JP4755915B2 - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
JP4755915B2
JP4755915B2 JP2006044036A JP2006044036A JP4755915B2 JP 4755915 B2 JP4755915 B2 JP 4755915B2 JP 2006044036 A JP2006044036 A JP 2006044036A JP 2006044036 A JP2006044036 A JP 2006044036A JP 4755915 B2 JP4755915 B2 JP 4755915B2
Authority
JP
Japan
Prior art keywords
mosfet
reverse voltage
current
signal
voltage application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006044036A
Other languages
Japanese (ja)
Other versions
JP2007228668A (en
Inventor
通可 植杉
治信 温品
浩二 野田
圭一 石田
隆久 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006044036A priority Critical patent/JP4755915B2/en
Publication of JP2007228668A publication Critical patent/JP2007228668A/en
Application granted granted Critical
Publication of JP4755915B2 publication Critical patent/JP4755915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

この発明は、たとえばモータを駆動するインバータ装置に関する。   The present invention relates to an inverter device for driving a motor, for example.

誘導成分を含む負荷たとえばブラシレスDCモータを駆動するインバータ装置は、電圧の印加方向に沿って上流側および下流側となる2つのスイッチング素子の直列回路を複数備え、これら直列回路の上流側スイッチング素子と下流側スイッチング素子の相互接続点がブラシレスDCモータの各相巻線に接続される。各スイッチング素子は、還流ダイオードを有している。   An inverter device for driving a load including an inductive component, for example, a brushless DC motor, includes a plurality of series circuits of two switching elements on the upstream side and the downstream side in the voltage application direction. The interconnection point of the downstream switching element is connected to each phase winding of the brushless DC motor. Each switching element has a freewheeling diode.

スイッチング素子としては、最近、IGBTやMOSFETが多く採用されている。MOSFETを用いている場合、MOSFETのオン,オフ速度が速いため高周波スイッチングが可能というメリットがあり、また低電圧出力時のロスが小さいことからファンモータ等の出力の小さいモータを駆動する場合に多用される。   Recently, many IGBTs and MOSFETs have been adopted as switching elements. When a MOSFET is used, there is a merit that high-frequency switching is possible because the on / off speed of the MOSFET is fast, and it is frequently used when driving a motor with a small output such as a fan motor because the loss at low voltage output is small. Is done.

ただし、MOSFETでは、素子製造の過程において不可避的に同じ素子上に作られる還流ダイオード(寄生ダイオードともいう)の逆回復特性が悪いという問題がある。近年、オン時の抵抗が低くてスイッチング特性にすぐれたスーパージャンクションMOSFETが開発されているが、このスーパージャンクションMOSFETにおいては、素子上に形成される還流ダイオードの逆回復特性がますます悪いものとなっている。   However, the MOSFET has a problem in that reverse recovery characteristics of a freewheeling diode (also referred to as a parasitic diode) inevitably formed on the same element in the process of manufacturing the element are poor. In recent years, super junction MOSFETs have been developed that have low on-state resistance and excellent switching characteristics. However, in this super junction MOSFET, the reverse recovery characteristics of the freewheeling diode formed on the device become worse. ing.

還流ダイオードの逆回復特性が悪いと、次の不具合を生じる。すなわち、MOSFETがオフしたとき、誘導性負荷に蓄えられたエネルギによってMOSFETの還流ダイオードに順方向電流(還流電流ともいう)が流れるが、その状態で、同じ直列回路の他方のスイッチング素子がオンしてMOSFETに直流電圧が加わると、還流ダイオードに蓄えられた電荷による大きな逆回復電流が還流ダイオードに流れる。この逆回復電流は、大きな電力損失となる。また、この電力損失の多くは、MOSFETと対となる他方のスイッチング素子のオン時の発熱となり、これが大きくなると他方のスイッチング素子がその熱によって破壊するという問題がある。   If the reverse recovery characteristic of the freewheeling diode is poor, the following problems occur. That is, when the MOSFET is turned off, the forward current (also called the reflux current) flows to the MOSFET's freewheeling diode due to the energy stored in the inductive load. In this state, the other switching element of the same series circuit is turned on. When a DC voltage is applied to the MOSFET, a large reverse recovery current due to the charge stored in the freewheeling diode flows through the freewheeling diode. This reverse recovery current results in a large power loss. In addition, most of the power loss is generated when the other switching element paired with the MOSFET is turned on, and when this is increased, the other switching element is destroyed by the heat.

このようなことから、たとえば空気調和機のコンプレッサモータを駆動するような大きな電流が流れるインバータにMOSFETを採用することは、非常に難しい。   For this reason, it is very difficult to employ a MOSFET for an inverter through which a large current flows, for example, to drive a compressor motor of an air conditioner.

そこで、従来、MOSFETがオフした後の上記他方のスイッチング素子のオンに先立って同MOSFETに逆電圧を印加する逆電圧印加回路を設け、この逆電圧の印加によって他方のスイッチング素子がオンする前から還流ダイオードに予め逆回復電流を流し、これにより還流ダイオードに蓄えられている電荷を予め減少させ、他方のスイッチング素子のオンに際して大きな逆回復電流が流れないようにするものがある(例えば、特許文献1)。
特開平10−327585号公報
Therefore, conventionally, a reverse voltage application circuit for applying a reverse voltage to the MOSFET is turned on prior to turning on the other switching element after the MOSFET is turned off, and before the other switching element is turned on by the application of the reverse voltage. In some cases, a reverse recovery current is supplied to the freewheeling diode in advance, thereby reducing the charge stored in the freewheeling diode in advance, so that a large reverse recovery current does not flow when the other switching element is turned on (for example, Patent Documents). 1).
Japanese Patent Laid-Open No. 10-327585

逆電圧印加回路からMOSFETへの逆電圧の印加タイミングは、MOSFETがオフしてから他方のスイッチング素子がオンするまでのいわゆるデッドタイムに設定されている。このデッドタイムは、MOSFETおよび他方のスイッチング素子からなる直列回路の短絡を防ぐためのもので、効率面からは、できるだけ短く設定することが望ましい。   The application timing of the reverse voltage from the reverse voltage application circuit to the MOSFET is set to a so-called dead time from when the MOSFET is turned off until the other switching element is turned on. This dead time is for preventing a short circuit of the series circuit composed of the MOSFET and the other switching element, and is desirably set as short as possible from the viewpoint of efficiency.

しかしながら、デッドタイムが短いと、還流ダイオードに蓄えられている電荷を他方のスイッチング素子がオンするまでに十分に減少させることが難しくなる。結果的に、他方のスイッチング素子のオンに際して流れる逆回復電流を十分に抑制できないという不都合を生じる。   However, if the dead time is short, it is difficult to sufficiently reduce the charge stored in the freewheeling diode until the other switching element is turned on. As a result, there arises a disadvantage that the reverse recovery current that flows when the other switching element is turned on cannot be sufficiently suppressed.

この発明は、上記の事情を考慮したもので、還流ダイオードに蓄えられている電荷を十分に減少させることができ、他方のスイッチング素子のオンに際して流れる逆回復電流を十分に抑制することが可能なインバータ装置を提供することを目的とする。   In consideration of the above circumstances, the present invention can sufficiently reduce the charge stored in the freewheeling diode, and can sufficiently suppress the reverse recovery current that flows when the other switching element is turned on. An object is to provide an inverter device.

請求項1に係る発明のインバータ装置は、還流ダイオードを有するMOSFETを少なくとも一方に用いた2つのスイッチング素子の直列回路を複数備え、これら直列回路の各スイッチング素子の相互接続点が負荷に接続されるスイッチング回路と、上記各スイッチング素子のオン,オフ動作を制御する第1制御手段と、上記各MOSFETの還流ダイオードにその各MOSFETの駆動電圧より低い逆電圧を印加するための逆電圧印加回路と、上記MOSFETがオン中に前記逆電圧印加回路の動作を開始させ、その動作を上記他方のスイッチング素子がオンした後に終了させる第2制御手段と、を備える。   The inverter device of the invention according to claim 1 includes a plurality of series circuits of two switching elements using at least one of MOSFETs having a freewheeling diode, and an interconnection point of each switching element of these series circuits is connected to a load. A switching circuit; first control means for controlling on / off operation of each switching element; and a reverse voltage application circuit for applying a reverse voltage lower than the driving voltage of each MOSFET to the free wheel diode of each MOSFET; Second control means for starting the operation of the reverse voltage application circuit while the MOSFET is on and ending the operation after the other switching element is turned on.

この発明のインバータ装置によれば、MOSFETがまだオンしている間に逆電圧印加回路が動作を開始する。これにより、還流ダイオードに蓄えられている電荷を十分に減少させることができ、他方のスイッチング素子のオンに際して流れる逆回復電流を十分に抑制することが可能となる。   According to the inverter device of the present invention, the reverse voltage application circuit starts operating while the MOSFET is still on. Thereby, the electric charge stored in the freewheeling diode can be sufficiently reduced, and the reverse recovery current that flows when the other switching element is turned on can be sufficiently suppressed.

以下、この発明の一実施形態について図面を参照して説明する。
図1において、Mは空気調和機のコンプレッサモータとして使用されるブラシレスDCモータ(負荷)で、星形結線された3つの相巻線Lu,Lv,Lwを有するステータ、および永久磁石を有するロータにより構成されている。相巻線Lu,Lv,Lwに電流が流れることにより生じる磁界と永久磁石が作る磁界との相互作用により、ロータが回転する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, M is a brushless DC motor (load) used as a compressor motor of an air conditioner. It is configured. The rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field generated by the permanent magnet.

このブラシレスDCモータMが動力源として圧縮機20に収容されている。冷房時、この圧縮機20から吐出される冷媒が実線矢印で示すように四方弁21を介して室外熱交換器22に流れ、その室外熱交換器22を経た冷媒が膨張弁23を介して室内熱交換器24に流れる。そして、室内熱交換器24を経た冷媒が、上記四方弁21を介して圧縮機20に吸込まれる。これにより、室外熱交換器22が凝縮器、室内熱交換器24が蒸発器として機能する。暖房時は、四方弁21が切換わることにより、破線矢印で示す方向に冷媒が流れ、室内熱交換器24が凝縮器、室外熱交換器22が蒸発器として機能する。   The brushless DC motor M is accommodated in the compressor 20 as a power source. During cooling, the refrigerant discharged from the compressor 20 flows to the outdoor heat exchanger 22 via the four-way valve 21 as indicated by the solid line arrow, and the refrigerant passing through the outdoor heat exchanger 22 passes through the expansion valve 23 to the room. It flows to the heat exchanger 24. Then, the refrigerant that has passed through the indoor heat exchanger 24 is sucked into the compressor 20 through the four-way valve 21. Thereby, the outdoor heat exchanger 22 functions as a condenser, and the indoor heat exchanger 24 functions as an evaporator. At the time of heating, the four-way valve 21 is switched, whereby the refrigerant flows in the direction indicated by the broken-line arrow, and the indoor heat exchanger 24 functions as a condenser and the outdoor heat exchanger 22 functions as an evaporator.

上記ブラシレスDCモータMに、本発明のインバータ装置が接続されている。このインバータ装置は、商用交流電源を整流した直流電源30の出力(例えば直流280V)を受けて上記相巻線Lu,Lv,Lwに対する通電およびその通電切換を行うスイッチング回路1、このスイッチング回路1を駆動制御する制御部10により、構成されている。   The brushless DC motor M is connected to the inverter device of the present invention. The inverter device includes a switching circuit 1 that receives an output (for example, DC 280 V) of a DC power source 30 rectified from a commercial AC power source and performs energization to the phase windings Lu, Lv, and Lw and switching of the energization. It is comprised by the control part 10 which controls drive.

スイッチング回路1は、直流電圧の印加方向に沿って上流側および下流側となるスイッチング素子たとえば低損失パワーMOSFET(スーパージャンクションMOSFET等)の直列回路をU,V,Wの三相分有するもので、U相の上流側にMOSFET2u、U相の下流側にMOSFET3u、V相の上流側にMOSFET2v、V相の下流側にMOSFET3v、W相の上流側にMOSFET2w、W相の下流側にMOSFET3wを備えている。そして、MOSFET2u,2v,2wに対し、還流ダイオードDu+,Dv+,Dw+が、MOSFET3u,3v,3wに対し、還流ダイオードDu−,Dv−,Dw−がそれぞれ逆並列接続されている。これら還流ダイオードは、寄生ダイオードとしてそれぞれ対応するMOSFET(素子本体)に内蔵される。   The switching circuit 1 has a series circuit of U, V, and W for three phases of switching elements, for example, low-loss power MOSFETs (superjunction MOSFETs, etc.) on the upstream side and the downstream side along the DC voltage application direction. MOSFET 2u is provided upstream of the U phase, MOSFET 3u is provided downstream of the U phase, MOSFET 2v is provided upstream of the V phase, MOSFET 3v is provided downstream of the V phase, MOSFET 2w is provided upstream of the W phase, and MOSFET 3w is provided downstream of the W phase. Yes. The free-wheeling diodes Du +, Dv +, and Dw + are connected in reverse parallel to the MOSFETs 2u, 2v, and 2w, and the free-wheeling diodes Du−, Dv−, and Dw− are connected in reverse parallel to the MOSFETs 3u, 3v, and 3w, respectively. These free-wheeling diodes are built in corresponding MOSFETs (element bodies) as parasitic diodes.

MOSFET2uとMOSFET3uの相互接続点、MOSFET2vとMOSFET3vの相互接続点、MOSFET2wとMOSFET3wの相互接続点に、上記相巻線Lu,Lv,Lwのそれぞれ非結線端が接続されている。そして、MOSFET2u〜2wおよび3u〜3wの駆動電圧は10V〜15V程度に設定されている。   The unconnected ends of the phase windings Lu, Lv, and Lw are respectively connected to an interconnection point between the MOSFETs 2u and 3u, an interconnection point between the MOSFETs 2v and 3v, and an interconnection point between the MOSFETs 2w and 3w. And the drive voltage of MOSFET2u-2w and 3u-3w is set to about 10V-15V.

また、スイッチング回路1は、誘導性負荷である相巻線Lu,Lv,Lwに蓄えられたエネルギによって還流ダイオードDu+〜Dw+に順方向電流(還流電流)が流れた場合に、下流側のMOSFET3u〜3wのオンに伴って還流ダイオードDu+〜Dw+に流れる逆回復電流を抑制するため、MOSFET3u〜3wのそれぞれオンに先立ってMOSFET2u〜2wの還流ダイオードDu+〜Dw+に逆電圧を印加する逆電圧印加回路4u,4v,4wを備えている。   In addition, the switching circuit 1 is configured such that when forward current (return current) flows through the freewheeling diodes Du + to Dw + due to the energy stored in the phase windings Lu, Lv, and Lw that are inductive loads, In order to suppress reverse recovery current flowing through the freewheeling diodes Du + to Dw + when 3w is turned on, a reverse voltage application circuit 4u that applies a reverse voltage to the freewheeling diodes Du + to Dw + of the MOSFETs 2u to 2w prior to turning on the MOSFETs 3u to 3w, respectively. , 4v, 4w.

同様に、下流側のMOSFET3u,3v,3wにもそれぞれ逆電圧印加回路5u,5v,5wを備えている。   Similarly, reverse-side voltage application circuits 5u, 5v, and 5w are provided in the downstream side MOSFETs 3u, 3v, and 3w, respectively.

逆電圧印加回路4uは、直流電源40の電圧(例えば2.5V)を抵抗41を介して逆電圧印加用コンデンサ42に印加し、その逆電圧印加用コンデンサ42の電圧を逆電圧印加用MOSFET43のドレイン・ソース間、およびダイオード44を介して、MOSFET2uに逆電圧として印加する。また、逆電圧印加回路4uは、逆電圧印加用MOSFET43の駆動用として、パルス生成回路45およびゲート駆動回路46を有している。パルス生成回路45は、制御部10からの指令に応じて逆電圧印加用のパルス信号を生成する。ゲート駆動回路46は、パルス生成回路45で生成されたパルス信号に基づき、逆電圧印加用MOSFET43をオンするための1ショットパルス信号を出力する。この出力が逆電圧印加用MOSFET43のゲートに供給される。   The reverse voltage application circuit 4 u applies a voltage (for example, 2.5 V) of the DC power supply 40 to the reverse voltage application capacitor 42 via the resistor 41, and uses the voltage of the reverse voltage application capacitor 42 of the reverse voltage application MOSFET 43. The reverse voltage is applied to the MOSFET 2u between the drain and source and via the diode 44. Further, the reverse voltage application circuit 4 u has a pulse generation circuit 45 and a gate drive circuit 46 for driving the reverse voltage application MOSFET 43. The pulse generation circuit 45 generates a pulse signal for applying a reverse voltage in response to a command from the control unit 10. The gate drive circuit 46 outputs a one-shot pulse signal for turning on the reverse voltage application MOSFET 43 based on the pulse signal generated by the pulse generation circuit 45. This output is supplied to the gate of the reverse voltage application MOSFET 43.

とくに、逆電圧印加回路4uの出力電圧、つまりMOSFET2uの還流ダイオードDu+に印加される逆電圧は、MOSFET2uの定格電流における導通チャンネル抵抗による電圧低下よりも低い電圧(例えば1V以下)となるように直流電源40の電圧が予め設定される。   In particular, the output voltage of the reverse voltage application circuit 4u, that is, the reverse voltage applied to the freewheeling diode Du + of the MOSFET 2u is a direct current so that the voltage is lower than the voltage drop due to the conduction channel resistance at the rated current of the MOSFET 2u (for example, 1 V or less). The voltage of the power supply 40 is preset.

他の逆電圧印加回路4v,4wおよび逆電圧印加回路5uも、逆電圧印加回路4uと同じ構成である。よって、その説明は省略する。逆電圧印加回路5v,5wについては、逆電圧印加回路5uの直流電源40から直流電圧を取込んでいる点がほかと異なるだけで、残りの構成は逆電圧印加回路4uと同じ構成である。   The other reverse voltage application circuits 4v and 4w and the reverse voltage application circuit 5u have the same configuration as the reverse voltage application circuit 4u. Therefore, the description is omitted. The reverse voltage application circuits 5v and 5w are the same as the reverse voltage application circuit 4u, except that the reverse voltage application circuits 5v and 5w are different from the other in that a direct current voltage is taken from the direct current power source 40 of the reverse voltage application circuit 5u.

一方、各直列回路におけるMOSFET3u,3v,3wのそれぞれ下流側に、電流検出用の抵抗11u,11v,11wが挿接されている。MOSFET3u〜3wを通して流れる電流、すなわちモータ巻線Lu〜Lwに流れる電流、に応じたレベルの電圧が、これら抵抗11u〜11wに生じ、この電圧が、制御部10に供給される。   On the other hand, resistors 11u, 11v, and 11w for current detection are inserted and connected to the downstream sides of the MOSFETs 3u, 3v, and 3w in each series circuit. A voltage of a level corresponding to the current flowing through the MOSFETs 3u to 3w, that is, the current flowing to the motor windings Lu to Lw is generated in these resistors 11u to 11w, and this voltage is supplied to the control unit 10.

制御部10は、抵抗11u〜11wに生じる電圧からブラシレスDCモータMの各相巻線に流れる電流を検出し、検出した電流からブラシレスDCモータMのロータの回転を把握し、その回転に合わせてスイッチング回路1の各MOSFETおよび各逆電圧印加回路を駆動するもので、主要な機能として、各MOSFETのオン,オフを制御して、スイッチング回路1における各MOSFETの直列回路のうち少なくとも1つの直列回路の上流側のMOSFETおよび別の少なくとも1つの直列回路の下流側のMOSFETによる各相巻線への通電を順次に切換える第1制御手段と、MOSFETがオフした後の同MOSFETと同じ直列回路の他方のスイッチング素子のオンに先立ち、そのMOSFETがまだオンしている間に逆電圧印加回路の動作を開始させ、その動作を他方のスイッチング素子がオンした後に終了させる第2制御手段とを有している。この制御部10の要部を図2に示す。   The control unit 10 detects the current flowing through each phase winding of the brushless DC motor M from the voltages generated in the resistors 11u to 11w, grasps the rotation of the rotor of the brushless DC motor M from the detected current, and adjusts to the rotation. Drives each MOSFET and each reverse voltage application circuit of the switching circuit 1 and controls at least one of the MOSFETs in the switching circuit 1 by controlling on / off of each MOSFET as a main function. First control means for sequentially switching energization of each phase winding by the MOSFET on the upstream side and the downstream MOSFET of the other at least one series circuit, and the other of the same series circuit as the MOSFET after the MOSFET is turned off Prior to turning on the switching element, reverse voltage is applied while the MOSFET is still on. To initiate the operation of the road, the operations other switching element and a second control means to terminate after one. The principal part of this control part 10 is shown in FIG.

図2において、50は電流検出部で、上記抵抗11u〜11wに生じる電圧から、ブラシレスDCモータMの各相巻線に流れる電流を検出する。この検出結果が回転数算出部51に供給されるとともに、基準信号生成部54に供給される。回転数算出部51は、電流検出部50の検出結果からブラシレスDCモータMの回転数を算出する。この算出結果が速度差算出部53に供給される。速度差算出部53は、目標回転数指令部52から指令される目標回転数と回転数算出部51で算出される実際の回転数との差を求める。   In FIG. 2, reference numeral 50 denotes a current detection unit that detects a current flowing through each phase winding of the brushless DC motor M from the voltage generated in the resistors 11 u to 11 w. The detection result is supplied to the rotation speed calculation unit 51 and is also supplied to the reference signal generation unit 54. The rotation speed calculation unit 51 calculates the rotation speed of the brushless DC motor M from the detection result of the current detection unit 50. This calculation result is supplied to the speed difference calculation unit 53. The speed difference calculation unit 53 obtains a difference between the target rotation number commanded from the target rotation number command unit 52 and the actual rotation number calculated by the rotation number calculation unit 51.

基準信号生成部54は、電流検出部50の検出結果から得られたブラシレスDCモータMのロータの回転数に応じた周波数を有し、かつ上記速度差算出部53の算出結果に応じて電圧レベルを修正し、かつ互いに位相が120度異なる三相正弦波信号Eu,Ev,Ewを生成し、それを基準信号Eu,Ev,Ewとして出力する。基準信号EuはPWM基本信号Vu生成部60、基準信号EvはPWM基本信号Vv生成部70、基準信号EwはPWM基本信号Vw生成部80に、それぞれ供給される。   The reference signal generation unit 54 has a frequency corresponding to the rotation speed of the rotor of the brushless DC motor M obtained from the detection result of the current detection unit 50, and a voltage level according to the calculation result of the speed difference calculation unit 53. And three-phase sine wave signals Eu, Ev, Ew whose phases are different from each other by 120 degrees are generated and output as reference signals Eu, Ev, Ew. The reference signal Eu is supplied to the PWM basic signal Vu generator 60, the reference signal Ev is supplied to the PWM basic signal Vv generator 70, and the reference signal Ew is supplied to the PWM basic signal Vw generator 80, respectively.

55は基準クロック信号発生部で、各部の動作に必要な基準クロック信号を発する。56は三角波信号生成部で、上記基準クロック信号に基づき、予め定められた周波数および電圧レベルの三角波信号(キャリア信号ともいう)Eoを生成する。この三角波信号Eoが上記PWM基本信号Vu生成部60、PWM基本信号Vv生成部70、PWM基本信号Vw生成部80に供給される。PWM基本信号Vu生成部60、PWM基本信号Vv生成部70、PWM基本信号Vw生成部80は、基準信号生成部54から出力される基準信号Eu,Ev,Ewと三角波信号生成部55から出力される三角波信号Eoとの電圧比較により、各MOSFETに対するスイッチング用のPWM基本信号Vu,Vv,Vwを生成する。   Reference numeral 55 is a reference clock signal generator for generating a reference clock signal necessary for the operation of each part. A triangular wave signal generator 56 generates a triangular wave signal (also called a carrier signal) Eo having a predetermined frequency and voltage level based on the reference clock signal. The triangular wave signal Eo is supplied to the PWM basic signal Vu generator 60, the PWM basic signal Vv generator 70, and the PWM basic signal Vw generator 80. The PWM basic signal Vu generator 60, the PWM basic signal Vv generator 70, and the PWM basic signal Vw generator 80 are output from the reference signals Eu, Ev, Ew and the triangular wave signal generator 55 output from the reference signal generator 54. The PWM basic signals Vu, Vv, Vw for switching for each MOSFET are generated by voltage comparison with the triangular wave signal Eo.

生成されたPWM基本信号Vuは、上素子駆動部61、下素子駆動部62、印加タイミング決定部63,64に供給される。PWM基本信号Vvは、上素子駆動部71、下素子駆動部72、印加タイミング決定部73,74に供給される。PWM基本信号Vwは、上素子駆動部81、下素子駆動部82、印加タイミング決定部83,84に供給される。また、印加タイミング決定部63,64,73,74,83,84に対し、上記電流検出部50の検出結果が供給される。   The generated PWM basic signal Vu is supplied to the upper element driving unit 61, the lower element driving unit 62, and the application timing determining units 63 and 64. The PWM basic signal Vv is supplied to the upper element driving unit 71, the lower element driving unit 72, and the application timing determining units 73 and 74. The PWM basic signal Vw is supplied to the upper element driving unit 81, the lower element driving unit 82, and the application timing determining units 83 and 84. In addition, the detection result of the current detection unit 50 is supplied to the application timing determination units 63, 64, 73, 74, 83, and 84.

PWM基本信号Vuおよび上素子駆動部61、下素子駆動部62、印加タイミング決定部63,64の出力信号の波形を図3に示している。   FIG. 3 shows the waveforms of the PWM basic signal Vu and the output signals of the upper element driving unit 61, the lower element driving unit 62, and the application timing determining units 63 and 64.

上素子駆動部61は、PWM基本信号Vuおよび上記基準クロック信号に基づき、PWM基本信号Vuの立下り(三角波信号Eoの最低レベル点から所定時間T0後)から一定時間(デッドタイム)td遅れて立下がり、かつPWM基本信号Vuの立上がり(PWM基本信号Vuの立下りから所定時間T1後)に同期して立上がる波形の信号を、MOSFET2uに対する駆動信号Aとして出力する。下素子駆動部62は、PWM基本信号Vuおよび上記基準クロック信号に応じた所定のタイミングに基づき、PWM基本信号Vuの立下り(三角波信号Eoの最低レベル点から所定時間T0後)に同期して立上がり、かつPWM基本信号Vuの立上がり(PWM基本信号Vuの立下りから所定時間T1後)から一定時間(デッドタイム)td遅れて立下がる波形の信号を、MOSFET3uに対する駆動信号Bとして出力する。   Based on the PWM basic signal Vu and the reference clock signal, the upper element driving unit 61 is delayed by a predetermined time (dead time) td from the falling edge of the PWM basic signal Vu (after a predetermined time T0 from the lowest level point of the triangular wave signal Eo). A signal having a waveform that falls and rises in synchronization with the rise of the PWM basic signal Vu (after a predetermined time T1 from the fall of the PWM basic signal Vu) is output as a drive signal A for the MOSFET 2u. The lower element driving unit 62 is synchronized with the falling edge of the PWM basic signal Vu (after a predetermined time T0 from the lowest level point of the triangular wave signal Eo) based on the PWM basic signal Vu and a predetermined timing corresponding to the reference clock signal. A signal having a waveform that rises and falls after a predetermined time (dead time) td from the rise of the PWM basic signal Vu (after a predetermined time T1 from the fall of the PWM basic signal Vu) is output as a drive signal B for the MOSFET 3u.

印加タイミング決定部63は、PWM基本信号Vu、上記基準クロック信号、および電流検出部50の検出結果の出力に基づき、PWM基本信号Vuの立上り前(三角波信号Eoの最低レベル点から所定時間“T0+T1−ta”後)に立下がり、かつPWM基本信号Vuの立上り後(三角波信号Eoの最低レベル点から所定時間“T0+T1+td+tb”後)に立上がる波形の信号を、逆電圧印加回路4uに対する上側動作信号Cとして出力する。   Based on the PWM basic signal Vu, the reference clock signal, and the output of the detection result of the current detection unit 50, the application timing determination unit 63 performs a predetermined time “T0 + T1 from the lowest level point of the triangular wave signal Eo before the PWM basic signal Vu rises. A signal having a waveform that falls after “ta” and rises after the rise of the PWM basic signal Vu (after a predetermined time “T0 + T1 + td + tb” from the lowest level point of the triangular wave signal Eo) is an upper operation signal for the reverse voltage application circuit 4u. Output as C.

印加タイミング決定部64は、PWM基本信号Vu、上記基準クロック信号、および電流検出部50の検出結果の出力に基づき、PWM基本信号Vuの立下り前(三角波信号Eoの最低レベル点から所定時間“T0−ta”後)に立下がり、かつPWM基本信号Vuの立下り後(三角波信号Eoの最低レベル点から所定時間“T0+td+tb”後)に立上がる波形の信号を、逆電圧印加回路5uに対する下側動作信号Dとして出力する。   Based on the output of the PWM basic signal Vu, the reference clock signal, and the detection result of the current detection unit 50, the application timing determination unit 64 (before the falling of the PWM basic signal Vu (a predetermined time from the lowest level point of the triangular wave signal Eo) A signal having a waveform that falls after (T0-ta ") and rises after the fall of the PWM basic signal Vu (after the lowest level point of the triangular wave signal Eo for a predetermined time" T0 + td + tb ") is applied to the reverse voltage application circuit 5u. Output as side operation signal D.

なお、図3は、動作理解のための模式図であり、実際にはデジタル演算処理にてすべての信号発生タイミングが決定される。すなわち、PWM基本信号生成部60は時間T0の開始タイミングで三角波信号生成部56の生成信号と基準信号生成部54の基準信号との比較を演算処理し、時間T0と時間T1を決定し、上素子駆動部61、下素子駆動部62、印加タイミング決定部63,64に出力する。この時間データを受け取った上素子駆動部61、下素子駆動部62、印加タイミング決定部63,64は、この時間データに基づきそれぞれ上記した各種タイミングを演算し、基準クロック信号発生部55の基準クロック信号をカウントして、演算したタイミングに合わせて信号を変化させる。例えば、下素子駆動部62では、T0のスタートタイミング、すなわち三角波信号Eoの最低レベル点からT0時間後に立上がり、所定時間“T1+td”後に立下がる波形の信号を、MOSFET3uに対する駆動信号Bとして出力する。   FIG. 3 is a schematic diagram for understanding the operation. In practice, all signal generation timings are determined by digital arithmetic processing. That is, the PWM basic signal generation unit 60 calculates the comparison between the generation signal of the triangular wave signal generation unit 56 and the reference signal of the reference signal generation unit 54 at the start timing of time T0, determines time T0 and time T1, The data is output to the element driving unit 61, the lower element driving unit 62, and the application timing determining units 63 and 64. The upper element driving unit 61, the lower element driving unit 62, and the application timing determining units 63 and 64 that have received this time data calculate the above-described various timings based on the time data, and the reference clock signal generating unit 55 receives the reference clock. The signal is counted, and the signal is changed according to the calculated timing. For example, the lower element drive unit 62 outputs a signal having a waveform that rises after T0 time from the start timing of T0, that is, the lowest level point of the triangular wave signal Eo, and falls after a predetermined time “T1 + td” as the drive signal B for the MOSFET 3u.

なお、図3は低レベル駆動(Low Active)の信号波形を示しており、上素子駆動信号A、下素子駆動信号Bがそれぞれ低レベルのときにMOSFETがオンし、高レベルのときにMOSFETがオフする。同様に、上側動作信号C、下側動作信号Dがそれぞれ低レベルのときに逆電圧印加用MOSFETがオンし、高レベルのときに逆電圧印加用MOSFETがオフする。   FIG. 3 shows a signal waveform of low level drive (Low Active). The MOSFET is turned on when the upper element drive signal A and the lower element drive signal B are low levels, and the MOSFET is turned on when the level is high. Turn off. Similarly, the reverse voltage application MOSFET is turned on when the upper operation signal C and the lower operation signal D are each at a low level, and the reverse voltage application MOSFET is turned off when it is at a high level.

また、上側動作信号Cおよび下側動作信号Dの立下がりタイミングを決定する所定時間taは、電流検出部50で検出される電流の大きさに応じて、その電流が大きいほど長くなるように(逆電圧印加回路の動作開始のタイミングが早くなるように)印加タイミング決定部63,64にて設定される。   Further, the predetermined time ta for determining the falling timing of the upper operation signal C and the lower operation signal D becomes longer as the current increases in accordance with the magnitude of the current detected by the current detector 50 ( The application timing determining units 63 and 64 set the operation so that the operation start timing of the reverse voltage application circuit is advanced.

PWM基本信号Vvが供給される上素子駆動部71、下素子駆動部72、印加タイミング決定部73,74、およびPWM基本信号Vwが供給される上素子駆動部81、下素子駆動部82、印加タイミング決定部83,84も、同じ機能を有する。   Upper element driving unit 71, lower element driving unit 72, application timing determining units 73 and 74 to which PWM basic signal Vv is supplied, upper element driving unit 81, lower element driving unit 82 to which PWM basic signal Vw is supplied, application The timing determination units 83 and 84 also have the same function.

つぎに、作用について説明する。
上述のタイミングで上流側のMOSFET2u,2v,2wをそれぞれオン,オフするための上素子駆動信号A、および下流側のMOSFET3u,3v,3wをオン,オフするための下素子駆動信号Bが作成される。
Next, the operation will be described.
The upper element drive signal A for turning on and off the upstream side MOSFETs 2u, 2v, and 2w and the lower element drive signal B for turning on and off the downstream side MOSFETs 3u, 3v, and 3w are created at the timing described above. The

この上素子駆動信号Aおよび下素子駆動信号Bにより、スイッチング回路1における各直列回路のうち、少なくとも1つの直列回路の上流側MOSFETがオンして別の少なくとも1つの直列回路の下流側MOSFETがオンする複数相通電が、順次に切換えられる。この複数相通電の切換えにより、3つの相間電圧が生じ、その各相間電圧がブラシレスDCモータMの相巻線Lu,Lv,Lwに印加される。これにより、Lu,Lv,Lwに正弦波状の電流が流れ、ブラシレスDCモータMが動作する。   With the upper element drive signal A and the lower element drive signal B, among the series circuits in the switching circuit 1, the upstream MOSFET of at least one series circuit is turned on and the downstream MOSFET of another at least one series circuit is turned on. The multi-phase energization is sequentially switched. By switching the multiphase energization, three interphase voltages are generated, and the interphase voltages are applied to the phase windings Lu, Lv, Lw of the brushless DC motor M. Thereby, a sinusoidal current flows through Lu, Lv, and Lw, and the brushless DC motor M operates.

ところで、いずれかの相巻線に蓄えられたエネルギに基づく電流が下流側のMOSFET3uの還流ダイオードDu−を順方向に流れたとする。この順方向電流いわゆる還流電流が流れている場合、上流側のMOSFET2uのオンに所定時間“Ta+Tb”だけ先立ち、下流側の逆電圧印加回路5uの逆電圧印加用MOSFET43がオンし、逆電圧印加用コンデンサ42に蓄えられている電圧が下流側のMOSFET3uの還流ダイオードDu−に逆電圧として印加される。この逆電圧の印加は、下流側のMOSFET3uがまだオンしている最中に始まり、そのMOSFET3uがオフするタイミングとデッドタイムの一定時間tdを含み、さらに上流側のMOSFET2uがオンした後の一定時間tb後に終了する。すなわち、逆電圧印加回路5uのオンとMOSFET3uのオフとはTa時間だけ重なることになる。   By the way, it is assumed that a current based on energy stored in one of the phase windings flows in the forward direction through the free-wheeling diode Du− of the MOSFET 3u on the downstream side. When this forward current so-called reflux current flows, the reverse voltage application MOSFET 43 of the reverse voltage application circuit 5u on the downstream side is turned on for a predetermined time “Ta + Tb” before the upstream MOSFET 2u is turned on, and the reverse voltage application The voltage stored in the capacitor 42 is applied as a reverse voltage to the freewheeling diode Du− of the downstream MOSFET 3u. The application of the reverse voltage starts while the downstream side MOSFET 3u is still on, and includes the timing at which the MOSFET 3u is turned off and the constant time td of the dead time, and further, the constant time after the upstream side MOSFET 2u is turned on. End after tb. That is, the reverse voltage application circuit 5u is turned on and the MOSFET 3u is turned off for the Ta time.

還流電流が流れている状態のMOSFET3uの還流ダイオードDu−に逆電圧印加回路5uから逆電圧が印加されることにより、MOSFET3uの還流ダイオードDu−に逆回復電流が流れる。この場合、MOSFET3uの還流ダイオードDu−に印加される逆電圧は逆電圧印加回路5u内の直流電源40に基づく電圧であり、MOSFET3uの定格電流における導通チャンネル抵抗による電圧低下よりも低い電圧であることから、MOSFET3uの還流ダイオードDu−に逆回復電流が流れても、その逆回復電流の値はきわめて小さい。   When a reverse voltage is applied from the reverse voltage application circuit 5u to the freewheeling diode Du− of the MOSFET 3u in a state where the freewheeling current is flowing, a reverse recovery current flows to the freewheeling diode Du− of the MOSFET 3u. In this case, the reverse voltage applied to the free-wheeling diode Du− of the MOSFET 3u is a voltage based on the DC power supply 40 in the reverse voltage application circuit 5u, and is a voltage lower than the voltage drop due to the conduction channel resistance at the rated current of the MOSFET 3u. Thus, even if a reverse recovery current flows through the freewheeling diode Du− of the MOSFET 3u, the value of the reverse recovery current is extremely small.

図4に示すように、MOSFET3uの還流ダイオードDu−に加わる逆電圧をVd、MOSFET3uの素子本体に流れる電流をId、MOSFET3uの還流ダイオードDu−に流れる電流をId1、逆電圧印加回路5uにおける逆電圧印加用MOSFET43およびダイオード44を通して流れる電流をImとして、かつ逆電圧Vdの印加開始タイミングの決定要素である所定時間taを例えば8μsecとした場合に、Vd,Id,Id1,Imがどのように変化するかをシミュレーションしたのが図5である。なお、この際、還流電流として電流Iuが流れているものとする。   As shown in FIG. 4, the reverse voltage applied to the free-wheeling diode Du− of the MOSFET 3u is Vd, the current flowing through the element body of the MOSFET 3u is Id, the current flowing through the free-wheeling diode Du− of the MOSFET 3u is Id1, and the reverse voltage in the reverse voltage applying circuit 5u. How Vd, Id, Id1, and Im change when the current flowing through the application MOSFET 43 and the diode 44 is Im and the predetermined time ta, which is a determinant of the application start timing of the reverse voltage Vd, is 8 μsec, for example. This is simulated in FIG. At this time, it is assumed that a current Iu flows as a reflux current.

このシミュレーションでは、下流側のMOSFET3uがオフした後の上流側のMOSFET2uのオンに先立ち、そのMOSFET3uがまだオンしている間に逆電圧印加回路5uの動作が始まり、その動作がMOSFET2uのオン後に終了している。   In this simulation, prior to turning on the upstream MOSFET 2u after the downstream MOSFET 3u is turned off, the operation of the reverse voltage application circuit 5u starts while the MOSFET 3u is still turned on, and the operation ends after the MOSFET 2u is turned on. is doing.

MOSFET3uがまだオンしている間に、逆電圧印加回路5uが動作して還流ダイオードDu−に逆電圧Vdが印加され、これにより逆回復電流が流れ始める。逆回復動作中は、逆回復電流による電圧降下によりVdは逆回復動作前(逆電圧印加回路5uの動作前)とほぼ同電位に保たれ、逆回復終了により還流ダイオードDu−が完全にオフして逆電圧印加回路5uから供給される電流Imは還流電流Iuのみまたは還流電流Iu+MOSFET3uの電流Id(順方向)となり、Vdはこの時点で還流ダイオードDu−に対して逆電圧、すなわちMOSFET3uの順方向電圧となる。したがって、MOSFET3uの還流ダイオードDu−に蓄えられている電荷を上流側のMOSFET2uがオンする前に十分に減少させることができる。その結果、MOSFET2uのオンに際して大きな逆回復電流が流れる不具合を解消することができる。   While the MOSFET 3u is still on, the reverse voltage application circuit 5u operates to apply the reverse voltage Vd to the free-wheeling diode Du-, thereby starting a reverse recovery current. During the reverse recovery operation, Vd is maintained at substantially the same potential as before the reverse recovery operation (before the reverse voltage application circuit 5u is operated) due to the voltage drop due to the reverse recovery current, and when the reverse recovery is completed, the freewheeling diode Du− is completely turned off. Thus, the current Im supplied from the reverse voltage application circuit 5u is only the return current Iu or the return current Iu + the current Id (forward direction) of the MOSFET 3u, and Vd is the reverse voltage with respect to the return diode Du− at this time, that is, the forward direction of the MOSFET 3u. Voltage. Therefore, the charge stored in the free-wheeling diode Du− of the MOSFET 3u can be sufficiently reduced before the upstream-side MOSFET 2u is turned on. As a result, it is possible to eliminate the problem that a large reverse recovery current flows when the MOSFET 2u is turned on.

なお、本実施形態によれば、逆電圧印加回路5uの出力電圧、図5では0.2V、をMOSFET3uの定格電流における導通チャンネル抵抗による電圧低下よりも低い電圧となるように直流電源40の電圧を予め低い値(2.5V程度)に設定しているため、逆回復電流が流れる期間は長くなる。しかしながら、MOSFET3uの還流ダイオードDu−における電力積算値は消費電力と時間の積であり、印加される逆電圧Vdが低く、逆回復電流がきわめて小さいことから、積算電力は大幅に低くなる。また、逆電圧印加回路のオンを早めに設定し、図5に示すようにMOSFET3uがオン状態で逆回復が終了するようなことがあっても、本実施形態のように逆電圧印加回路5uからの逆電圧Vdを低く設定しておけばこの電圧をMOSFET3uで短絡した時の電流Idはごくわずかであり、この部分における電力損失は極めて小さい。したがって、MOSFETを用いても電力損失を大幅に低減することができ、効率の向上が図れる。   According to this embodiment, the voltage of the DC power supply 40 is set so that the output voltage of the reverse voltage application circuit 5u, 0.2V in FIG. 5, is lower than the voltage drop due to the conduction channel resistance at the rated current of the MOSFET 3u. Is set to a low value (about 2.5 V) in advance, the period during which the reverse recovery current flows becomes long. However, the integrated power value in the free-wheeling diode Du− of the MOSFET 3u is the product of power consumption and time, and since the applied reverse voltage Vd is low and the reverse recovery current is extremely small, the integrated power is greatly reduced. Even if reverse voltage application circuit is turned on early and reverse recovery ends when MOSFET 3u is on as shown in FIG. 5, from reverse voltage application circuit 5u as in this embodiment. If the reverse voltage Vd is set low, the current Id when this voltage is short-circuited by the MOSFET 3u is very small, and the power loss in this portion is extremely small. Therefore, even when a MOSFET is used, power loss can be greatly reduced, and efficiency can be improved.

しかも、MOSFET3uがオンしている間における逆電圧Vdの印加開始タイミングの決定要素である所定時間taを、電流検出部50で検出される還流電流が大きいほど早めているので、つまりMOSFET3uの還流ダイオードDu−に蓄えられる電荷の量が多いほど早めているので、その還流ダイオードDu−に蓄えられる電荷をデッドタイム終了までに確実に解消させることが可能となる。   Moreover, the predetermined time ta, which is a determinant of the application start timing of the reverse voltage Vd while the MOSFET 3u is turned on, is advanced as the return current detected by the current detection unit 50 increases, that is, the return diode of the MOSFET 3u. Since the amount of charge stored in Du− increases as the amount of charge increases, the charge stored in the free-wheeling diode Du− can be surely eliminated by the end of the dead time.

図5中の破線は、逆電圧印加回路5uの電源電圧をMOSFETの駆動電圧(約15V)と同じにするとともにMOSFET3uがオフした後のデッドタイム中に逆電圧印加回路5uの動作を開始させた場合のシミュレーション結果を参考のために示したもので、デッドタイム中に流れる逆回復電流が大きいことが分かる。   The broken line in FIG. 5 sets the power supply voltage of the reverse voltage application circuit 5u to the same as the MOSFET drive voltage (about 15V) and starts the operation of the reverse voltage application circuit 5u during the dead time after the MOSFET 3u is turned off. The simulation results are shown for reference, and it can be seen that the reverse recovery current that flows during the dead time is large.

図6は、還流電流が小さい場合で、かつ逆電圧印加回路5uの電源電圧を15V程度に上げるとともにMOSFET3uがオン中に逆電圧印加回路5uの動作を開始させた場合のシミュレーション結果を参考のために示したもので、電源電圧が高い分だけデッドタイム中に流れる電流が大きくなることが分かる。   For reference, FIG. 6 shows a simulation result in the case where the return current is small and the power supply voltage of the reverse voltage application circuit 5u is increased to about 15 V and the operation of the reverse voltage application circuit 5u is started while the MOSFET 3u is on. It can be seen that the current flowing during the dead time increases as the power supply voltage increases.

なお、上記実施形態では、スイッチング回路1における各直列回路のスイッチング素子の全てがMOSFETである場合を例に説明したが、各直列回路の少なくとも一方がMOSFETであれば、他方のスイッチング素子が例えばIGBTである場合にも同様に実施可能である。   In the above embodiment, the case where all of the switching elements of each series circuit in the switching circuit 1 are MOSFETs has been described as an example. However, if at least one of the series circuits is a MOSFET, the other switching element is, for example, an IGBT. It is possible to implement similarly in the case of.

その他、この発明は上記実施形態に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。   In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.

この発明の一実施形態の構成および冷凍サイクルの構成を示す図。The figure which shows the structure of one Embodiment of this invention, and the structure of a refrigerating cycle. 同実施形態における制御部の要部の構成を示すブロック図。The block diagram which shows the structure of the principal part of the control part in the embodiment. 同実施形態における各部の信号波形を示す図。The figure which shows the signal waveform of each part in the embodiment. 同実施形態におけるMOSFETおよび逆電圧印加回路の一部とそこに印加される電圧および流れる電流を示す図。The figure which shows a part of MOSFET and reverse voltage application circuit in the same embodiment, the voltage applied there, and the flowing electric current. 図4におけるVd,Id,Id1,Imがどのように変化するかのシミュレーション結果を示す図。The figure which shows the simulation result of how Vd, Id, Id1, and Im in FIG. 4 change. 図4における逆電圧Vdが低くない場合のシミュレーション結果を参考として示す図。The figure which shows the simulation result in case the reverse voltage Vd in FIG. 4 is not low for reference.

符号の説明Explanation of symbols

1…スイッチング回路、2u,2v,2w…上流側のMOSFET(スイッチング素子)、3u,3v,3w…下流側のMOSFET(スイッチング素子)、4u,4v,4w…逆電圧印加回路、5u,5v,5w…逆電圧印加回路、Du+,Dv+,Dw+,Du−,Dv−,Dw−…還流ダイオード、10…制御部、30…直流電源、42…逆電圧印加用コンデンサ、43…逆電圧印加用MOSFET、50…電流検出部、51…回転数算出部、52…回転数指令部、53…速度差算出部、54…基準信号生成部、55…基準クロック信号発生部、56…三角波信号生成部、60…PWM基本信号Vu生成部、70…PWM基本信号Vv生成部、80…PWM基本信号Vw生成部、M…ブラシレスDCモータ、Lu,Lv,Lw…相巻線   DESCRIPTION OF SYMBOLS 1 ... Switching circuit, 2u, 2v, 2w ... Upstream side MOSFET (switching element), 3u, 3v, 3w ... Downstream side MOSFET (switching element), 4u, 4v, 4w ... Reverse voltage application circuit, 5u, 5v, 5w ... reverse voltage application circuit, Du +, Dv +, Dw +, Du-, Dv-, Dw -... freewheeling diode, 10 ... control unit, 30 ... DC power supply, 42 ... reverse voltage application capacitor, 43 ... reverse voltage application MOSFET , 50 ... current detection unit, 51 ... rotation speed calculation unit, 52 ... rotation speed command unit, 53 ... speed difference calculation unit, 54 ... reference signal generation unit, 55 ... reference clock signal generation unit, 56 ... triangular wave signal generation unit, 60 ... PWM basic signal Vu generator, 70 ... PWM basic signal Vv generator, 80 ... PWM basic signal Vw generator, M ... Brushless DC motor, Lu, Lv, Lw ... Phase winding

Claims (3)

還流ダイオードを有するMOSFETを少なくとも一方に用いた2つのスイッチング素子の直列回路を複数備え、これら直列回路の各スイッチング素子の相互接続点が負荷に接続されるスイッチング回路と、
前記各スイッチング素子のオン,オフ動作を制御する第1制御手段と、
前記各MOSFETの還流ダイオードにその各MOSFETの駆動電圧より低い逆電圧を印加するための逆電圧印加回路と、
前記MOSFETがオン中に前記逆電圧印加回路の動作を開始させ、その動作を前記他方のスイッチング素子がオンした後に終了させる第2制御手段と、
を備えたことを特徴とするインバータ装置。
A switching circuit in which a plurality of series circuits of two switching elements each using a MOSFET having a free-wheeling diode are used, and an interconnection point of each switching element of these series circuits is connected to a load;
First control means for controlling on / off operations of each of the switching elements;
A reverse voltage application circuit for applying a reverse voltage lower than the drive voltage of each MOSFET to the freewheeling diode of each MOSFET;
Second control means for starting an operation of the reverse voltage application circuit while the MOSFET is on, and ending the operation after the other switching element is turned on;
An inverter device comprising:
前記逆電圧印加回路の出力電圧は、前記MOSFETの定格電流における導通チャンネル抵抗による電圧低下よりも低い電圧であることを特徴とする請求項1に記載のインバータ装置。 2. The inverter device according to claim 1, wherein an output voltage of the reverse voltage application circuit is a voltage lower than a voltage drop due to a conduction channel resistance at a rated current of the MOSFET. 前記MOSFETに流れる電流を検出する電流検出手段を備え、前記制御手段は、前記電流検出手段で検出された電流の大きさに応じて、その電流が大きいほど前記逆電圧印加回路の動作開始のタイミングを早めることを特徴とする請求項1に記載のインバータ装置。 A current detection unit configured to detect a current flowing through the MOSFET, wherein the control unit is configured to start the operation of the reverse voltage application circuit as the current increases according to the magnitude of the current detected by the current detection unit; The inverter device according to claim 1, wherein the inverter device is advanced.
JP2006044036A 2006-02-21 2006-02-21 Inverter device Expired - Fee Related JP4755915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044036A JP4755915B2 (en) 2006-02-21 2006-02-21 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044036A JP4755915B2 (en) 2006-02-21 2006-02-21 Inverter device

Publications (2)

Publication Number Publication Date
JP2007228668A JP2007228668A (en) 2007-09-06
JP4755915B2 true JP4755915B2 (en) 2011-08-24

Family

ID=38549929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044036A Expired - Fee Related JP4755915B2 (en) 2006-02-21 2006-02-21 Inverter device

Country Status (1)

Country Link
JP (1) JP4755915B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624809B2 (en) * 1988-12-06 1997-06-25 株式会社東芝 Gate drive circuit of double gate IGBT
JPH10327585A (en) * 1997-05-23 1998-12-08 Toshiba Corp Power converter

Also Published As

Publication number Publication date
JP2007228668A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
US7321210B2 (en) Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
JP6731829B2 (en) Power converter and air conditioner
TWI664802B (en) Power conversion device and refrigerating and air-conditioning equipment
JP5047582B2 (en) Inverter device
EP2803922B1 (en) Heat pump device, air conditioner, and refrigerator
EP3082249B1 (en) Motor control device and motor control method
JP5505528B1 (en) Power consumption reduction device
WO2007029544A1 (en) Inverter device and refrigeration cycle device
US10910968B2 (en) Motor drive device and motor drive system
JP6718356B2 (en) Motor control device and heat pump type refrigeration cycle device
JP4769587B2 (en) Inverter device
EP1981159A1 (en) Refrigeration cycle device
JP2007209166A (en) Inverter, and refrigeration cycle device
JP2015065745A (en) Motor drive device
JP2002223580A (en) Inverter device
JP4300209B2 (en) Inverter device
US20170288594A1 (en) Inverter control apparatus and air conditioner
JP3683259B2 (en) Motor drive device
JP4755915B2 (en) Inverter device
CN100456622C (en) Brushless direct current motor drive circuit with modulation speed control
JP5101001B2 (en) Inverter device
JP2006050804A (en) Control device of refrigerator
JP7340606B2 (en) Power conversion equipment, motor control equipment, and air conditioners
JP7145965B2 (en) Power conversion circuit and air conditioner
JP2007189862A (en) Control method and control device of brushless dc motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees