetic poly- lypyrrolidone-clay composites, 19”, “Mourous and 87”.

本発明は、このような状況から、高分子化合物をピラーとするピラー化粘土を開発しようというものである。そのため、本発明者らにおいては、粘土層間に入り込み、一定の間隔を維持して層間に空間を形成することができるピラー化剤を探求した結果、本発明者らによって開発された、表面にアンモニウム陽イオンを持つロッド状ポリシロキサンを見出すに至った。これによって、表面にアンモニウム陽イオンを持つロッド状ポリシロキサンと層状粘土鉱物からなるピラー化粘土、すなわち、高分子をピラー化剤とした新しいタイプの多孔質材料を簡単な合成法によって提供することができることを知見した。本発明は、この知見に基づいてなされたものである。その合成されたピラー化粘土は、粘土層間に細孔を有するため、ガス吸着・分離を始め各種吸着剤としての利用が可能であることが明らかにされた。   The present invention is intended to develop pillared clay using a polymer compound as a pillar from such a situation. Therefore, as a result of searching for a pillaring agent that can enter a clay layer and maintain a certain distance to form a space between the layers, the present inventors have developed a surface of ammonium on the surface. It came to find the rod-like polysiloxane which has a cation. As a result, it is possible to provide a new type of porous material made of pillared clay consisting of rod-like polysiloxane having ammonium cations on the surface and layered clay mineral, that is, polymer as a pillaring agent, by a simple synthesis method. I found out that I can do it. The present invention has been made based on this finding. Since the synthesized pillared clay has pores between clay layers, it has been clarified that it can be used as various adsorbents including gas adsorption and separation.

前記ピラー化粘土は、吸着剤として利用することは勿論、その層間に存在するロッド状ポリシロキサンのアンモニウム基により、特定ガスの吸着あるいは機能性有機分子の導入を可能とする特有な機能も有していることが明らかにされた。また、本発明により得られた材料は、ピラー化剤にロッド状高分子を用いたことで、その細孔空間の形態がこれまでにない特異的なものとなり、分子の凝集によりその機能を失う光機能性分子(例えば、レーザー色素のように凝集することで蛍光発光が抑制される分子)のための基材としても利用可能となるものである。その利用可能性は、新規化合物を提供する意味でも極めて優れ実用性に富んでいることが明らかにされた。   The pillared clay is not only used as an adsorbent, but also has a specific function that enables adsorption of a specific gas or introduction of functional organic molecules due to the ammonium group of the rod-shaped polysiloxane present between the layers. It was revealed that In addition, the material obtained by the present invention uses a rod-like polymer as a pillaring agent, so that the shape of the pore space is unique and never loses its function due to molecular aggregation. It can also be used as a base material for a photofunctional molecule (for example, a molecule whose fluorescence emission is suppressed by aggregation such as a laser dye). It has been revealed that its applicability is extremely excellent in terms of providing new compounds and is highly practical.

上記狙いを達成するための手段を、再度、要約して述べると、次のような先行技術をステップにして導き出されたものである。すなわち、本発明者らの研究グループにおいては、最近になって、アミノ基を有するオルガノアルコキシシランのゾル−ゲル反応によって、ロッド構造を持つカチオン性ポリシロキサンの合成に成功し、これに基づき先に特許出願をした(特許文献1、2)。このポリシロキサンは、水溶性・イオン交換性に加えて、ヘキサゴナル相を構築するような剛直ロッド構造を有している。これらの性質によりこのポリシロキサンは、粘土層間のピラー化において有用であるとの考えに至った。すなわち、このポリシロキサンは、その水溶性やイオン交換性によって粘土層間に容易に挿入することが可能となり、その剛直さと嵩高さによって粘土層間を押し広げることが可能であると考えた。   The means for achieving the above aim will be summarized again and derived from the following prior art steps. That is, the present inventors have succeeded in synthesizing a cationic polysiloxane having a rod structure by a sol-gel reaction of an organoalkoxysilane having an amino group. A patent application was filed (Patent Documents 1 and 2). This polysiloxane has a rigid rod structure that builds a hexagonal phase in addition to water solubility and ion exchange properties. These properties led to the idea that this polysiloxane is useful in pillaring between clay layers. That is, it was considered that this polysiloxane can be easily inserted between clay layers due to its water solubility and ion exchange properties, and can be expanded between clay layers due to its rigidity and bulkiness.

金子芳郎 ほか4名、「陰イオン交換性を有する層状ポリアミノアルキルシロキサン複合体とその製造方法およびその用途」、特許願2004-046049Yoshiro Kaneko and 4 others, “Layered polyaminoalkylsiloxane composites having anion exchange properties and production method and use thereof”, Patent Application 2004-046049 金子芳郎 ほか3名、「アンモニウム陽イオンを表面に有するロッド状ポリシロキサンからなる高次構造積層体とその製造方法およびその用途」、特許願2004-230030Yoshiro Kaneko and three others, “High-order structure laminate made of rod-like polysiloxane having ammonium cation on its surface, its production method and its use”, Patent Application 2004-230030

本発明者らは、以上の考えに立脚し具体的には、インターカレーションあるいはイオン交換反応によって、アンモニウム陽イオンを有するロッド状ポリシロキサンが、陰イオンの表面を持つ層状粘土鉱物層間に挿入されれば、容易に高分子によるピラー化粘土が合成可能ではないかとの考えに至った。   Based on the above idea, the present inventors specifically inserted a rod-like polysiloxane having an ammonium cation between layered clay mineral layers having an anionic surface by intercalation or ion exchange reaction. Then, it came to the idea that it would be possible to easily synthesize pillared clay by polymer.

以上の基本方針に基づき鋭意研究した結果、粘土層間に十分な空間を持たせるためには、ロッド状ポリシロキサンがその層間で適当な間隔をもつ必要があり、その条件を満たすものとして、サポナイトなどのような比較的層電荷密度の低い粘土鉱物(理論交換容量:50〜100ミリ等量/粘土鉱物100グラム)をホスト材料として利用するのが最適であることを見いだすに至った。   As a result of earnest research based on the above basic policy, in order to have sufficient space between clay layers, it is necessary that the rod-like polysiloxane has an appropriate interval between the layers, and saponite etc. It has been found that it is optimal to use a clay mineral having a relatively low layer charge density (theoretical exchange capacity: 50 to 100 milliequivalent / 100 g of clay mineral) as a host material.

以上から、本発明者らにおいては、表面にアンモニウム陽イオンを持つロッド状ポリシロキサンと層状粘土鉱物からなるピラー化粘土を開発できるのではとの考えに基づき、鋭意検討した結果、実現することに成功したものである。   From the above, the inventors of the present invention, as a result of diligent investigation based on the idea that a pillared clay composed of a rod-like polysiloxane having an ammonium cation on the surface and a layered clay mineral can be developed. It is a success.

すなわち、本発明は、以下の(1)から(4)に記載する解決手段を講ずることによって達成されたものである。   That is, the present invention has been achieved by taking the solving means described in the following (1) to (4).

(1)まず第1には、前記ピラーがロッド状ポリシロキサンの陽イオンであり、前記ロッド状ポリシロキサンの陽イオンが、(化学式1)で表される繰り返し単位を有するロッド状ポリ(3−アミノプロピル)シロキサン塩、ないしは(化学式2)で表される繰り返し単位を有するロッド状ポリ(3−(2−アミノエチルアミノ)プロピル)シロキサン塩から得られる陽イオンであることを特徴とするピラー化粘土を提供するものである。ピラー化粘土の構造イメージおよび合成スキームを図1に示す。ただし、図1中のロッド状ポリシロキサンは、下記(化学1)で示す構造のものを例示したものである。

(1) First of all, the pillar is a cation of rod-shaped polysiloxane, and the cation of the rod-shaped polysiloxane has a repeating unit represented by (Chemical Formula 1). aminopropyl) siloxane salt, or (rod poly having a repeating unit represented by chemical formula 2) (3- (2-aminoethylamino) propyl) pillars, wherein cations der Rukoto obtained siloxane salt It provides the clay. The structure image and synthesis scheme of pillared clay are shown in FIG. However, the rod-shaped polysiloxane in FIG. 1 is an example of a structure represented by the following (Chemical Formula 1).

(2)第2には、上記(1)記載のピラー化粘土の製造方法を提供するものである。その構成は、以下の通りである。すなわち、繰り返し単位が、次の(化学式1)で表されるロッド状ポリ(3−アミノプロピル)シロキサン塩、ないしは繰り返し単位が、次の(化学式2)で表されるロッド状ポリ(3−(2−アミノエチルアミノ)プロピル)シロキサン塩を溶解した溶液を調整し、この溶液を、粘土鉱物(理論交換容量:50〜100ミリ等量/粘土鉱物100グラム)を分散させた懸濁液に混合し、粘土の陽イオンとロッド状ポリマーの陽イオンとをイオン交換反応させることを特徴とする
(化学式1)
・NH (CH SiO 1.5 (式中、Z は、塩化物イオンなどのハロゲン元素陰イオン、硝酸イオンなど陰イオンを表す)
(化学式2)
(Z ) ・NH (CH NH (CH SiO 1.5 (式中、Z は、塩化物イオンなどのハロゲン元素陰イオン、硝酸イオンなど陰イオンを表す)
(2) The second is to provide a method for manufacturing a pin color clay as (1) above, wherein. The configuration is as follows. That is, the repeating units, represented Carlo head like poly (3-aminopropyl) siloxane salt in the following (Chemical Formula 1), or repeating units, Carlo head shaped poly represented by the following (Formula 2) (3- (2-aminoethylamino) propyl) adjusting the solution of siloxane salt, the solution, clay minerals: the (theoretical exchange capacity 50-100 meq / clay mineral 100 g) is dispersed mixed suspension, characterized by Rukoto cations and the rod-like polymers of clay and cations by ion exchange reaction.
(Chemical formula 1)
Z .NH 3 + (CH 2 ) 3 SiO 1.5 (wherein Z represents a halogen element anion such as a chloride ion or an anion such as a nitrate ion)
(Chemical formula 2)
(Z ) 2 .NH 3 + (CH 2 ) 2 NH 2 + (CH 2 ) 3 SiO 1.5 (wherein Z represents an anion such as a halogen element anion such as a chloride ion or a nitrate ion) To express)

記(1)に記載のピラー化粘土を、各種吸着・分離操作に使用される吸着剤として使用することも可能であるにこの吸着剤が、気体分離に使用することも可能である。また体分離として、専ら二酸化炭素固定化用に使用することも可能である
The pillared clay described before Symbol (1), can also be used as an adsorbent for use in various adsorption and separation. The adsorbent especially It is also possible to use for gas separation. Moreover, as a gas isomer separation, it can be used exclusively for the carbon dioxide immobilization.

また、前記(1)に記載のピラー化粘土を、機能性無機−有機複合体創生のための基材として使用することも可能である Further, said pillared clay according to (1), functional inorganic - can be used as a substrate for an organic complex creation.

上記の解決手段を講ずることによって、本出願の発明では、表面にアンモニウム陽イオンを持つロッド状ポリシロキサンと層状粘土鉱物からなるピラー化粘土を、イオン交換反応という簡易な手法で合成することに成功したものである。   By taking the above solution, the invention of the present application succeeded in synthesizing a pillared clay composed of a rod-like polysiloxane having an ammonium cation on the surface and a layered clay mineral by a simple method called an ion exchange reaction. It is a thing.

本発明は、従来存在していなかった、高分子をピラー化剤としたピラー化粘土を提供するものであることから、学術的な興味に加えて、産業上の有用性を備えており、その意義は大きい。加えて、特異的なガス吸着性や、機能性有機分子の導入が可能であることから、今後各種分野に大いに利用されることが期待される。この材料は、粘土層間を高分子でピラー化しているため、形成される細孔はこれまでにない特殊なものとなる。高分子のような一次元方向にだけ生長した巨大分子によってピラー化することで、その細孔は隣接する細孔から独立するものと考えられる。この細孔に、凝集するとその光機能性が失われるレーザー色素分子を分散吸着させれば、色素レーザーの固体化が期待できる。また、粘土層間に挿入されたロッド状ポリシロキサン表面のアンモニウム基をアミノ基に変換することで、二酸化炭素吸着剤として利用も期待される。   Since the present invention provides a pillared clay using a polymer as a pillaring agent, which has not existed in the past, it has industrial utility in addition to academic interest. Significance is great. In addition, since it is possible to introduce specific gas adsorption and functional organic molecules, it is expected to be used in various fields in the future. In this material, since the clay layer is pillared with a polymer, the pores to be formed are a special one that has never been seen before. It is considered that the pores are independent of the adjacent pores by forming a pillar with a macromolecule grown only in one dimension such as a polymer. Solidification of the dye laser can be expected by dispersing and adsorbing laser dye molecules that lose their optical functionality when aggregated in the pores. Further, it is expected to be used as a carbon dioxide adsorbent by converting the ammonium group on the surface of the rod-shaped polysiloxane inserted between clay layers into an amino group.

本発明の解決手段は、前述した通りであるが、以下、実施例に基づいて具体的に説明する。但しこれら実施例は、本発明を容易に理解するための一助として示したものであり、決して本発明を限定する趣旨ではない。   The solution of the present invention is as described above, and will be specifically described below based on examples. However, these examples are shown as an aid for easily understanding the present invention, and are not intended to limit the present invention.

ポリ(3−アミノプロピル)シロキサン塩酸塩0.15gに蒸留水10mlを加えてピラーとなる高分子溶液を調製した。この溶液を、ナトリウム型サポナイト0.15gに蒸留水10mlを加えて調整した懸濁液に滴下して、この反応懸濁液を室温で2時間撹拌してイオン交換反応を起こさせた後、濾別し、蒸留水で洗浄した後、室温で減圧乾燥した。キャラクタリゼーションを赤外(IR)スペクトル、CHN元素分析、X線回折(XRD)、窒素吸脱着測定により行った。生成物のIRスペクトルより、1515cm-1にポリ(3−アミノプロピル)シロキサン中のアンモニウムイオン(NH3 +)の吸収が観察され、生成物中にポリシロキサン(高分子)が挿入されたことが確認できた(図2)。また、CHN元素分析から、サポナイト層間に取り込まれたロッド状ポリシロキサンの1ユニットあたりの交換量を算出したところ、126ミリ等量/サポナイト100gであった。 A polymer solution serving as a pillar was prepared by adding 10 ml of distilled water to 0.15 g of poly (3-aminopropyl) siloxane hydrochloride. This solution was added dropwise to a suspension prepared by adding 10 ml of distilled water to 0.15 g of sodium saponite, and the reaction suspension was stirred at room temperature for 2 hours to cause an ion exchange reaction. Separately, it was washed with distilled water and then dried under reduced pressure at room temperature. Characterization was performed by infrared (IR) spectrum, CHN elemental analysis, X-ray diffraction (XRD), and nitrogen adsorption / desorption measurement. From the IR spectrum of the product, absorption of ammonium ion (NH 3 + ) in poly (3-aminopropyl) siloxane was observed at 1515 cm −1 , indicating that the polysiloxane (polymer) was inserted into the product. It was confirmed (FIG. 2). Moreover, when the exchange amount per unit of the rod-shaped polysiloxane taken in between the saponite layers was calculated from CHN elemental analysis, it was 126 milliequivalent / 100 g saponite.

また、粉末XRD測定より、生成物であるピラー化粘土の回折パターンは、原料であるナトリウム型サポナイトやポリ(3−アミノプロピル)シロキサン塩酸塩の回折パターンとは異なっていたことから、生成物はナノオーダーでインターカレートされた材料、すなわちナノ複合体であることがわかった(図3)。また、2θが最も低角な回折ピークのd値が1.80nmであったことから、サポナイトの層1枚の厚さが0.96nmであることを考慮すると層間距離は0.84nmと計算される。   From the powder XRD measurement, the diffraction pattern of the pillared clay as a product was different from the diffraction pattern of sodium saponite and poly (3-aminopropyl) siloxane hydrochloride as raw materials. It was found to be a nano-order intercalated material, ie a nanocomposite (FIG. 3). Further, since the d value of the diffraction peak with the lowest angle of 2θ was 1.80 nm, the interlayer distance was calculated as 0.84 nm considering that the thickness of one saponite layer was 0.96 nm. The

今回用いたナトリウム型サポナイトのイオン交換容量は92ミリ等量/粘土鉱物100グラムである(非特許文献10参照)。交換容量が100ミリを超えると、密集してポリシロキサンが粘土層間に挿入されるため、十分な空間を得ることができない。また通常のイオン交換性を示す粘土鉱物であるスメクタイト(イオン交換容量60〜100)とバーミキュライト(イオン交換容量100〜150)については、いずれも交換容量が50ミリ以下になることはない。このような理由から、本発明を実施するに際して、使用することのできる粘土鉱物としては、イオン交換容量が50〜100ミリ等量/粘土鉱物100グラムぐらいの値の粘土鉱物が実施可能な粘土鉱物として挙げられる。ただし、この値は一応の目安としての値であり、実際にはこの範囲外の粘土鉱物でも使用しうる場合があり、本発明はこのような場合も含むものである。   The ion exchange capacity of the sodium-type saponite used this time is 92 milliequivalents / 100 grams of clay mineral (see Non-Patent Document 10). If the exchange capacity exceeds 100 mm, the polysiloxane is densely inserted between the clay layers, so that a sufficient space cannot be obtained. Further, neither smectite (ion exchange capacity 60 to 100) and vermiculite (ion exchange capacity 100 to 150), which are clay minerals exhibiting normal ion exchange properties, have an exchange capacity of 50 mm or less. For these reasons, the clay mineral that can be used in carrying out the present invention is a clay mineral that can carry out a clay mineral having an ion exchange capacity of 50 to 100 milliequivalents / a value of about 100 grams of clay mineral. As mentioned. However, this value is a value as a rough standard, and in fact, clay minerals outside this range may be used, and the present invention includes such a case.

J.Bujdak ほか3名,“Aggregation and decomposition of a pseudoisocyanine dye in dispersions of layered silicates”,Journal of Colloid and Interface Science,VoL:247,ページ:494−503,(2002)J. et al. Bujdak and 3 others, “Aggregation and decomposition of a pseudoisyanine dyed in dispersed of layered silicates”, Journal of Colloid and Interface4, 49

窒素吸脱着等温線を図4に示す。生成物であるピラー化粘土の吸着はI型(ラングミュアー型)の等温線を表しマイクロ孔の形成を示している。多少マクロ孔が存在しているが、これはピラー化粘土の外部表面への窒素吸着に起因するものと思われる。ピラー化粘土の比表面積と空孔容積をt-plot法により算出したところ、それぞれ370 m2/gと0.149cm3/gであった。これは、密集構造である原料;ナトリウム型サポナイト(BET比表面積;26m2/g)とポリ(3−アミノプロピル)シロキサン塩酸塩(BET比表面積;5m2/g)から多孔質材料が形成されたことを示している。ピラー化粘土の孔径をt-plot法により算出したところ0.92nmであり、この値はXRD測定より導き出された層間距離(0.84nm)とほぼ一致した。 The nitrogen adsorption / desorption isotherm is shown in FIG. The adsorption of the product pillared clay represents an isotherm of type I (Langmuir type), indicating the formation of micropores. Some macropores are present, which may be attributed to nitrogen adsorption on the external surface of pillared clay. When the specific surface area and pore volume of the pillared clay were calculated by the t-plot method, they were 370 m 2 / g and 0.149 cm 3 / g, respectively. This is because a porous material is formed from a raw material having a dense structure; sodium saponite (BET specific surface area; 26 m 2 / g) and poly (3-aminopropyl) siloxane hydrochloride (BET specific surface area; 5 m 2 / g). It shows that. When the pore diameter of the pillared clay was calculated by the t-plot method, it was 0.92 nm, and this value almost coincided with the interlayer distance (0.84 nm) derived from the XRD measurement.

ピラー化粘土の合成において、比較的層電荷密度の高いリチウム型テニオライトをナトリウム型サポナイトの代わりに用いて、ポリ(3−アミノプロピル)シロキサン塩酸塩とのイオン交換反応を行った。ポリ(3−アミノプロピル)シロキサン塩酸塩0.15gに蒸留水10mlを加えてピラーとなる高分子溶液を調製した。この溶液を、リチウム型テニオライト0.15gに蒸留水10mlを加えて調整した懸濁液に滴下して、この反応懸濁液を室温で2時間撹拌してイオン交換反応を起こさせた後、濾別し、蒸留水で洗浄した後、室温で減圧乾燥した。十分な底面間隔を持つような複合体は得られたものの(XRD測定により約1.83nmと算出)、十分な細孔空間を得ることはできなかった(BET比表面積;53 m2/g)。層電荷密度が高いため、テニオライト表面の電荷間距離が
近く、密集してポリ(3−アミノプロピル)シロキサンが挿入されたためと考えられる(
交換容量:140ミリ等量/テニオライト100グラム)。
In the synthesis of pillared clay, an ion exchange reaction with poly (3-aminopropyl) siloxane hydrochloride was performed using lithium-type teniolite having a relatively high layer charge density instead of sodium-type saponite. A polymer solution serving as a pillar was prepared by adding 10 ml of distilled water to 0.15 g of poly (3-aminopropyl) siloxane hydrochloride. This solution was added dropwise to a suspension prepared by adding 10 ml of distilled water to 0.15 g of lithium teniolite, and the reaction suspension was stirred at room temperature for 2 hours to cause an ion exchange reaction. Separately, it was washed with distilled water and then dried under reduced pressure at room temperature. Although a composite having a sufficient bottom surface spacing was obtained (calculated as about 1.83 nm by XRD measurement), sufficient pore space could not be obtained (BET specific surface area; 53 m 2 / g) . Because the layer charge density is high, the distance between charges on the surface of the teniolite is close, and it is considered that poly (3-aminopropyl) siloxane is inserted densely (
Exchange capacity: 140mm equivalent / 100g of teniolite).

一方、ポリ(3−アミノプロピル)シロキサン塩酸塩の代わりに、通常の有機カチオン性ポリマーである、ポリアリルアミン塩酸塩(平均分子量;70,000)を用いて、ナトリウム型サポナイトとのイオン交換反応を行った。ポリアリルアミン塩酸塩0.15gに蒸留水10mlを加えてピラーとなる高分子溶液を調製した。この溶液を、ナトリウム型サポナイト0.15gに蒸留水10mlを加えて調整した懸濁液に滴下して、この反応懸濁液を室温で2時間撹拌してイオン交換反応を起こさせた後、濾別し、蒸留水で洗浄した後、室温で減圧乾燥した。これも複合化は行われたものの(CHN分析およびIR測定により確認)、十分な底面間隔が得られず(XRD測定により約1.54nmと算出)、細孔空間を得ることができなかった(BET比表面積;52 m2/g)。 On the other hand, instead of poly (3-aminopropyl) siloxane hydrochloride, polyallylamine hydrochloride (average molecular weight; 70,000), which is a normal organic cationic polymer, is used to conduct an ion exchange reaction with sodium saponite. went. A polymer solution serving as a pillar was prepared by adding 10 ml of distilled water to 0.15 g of polyallylamine hydrochloride. This solution was added dropwise to a suspension prepared by adding 10 ml of distilled water to 0.15 g of sodium saponite, and the reaction suspension was stirred at room temperature for 2 hours to cause an ion exchange reaction. Separately, it was washed with distilled water and then dried under reduced pressure at room temperature. Although this was also complexed (confirmed by CHN analysis and IR measurement), a sufficient bottom space was not obtained (calculated to be about 1.54 nm by XRD measurement), and pore space could not be obtained ( BET specific surface area; 52 m 2 / g).

本発明は、以上に示した実施例の合成例以外にも多数の実験を積み重ねた結果導き出され、明らかにされた。すなわち、本発明は、決してこの開示した実施例のみにとどまらない。多数に上がる実験を通じて、本発明において重要な要点は、ロッド状ポリ(3−アミノプロピル)シロキサン塩酸塩の持つ剛直さと嵩高さ、そしてナトリウム型サポナイトの持つ比較的低い層電荷密度すなわち適度に離れた電荷間距離が、極めて重要であり、これらが互いに作用した結果成功したと言える。   The present invention has been derived and clarified as a result of accumulating many experiments other than the synthesis examples of the examples shown above. The invention is not limited to the disclosed embodiments. Through numerous experiments, the important points in the present invention are the rigidity and bulkiness of rod-like poly (3-aminopropyl) siloxane hydrochloride, and the relatively low layer charge density of sodium-type saponite, that is, moderately separated The distance between charges is extremely important and can be said to have been successful as a result of their interaction.

本発明は、発明の効果の欄でも触れたように、その意義は格別のものがある。すなわち、本発明は、これまで存在していなかった、高分子をピラー化剤としたピラー化粘土を提供するものであり、それ自体産業上利用しうるもので、その意義は大きい。加えて、特異的なガス吸着性を示すこと、機能性有機分子の導入が可能であることから、今後各種分野に大いに利用されることが期待される。この材料は、粘土層間を高分子でピラー化しているため、形成される細孔はこれまでにない特殊なものとなる。高分子のような一次元方向にだけ生長した巨大分子によってピラー化することで、その細孔は隣接する細孔から独立するものと考えられる。この細孔に、凝集するとその光機能性が失われるレーザー色素分子を分散吸着させれば、色素レーザーの固体化が期待できる。また、粘土層間に挿入されたロッド状ポリシロキサン表面のアンモニウム基をアミノ基に変換することで、二酸化炭素吸着剤としての利用も期待できる。   As described in the column of the effect of the invention, the significance of the present invention is exceptional. That is, the present invention provides a pillared clay using a polymer as a pillaring agent, which has not existed so far, and can be used industrially, and has great significance. In addition, since it exhibits a specific gas adsorption property and can introduce functional organic molecules, it is expected to be used in various fields in the future. In this material, since the clay layer is pillared with a polymer, the pores to be formed are a special one that has never been seen before. It is considered that the pores are independent of the adjacent pores by forming a pillar with a macromolecule grown only in one dimension such as a polymer. Solidification of the dye laser can be expected by dispersing and adsorbing laser dye molecules that lose their optical functionality when aggregated in the pores. Moreover, utilization as a carbon dioxide adsorbent can be expected by converting the ammonium group on the surface of the rod-shaped polysiloxane inserted between clay layers into an amino group.

ピラー化粘土の合成を表す図。The figure showing the synthesis | combination of pillared clay. ピラー化粘土の赤外吸収スペクトル。Infrared absorption spectrum of pillared clay. (a)ピラー化粘土、(b)ナトリウム型サポナイト、(c)ロッド状ポリ(3−アミノプロピル)シロキサン塩酸塩のX線回折プロファイル。X-ray diffraction profile of (a) pillared clay, (b) sodium saponite, (c) rod-like poly (3-aminopropyl) siloxane hydrochloride. ピラー化粘土、ナトリウム型サポナイト、ロッド状ポリ(3−アミノプロピル)シロキサン塩酸塩の窒素吸脱着等温線。Nitrogen adsorption / desorption isotherm of pillared clay, sodium-type saponite, rod-like poly (3-aminopropyl) siloxane hydrochloride.

Claims (2)

粘土層間にピラーを立て粘土層間に細孔を形成したピラー化粘土であって、前記ピラーがロッド状ポリシロキサンの陽イオンであり、
前記ロッド状ポリシロキサンの陽イオンが、次の(化学式1)で表される繰り返し単位を有するロッド状ポリ(3−アミノプロピル)シロキサン塩、ないしは次の(化学式2)で表される繰り返し単位を有するロッド状ポリ(3−(2−アミノエチルアミノ)プロピル)シロキサン塩から得られる陽イオンであることを特徴とするピラー化粘土。
(化学式1)
・NH (CH SiO 1.5 (式中、Z は、塩化物イオンなどのハロゲン元素陰イオン、硝酸イオンなど陰イオンを表す)
(化学式2)
(Z ・NH (CH NH (CH SiO 1.5 (式中、Z は、塩化物イオンなどのハロゲン元素陰イオン、硝酸イオンなど陰イオンを表す)
Pillarized clay with pillars between clay layers and pores formed between clay layers, wherein the pillars are cations of rod-shaped polysiloxane ,
The cation of the rod-shaped polysiloxane is a rod-shaped poly (3-aminopropyl) siloxane salt having a repeating unit represented by the following (Chemical Formula 1) or a repeating unit represented by the following (Chemical Formula 2). rod poly (3- (2-aminoethylamino) propyl) pillared clay, wherein the cation der Rukoto obtained siloxane salt having.
(Chemical formula 1)
Z .NH 3 + (CH 2 ) 3 SiO 1.5 (wherein Z represents a halogen element anion such as a chloride ion or an anion such as a nitrate ion)
(Chemical formula 2)
(Z ) 2 .NH 3 + (CH 2 ) 2 NH 2 + (CH 2 ) 3 SiO 1.5 (wherein Z represents a halogen element anion such as a chloride ion or an anion such as a nitrate ion) To express)
請求項1に記載のピラー化粘土の製造方法であって、繰り返し単位が、次の(化学式1)で表されるロッド状ポリ(3−アミノプロピル)シロキサン塩、ないしは繰り返し単位が、次の(化学式2)で表されるロッド状ポリ(3−(2−アミノエチルアミノ)プロピル)シロキサン塩を溶解した溶液を調整し、この溶液を、粘土鉱物(理論交換容量:50〜100ミリ等量/粘土鉱物100グラム)を分散させた懸濁液に混合し、粘土の陽イオンとロッド状ポリマーの陽イオンとをイオン交換反応させることを特徴とするピラー化粘土の製造方法
(化学式1)
・NH (CHSiO1.5(式中、Zは、塩化物イオンなどのハロゲン元素陰イオン、硝酸イオンなど陰イオンを表す)
(化学式2)
(Z・NH (CHNH (CHSiO1.5(式中、Zは、塩化物イオンなどのハロゲン元素陰イオン、硝酸イオンなど陰イオンを表す)
The method for producing pillared clay according to claim 1, wherein the repeating unit is a rod-shaped poly (3-aminopropyl) siloxane salt represented by the following (chemical formula 1) or the repeating unit is the following ( A solution in which the rod-shaped poly (3- (2-aminoethylamino) propyl) siloxane salt represented by the chemical formula 2) was dissolved was prepared, and this solution was added to a clay mineral (theoretical exchange capacity: 50 to 100 milliequivalent / A method for producing pillared clay , comprising mixing a clay mineral (100 g) in a dispersed suspension, and subjecting the cation of the clay and the cation of the rod-shaped polymer to an ion exchange reaction.
(Chemical formula 1)
Z .NH 3 + (CH 2 ) 3 SiO 1.5 (wherein Z represents a halogen element anion such as a chloride ion or an anion such as a nitrate ion)
(Chemical formula 2)
(Z ) 2 .NH 3 + (CH 2 ) 2 NH 2 + (CH 2 ) 3 SiO 1.5 (wherein Z represents a halogen element anion such as a chloride ion or an anion such as a nitrate ion) To express)
JP2004260491A 2004-09-08 2004-09-08 Pillarized clay composed of rod-like polysiloxane with ammonium cation on the surface and layered clay mineral, its production method and its use Expired - Fee Related JP4756233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260491A JP4756233B2 (en) 2004-09-08 2004-09-08 Pillarized clay composed of rod-like polysiloxane with ammonium cation on the surface and layered clay mineral, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260491A JP4756233B2 (en) 2004-09-08 2004-09-08 Pillarized clay composed of rod-like polysiloxane with ammonium cation on the surface and layered clay mineral, its production method and its use

Publications (3)

Publication Number Publication Date
JP2006076810A JP2006076810A (en) 2006-03-23
JP2006076810A5 JP2006076810A5 (en) 2007-10-25
JP4756233B2 true JP4756233B2 (en) 2011-08-24

Family

ID=36156582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260491A Expired - Fee Related JP4756233B2 (en) 2004-09-08 2004-09-08 Pillarized clay composed of rod-like polysiloxane with ammonium cation on the surface and layered clay mineral, its production method and its use

Country Status (1)

Country Link
JP (1) JP4756233B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023156701A (en) * 2022-04-13 2023-10-25 信越化学工業株式会社 Gelling agent, method for producing gelling agent and cosmetic preparation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767965B2 (en) * 1997-03-19 2006-04-19 株式会社カネカ Clay composite intercalation compound, thermoplastic composite composition comprising clay composite intercalation compound and thermoplastic resin, and production method thereof
JP3720164B2 (en) * 1997-05-01 2005-11-24 株式会社カネカ Swellable mica intercalation compound and thermoplastic resin composition containing the same

Also Published As

Publication number Publication date
JP2006076810A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
Cecilia et al. Synthesis, characterization, uses and applications of porous clays heterostructures: a review
KR101147669B1 (en) Zeolite materials and their analogue materials comprising regularly or randomly arranged mesopore , and producing method thereof
Dailey et al. Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica
JP5764124B2 (en) Zeolite nanosheets with multiple or single plate structure, regularly or irregularly arranged, having a skeleton thickness corresponding to the size of one single unit crystal lattice or the size of a single unit crystal lattice of 10 or less And similar substances
US4629712A (en) Delaminated clay materials
JPS60155525A (en) Clay composition
Han et al. Preparation of new silica sol-based pillared clays with high surface area and high thermal stability
Boukoussa et al. Assessment of the intrinsic interactions of nanocomposite polyaniline/SBA-15 with carbon dioxide: Correlation between the hydrophilic character and surface basicity
Ghosh et al. Morphologically tuned aluminum hydrous oxides and their calcined products
Rhouta et al. Surfactant-modifications of Na+–beidellite for the preparation of TiO2–Bd supported photocatalysts: II—Physico-chemical characterization and photocatalytic properties
Ruiz-Hitzky et al. Clay-organic interactions: Organoclay complexes and polymer-clay nanocomposites
US5834391A (en) Porous clay heterostructures prepared by gallery templated synthesis
JP3274867B2 (en) Method for preparing mesoporous crystalline material
Mochizuki et al. Design of silicate nanostructures by interlayer alkoxysilylation of layered silicates (magadiite and kenyaite) and subsequent hydrolysis of alkoxy groups
Kosuge et al. Mixed-oxide pillared silicates from H-ilerite by intercalation
Han et al. Modification of the interlayer pore structure of silica iron oxide sol pillared clay using organic templates
Park et al. Preparation of mesoporous silica-pillared H+-titanosilicates
JP4756233B2 (en) Pillarized clay composed of rod-like polysiloxane with ammonium cation on the surface and layered clay mineral, its production method and its use
Peng et al. Precursors of TAA-magadiite nanocomposites
Asakura et al. Ordered silylation of layered silicate RUB-51 with half-sodalite cages
Kaneko et al. Preparation of a clay pillared with rodlike cationic polysiloxane
KR100941930B1 (en) Highly ordered organic-inorganic hybrid mesoporous molecular sieves without acid, manufacturing method of the materials
Sayari et al. Nanoporous Materials IV: Proceedings of the 4th International Symposium on Nanoporous Materials, Niagara Falls, Ontario, Canada June 7-10, 2005
Kimura et al. Design of molecularly ordered framework of mesoporous silica with squared one-dimensional channels
Shimizu et al. Pillaring of high charge density synthetic micas (Na-4-mica and Na-3-mica) by intercalation of oxides nanoparticles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees