JP4754383B2 - Laminated tube container - Google Patents

Laminated tube container Download PDF

Info

Publication number
JP4754383B2
JP4754383B2 JP2006094653A JP2006094653A JP4754383B2 JP 4754383 B2 JP4754383 B2 JP 4754383B2 JP 2006094653 A JP2006094653 A JP 2006094653A JP 2006094653 A JP2006094653 A JP 2006094653A JP 4754383 B2 JP4754383 B2 JP 4754383B2
Authority
JP
Japan
Prior art keywords
group
gas barrier
layer
compound
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006094653A
Other languages
Japanese (ja)
Other versions
JP2007008584A (en
Inventor
竜也 尾下
剛毅 上原
学 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006094653A priority Critical patent/JP4754383B2/en
Publication of JP2007008584A publication Critical patent/JP2007008584A/en
Application granted granted Critical
Publication of JP4754383B2 publication Critical patent/JP4754383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、化粧品、薬品、医薬品、食品、歯磨などの内容物の充填包装に適するラミネートチューブ容器に関する。本発明のラミネートチューブ容器は、酸素バリア性に優れ、さらにラミネートチューブ容器をスクイーズした後も酸素バリア性が低下することがないため、長期に亘り内容物を酸化劣化から保護できるラミネートチューブ容器に関する。   The present invention relates to a laminated tube container suitable for filling and packaging contents such as cosmetics, medicines, pharmaceuticals, foods, and toothpastes. The laminate tube container of the present invention relates to a laminate tube container that is excellent in oxygen barrier properties and that can protect the contents from oxidative degradation over a long period of time because the oxygen barrier properties do not decrease even after the laminate tube container is squeezed.

化粧品、薬品、医薬品、歯磨などのトイレタリー用品、練りからし、わさび等の食品の包装に使用されるラミネートチューブ容器は、ガスバリア性、保香性に優れたものが必要であることから、従来はアルミニウム箔ないしアルミニウムの蒸着層を有する樹脂のフィルムを使用した積層材料を使用することが多かった。しかしながら、積層材料を透明にできないことから、包装材のデザインに制限があった。また、内容物を透視することが困難なことから、内容物の変質、残量などの確認が容易ではなく、さらに内容物を最後まで絞り出すのに不便を感じるものであった。さらに、チューブ容器を包装器として使用した後、ゴミとして廃棄処理する場合、アルミニウムが残存するため廃棄処理性に欠け、又残存アルミニウムが焼却炉を傷つけることが問題となっている。   Conventionally, laminated tube containers used for packaging cosmetics, medicines, pharmaceuticals, toiletries such as toothpaste, kneading, wasabi and other foods must have excellent gas barrier properties and aroma retention. In many cases, a laminated material using a resin film having an aluminum foil or an aluminum deposition layer is used. However, since the laminated material cannot be made transparent, there has been a limitation on the design of the packaging material. In addition, since it is difficult to see through the contents, it is not easy to check the contents of the contents, such as alteration and remaining amount, and it is inconvenient to squeeze the contents to the end. Furthermore, when the tube container is used as a packaging device and then discarded as garbage, aluminum remains, so that the disposal property is insufficient, and the remaining aluminum damages the incinerator.

透明性を有し、廃棄処理性に優れているガスバリア性フィルムとして、真空蒸着法等により無機酸化物の蒸着層を有する透明蒸着フィルム、ポリ塩化ビニリデン系樹脂が用いられたフィルム、エチレン−ビニルアルコール共重合体が用いられたフィルムを挙がることができる。これらもラミネートチューブ容器として使用されている(たとえば特許文献1,2参照)。   As a gas barrier film having transparency and excellent disposal property, a transparent vapor-deposited film having an inorganic oxide vapor-deposited layer by a vacuum vapor deposition method, a film using a polyvinylidene chloride resin, ethylene-vinyl alcohol A film in which a copolymer is used can be listed. These are also used as laminated tube containers (see, for example, Patent Documents 1 and 2).

しかし、透明蒸着フィルムは、ラミネートチューブ容器を製造するまでの印刷工程、ラミネート工程などの工程で、ガスバリア層である蒸着層に、クラックなどの欠陥が発生しやすく、またラミネートチューブ容器をスクイーズする際にもクラックなどの欠陥が発生しやすく、結果としてガスバリア性が劣ったものとなっていた。   However, the transparent vapor deposition film is prone to cracks and other defects in the vapor deposition layer, which is a gas barrier layer, in the printing process and laminating process until the laminated tube container is manufactured, and when the laminated tube container is squeezed. Also, defects such as cracks are likely to occur, resulting in poor gas barrier properties.

また、ポリ塩化ビニリデン系樹脂が用いられたフィルムは、ラミネートチューブ容器を包装器として使用した後、ゴミとして焼却処理する場合、ダイオキシンなどの有害ガスが発生する可能性があり、環境の観点から問題である。   In addition, films using polyvinylidene chloride resin may cause harmful gases such as dioxins when incinerated as garbage after using a laminated tube container as a packaging device. It is.

そして、エチレンービニルアルコール共重合体はガスバリア性、透明性、環境のいずれの観点からも優れたバリア性フィルムであるが、エチレンービニルアルコール共重合体が吸湿するとガスバリア性が低下するという問題点を有している。   The ethylene-vinyl alcohol copolymer is an excellent barrier film from the viewpoints of gas barrier properties, transparency, and the environment, but the gas barrier properties decrease when the ethylene-vinyl alcohol copolymer absorbs moisture. have.

特開平11−129380号公報JP 11-129380 A 特開平7−308994号公報JP 7-308994 A

本発明が解決しようとする課題は、環境・廃棄などの観点から優れ、容器のデザインに多様性があり、耐レトルト殺菌処理性を有し、従来のラミネートチューブ容器と比較し酸素バリア性に優れ、さらにラミネートチューブ容器をスクイーズしても酸素バリア性の低下がないラミネートチューブ容器を提供することである。ラミネートチューブ容器で包装される内容物は、少量ずつ消費され、消費期間が長期に亘るケースが多い。本発明の課題は特に、内容物が酸素劣化を受けやすい医薬品、化粧品、食品などに特に適したラミネートチューブ容器を提供することである。   The problems to be solved by the present invention are excellent from the viewpoints of environment and disposal, the container design is diverse, has retort sterilization resistance, and has superior oxygen barrier properties compared to conventional laminated tube containers. Another object of the present invention is to provide a laminate tube container in which the oxygen barrier property does not deteriorate even when the laminate tube container is squeezed. In many cases, the contents packed in the laminate tube container are consumed little by little and the consumption period is long. An object of the present invention is to provide a laminated tube container particularly suitable for pharmaceuticals, cosmetics, foods and the like whose contents are susceptible to oxygen degradation.

本発明者等は、上記目的を達成すべく鋭意検討した結果、少なくともガスバリア性積層体を有するラミネートチューブ容器において、前記ガスバリア性積層体が、基材と、基材の少なくとも一方の面に特定のガスバリア層が積層されたガスバリア性積層体である場合に、上記目的が達成されることを見出し、本発明の完成に至った。即ち、本発明は、少なくともガスバリア性積層体を有するラミネートチューブ容器において、前記ガスバリア性積層体は、基材と、基材の少なくとも一方の面に積層されたガスバリア層とを含むガスバリア性積層体であって、該ガスバリア層が、化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体を含む組成物からなり、
前記化合物(L)が、以下の化学式(I)で示される少なくとも1種の化合物(A)と、以下の化学式(II)で示される少なくとも1種の化合物(B)とからなり、
前記化合物(A)/前記化合物(B)のモル比が0.5/99.5〜40/60の範囲であり、
前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されていることを特徴とするラミネートチューブ容器である。
(OR m−n−k ・・・(I)
[化学式(I)中、M はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaまたはNdを表す。R はアルキル基を表す。X はハロゲン原子を表す。Zは、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。mはM の原子価と等しい。nは0〜(m−1)の整数を表す。kは0〜(m−1)の整数を表す。1≦n+k≦(m−1)である。]
(OR p−q−r ・・・(II)
[化学式(II)中、M はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaまたはNdを表す。R はアルキル基を表す。R はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X はハロゲン原子を表す。pはM の原子価と等しい。qは0〜pの整数を表す。rは0〜pの整数を表す。1≦q+r≦pである。]
As a result of intensive studies to achieve the above-mentioned object, the present inventors have determined that the gas barrier laminate is specific to the base material and at least one surface of the base material in the laminate tube container having at least the gas barrier laminate. When the gas barrier layered body is formed by laminating gas barrier layers, the inventors have found that the above object can be achieved and have completed the present invention. That is, the present invention relates to a laminated tube container having at least a gas barrier laminate, wherein the gas barrier laminate is a gas barrier laminate including a base material and a gas barrier layer laminated on at least one surface of the base material. And the gas barrier layer comprises a composition comprising a hydrolysis condensate of compound (L) and a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group,
The compound (L) comprises at least one compound (A) represented by the following chemical formula (I) and at least one compound (B) represented by the following chemical formula (II):
The molar ratio of the compound (A) / the compound (B) is in the range of 0.5 / 99.5 to 40/60,
The laminate tube container is characterized in that at least a part of —COO— group contained in the at least one functional group is neutralized with a divalent or higher valent metal ion.
M 1 (OR 1 ) n X 1 k Z m−n−k (I)
[In the chemical formula (I), M 1 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La or Represents Nd. R 1 represents an alkyl group. X 1 represents a halogen atom. Z represents an alkyl group substituted with a functional group having reactivity with a carboxyl group. m is equal to the valence of M 1 . n represents an integer of 0 to (m-1). k represents an integer of 0 to (m−1). 1 ≦ n + k ≦ (m−1). ]
M 2 (OR 2) q R 3 p-q-r X 2 r ··· (II)
[In the chemical formula (II), M 2 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La or Represents Nd. R 2 represents an alkyl group. R 3 represents an alkyl group, an aralkyl group, an aryl group or an alkenyl group. X 2 represents a halogen atom. p is equal to the valence of M 2 . q represents an integer of 0 to p. r represents an integer of 0 to p. 1 ≦ q + r ≦ p. ]

本発明のチューブ容器によって、環境・廃棄などの観点から優れ、容器のデザインに多様性があり、耐レトルト殺菌処理性を有し、従来のチューブ容器と比較し酸素バリア性に優れ、さらにチューブ容器をスクイーズしても酸素バリア性の低下がないチューブ容器を提供することが可能となる。   The tube container of the present invention is excellent from the viewpoints of environment and disposal, has a variety of container designs, has resistance to retort sterilization, has superior oxygen barrier properties compared to conventional tube containers, and is a tube container It is possible to provide a tube container that does not deteriorate the oxygen barrier property even if squeezed.

以下、本発明の実施の形態について説明する。なお、以下の説明において特定の機能を発現する物質として具体的な化合物を例示する場合があるが、本発明はこれに限定されない。また、例示される材料は、特に記載がない限り、単独で用いてもよいし、組み合わせて用いてもよい。   Embodiments of the present invention will be described below. In the following description, a specific compound may be exemplified as a substance that exhibits a specific function, but the present invention is not limited to this. In addition, the materials exemplified may be used alone or in combination unless otherwise specified.

本発明のラミネートチューブ容器は、基材と基材の少なくとも一方の面に積層された特定のガスバリア層(以下、本発明に用いられるガスバリア層と記載する)を有するガスバリア性積層体(以下ガスバリア性積層体(I)と記載することがある)を有するラミネート体から筒状に成形された胴部と、熱可塑性樹脂から射出成形法等により成形されたネジ付口部を有する肩部およびキャップ部から構成される。例えば、ガスバリア性積層体を有するラミネート体を筒状に曲げて長手方向の両端縁を重ね合わせ、この重なり合った部分を高周波により加熱溶着して接合し、筒状の胴部を作製する。以下、本発明に用いられるガスバリア層について詳細に説明する。   The laminated tube container of the present invention has a gas barrier laminate (hereinafter referred to as gas barrier property) having a base material and a specific gas barrier layer (hereinafter referred to as a gas barrier layer used in the present invention) laminated on at least one surface of the base material. A body part formed in a cylindrical shape from a laminate having a laminate (which may be referred to as a laminate (I)), and a shoulder part and a cap part having a threaded mouth part formed from a thermoplastic resin by an injection molding method or the like Consists of For example, a laminate having a gas barrier laminate is bent into a cylindrical shape, and both end edges in the longitudinal direction are overlapped, and the overlapped portions are heat-welded by high frequency and bonded to produce a cylindrical body. Hereinafter, the gas barrier layer used in the present invention will be described in detail.

(ガスバリア層)
本発明に用いられるガスバリア層は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物を含む組成物からなり、前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されていること、換言すれば、上記少なくとも1つの官能基の少なくとも一部は、2価以上の金属イオンと塩を構成していることを特徴とする。
(Gas barrier layer)
The gas barrier layer used in the present invention comprises a composition containing a neutralized product of a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group, and is contained in the at least one functional group. That at least a part of the —COO— group is neutralized with a divalent or higher metal ion, in other words, at least a part of the at least one functional group forms a salt with the divalent or higher metal ion. It is characterized by.

(カルボン酸含有重合体)
ガスバリア層を構成する組成物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体を含む。該組成物における、重合体の中和物の含有率は、特に限定はなく、たとえば25重量%〜95重量%の範囲とすることができる。この重合体の中和物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含む重合体(以下、「カルボン酸含有重合体」という場合がある)に対して、上記少なくとも1つの官能基の少なくとも一部を2価以上の金属イオンで中和することによって得られる重合体である。
(Carboxylic acid-containing polymer)
The composition constituting the gas barrier layer includes a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group. The content of the neutralized product of the polymer in the composition is not particularly limited and can be, for example, in the range of 25% by weight to 95% by weight. The neutralized product of this polymer is a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group (hereinafter sometimes referred to as “carboxylic acid-containing polymer”). It is a polymer obtained by neutralizing at least part of one functional group with a divalent or higher metal ion.

カルボン酸含有重合体は、重合体1分子中に、2個以上のカルボキシル基または1個以上のカルボン酸無水物基を有する。具体的には、アクリル酸単位、メタクリル酸単位、マレイン酸単位、イタコン酸単位などの、カルボキシル基を1個以上有する構造単位を重合体1分子中に2個以上含有する重合体を用いることができる。また、無水マレイン酸単位や無水フタル酸単位などのカルボン酸無水物の構造を有する構造単位を含有する重合体を用いることもできる。カルボキシル基を1個以上有する構造単位および/またはカルボン酸無水物の構造を有する構造単位(以下、両者をまとめてカルボン酸含有単位(C)と略記する場合がある)は、1種類でもよいし、2種類以上含まれていてもよい。   The carboxylic acid-containing polymer has two or more carboxyl groups or one or more carboxylic anhydride groups in one polymer molecule. Specifically, a polymer containing two or more structural units having one or more carboxyl groups such as an acrylic acid unit, a methacrylic acid unit, a maleic acid unit, and an itaconic acid unit in one molecule of the polymer is used. it can. Moreover, the polymer containing the structural unit which has the structure of carboxylic anhydrides, such as a maleic anhydride unit and a phthalic anhydride unit, can also be used. There may be one type of structural unit having at least one carboxyl group and / or structural unit having a structure of carboxylic anhydride (hereinafter, both may be abbreviated as carboxylic acid-containing unit (C)). Two or more types may be included.

また、カルボン酸含有重合体の全構造単位に占めるカルボン酸含有単位(C)の含有率を10モル%以上とすることによって、高湿度下でのガスバリア性が良好なガスバリア性積層体が得られる。この含有率は、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。なお、カルボン酸含有重合体が、カルボキシル基を1個以上含有する構造単位と、カルボン酸無水物の構造を有する構造単位の両方を含む場合、両者の合計が上記の範囲であればよい。   Further, by setting the content of the carboxylic acid-containing unit (C) in the total structural unit of the carboxylic acid-containing polymer to 10 mol% or more, a gas barrier laminate having a good gas barrier property under high humidity can be obtained. . The content is more preferably 20 mol% or more, further preferably 40 mol% or more, and particularly preferably 70 mol% or more. In addition, when a carboxylic acid containing polymer contains both the structural unit containing 1 or more of carboxyl groups, and the structural unit which has a structure of carboxylic anhydride, both should just be the said range.

カルボン酸含有重合体が含有していてもよい、カルボン酸含有単位(C)以外の他の構造単位は、特に限定されないが、アクリル酸メチル単位、メタクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸エチル単位、アクリル酸ブチル単位、メタクリル酸ブチル単位等の(メタ)アクリル酸エステル類から誘導される構造単位;ギ酸ビニル単位、酢酸ビニル単位などのビニルエステル類から誘導される構造単位;スチレン単位、p−スチレンスルホン酸単位;エチレン単位、プロピレン単位、イソブチレン単位などのオレフィン類から誘導される構造単位などから選ばれる1種類以上の構造単位を挙げることができる。カルボン酸含有重合体が、2種以上の構造単位を含有する場合、該カルボン酸含有重合体は、交互共重合体の形態、ランダム共重合体の形態、ブロック共重合体の形態、さらにはテーパー型の共重合体の形態のいずれであってもよい。   The structural unit other than the carboxylic acid-containing unit (C) that may be contained in the carboxylic acid-containing polymer is not particularly limited, but is a methyl acrylate unit, a methyl methacrylate unit, an ethyl acrylate unit, methacrylic acid. Structural units derived from (meth) acrylates such as ethyl units, butyl acrylate units and butyl methacrylate units; structural units derived from vinyl esters such as vinyl formate units and vinyl acetate units; styrene units, One or more structural units selected from p-styrene sulfonic acid units; structural units derived from olefins such as ethylene units, propylene units, and isobutylene units. When the carboxylic acid-containing polymer contains two or more structural units, the carboxylic acid-containing polymer is in the form of an alternating copolymer, a random copolymer, a block copolymer, or a taper. It may be in the form of a type copolymer.

カルボン酸含有重合体の好ましい例としては、ポリアクリル酸、ポリメタクリル酸、アクリル酸−メタクリル酸共重合体を挙げることができる。カルボン酸含有重合体は、1種類であってもよいし、2種類以上の重合体の混合物であってもよい。たとえば、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体を用いてもよい。また、上記した他の構造単位を含有する場合の具体例としては、エチレン−無水マレイン酸共重合体、スチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸交互共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体のケン化物などが挙げられる。   Preferable examples of the carboxylic acid-containing polymer include polyacrylic acid, polymethacrylic acid, and acrylic acid-methacrylic acid copolymer. The carboxylic acid-containing polymer may be one kind or a mixture of two or more kinds of polymers. For example, at least one polymer selected from polyacrylic acid and polymethacrylic acid may be used. Specific examples in the case of containing other structural units described above include ethylene-maleic anhydride copolymer, styrene-maleic anhydride copolymer, isobutylene-maleic anhydride alternating copolymer, ethylene-acrylic acid. And a saponified product of an ethylene-ethyl acrylate copolymer.

カルボン酸含有重合体の分子量は特に制限されないが、得られるガスバリ性積層体のガスバリア性が優れる点、および落下衝撃強さなどの力学的物性が優れる点から、数平均分子量が5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることがさらに好ましい。カルボン酸含有重合体の分子量の上限は特に制限がないが、一般的には1,500,000以下である。   The molecular weight of the carboxylic acid-containing polymer is not particularly limited, but the number average molecular weight is 5,000 or more because the gas barrier property of the obtained gas-barrier laminate is excellent and the mechanical properties such as drop impact strength are excellent. Preferably, it is preferably 10,000 or more, and more preferably 20,000 or more. The upper limit of the molecular weight of the carboxylic acid-containing polymer is not particularly limited, but is generally 1,500,000 or less.

また、カルボン酸含有重合体の分子量分布も特に制限されるものではないが、ガスバリア性積層体のヘイズなどの表面外観、および後述する溶液(S)の貯蔵安定性などが良好となる観点から、カルボン酸含有重合体の重量平均分子量/数平均分子量の比で表される分子量分布は1〜6の範囲であることが好ましく、1〜5の範囲であることがより好ましく、1〜4の範囲であることがさらに好ましい。   Further, the molecular weight distribution of the carboxylic acid-containing polymer is not particularly limited, but from the viewpoint of improving the surface appearance such as haze of the gas barrier laminate, and the storage stability of the solution (S) described later, The molecular weight distribution represented by the weight average molecular weight / number average molecular weight ratio of the carboxylic acid-containing polymer is preferably in the range of 1-6, more preferably in the range of 1-5, and in the range of 1-4. More preferably.

本発明に用いられるガスバリア層を構成する重合体は、カルボン酸含有重合体のカルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基(以下、官能基(F)という場合がある)含まれる−COO−基のたとえば10モル%以上(たとえば15モル%以上)が、2価以上の金属イオンで中和されている。なお、カルボン酸無水物基は、−COO−基を2つ含んでいるとみなす。すなわち、aモルのカルボキシル基とbモルのカルボン酸無水物基とが存在する場合、それに含まれる−COO−基は、全体で(a+2b)モルである。官能基(F)に含まれる−COO−基のうち、2価以上の金属イオンで中和されている割合は、好ましくは20モル%以上であり、より好ましくは30モル%以上であり、さらに好ましくは40モル%以上であり、さらに好ましくは50モル%以上、特に好ましくは60モル%以上である。官能基(F)に含まれる−COO−基のうち、2価以上の金属イオンで中和されている割合の上限は、特に制限はないが、たとえば、95モル%以下とすることができる。カルボン酸含有重合体中のカルボキシル基および/またはカルボン酸無水物基が2価以上の金属イオンで中和されることによって、本発明に用いられるガスバリア層は、乾燥条件下および高湿条件下の双方において、良好なガスバリア性を示す。   The polymer constituting the gas barrier layer used in the present invention contains at least one functional group selected from the carboxyl group and carboxylic anhydride group of the carboxylic acid-containing polymer (hereinafter sometimes referred to as functional group (F)). For example, 10 mol% or more (for example, 15 mol% or more) of the —COO— group is neutralized with a bivalent or higher metal ion. Note that the carboxylic anhydride group is considered to contain two —COO— groups. That is, when there are a moles of carboxyl groups and b moles of carboxylic anhydride groups, the total number of —COO— groups contained is (a + 2b) moles. The proportion of the -COO- group contained in the functional group (F) that is neutralized with a divalent or higher metal ion is preferably 20 mol% or more, more preferably 30 mol% or more, and Preferably it is 40 mol% or more, More preferably, it is 50 mol% or more, Most preferably, it is 60 mol% or more. Although there is no restriction | limiting in particular in the upper limit of the ratio neutralized with the metal ion more than bivalence among -COO- groups contained in a functional group (F), For example, it can be 95 mol% or less. When the carboxyl group and / or carboxylic anhydride group in the carboxylic acid-containing polymer is neutralized with a metal ion having a valence of 2 or more, the gas barrier layer used in the present invention is subjected to a dry condition and a high humidity condition. Both show good gas barrier properties.

官能基(F)の中和度(イオン化度)は、ガスバリア性積層体の赤外吸収スペクトルをATR(全反射測定)法で測定するか、または、ガスバリア性積層体からガスバリア層をかきとり、その赤外吸収スペクトルをKBr法で測定することによって求めることができる。中和前(イオン化前)のカルボキシル基またはカルボン酸無水物基のC=O伸縮振動に帰属されるピークは1600cm-1〜1850cm-1の範囲に観察され、中和(イオン化)された後のカルボキシル基のC=O伸縮振動は1500cm-1〜1600cm-1の範囲に観察されるため、赤外吸収スペクトルにおいて両者を分離して評価することができる。具体的には、それぞれの範囲における最大の吸光度からその比を求め、予め作成した検量線を用いてガスバリア性積層体におけるガスバリア層を構成する重合体のイオン化度を算出することができる。なお、検量線は、中和度が異なる複数の標準サンプルについて赤外吸収スペクトルを測定することによって作成できる。 The degree of neutralization (ionization degree) of the functional group (F) is determined by measuring the infrared absorption spectrum of the gas barrier laminate by the ATR (total reflection measurement) method, or by scraping the gas barrier layer from the gas barrier laminate. It can be determined by measuring the infrared absorption spectrum by the KBr method. Before neutralization peak attributed to C = O stretching vibration of the carboxyl group or carboxylic anhydride group (ionization front) was observed in the range of 1600cm -1 ~1850cm -1, after being neutralized (ionized) C = O stretching vibration of the carboxyl group is to be observed in a range of 1500cm -1 ~1600cm -1, it can be evaluated by separating the two in the infrared absorption spectrum. Specifically, the ratio is obtained from the maximum absorbance in each range, and the ionization degree of the polymer constituting the gas barrier layer in the gas barrier laminate can be calculated using a calibration curve prepared in advance. A calibration curve can be created by measuring infrared absorption spectra for a plurality of standard samples having different degrees of neutralization.

官能基(F)を中和する金属イオンは2価以上であることが重要である。官能基(F)が未中和または後述する1価のイオンのみによって中和されている場合には、良好なガスバリア性を有する積層体が得られない。ただし、2価以上の金属イオンに加えて少量の1価のイオン(陽イオン)で官能基(F)が中和されている場合には、ガスバリア性積層体のヘイズが低減して表面の外観が良好となる。このように、本発明は、カルボン酸含有重合体の官能基(F)が2価以上の金属イオンと1価のイオンとの双方で中和される場合を含む。2価以上の金属イオンとしては、たとえば、カルシウムイオン、マグネシウムイオン、2価の鉄イオン、3価の鉄イオン、亜鉛イオン、2価の銅イオン、鉛イオン、2価の水銀イオン、バリウムイオン、ニッケルイオン、ジルコニウムイオン、アルミニウムイオン、チタンイオンなどを挙げることができる。たとえば、2価以上の金属イオンとして、カルシウムイオン、マグネシウムイオンおよび亜鉛イオンから選ばれる少なくとも1つのイオンを用いてもよい。   It is important that the metal ion neutralizing the functional group (F) is divalent or higher. When the functional group (F) is not neutralized or is neutralized only by monovalent ions described later, a laminate having good gas barrier properties cannot be obtained. However, when the functional group (F) is neutralized with a small amount of monovalent ions (cations) in addition to divalent or higher metal ions, the haze of the gas barrier laminate is reduced and the surface appearance is reduced. Becomes better. Thus, the present invention includes the case where the functional group (F) of the carboxylic acid-containing polymer is neutralized with both a divalent or higher-valent metal ion and a monovalent ion. Examples of the divalent or higher metal ion include calcium ion, magnesium ion, divalent iron ion, trivalent iron ion, zinc ion, divalent copper ion, lead ion, divalent mercury ion, barium ion, A nickel ion, a zirconium ion, an aluminum ion, a titanium ion, etc. can be mentioned. For example, at least one ion selected from calcium ions, magnesium ions, and zinc ions may be used as the divalent or higher metal ion.

本発明においては、カルボン酸含有重合体の官能基(F)(カルボキシル基および/またはカルボン酸無水物)に含まれる−COO−基の0.1〜10モル%が、1価のイオンで中和されていることが好ましい。ただし、1価のイオンによる中和度が高い場合には、ガスバリア性積層体のガスバリア性が低下する。1価イオンによる官能基(F)の中和度は、0.5〜5モル%の範囲であることがより好ましく、0.7〜3モル%の範囲であることがさらに好ましい。1価のイオンとしては、たとえば、アンモニウムイオン、ピリジニウムイオン、ナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられ、アンモニウムイオンが好ましい。   In the present invention, 0.1 to 10 mol% of the —COO— group contained in the functional group (F) (carboxyl group and / or carboxylic acid anhydride) of the carboxylic acid-containing polymer is a monovalent ion. It is preferable that they are summed. However, when the degree of neutralization with monovalent ions is high, the gas barrier properties of the gas barrier laminate are deteriorated. The degree of neutralization of the functional group (F) with monovalent ions is more preferably in the range of 0.5 to 5 mol%, and still more preferably in the range of 0.7 to 3 mol%. Examples of monovalent ions include ammonium ions, pyridinium ions, sodium ions, potassium ions, and lithium ions, with ammonium ions being preferred.

本発明に用いられるガスバリア層を構成する組成物は、上記カルボン酸含有重合体およびその中和物に加え、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基(原子団)が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物を含むことが好ましい。化合物(L)の加水分解縮合物を含むことで極めて良好なガスバリア性が達成される。   The composition constituting the gas barrier layer used in the present invention is a metal atom in which at least one characteristic group (atomic group) selected from a halogen atom and an alkoxy group is bonded in addition to the carboxylic acid-containing polymer and the neutralized product thereof. It is preferable that the hydrolysis condensate of at least 1 type of compound (L) containing is included. By including the hydrolysis condensate of compound (L), extremely good gas barrier properties are achieved.

(加水分解縮合物)
化合物(L)には、以下で説明する化合物(A)および/または化合物(B)の少なくとも1種を適用できる。以下、化合物(A)および化合物(B)について説明する。
(Hydrolysis condensate)
As the compound (L), at least one of the compound (A) and / or the compound (B) described below can be applied. Hereinafter, the compound (A) and the compound (B) will be described.

化合物(A)は、次に示す化学式(I)で表される少なくとも1種の化合物である。
1(OR1n1 k1 m-n-k・・・(I)
化学式(I)中、M1は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaおよびNdから選択される原子を表す。M1は、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSiである。また、化学式(I)中、R1はメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などのアルキル基であり、好ましくは、メチル基またはエチル基である。また、化学式(I)中、X1はハロゲン原子を表す。X1が表すハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子などが挙げられるが、塩素原子が好ましい。また、化学式(I)中、Z1は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。ここで、カルボキシル基との反応性を有する官能基としては、エポキシ基、アミノ基、水酸基、ハロゲン原子、メルカプト基、イソシアネート基、ウレイド基、オキサゾリン基またはカルボジイミド基などが挙げられるが、エポキシ基、アミノ基、メルカプト基、イソシアネート基、ウレイド基、またはハロゲン原子が好ましい。このような官能基で置換されるアルキル基としては、前出のものを例示することができる。また、化学式(I)中、mは金属元素M1の原子価と等しい。化学式(I)中、nは0〜(m−1)の整数を表す。また、化学式(I)中、kは0〜(m−1)の整数を表し、1≦n+k≦(m−1)である。
Compound (A) is at least one compound represented by the following chemical formula (I).
M 1 (OR 1 ) n X 1 k Z 1 mnk (I)
In chemical formula (I), M 1 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La and Represents an atom selected from Nd. M 1 is preferably Si, Al, Ti or Zr, and particularly preferably Si. In the chemical formula (I), R 1 is an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group or a t-butyl group, preferably a methyl group or an ethyl group. It is a group. In the chemical formula (I), X 1 represents a halogen atom. Examples of the halogen atom represented by X 1 include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable. In the chemical formula (I), Z 1 represents an alkyl group substituted with a functional group having reactivity with a carboxyl group. Here, examples of the functional group having reactivity with a carboxyl group include an epoxy group, an amino group, a hydroxyl group, a halogen atom, a mercapto group, an isocyanate group, a ureido group, an oxazoline group, or a carbodiimide group. An amino group, mercapto group, isocyanate group, ureido group, or halogen atom is preferred. Examples of the alkyl group substituted with such a functional group include those described above. In the chemical formula (I), m is equal to the valence of the metal element M 1 . In chemical formula (I), n represents an integer of 0 to (m-1). Moreover, in chemical formula (I), k represents an integer of 0 to (m−1), and 1 ≦ n + k ≦ (m−1).

化合物(A)の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−ブロモプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−イソシアネートプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン、等が挙げられ、これらの化合物のメトキシ基の部分を、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、t−ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。また、クロロメチルメチルジメトキシシラン、クロロメチルジメチルメトキシシラン、2−クロロエチルメチルジメトキシシラン、2−クロロエチルジメチルメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルジメチルメトキシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルジメチルメトキシシラン、2−メルカプトエチルメチルジメトキシシラン、2−メルカプトエチルジメチルメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルジメチルメトキシシラン、イソシアネートメチルメチルジメトキシシラン、イソシアネートメチルジメチルメトキシシラン、2−イソシアネートエチルメチルジメトキシシラン、2−イソシアネートエチルジメチルメトキシシラン、3−イソシアネートプロピルメチルジメトキシシラン、3−イソシアネートプロピルジメチルメトキシシラン、ウレイドメチルメチルジメトキシシラン、ウレイドメチルジメチルメトキシシラン、2−ウレイドエチルメチルジメトキシシラン、2−ウレイドエチルジメチルメトキシシラン、3−ウレイドプロピルメチルジメトキシシラン、3−ウレイドプロピルジメチルメトキシシラン、ビス(クロロメチル)メチルクロロシランが挙げられ、これらの化合物のメトキシ基の部分を、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、t−ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。さらに、クロロメチルトリメトキシシラン、2−クロロエチルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、2−クロロプロピルトリメトキシシラン、4−クロロブチルトリメトキシシラン、5−クロロペンチルトリメトキシシラン、6−クロロヘキシルトリメトキシシラン、(ジクロロメチル)ジメトキシシラン、(ジクロロエチル)ジメトキシシラン、(ジクロロプロピル)ジメトキシシラン、(トリクロロメチル)メトキシシラン、(トリクロロエチル)メトキシシラン、(トリクロロプロピル)メトキシシラン、メルカプトメチルトリメトキシシラン、2−メルカプトエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、2−メルカプトプロピルトリメトキシシラン、4−メルカプトブチルトリメトキシシラン、5−メルカプトペンチルトリメトキシシラン、6−メルカプトヘキシルトリメトキシシラン、(ジメルカプトメチル)ジメトキシシラン、(ジメルカプトエチル)ジメトキシシラン、(ジメルカプトプロピル)ジメトキシシラン、(トリメルカプトメチル)メトキシシラン、(トリメルカプトエチル)メトキシシラン、(トリメルカプトプロピル)メトキシシラン、フルオロメチルトリメトキシシラン、2−フルオロエチルトリメトキシシラン、3−フルオロプロピルトリメトキシシラン、ブロモメチルトリメトキシシラン、2−ブロモエチルトリメトキシシラン、3−ブロモプロピルトリメトキシシラン、ヨードメチルトリメトキシシラン、2−ヨードエチルトリメトキシシラン、3−ヨードプロピルトリメトキシシラン、(クロロメチル)フェニルトリメトキシシラン、(クロロメチル)フェニルエチルトリメトキシシラン、1−クロロエチルトリメトキシシラン、2−(クロロメチル)アリルトリメトキシシラン、(3−クロロシクロヘキシル)トリメトキシシラン、(4−クロロシクロヘキシル)トリメトキシシラン、(メルカプトメチル)フェニルトリメトキシシラン、(メルカプトメチル)フェニルエチルトリメトキシシラン、1−メルカプトエチルトリメトキシシラン、2−(メルカプトメチル)アリルトリメトキシシラン、(3−メルカプトシクロヘキシル)トリメトキシシラン、(4−メルカプトシクロヘキシル)トリメトキシシラン、N−(3−トリエトキシシリルプロピル)グルコンアミド、N−(3−トリエトキシシリルプロピル)−4−ヒドロキシブチルアミド、イソシアネートメチルトリメトキシシラン、2−イソシアネートエチルトリメトキシシラン、3−イソシアネートプロピルトリメトキシシラン、2−イソシアネートプロピルトリメトキシシラン、4−イソシアネートブチルトリメトキシシラン、5−イソシアネートペンチルトリメトキシシラン、6−イソシアネートヘキシルトリメトキシシラン、(ジイソシアネートメチル)ジメトキシシラン、(ジイソシアネートエチル)ジメトキシシラン、(ジイソシアネートプロピル)ジメトキシシラン、(トリイソシアネートメチル)メトキシシラン、(トリイソシアネートエチル)メトキシシラン、(トリイソシアネートプロピル)メトキシシラン、ウレイドメチルトリメトキシシラン、2−ウレイドエチルトリメトキシシラン、3−ウレイドプロピルトリメトキシシラン、2−ウレイドプロピルトリメトキシシラン、4−ウレイドブチルトリメトキシシラン、5−ウレイドペンチルトリメトキシシラン、6−ウレイドヘキシルトリメトキシシラン、(ジウレイドメチル)ジメトキシシラン、(ジウレイドエチル)ジメトキシシラン、(ジウレイドプロピル)ジメトキシシラン、(トリウレイドメチル)メトキシシラン、(トリウレイドエチル)メトキシシラン、(トリウレイドプロピル)メトキシシラン、が挙げられ、これらの化合物のメトキシ基の部分を、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、t−ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。   Specific examples of the compound (A) include γ-glycidoxypropyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ -Bromopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, and the like. The methoxy group portion of these compounds is substituted with ethoxy group, n A compound having an alkoxy group or a chlorine group such as a -propoxy group, an iso-propoxy group, an n-butoxy group, or a t-butoxy group may be used. Also, chloromethylmethyldimethoxysilane, chloromethyldimethylmethoxysilane, 2-chloroethylmethyldimethoxysilane, 2-chloroethyldimethylmethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyldimethylmethoxysilane, mercaptomethylmethyldimethoxy Silane, mercaptomethyldimethylmethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethyldimethylmethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyldimethylmethoxysilane, isocyanatemethylmethyldimethoxysilane, isocyanatemethyldimethylmethoxy Silane, 2-isocyanatoethylmethyldimethoxysilane, 2-isocyanatoethyldimethyl Rumethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropyldimethylmethoxysilane, ureidomethylmethyldimethoxysilane, ureidomethyldimethylmethoxysilane, 2-ureidoethylmethyldimethoxysilane, 2-ureidoethyldimethylmethoxysilane, 3- Examples include ureidopropylmethyldimethoxysilane, 3-ureidopropyldimethylmethoxysilane, and bis (chloromethyl) methylchlorosilane. The methoxy group portion of these compounds is substituted with ethoxy group, n-propoxy group, iso-propoxy group, n- A compound having an alkoxy group or a chlorine group such as a butoxy group or a t-butoxy group may be used. Further, chloromethyltrimethoxysilane, 2-chloroethyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 2-chloropropyltrimethoxysilane, 4-chlorobutyltrimethoxysilane, 5-chloropentyltrimethoxysilane, 6- Chlorohexyltrimethoxysilane, (dichloromethyl) dimethoxysilane, (dichloroethyl) dimethoxysilane, (dichloropropyl) dimethoxysilane, (trichloromethyl) methoxysilane, (trichloroethyl) methoxysilane, (trichloropropyl) methoxysilane, mercaptomethyl Trimethoxysilane, 2-mercaptoethyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-mercaptopropyltrimethoxysilane, 4-mercaptobutylto Methoxysilane, 5-mercaptopentyltrimethoxysilane, 6-mercaptohexyltrimethoxysilane, (dimercaptomethyl) dimethoxysilane, (dimercaptoethyl) dimethoxysilane, (dimercaptopropyl) dimethoxysilane, (trimercaptomethyl) methoxysilane , (Trimercaptoethyl) methoxysilane, (trimercaptopropyl) methoxysilane, fluoromethyltrimethoxysilane, 2-fluoroethyltrimethoxysilane, 3-fluoropropyltrimethoxysilane, bromomethyltrimethoxysilane, 2-bromoethyltri Methoxysilane, 3-bromopropyltrimethoxysilane, iodomethyltrimethoxysilane, 2-iodoethyltrimethoxysilane, 3-iodopropyltrimethoxysilane , (Chloromethyl) phenyltrimethoxysilane, (chloromethyl) phenylethyltrimethoxysilane, 1-chloroethyltrimethoxysilane, 2- (chloromethyl) allyltrimethoxysilane, (3-chlorocyclohexyl) trimethoxysilane, ( 4-chlorocyclohexyl) trimethoxysilane, (mercaptomethyl) phenyltrimethoxysilane, (mercaptomethyl) phenylethyltrimethoxysilane, 1-mercaptoethyltrimethoxysilane, 2- (mercaptomethyl) allyltrimethoxysilane, (3- Mercaptocyclohexyl) trimethoxysilane, (4-mercaptocyclohexyl) trimethoxysilane, N- (3-triethoxysilylpropyl) gluconamide, N- (3-triethoxysilylpropyl) -4 -Hydroxybutyramide, isocyanate methyltrimethoxysilane, 2-isocyanatoethyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, 2-isocyanatopropyltrimethoxysilane, 4-isocyanatobutyltrimethoxysilane, 5-isocyanatepentyltrimethoxysilane 6-isocyanatohexyltrimethoxysilane, (diisocyanatemethyl) dimethoxysilane, (diisocyanateethyl) dimethoxysilane, (diisocyanatepropyl) dimethoxysilane, (triisocyanatemethyl) methoxysilane, (triisocyanateethyl) methoxysilane, (triisocyanatepropyl) ) Methoxysilane, ureidomethyltrimethoxysilane, 2-ureidoethyltrimeth Sisilane, 3-ureidopropyltrimethoxysilane, 2-ureidopropyltrimethoxysilane, 4-ureidobutyltrimethoxysilane, 5-ureidopentyltrimethoxysilane, 6-ureidohexyltrimethoxysilane, (diureidomethyl) dimethoxysilane, (Diureidoethyl) dimethoxysilane, (diureidopropyl) dimethoxysilane, (triureidomethyl) methoxysilane, (triureidoethyl) methoxysilane, (triureidopropyl) methoxysilane, and the methoxy group of these compounds Alternatively, a compound having an alkoxy group such as an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, or a t-butoxy group or a chlorine group may be used.

好ましい化合物(A)としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシランが挙げられる。   Preferred compounds (A) include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-aminopropyltrimethoxy. Silane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, and γ-ureidopropyltriethoxysilane.

また、化合物(B)は次の化学式(II)で表される少なくとも1種の化合物である。
2(OR2q3 p-q-r2 r・・・(II)
化学式(II)中、M2は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaおよびNdから選択される原子を表すが、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSi、AlまたはTiである。また、化学式(II)中、R2は、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などのアルキル基を表すが、好ましくは、メチル基またはエチル基である。また、化学式(II)中、X2はハロゲン原子を表す。X2が表すハロゲン原子としては塩素原子、臭素原子、ヨウ素原子などが挙げられるが塩素原子が好ましい。また、化学式(II)中、R3は、アルキル基、アラルキル基、アリール基またはアルケニル基を表す。R3が表すアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−オクチル基などが挙げられる。また、R3が表すアラルキル基としては、ベンジル基、フェネチル基、トリチル基などが挙げられる。また、R3が表すアリール基としては、フェニル基、ナフチル基、トリル基、キシリル基、メシチル基などが挙げられる。また、R3が表すアルケニル基としては、ビニル基、アリル基などが挙げられる。さらに、化学式(II)中、pは金属元素M2の原子価と等しい。化学式(II)中、qは0〜pの整数を表す。また、化学式(II)中、rは0〜pの整数を表し、1≦q+r≦pである。
The compound (B) is at least one compound represented by the following chemical formula (II).
M 2 (OR 2 ) q R 3 pqr X 2 r (II)
In chemical formula (II), M 2 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La and It represents an atom selected from Nd, preferably Si, Al, Ti or Zr, and particularly preferably Si, Al or Ti. In the chemical formula (II), R 2 represents an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group or a t-butyl group, preferably a methyl group. Or it is an ethyl group. In the chemical formula (II), X 2 represents a halogen atom. Examples of the halogen atom represented by X 2 include a chlorine atom, a bromine atom and an iodine atom, but a chlorine atom is preferred. In the chemical formula (II), R 3 represents an alkyl group, an aralkyl group, an aryl group or an alkenyl group. Examples of the alkyl group represented by R 3 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, and an n-octyl group. Moreover, examples of the aralkyl group represented by R 3 include a benzyl group, a phenethyl group, and a trityl group. Examples of the aryl group represented by R 3 include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, and a mesityl group. In addition, examples of the alkenyl group represented by R 3 include a vinyl group and an allyl group. Furthermore, in the chemical formula (II), p is equal to the valence of the metal element M 2 . In chemical formula (II), q represents an integer of 0 to p. Moreover, in chemical formula (II), r represents the integer of 0-p and is 1 <= q + r <= p.

化学式(I)および(II)において、M1とM2とは同じであってもよいし異なっていてもよい。また、R1とR2とは同じであってもよいし異なっていてもよい。 In the chemical formulas (I) and (II), M 1 and M 2 may be the same or different. R 1 and R 2 may be the same or different.

化合物(B)の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、オクチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、クロロトリメトキシシラン、クロロトリエトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン等のシリコンアルコキシド;ビニルトリクロロシラン、テトラクロロシラン、テトラブロモシラン等のハロゲン化シラン;テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチルトリイソプロポキシチタン等のアルコキシチタン化合物;テトラクロロチタン等のハロゲン化チタン;トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、メチルジイソプロポキシアルミニウム、トリブトキシアルミニウム、ジエトキシアルミニウムクロリド等のアルコキシアルミニウム化合物;テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、メチルトリイソプロポキシジルコニウム等のアルコキシジルコニウム化合物等が挙げられる。   Specific examples of the compound (B) include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, octyltrimethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, chlorotri Silicon alkoxides such as methoxysilane, chlorotriethoxysilane, dichlorodimethoxysilane, dichlorodiethoxysilane, trichloromethoxysilane, and trichloroethoxysilane; halogenated silanes such as vinyltrichlorosilane, tetrachlorosilane, and tetrabromosilane; tetramethoxytitanium, tetra Alkoxytitanium compounds such as ethoxytitanium, tetraisopropoxytitanium, methyltriisopropoxytitanium; titanium halides such as tetrachlorotitanium Alkoxyaluminum compounds such as trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, methyldiisopropoxyaluminum, tributoxyaluminum, diethoxyaluminum chloride; alkoxy such as tetraethoxyzirconium, tetraisopropoxyzirconium, methyltriisopropoxyzirconium A zirconium compound etc. are mentioned.

本発明に用いられるガスバリア層を構成する組成物は、化合物(L)の加水分解縮合物を含むことが好ましい。化合物(L)が加水分解されることによって、化合物(L)のハロゲンおよびアルコキシ基の少なくとも一部が水酸基に置換される。さらに、その加水分解物が縮合することによって、金属元素が酸素を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物となる。   It is preferable that the composition which comprises the gas barrier layer used for this invention contains the hydrolysis-condensation product of a compound (L). By hydrolyzing the compound (L), at least a part of the halogen and alkoxy groups of the compound (L) is substituted with a hydroxyl group. Furthermore, the hydrolyzate condenses to form a compound in which metal elements are bonded through oxygen. When this condensation is repeated, it becomes a compound that can be regarded as a metal oxide substantially.

ガスバリア性積層体のガスバリア層に含まれる、化合物(L)の加水分解縮合物は、以下で定義される縮合度Pが65〜99%であることが好ましく、70〜99%であることがより好ましく、75〜99%であることがさらに好ましい。化合物(L)の加水分解縮合物における縮合度P(%)は、以下のようにして算出されるものである。   The hydrolysis condensate of compound (L) contained in the gas barrier layer of the gas barrier laminate preferably has a condensation degree P defined below of 65 to 99%, more preferably 70 to 99%. Preferably, it is 75 to 99%. The degree of condensation P (%) in the hydrolysis condensate of compound (L) is calculated as follows.

化合物(L)の1分子中のアルコキシ基とハロゲン原子の合計数をaとし、該化合物(L)の加水分解縮合物中、縮合したアルコキシ基とハロゲン原子の合計がi(個)である化合物(L)の割合が、全化合物(L)中のyi(%)である時、iが1〜aの整数(1とaを含む)のそれぞれの値について{(i/a)×yi}を算出し、それらを加算する。すなわち、縮合度P(%)は、以下の数式で定義される。   A compound in which the total number of alkoxy groups and halogen atoms in one molecule of compound (L) is a, and the total of condensed alkoxy groups and halogen atoms is i (pieces) in the hydrolyzed condensate of compound (L) When the ratio of (L) is yi (%) in all the compounds (L), i is an integer of 1 to a (including 1 and a) for each value {(i / a) × yi} And add them. That is, the degree of condensation P (%) is defined by the following mathematical formula.

Figure 0004754383

上記したyiの値は、ガスバリア層中の化合物(L)の加水分解縮合物については固体のNMR(DD/MAS法)等によって測定することができる。
Figure 0004754383

The value of yi described above can be measured by solid NMR (DD / MAS method) or the like for the hydrolysis condensate of compound (L) in the gas barrier layer.

該加水分解縮合物は、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解、縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものなどを原料として、たとえば公知のゾルゲル法で用いられる手法で製造できる。これらの原料は、公知の方法で製造してもよいし、市販されているものを用いてもよい。特に限定はないが、たとえば2〜10個程度の分子が加水分解、縮合して得られる縮合物を、原料として用いることができる。具体的には、たとえば、テトラメトキシシランを加水分解、縮合させて、2〜10量体の線状縮合物としたものなどを原料として用いることができる。   The hydrolysis-condensation product is a compound (L), a compound (L) partially hydrolyzed, a compound (L) completely hydrolyzed, or a compound (L) partially hydrolyzed and condensed. For example, a compound obtained by completely hydrolyzing the compound (L) and partially condensing it, or a combination thereof can be produced by a method used in a known sol-gel method, for example. These raw materials may be produced by a known method, or commercially available ones may be used. Although there is no particular limitation, for example, a condensate obtained by hydrolysis and condensation of about 2 to 10 molecules can be used as a raw material. Specifically, for example, a material obtained by hydrolyzing and condensing tetramethoxysilane to obtain a dimer to 10-mer linear condensate can be used as a raw material.

ガスバリア性積層体のガスバリア層を構成する組成物における化合物(L)の加水分解縮合物において縮合される分子の数は、加水分解、縮合に際して使用する、水の量、触媒の種類や濃度、加水分解縮合を行う温度などによって制御できる。   The number of molecules condensed in the hydrolytic condensate of the compound (L) in the composition constituting the gas barrier layer of the gas barrier laminate is the amount of water, the type and concentration of the catalyst used in the hydrolysis and condensation, It can be controlled by the temperature at which decomposition condensation is performed.

化合物(L)の加水分解縮合物の製造方法に特に限定はないが、ゾルゲル法の代表的な一例では、上記した原料に水と酸とアルコールとを加えることによって、加水分解および縮合を行う。   The method for producing the hydrolyzed condensate of compound (L) is not particularly limited, but in a typical example of the sol-gel method, hydrolysis and condensation are performed by adding water, an acid and an alcohol to the above-described raw material.

以下では、化合物(L)を金属アルコキシド(アルコキシ基が結合した金属を含む化合物)として説明する場合があるが、金属アルコキシドに代えて、ハロゲンが結合した金属を含む化合物を用いてもよい。   Hereinafter, the compound (L) may be described as a metal alkoxide (a compound including a metal to which an alkoxy group is bonded), but a compound including a metal to which a halogen is bonded may be used instead of the metal alkoxide.

化合物(L)は、上述したように、化合物(A)および/または化合物(B)の少なくとも1種とすることができる。化合物(L)が、化合物(A)のみを含むか、または化合物(A)と化合物(B)の両方を含む場合には、ガスバリア性積層体のガスバリア性が良好となるため、好ましい。そして、化合物(L)が、実質的に、化合物(A)と化合物(B)の両方からなり、さらに化合物(A)/化合物(B)のモル比が0.5/99.5〜40/60の範囲にあることがより好ましい。化合物(A)と化合物(B)とをこの比率で併用する場合には、ガスバリア性積層体のガスバリア性、引張り強伸度などの力学的物性、外観、取り扱い性などの性能が優れる。化合物(A)/化合物(B)のモル比は、3/97〜40/60の範囲であることがより好ましく、4/96〜30/70の範囲であることがさらに好ましい。   As described above, the compound (L) can be at least one of the compound (A) and / or the compound (B). When the compound (L) contains only the compound (A) or contains both the compound (A) and the compound (B), it is preferable because the gas barrier property of the gas barrier laminate is improved. The compound (L) substantially consists of both the compound (A) and the compound (B), and the molar ratio of the compound (A) / the compound (B) is 0.5 / 99.5 to 40 /. More preferably, it is in the range of 60. When the compound (A) and the compound (B) are used together in this ratio, the gas barrier properties of the gas barrier laminate, such as mechanical properties such as tensile strength and elongation, appearance, and handling properties are excellent. The molar ratio of compound (A) / compound (B) is more preferably in the range of 3/97 to 40/60, and still more preferably in the range of 4/96 to 30/70.

(無機成分など)
ガスバリア層を構成する組成物中に無機成分を含有するときには、無機成分の含有率は、5〜50重量%の範囲であることが、ガスバリア性積層体のガスバリア性が良好となる観点から好ましい。この含有率は、より好ましくは10〜45重量%の範囲であり、さらに好ましくは15〜40重量%の範囲である。組成物中の無機成分の含有率は、該組成物を調製する際に使用する原料の重量から算出することができる。すなわち、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、化合物(L)が完全に加水分解し、その一部が縮合したもの、あるいはこれらを組み合わせたものなどが完全に加水分解・縮合して金属酸化物になったと仮定し、その金属酸化物の重量を算出する。そして算出された金属酸化物の重量を組成物中の無機成分の重量とみなして、無機成分の含有率を算出する。なお、後述するような金属塩、金属錯体、金属酸化物などの無機添加物を加える場合は、加えた無機添加物の重量を、そのまま無機成分の重量に合算する。金属酸化物の重量の算出をより具体的に説明すると、化学式(I)で示される化合物(A)が完全に加水分解、縮合したときには、組成式が、M(n+k)/21 m-n-kで表される化合物となる。この化合物のうちMO(n+k)/2の部分が金属酸化物である。Z1については、無機成分に含めず有機成分であるとみなす。また、化学式(II)で示される化合物(B)が完全に加水分解、縮合したときには、組成式が、M(q+r)/23 p-q-rで表される化合物になる。このうち、M(q+r)/2の部分が金属酸化物である。
(Inorganic components, etc.)
When an inorganic component is contained in the composition constituting the gas barrier layer, the content of the inorganic component is preferably in the range of 5 to 50% by weight from the viewpoint of good gas barrier properties of the gas barrier laminate. This content is more preferably in the range of 10 to 45% by weight, still more preferably in the range of 15 to 40% by weight. The content of the inorganic component in the composition can be calculated from the weight of the raw material used when preparing the composition. That is, compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed, compound (L) The weight of the metal oxide is calculated on the assumption that the product is completely hydrolyzed and partly condensed, or a combination of these is completely hydrolyzed and condensed into a metal oxide. Then, the content of the inorganic component is calculated by regarding the calculated weight of the metal oxide as the weight of the inorganic component in the composition. In addition, when adding inorganic additives, such as a metal salt, a metal complex, and a metal oxide which are mentioned later, the weight of the added inorganic additive is added to the weight of an inorganic component as it is. The calculation of the weight of the metal oxide will be described more specifically. When the compound (A) represented by the chemical formula (I) is completely hydrolyzed and condensed, the composition formula is M 1 O (n + k) / 2 Z 1. It becomes a compound represented by mnk . Of this compound, the MO (n + k) / 2 portion is a metal oxide. Z 1 is regarded as an organic component without being included in the inorganic component. Further, when the compound (B) represented by the chemical formula (II) is completely hydrolyzed and condensed, the composition formula becomes a compound represented by M 1 O (q + r) / 2 R 3 pqr . Among these, the part of M 1 O (q + r) / 2 is a metal oxide.

また、ガスバリア層を構成する組成物は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、ポリアルコール類またはそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含有していてもよい。また、ガスバリア層を構成する組成物は、上記金属アルコキシドを湿式で加水分解、縮合して製造した金属酸化物の微粉末;金属アルコキシドを乾式で加水分解、縮合又は燃焼して調製した金属酸化物の微粉末;水ガラスから調製したシリカ微粉末などを含有していてもよい。   Further, the composition constituting the gas barrier layer may be carbonate, hydrochloride, nitrate, hydrogen carbonate, sulfate, hydrogen sulfate, phosphate, boric acid within the range not impairing the effects of the present invention. Salts, inorganic acid metal salts such as aluminate; organic acid metal salts such as oxalate, acetate, tartrate, stearate; acetylacetonate metal complexes such as aluminum acetylacetonate, titanocene, etc. Contains metal complexes such as cyclopentadienyl metal complexes and cyano metal complexes; layered clay compounds, crosslinking agents, polyalcohols or other polymer compounds, plasticizers, antioxidants, UV absorbers, flame retardants, etc. It may be. The composition constituting the gas barrier layer is a fine powder of a metal oxide produced by hydrolyzing and condensing the above metal alkoxide; a metal oxide prepared by hydrolyzing, condensing or burning the metal alkoxide dry. A fine powder of silica; a fine silica powder prepared from water glass may be contained.

本発明に用いられるガスバリア層を構成する組成物に、ポリアルコール類を含有させることによって、ガスバリア性積層体の表面外観が良好となる。より具体的には、ポリアルコール類を含有させることによって、ガスバリア性積層体の製造時に、ガスバリア層にクラックが発生しにくくなり、表面外観が良好なガスバリア性積層体が得られる。   By adding polyalcohols to the composition constituting the gas barrier layer used in the present invention, the surface appearance of the gas barrier laminate is improved. More specifically, the inclusion of polyalcohols makes it difficult for cracks to occur in the gas barrier layer during production of the gas barrier laminate, and a gas barrier laminate having a good surface appearance can be obtained.

本発明に用いるそのようなポリアルコール類とは、分子内に少なくとも2個以上の水酸基を有する化合物であって、低分子量の化合物から高分子量の化合物までを包含する。好ましくは、ポリビニルアルコール、ポリ酢酸ビニルの部分けん化物、エチレン−ビニルアルコール共重合体、ポリエチレングリコール、ポリヒドロキシエチル(メタ)アクリレート、でんぷんなどの多糖類、でんぷんなどの多糖類から誘導される多糖類誘導体などの高分子量化合物である。   Such polyalcohols used in the present invention are compounds having at least two or more hydroxyl groups in the molecule, and include from low molecular weight compounds to high molecular weight compounds. Preferably, polyvinyl alcohol, polyvinyl acetate partial saponification product, ethylene-vinyl alcohol copolymer, polyethylene glycol, polyhydroxyethyl (meth) acrylate, polysaccharides such as starch, polysaccharides derived from polysaccharides such as starch High molecular weight compounds such as derivatives.

上記したポリアルコール類の使用量は、カルボン酸含有重合体/ポリアルコール類の重量比が10/90〜99.5/0.5の範囲であることが好ましい。該重量比は、より好ましくは30/70〜99/1、さらに好ましくは50/50〜99/1、最も好ましくは70/30〜98/2の範囲である。   As for the usage-amount of the above-mentioned polyalcohol, it is preferable that the weight ratio of carboxylic acid containing polymer / polyalcohol is in the range of 10/90 to 99.5 / 0.5. The weight ratio is more preferably in the range of 30/70 to 99/1, still more preferably 50/50 to 99/1, and most preferably 70/30 to 98/2.

本発明に用いられるガスバリア層は、基材フィルムの少なくとも一方の面に、カルボキシル基含有重合体の中和物と、好ましくは上記した化合物(L)の加水分解縮合物とを含む組成物からなるガスバリア層が形成される。このガスバリア層は、基材の一方の面のみに形成されていてもよいし、両方の面に形成されてもよい。基材の両方の面にガスバリア層を形成した積層体は、他のフィルムを貼り合わせるなどの後加工がしやすいという利点がある。   The gas barrier layer used in the present invention is composed of a composition containing a neutralized product of a carboxyl group-containing polymer and preferably a hydrolysis condensate of the above-described compound (L) on at least one surface of a base film. A gas barrier layer is formed. This gas barrier layer may be formed on only one surface of the substrate, or may be formed on both surfaces. A laminate in which a gas barrier layer is formed on both surfaces of a substrate has an advantage that post-processing such as bonding another film is easy.

ガスバリア層の厚さは特に制限されないが、0.1μm〜100μmの範囲にあることが好ましい。0.1μmよりも薄い場合には、ガスバリア性積層体のガスバリア性が不十分となる場合がある。また、100μmよりも厚い場合には、ガスバリア性積層体の加工時、運搬時、使用時にガスバリア層にクラックが入り易くなる場合がある。ガスバリア層の厚さは、0.1μm〜50μmの範囲であることがより好ましく、0.1μm〜20μmの範囲であることがさらに好ましい。   The thickness of the gas barrier layer is not particularly limited, but is preferably in the range of 0.1 μm to 100 μm. When it is thinner than 0.1 μm, the gas barrier property of the gas barrier laminate may be insufficient. On the other hand, when the thickness is greater than 100 μm, the gas barrier layer may be easily cracked during processing, transportation, and use of the gas barrier laminate. The thickness of the gas barrier layer is more preferably in the range of 0.1 μm to 50 μm, and still more preferably in the range of 0.1 μm to 20 μm.

本発明のガスバリア層を形成させる基材としては、透明な熱可塑性樹脂フィルムや熱硬化性樹脂フィルムを用いることができる。中でも熱可塑性樹脂フィルムは、食品包装材料に用いられるガスバリア性積層体の基材として特に有用である。なお、基材は複数の材料からなる多層構成のものであってもよい。   As a base material on which the gas barrier layer of the present invention is formed, a transparent thermoplastic resin film or thermosetting resin film can be used. Among them, the thermoplastic resin film is particularly useful as a base material for gas barrier laminates used for food packaging materials. The base material may have a multilayer structure composed of a plurality of materials.

熱可塑性樹脂フィルムとしては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートやこれらの共重合体などのポリエステル系樹脂;ポリアミド6、ポリアミド66、ポリアミド12などのポリアミド系樹脂;ポリスチレン、ポリ(メタ)アクリル酸エステル、ポリアクリロニトリル、ポリ酢酸ビニル、ポリカーボネート、ポリアリレート、再生セルロース、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、アイオノマー樹脂等を成形加工したフィルムを挙げることができる。食品包装材料に用いられる積層体の基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド6、またはポリアミド66からなるフィルムが好ましく、ポリエチレンテレフタレート、ポリアミド6、またはポリアミド66であることがより好ましい。熱可塑性樹脂フィルムは、無延伸のフィルム、延伸されたフィルムのいずれでもよいが、成形加工性の観点から延伸されたフィルムが好ましい。
Examples of the thermoplastic resin film include polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate and copolymers thereof; polyamide 6, polyamide 66, Polyamide resins such as polyamide 12; polystyrene, poly (meth) acrylate, polyacrylonitrile, polyvinyl acetate, polycarbonate, polyarylate, regenerated cellulose, polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone And a film obtained by molding an ionomer resin or the like. The base material of the laminate used for the food packaging material is preferably a film made of polyethylene, polypropylene, polyethylene terephthalate, polyamide 6 or polyamide 66, more preferably polyethylene terephthalate, polyamide 6 or polyamide 66. The thermoplastic resin film may be either an unstretched film or a stretched film, but a stretched film is preferred from the viewpoint of moldability.

本発明に用いられるガスバリア性積層体は、基材とガスバリア層との間に配置された接着層(T)をさらに含んでもよい。この構成によれば、基材とガスバリア層との接着性を高めることができる。接着性樹脂からなる接着層(T)は、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗布することで形成できる。 The gas barrier laminate used in the present invention may further include an adhesive layer (T) disposed between the base material and the gas barrier layer. According to this structure, the adhesiveness of a base material and a gas barrier layer can be improved. The adhesive layer (T) made of an adhesive resin can be formed by treating the surface of the substrate with a known anchor coating agent or applying a known adhesive to the surface of the substrate.

また、本発明に用いられるガスバリア性積層体は、基材とガスバリア層との間に、無機物からなる層(以下、「無機層」という場合がある)を含んでもよい。無機層は、無機酸化物などの無機物で形成できる。無機層は、蒸着法などの気相成膜法で形成できる。   In addition, the gas barrier laminate used in the present invention may include a layer made of an inorganic substance (hereinafter sometimes referred to as “inorganic layer”) between the base material and the gas barrier layer. The inorganic layer can be formed of an inorganic material such as an inorganic oxide. The inorganic layer can be formed by a vapor deposition method such as a vapor deposition method.

無機層を構成する無機物は、酸素や水蒸気などに対するガスバリア性を有するものであればよく、好ましくは透明性を有するものである。たとえば、酸化アルミニウム、酸化珪素、酸窒化珪素、酸化マグネシウム、酸化錫、またはそれらの混合物といった無機酸化物で無機層を形成できる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウムは、酸素や水蒸気などのガスに対するバリア性が優れる観点から好ましく用いることができる。   The inorganic substance which comprises an inorganic layer should just have gas barrier property with respect to oxygen, water vapor | steam, etc., Preferably it has transparency. For example, the inorganic layer can be formed using an inorganic oxide such as aluminum oxide, silicon oxide, silicon oxynitride, magnesium oxide, tin oxide, or a mixture thereof. Among these, aluminum oxide, silicon oxide, and magnesium oxide can be preferably used from the viewpoint of excellent barrier properties against gases such as oxygen and water vapor.

無機層の好ましい厚さは、無機層を構成する無機酸化物の種類によって異なるが、通常、2nm〜500nmの範囲である。この範囲で、ガスバリア性積層体のガスバリア性や機械的物性が良好となる厚さを選択すればよい。無機層の厚さが2nm未満である場合、酸素や水蒸気などのガスに対するバリア性の発現に再現性がなく、十分なガスバリア性を発現しない場合がある。無機層の厚さが500nmを超える場合は、ガスバリア性積層体を引っ張ったり屈曲させたりした場合にガスバリア性が低下し易くなる。無機層の厚さは、好ましくは5〜200nmの範囲であり、さらに好ましくは10〜100nmの範囲である。   Although the preferable thickness of an inorganic layer changes with kinds of inorganic oxide which comprises an inorganic layer, it is the range of 2 nm-500 nm normally. Within this range, a thickness that provides good gas barrier properties and mechanical properties of the gas barrier laminate may be selected. When the thickness of the inorganic layer is less than 2 nm, there is a case where the barrier property against the gas such as oxygen and water vapor is not reproducible and sufficient gas barrier property may not be exhibited. When the thickness of the inorganic layer exceeds 500 nm, the gas barrier property tends to be lowered when the gas barrier laminate is pulled or bent. The thickness of the inorganic layer is preferably in the range of 5 to 200 nm, more preferably in the range of 10 to 100 nm.

無機層は、基材上に無機酸化物を堆積させることによって形成できる。形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを挙げることができる。これらの中でも、真空蒸着法は、生産性の観点から好ましく用いることができる。真空蒸着を行う際の加熱方法としては、電子線加熱方式、抵抗加熱方式および誘導加熱方式のいずれかが好ましい。また、無機層と基材との密着性および無機層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いて蒸着してもよい。また、無機層の透明性を上げるために、蒸着の際、酸素ガスなどを吹き込んで反応を生じさせる反応蒸着法を採用してもよい。   The inorganic layer can be formed by depositing an inorganic oxide on the substrate. Examples of the forming method include a vacuum deposition method, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), and the like. Among these, the vacuum evaporation method can be preferably used from the viewpoint of productivity. As a heating method in performing vacuum deposition, any of an electron beam heating method, a resistance heating method, and an induction heating method is preferable. Moreover, in order to improve the adhesiveness of an inorganic layer and a base material, and the denseness of an inorganic layer, you may vapor-deposit using a plasma assist method or an ion beam assist method. Moreover, in order to raise the transparency of an inorganic layer, you may employ | adopt the reactive vapor deposition method which blows in oxygen gas etc. and produces a reaction in the case of vapor deposition.

本発明のラミネートチューブ容器は、本発明に用いられるガスバリア性積層体(以下ガスバリア性積層体(I)と記載することがある)を有するラミネート体から筒状に成形された胴部と、熱可塑性樹脂から射出成形法等により成形されたネジ付口部を有する肩部、キャップ部から構成される。例えば、ガスバリア性積層体を有するラミネート体を筒状に曲げて長手方向の両端縁を重ね合わせ、この重なり合った部分を高周波により加熱溶着して接合し、筒状の胴部を作製する。筒状胴部の一端を口部、他端を尻部とし、熱可塑性樹脂から射出成形法等により成形されたネジ付口部を有する肩部と筒状胴部の口部を接着する。筒状胴部の口部と肩部の接着方法は、筒状胴部の口部に肩部のパーツをセットし高周波溶着又はガスバーナーで熱溶着する方法、筒状胴部を予め金型に固定し、固定された筒状胴部の口部に熱可塑性樹脂を溶融射出し圧縮成形する方法、などを採用できる。ネジ付口部に、射出成形により成形したキャップ部を装着し、続いて尻部から内容物を充填し、その後尻部を高周波による加熱溶着などにより接合することによりラミネートチューブ容器を製造することができる。   The laminate tube container of the present invention includes a body formed in a cylindrical shape from a laminate having a gas barrier laminate (hereinafter sometimes referred to as gas barrier laminate (I)) used in the present invention, and a thermoplastic. It is composed of a shoulder portion having a screwed mouth portion and a cap portion that are molded from resin by an injection molding method or the like. For example, a laminate having a gas barrier laminate is bent into a cylindrical shape, and both end edges in the longitudinal direction are overlapped, and the overlapped portions are heat-welded by high frequency and bonded to produce a cylindrical body. One end of the cylindrical body portion is a mouth portion, and the other end is a bottom portion, and a shoulder portion having a threaded mouth portion formed from a thermoplastic resin by an injection molding method or the like is bonded to the mouth portion of the cylindrical body portion. The method of bonding the mouth part of the cylindrical body part and the shoulder part is a method in which shoulder parts are set on the mouth part of the cylindrical body part and thermally welded by high frequency welding or a gas burner. It is possible to employ a method in which a thermoplastic resin is melt-injected and compression-molded at the mouth of the fixed cylindrical body portion. It is possible to manufacture a laminated tube container by attaching a cap part molded by injection molding to the threaded mouth part, subsequently filling the contents from the butt part, and then joining the butt part by heating welding with high frequency etc. it can.

本発明に用いられるラミネート体の構成は、本発明に用いられるガスバリア層を含むガスバリア性積層体(I)を含んでいれば特に制限はないが、該ラミネートチューブ容器の内側となる層としては熱シール性の点からポリオレフィン層(以下PO層と記載することがある)が好ましい。本発明に用いられるラミネート体の構成は、たとえば、ラミネート容器として使用される際に外側となる層から内側となる層に向かって、PO層/ガスバリア性積層体(I)/PO層、PO層/顔料含有PO層/PO層/ガスバリア性積層体(I)/PO層、PO層/ポリアミド層/ガスバリア性積層体(I)/PO層、PO層/顔料含有PO層/PO層/ポリアミド層/ガスバリア性積層体(I)/PO層、PO層/ガスバリア性積層体(I)/エチレンービニルアルコール共重合体層(以下EVOH層)/PO層、PO層/顔料含有PO層/PO層/ガスバリア性積層体(I)/EVOH層/PO層、PO層/ポリアミド層/ガスバリア性積層体(I)/EVOH層/PO層、PO層/顔料含有PO層/PO層/ポリアミド層/ガスバリア性積層体(I)/EVOH層/PO層、の構成を採り得るものを挙げることができる。特に好ましいラミネート体の構造としては、PO層/ガスバリア性積層体(I)/PO層、PO層/顔料含有PO層/PO層/ガスバリア性積層体(I)/PO層が挙げられる。層と層の間には適宜接着層を設けることができる。以下、ポリオレフィン層、顔料含有ポリオレフィン層、ポリアミド層およびEVOH層について以下詳細に説明する。   The configuration of the laminate used in the present invention is not particularly limited as long as it includes the gas barrier laminate (I) including the gas barrier layer used in the present invention. From the viewpoint of sealing properties, a polyolefin layer (hereinafter sometimes referred to as PO layer) is preferred. The structure of the laminate used in the present invention includes, for example, a PO layer / gas barrier laminate (I) / PO layer, PO layer from the outer layer to the inner layer when used as a laminate container. / Pigment-containing PO layer / PO layer / gas barrier laminate (I) / PO layer, PO layer / polyamide layer / gas barrier laminate (I) / PO layer, PO layer / pigment-containing PO layer / PO layer / polyamide layer / Gas barrier laminate (I) / PO layer, PO layer / Gas barrier laminate (I) / ethylene-vinyl alcohol copolymer layer (hereinafter EVOH layer) / PO layer, PO layer / pigment-containing PO layer / PO layer / Gas barrier laminate (I) / EVOH layer / PO layer, PO layer / polyamide layer / gas barrier laminate (I) / EVOH layer / PO layer, PO layer / pigment-containing PO layer / PO layer / polyamide layer / gas barrier Sex laminate (I) / EVOH layer / PO layer, it may include those which can be taken a configuration of. Particularly preferred laminate structures include PO layer / gas barrier laminate (I) / PO layer, PO layer / pigment-containing PO layer / PO layer / gas barrier laminate (I) / PO layer. An adhesive layer can be appropriately provided between the layers. Hereinafter, the polyolefin layer, the pigment-containing polyolefin layer, the polyamide layer, and the EVOH layer will be described in detail.

上記ポリオレフィン(PO)層としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、エチレンー酢酸ビニル共重合体、エチレンーαオレフィン共重合体、アイオノマー、エチレンーアクリル酸共重合体、エチレンーアクリル酸メチル共重合体、エチレンーメタクリル酸共重合体、エチレンープロピレン共重合体等の樹脂の一種ないしそれ以上からなる樹脂ないしはこれらをフィルム化したシートを用いることができる。これらのポリオレフィン層は延伸または無延伸のいずれでもよい。好ましいポリオレフィン層としては低密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレンからなる樹脂ないしはこれらをフィルム化したシートである。より好ましくは、直鎖状(線状)低密度ポリエチレン、ポリプロピレンが好ましい。成型加工の容易さ、耐熱性などの観点から、上記積層体を構成するいずれのPO層も無延伸低密度ポリエチレン、無延伸直鎖状(線状)低密度ポリエチレン、無延伸ポリプロピレンであるのは好ましく、無延伸直鎖状(線状)低密度ポリエチレン、無延伸ポリプロピレンであるのがさらに好ましい。   Examples of the polyolefin (PO) layer include low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-α olefin copolymer, ionomer, A resin composed of one or more resins such as an ethylene-acrylic acid copolymer, an ethylene-methyl acrylate copolymer, an ethylene-methacrylic acid copolymer, an ethylene-propylene copolymer, or a sheet obtained by filming them. Can be used. These polyolefin layers may be either stretched or unstretched. The preferred polyolefin layer is a resin composed of low density polyethylene, linear (linear) low density polyethylene, or polypropylene, or a sheet formed from these. More preferably, linear (linear) low density polyethylene and polypropylene are preferred. From the viewpoint of easiness of molding process, heat resistance, etc., any PO layer constituting the laminate is unstretched low density polyethylene, unstretched linear (linear) low density polyethylene, or unstretched polypropylene. Preferably, non-stretched linear (linear) low density polyethylene and unstretched polypropylene are more preferable.

特に上記ラミネート体の最内層に配置されたPO層は、無延伸低密度ポリエチレン、無延伸直鎖状(線状)低密度ポリエチレン、無延伸ポリプロピレンで構成されていることが好ましい。   In particular, the PO layer disposed in the innermost layer of the laminate is preferably composed of unstretched low-density polyethylene, unstretched linear (linear) low-density polyethylene, and unstretched polypropylene.

PO層の厚みとしては特に制限されるものではないが、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、10〜300μmの範囲にあるのが好ましく、50〜200 μmの範囲にあるのがより好ましい。   The thickness of the PO layer is not particularly limited, but from the viewpoint of mechanical toughness, impact resistance, puncture resistance, etc., it is preferably in the range of 10 to 300 μm, and in the range of 50 to 200 μm. More preferably.

上記ポリアミド層としては、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミドMXD6樹脂の一種ないしそれ以上からなる樹脂ないしはこれらをフィルム化したシートを用いることができる。これらのポリアミド層は延伸または無延伸のいずれでもよい。好ましいポリアミド層としてはポリアミド6、ポリアミド66をフィルム化、延伸したシートである。
ポリアミド層の厚みとしては特に制限されるものではないが、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、5〜200μmの範囲にあるのが好ましく、5〜100 μmの範囲にあるのがより好ましい。
As the polyamide layer, polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, a resin composed of one or more resins of polyamide MXD6, or a sheet obtained by filming them can be used. These polyamide layers may be stretched or unstretched. A preferred polyamide layer is a sheet obtained by forming polyamide 6 and polyamide 66 into a film and stretching.
The thickness of the polyamide layer is not particularly limited, but from the viewpoint of mechanical toughness, impact resistance, puncture resistance, etc., it is preferably in the range of 5 to 200 μm, and in the range of 5 to 100 μm. More preferably.

上記エチレン−ビニルアルコール共重合体(EVOH)層としては、エチレン−ビニルアルコール共重合体の一種ないしエチレン含有率の異なる2種以上からなる樹脂ないしはこれらをフィルム化したシートを用いることができる。これらのEVOH層は延伸または無延伸のいずれでもよい。好ましいEVOH層としてはエチレン−ビニルアルコール共重合体樹脂をフィルム化、延伸したシートである。
EVOH層の厚みとしては特に制限されるものではないが、ガスバリア性、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、5〜200μmの範囲にあるのが好ましく、5〜100 μmの範囲にあるのがより好ましい。
As the ethylene-vinyl alcohol copolymer (EVOH) layer, one kind of ethylene-vinyl alcohol copolymer, two kinds or more of resins having different ethylene contents, or a sheet made of these can be used. These EVOH layers may be stretched or unstretched. A preferable EVOH layer is a sheet obtained by forming a film of an ethylene-vinyl alcohol copolymer resin and stretching it.
The thickness of the EVOH layer is not particularly limited, but from the viewpoint of gas barrier properties, mechanical toughness, impact resistance, puncture resistance, etc., it is preferably in the range of 5 to 200 μm, and 5 to 100 μm. More preferably, it is in the range.

ポリオレフィン(PO)層、ポリアミド層、EVOH層の形成の方法としては、予め容易された無延伸ポリオレフィンフィルム、延伸ポリオレフィンフィルム、無延伸ポリアミドフィルム、延伸ポリアミドフィルム、無延伸EVOH、延伸EVOHフィルム、と他の層を構成するフィルムと周知のドライラミネーション法、ウエットラミネーション法、ホットメルトラミネーション法等により貼り合わせる方法、あるいは周知のTダイ押出し法等により、他の層を構成するフィルム上にPO層、ポリアミド層、EVOH層を形成させる方法等を採用することができる。また、必要に応じてポリオレフィン層と他の層との間に、接着層を配置することができる。接着層はアンカーコート剤、接着剤、接着性樹脂などを用いて形成する。   As a method for forming a polyolefin (PO) layer, a polyamide layer, and an EVOH layer, a non-stretched polyolefin film, a stretched polyolefin film, a non-stretched polyamide film, a stretched polyamide film, a non-stretched EVOH, a stretched EVOH film, etc. PO layer and polyamide on the film constituting the other layer by a method of pasting the film constituting the layer with a known dry lamination method, wet lamination method, hot melt lamination method, etc., or a known T-die extrusion method, etc. A method of forming a layer, an EVOH layer, or the like can be employed. Moreover, an adhesive layer can be arrange | positioned between a polyolefin layer and another layer as needed. The adhesive layer is formed using an anchor coat agent, an adhesive, an adhesive resin, or the like.

本発明のラミネートチューブ容器のネジ付き肩部、キャップは、公知の構造、公知の方法により製造することができる。例えば、熱可塑性樹脂を射出成形法等により成形することで製造することができる。該熱可塑性樹脂としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、オレフィン系エラストマーなどのポリオレフィン、エチレンーαオレフィン共重合体、アイオノマー、エチレンーアクリル酸共重合体、エチレンーアクリル酸メチル共重合体、エチレンーメタクリル酸共重合体、エチレンープロピレン共重合体等、およびこれらの樹脂とエチレン−酢酸ビニル共重合体、MXD6ポリアミドなどのガスバリア性樹脂とのブレンド体を使用することができる。   The threaded shoulder and the cap of the laminated tube container of the present invention can be manufactured by a known structure and a known method. For example, it can be manufactured by molding a thermoplastic resin by an injection molding method or the like. Examples of the thermoplastic resin include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, polypropylene, polyolefins such as olefin elastomers, ethylene-α-olefin copolymers, ionomers, ethylene- Gas barrier properties such as acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-propylene copolymer, and these resins and ethylene-vinyl acetate copolymer, MXD6 polyamide, etc. Blends with resins can be used.

(ガスバリア性積層体の製造方法)
以下、本発明に用いられるガスバリア性積層体を製造するための方法について説明する。この方法によれば、本発明に用いられるガスバリア性積層体を容易に製造できる。本発明の製造方法に用いられる材料、および積層体の構成は、上述したものと同様であるので、重複する部分については説明を省略する場合がある。
(Method for producing gas barrier laminate)
Hereinafter, a method for producing the gas barrier laminate used in the present invention will be described. According to this method, the gas barrier laminate used in the present invention can be easily produced. Since the materials used in the manufacturing method of the present invention and the configuration of the laminate are the same as those described above, description of overlapping portions may be omitted.

本発明に用いられるガスバリア性積層体の製造方法では、まず、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(カルボン酸含有重合体)とを含む組成物からなる層を基材上に形成する(第1の工程)。第1の工程は、たとえば、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、および、化合物(L)が完全に加水分解し、その一部が縮合したものから選ばれる少なくとも1つの金属元素含有化合物とカルボン酸含有重合体とを含む溶液(S)を調製する工程と、溶液(S)を基材に塗工して乾燥させて上記した成分を含有する層を形成する工程とによって、実施することができる。溶液(S)の乾燥は、溶液(S)に含まれる溶媒を除去することによって実施することができる。   In the method for producing a gas barrier laminate used in the present invention, first, a hydrolysis condensate of at least one compound (L) containing a metal atom bonded to at least one characteristic group selected from a halogen atom and an alkoxy group; And a layer comprising a composition comprising a polymer (carboxylic acid-containing polymer) containing at least one functional group selected from a carboxyl group and a carboxylic acid anhydride group (first step). . In the first step, for example, compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed and condensed And a solution (S) containing at least one metal element-containing compound selected from a product obtained by completely hydrolyzing the compound (L) and condensing a part thereof, and a carboxylic acid-containing polymer; The step of applying the solution (S) to a substrate and drying it to form a layer containing the above-described components can be carried out. The solution (S) can be dried by removing the solvent contained in the solution (S).

なお、溶液(S)に含まれるカルボン酸含有重合体においては、上述したように、官能基(F)に含まれる−COO−基の一部(たとえば0.1〜10モル%)が1価のイオンによって中和されていてもよい。   In the carboxylic acid-containing polymer contained in the solution (S), as described above, a part of the —COO— group (for example, 0.1 to 10 mol%) contained in the functional group (F) is monovalent. It may be neutralized by the ions.

次に、基材上に形成した層を、2価以上の金属イオンを含む溶液に接触させる(第2の工程。以下、この工程をイオン化工程という場合がある)。第2の工程によって、層中のカルボン酸含有重合体に含まれる官能基(F)(カルボン酸および/またはカルボン酸無水物)の少なくとも一部が2価の金属イオンで中和される。このとき、2価の金属イオンで中和される割合(イオン化度)は、金属イオンを含む溶液の温度、金属イオン濃度、および金属イオンを含む溶液への浸漬時間といった条件を変更することによって調整できる。   Next, the layer formed on the substrate is brought into contact with a solution containing a metal ion having a valence of 2 or more (second step; hereinafter, this step may be referred to as an ionization step). In the second step, at least a part of the functional group (F) (carboxylic acid and / or carboxylic anhydride) contained in the carboxylic acid-containing polymer in the layer is neutralized with a divalent metal ion. At this time, the rate of neutralization with divalent metal ions (degree of ionization) is adjusted by changing conditions such as the temperature of the solution containing metal ions, the concentration of metal ions, and the immersion time in the solution containing metal ions. it can.

第2の工程は、たとえば、形成した層に2価以上の金属イオンを含む溶液を吹きつけたり、基材と基材上の層とをともに2価以上の金属イオンを含む溶液に浸漬したりすることによって行うことができる。   In the second step, for example, a solution containing divalent or higher metal ions is sprayed on the formed layer, or both the base material and the layer on the base material are immersed in a solution containing divalent or higher metal ions. Can be done.

なお、以下では、イオン化工程前の積層体を積層体(A)といい、イオン化工程後の積層体を積層体(B)という場合がある。   In the following description, the laminate before the ionization step may be referred to as a laminate (A), and the laminate after the ionization step may be referred to as a laminate (B).

以下、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、および、化合物(L)が完全に加水分解し、その一部が縮合したものから選ばれる少なくとも1つの金属元素含有化合物を、「化合物(L)系成分」という場合がある。溶液(S)は、化合物(L)系成分、カルボン酸含有重合体、および溶媒を用いて調製することができる。たとえば、(1)カルボン酸含有重合体を溶解させた溶媒に、化合物(L)系成分を添加して混合する方法を採用できる。また、(2)カルボン酸含有重合体を溶解させた溶媒に、化合物(L)系成分である化合物(A)を加え、その後、化合物(L)系成分を添加して混合する方法も採用できる。また、(3)溶媒存在下または無溶媒下で化合物(L)系成分からオリゴマー(加水分解縮合物の1種)を調製し、このオリゴマーに、カルボン酸含有重合体を溶解させた溶液を混合する方法も採用できる。なお、化合物(L)系成分やそのオリゴマーは、単独で溶媒に加えてもよいし、それらを溶解させた溶液の形態で溶媒に加えてもよい。   Hereinafter, compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed and condensed, and compound (L At least one metal element-containing compound selected from those in which L) is completely hydrolyzed and partially condensed is sometimes referred to as “compound (L) -based component”. The solution (S) can be prepared using a compound (L) component, a carboxylic acid-containing polymer, and a solvent. For example, it is possible to employ a method in which (1) the compound (L) component is added and mixed in a solvent in which the carboxylic acid-containing polymer is dissolved. Moreover, the method of adding the compound (A) which is a compound (L) type component to (2) the solvent in which the carboxylic acid-containing polymer is dissolved, and then adding and mixing the compound (L) type component can also be adopted. . (3) An oligomer (a kind of hydrolysis condensate) is prepared from the compound (L) component in the presence or absence of a solvent, and a solution in which a carboxylic acid-containing polymer is dissolved is mixed with the oligomer. It is also possible to adopt a method of In addition, a compound (L) type | system | group component and its oligomer may be added to a solvent independently, and may be added to a solvent with the form of the solution which dissolved them.

溶液(S)の調製方法として上記の調製方法(3)を用いることによって、ガスバリア性が特に高いガスバリア性積層体が得られる。以下、調製方法(3)について、より具体的に説明する。   By using the above preparation method (3) as a method for preparing the solution (S), a gas barrier laminate having a particularly high gas barrier property can be obtained. Hereinafter, the preparation method (3) will be described more specifically.

調製方法(3)は、カルボン酸含有重合体を溶媒に溶解して溶液を調製する工程(St1)と、化合物(L)系成分を特定の条件下で加水分解、縮合させてオリゴマーを調製する工程(St2)と、工程(St1)で得られる溶液と工程(St2)で得られるオリゴマーとを混合する工程(St3)とを含む。   In the preparation method (3), an oligomer is prepared by dissolving a carboxylic acid-containing polymer in a solvent to prepare a solution (St1) and hydrolyzing and condensing the compound (L) component under specific conditions. A step (St2) and a step (St3) of mixing the solution obtained in the step (St1) and the oligomer obtained in the step (St2).

工程(St1)において、カルボン酸含有重合体を溶解させるために使用される溶媒は、カルボン酸含有重合体の種類に応じて選択すればよい。たとえば、ポリアクリル酸やポリメタクリル酸などの水溶性の重合体の場合には、水が好適である。イソブチレン−無水マレイン酸共重合体やスチレン−無水マレイン酸共重合体などの重合体の場合には、アンモニア、水酸化ナトリウムや水酸化カリウムなどのアルカリ性物質を含有する水が好適である。また、工程(St1)においては、カルボン酸含有重合体の溶解の妨げにならない限り、メタノール、エタノール等のアルコール類;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;エチレングリコール、プロピレングリコール等のグリコール類;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどを併用することも可能である。   In the step (St1), the solvent used for dissolving the carboxylic acid-containing polymer may be selected according to the type of the carboxylic acid-containing polymer. For example, in the case of a water-soluble polymer such as polyacrylic acid or polymethacrylic acid, water is suitable. In the case of a polymer such as an isobutylene-maleic anhydride copolymer or a styrene-maleic anhydride copolymer, water containing an alkaline substance such as ammonia, sodium hydroxide, or potassium hydroxide is preferred. Further, in the step (St1), alcohols such as methanol and ethanol; ethers such as tetrahydrofuran, dioxane and trioxane; ketones such as acetone and methyl ethyl ketone; ethylene glycol, as long as the dissolution of the carboxylic acid-containing polymer is not hindered Glycols such as propylene glycol; glycol derivatives such as methyl cellosolve, ethyl cellosolve, n-butyl cellosolve; glycerin; acetonitrile, dimethylformamide, dimethyl sulfoxide, sulfolane, dimethoxyethane, and the like can be used in combination.

工程(St2)においては、化合物(L)系成分、酸触媒、水および必要に応じて有機溶媒を含む反応系中において、化合物(L)系成分を加水分解、縮合させてオリゴマーを得ることが好ましい。具体的には、公知のゾルゲル法で用いられている手法を適用できる。化合物(L)系成分として、化合物(L)を用いると、ガスバリア性がより高いガスバリア積層体が得られる。   In the step (St2), an oligomer can be obtained by hydrolyzing and condensing the compound (L) component in a reaction system containing the compound (L) component, an acid catalyst, water and, if necessary, an organic solvent. preferable. Specifically, a technique used in a known sol-gel method can be applied. When the compound (L) is used as the compound (L) component, a gas barrier laminate having higher gas barrier properties can be obtained.

工程(St2)で用いられる酸触媒としては、公知の酸触媒を用いることができ、例えば、塩酸、硫酸、硝酸、p−トルエンスルホン酸、安息香酸、酢酸、乳酸、酪酸、炭酸、シュウ酸、マレイン酸等を用いることができる。その中でも塩酸、硫酸、硝酸、酢酸、乳酸、酪酸が特に好ましい。酸触媒の好ましい使用量は、使用する触媒の種類によって異なるが、化合物(L)系成分の金属原子1モルに対して、1×10-5〜10モルの範囲であることが好ましく、1×10-4〜5モルの範囲であることがより好ましく、5×10-4〜1モルの範囲であることがさらに好ましい。酸触媒の使用量がこの範囲にある場合、ガスバリア性が高いガスバリア性積層体が得られる。 As the acid catalyst used in the step (St2), a known acid catalyst can be used. For example, hydrochloric acid, sulfuric acid, nitric acid, p-toluenesulfonic acid, benzoic acid, acetic acid, lactic acid, butyric acid, carbonic acid, oxalic acid, Maleic acid or the like can be used. Of these, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, lactic acid and butyric acid are particularly preferred. Although the preferable usage-amount of an acid catalyst changes with kinds of catalyst to be used, it is preferable that it is the range of 1 * 10 < -5 > -10 mol with respect to 1 mol of metal atoms of a compound (L) type | system | group component, 1 *. The range of 10 −4 to 5 mol is more preferable, and the range of 5 × 10 −4 to 1 mol is more preferable. When the amount of the acid catalyst used is within this range, a gas barrier laminate having a high gas barrier property can be obtained.

また、工程(St2)における水の好ましい使用量は、化合物(L)系成分の種類によって異なるが、化合物(L)系成分のアルコキシ基またはハロゲン原子(両者が混在する場合はその合計)1モルに対して、0.05〜10モルの範囲であることが好ましく、0.1〜4モルの範囲であることがより好ましく、0.2〜3モルの範囲であることがさらに好ましい。水の使用量がこの範囲にある場合、得られるガスバリア性積層体のガスバリア性が特に優れる。なお、工程(St2)において、塩酸のように水を含有する成分を使用する場合には、その成分によって導入される水の量も考慮して水の使用量を決定することが好ましい。   Moreover, although the preferable usage-amount of water in a process (St2) changes with kinds of compound (L) type | system | group component, the alkoxy group of a compound (L) type | system | group component or a halogen atom (when both are mixed together) 1 mol Is preferably in the range of 0.05 to 10 mol, more preferably in the range of 0.1 to 4 mol, and still more preferably in the range of 0.2 to 3 mol. When the amount of water used is in this range, the gas barrier property of the resulting gas barrier laminate is particularly excellent. In the step (St2), when a component containing water such as hydrochloric acid is used, the amount of water used is preferably determined in consideration of the amount of water introduced by the component.

さらに、工程(St2)の反応系においては、必要に応じて有機溶媒を使用してもよい。使用される有機溶媒は化合物(L)系成分が溶解する溶媒であれば特に限定されない。たとえば、有機溶媒として、メタノール、エタノール、イソプロパノール、ノルマルプロパノール等のアルコール類が好適に用いられ、化合物(L)系成分が含有するアルコキシ基と同種の分子構造(アルコキシ成分)を有するアルコールがより好適に用いられる。具体的には、テトラメトキシシランに対してはメタノールが好ましく、テトラエトキシシランに対してはエタノールが好ましい。有機溶媒の使用量は、特に限定されないが、化合物(L)系成分の濃度が1〜90重量%、より好ましくは10〜80重量%、さらに好ましくは10〜60重量%となる量であることが好ましい。   Furthermore, in the reaction system of the step (St2), an organic solvent may be used as necessary. The organic solvent used will not be specifically limited if it is a solvent in which a compound (L) type component dissolves. For example, alcohols such as methanol, ethanol, isopropanol, and normal propanol are preferably used as the organic solvent, and alcohols having the same molecular structure (alkoxy component) as the alkoxy group contained in the compound (L) component are more preferable. Used for. Specifically, methanol is preferred for tetramethoxysilane and ethanol is preferred for tetraethoxysilane. Although the usage-amount of an organic solvent is not specifically limited, It is the quantity from which the density | concentration of a compound (L) type-component becomes 1 to 90 weight%, More preferably, it is 10 to 80 weight%, More preferably, it is 10 to 60 weight%. Is preferred.

工程(St2)において、反応系中において化合物(L)系成分の加水分解、縮合を行う際に、反応系の温度は必ずしも限定されるものではないが、通常2〜100℃の範囲であり、好ましくは4〜60℃の範囲であり、さらに好ましくは6〜50℃の範囲である。反応時間は触媒の量、種類等の反応条件に応じて相違するが、通常0.01〜60時間の範囲であり、好ましくは0.1〜12時間の範囲であり、より好ましくは0.1〜6時間の範囲である。また、反応系の雰囲気は、必ずしも限定されるものではなく、空気雰囲気、二酸化炭素雰囲気、窒素気流下、アルゴン雰囲気といった雰囲気を採用することができる。   In the step (St2), when the hydrolysis and condensation of the compound (L) component is performed in the reaction system, the temperature of the reaction system is not necessarily limited, but is usually in the range of 2 to 100 ° C. Preferably it is the range of 4-60 degreeC, More preferably, it is the range of 6-50 degreeC. The reaction time varies depending on the reaction conditions such as the amount and type of the catalyst, but is usually in the range of 0.01 to 60 hours, preferably in the range of 0.1 to 12 hours, more preferably 0.1. It is in the range of ~ 6 hours. The atmosphere of the reaction system is not necessarily limited, and an atmosphere such as an air atmosphere, a carbon dioxide atmosphere, a nitrogen stream, or an argon atmosphere can be employed.

工程(St2)において、化合物(L)系成分は、全量を一度に反応系に添加してもよいし、少量ずつ何回かに分けて反応系に添加してもよい。いずれの場合でも、化合物(L)系成分の使用量の合計が、上記の好適な範囲を満たしていることが好ましい。工程(St2)によって調製されるオリゴマーは、前記した縮合度Pで表示すると25〜60%程度の縮合度を有していることが好ましい。   In the step (St2), the total amount of the compound (L) component may be added to the reaction system all at once, or may be added to the reaction system in several small portions. In any case, it is preferable that the total amount of the compound (L) component used satisfies the above preferred range. The oligomer prepared by the step (St2) preferably has a degree of condensation of about 25 to 60% when expressed by the degree of condensation P described above.

工程(St3)においては、化合物(L)系成分から誘導されるオリゴマーと、カルボン酸含有重合体を含む溶液とを混合することによって溶液(S)を調製する。溶液(S)の保存安定性、および得られるガスバリア性積層体のガスバリア性の観点から、溶液(S)のpHは1.0〜7.0の範囲であることが好ましく、1.0〜6.0の範囲であることがより好ましく、1.5〜4.0の範囲であることがさらに好ましい。   In the step (St3), a solution (S) is prepared by mixing an oligomer derived from the compound (L) component and a solution containing a carboxylic acid-containing polymer. From the viewpoint of storage stability of the solution (S) and gas barrier properties of the resulting gas barrier laminate, the pH of the solution (S) is preferably in the range of 1.0 to 7.0, and preferably 1.0 to 6 More preferably, it is in the range of 0.0, more preferably in the range of 1.5 to 4.0.

溶液(S)のpHは、公知の方法で調整でき、たとえば、塩酸、硝酸、硫酸、リン酸、酢酸、酪酸、硫酸アンモニウム等の酸性化合物や水酸化ナトリウム、水酸化カリウム、アンモニア、トリメチルアミン、ピリジン、炭酸ナトリウム、酢酸ナトリウム等の塩基性化合物を添加することによって調整できる。このとき、溶液中に1価の陽イオンをもたらす塩基性化合物を用いると、カルボン酸含有重合体のカルボキシル基および/またはカルボン酸無水物基の一部を1価のイオンで中和することができるという効果が得られる。   The pH of the solution (S) can be adjusted by a known method, for example, acidic compounds such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, butyric acid, ammonium sulfate, sodium hydroxide, potassium hydroxide, ammonia, trimethylamine, pyridine, It can adjust by adding basic compounds, such as sodium carbonate and sodium acetate. At this time, if a basic compound that provides a monovalent cation is used in the solution, a part of the carboxyl group and / or carboxylic anhydride group of the carboxylic acid-containing polymer may be neutralized with a monovalent ion. The effect that it can be obtained.

また、溶液(S)は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、上述したポリアルコール類、及びそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含んでいてもよい。また、溶液(S)は、上記金属アルコキシドを湿式で加水分解、重縮合して製造した金属酸化物の微粉末;金属アルコキシドを乾式で加水分解、重縮合又は燃焼して調製した金属酸化物の微粉末;水ガラスから調製したシリカ微粉末などを含んでいてもよい。   Further, the solution (S) may be carbonate, hydrochloride, nitrate, hydrogencarbonate, sulfate, hydrogensulfate, phosphate, borate, and aluminan as long as the effect of the present invention is not impaired as desired. Inorganic acid metal salts such as acid salts; organic acid metal salts such as oxalate, acetate, tartrate and stearate; acetylacetonate metal complexes such as aluminum acetylacetonate; cyclopentadiene such as titanocene Metal complexes such as enyl metal complexes and cyano metal complexes; including layered clay compounds, crosslinking agents, polyalcohols described above, and other polymer compounds, plasticizers, antioxidants, UV absorbers, flame retardants, etc. May be. The solution (S) is a fine powder of a metal oxide produced by hydrolyzing and polycondensing the above metal alkoxide; a metal oxide prepared by hydrolyzing, polycondensing or burning the metal alkoxide in a dry process. Fine powder; silica fine powder prepared from water glass may be included.

なお、溶液(S)に添加するポリアルコールの量は、カルボン酸含有重合体/ポリアルコール類の重量比が10/90〜99.5/0.5の範囲であることが好ましい。該重量比の範囲はより好ましくは30/70〜99/1、さらに好ましくは50/50〜99/1、最も好ましくは70/30〜98/2である。   The amount of polyalcohol added to the solution (S) is preferably such that the weight ratio of carboxylic acid-containing polymer / polyalcohol is in the range of 10/90 to 99.5 / 0.5. The range of the weight ratio is more preferably 30/70 to 99/1, still more preferably 50/50 to 99/1, and most preferably 70/30 to 98/2.

工程(St3)で調製された溶液(S)は、基材の少なくとも一方の面に塗工される。溶液(S)を塗工する前に、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗布してもよい。溶液(S)を基材に塗工する方法は、特に限定されず、公知の方法を用いることができる。好ましい方法としては、たとえば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法などが挙げられる。   The solution (S) prepared in the step (St3) is applied to at least one surface of the substrate. Before applying the solution (S), the surface of the substrate may be treated with a known anchor coating agent, or a known adhesive may be applied to the surface of the substrate. The method for applying the solution (S) to the substrate is not particularly limited, and a known method can be used. Preferable methods include, for example, casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method, metering bar coating method, chamber doctor combined coating Method, curtain coating method and the like.

溶液(S)を基材上に塗工した後、溶液(S)に含まれる溶媒を除去することによって、イオン化工程前の積層体(積層体(A))が得られる。溶媒の除去の方法は特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法などの方法を単独で、または組み合わせて適用できる。乾燥温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、80℃〜200℃の範囲が好ましく、100〜180℃の範囲がより好ましく、110〜180℃の範囲がさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。   After the solution (S) is applied on the substrate, the solvent contained in the solution (S) is removed to obtain a laminate (laminate (A)) before the ionization step. The method for removing the solvent is not particularly limited, and a known method can be applied. Specifically, methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied alone or in combination. A drying temperature will not be restrict | limited especially if it is 15-20 degreeC or more lower than the flow start temperature of a base material, and 15-20 degreeC or more lower than the thermal decomposition start temperature of a carboxylic acid containing polymer. The drying temperature is preferably in the range of 80 ° C to 200 ° C, more preferably in the range of 100 to 180 ° C, and still more preferably in the range of 110 to 180 ° C. The removal of the solvent may be carried out under normal pressure or reduced pressure.

上記の工程によって得られる積層体(A)を2価以上の金属イオンを含む溶液(以下、溶液(MI)という場合がある)に接触させること(イオン化工程)によって、本発明に用いられるガスバリア性積層体が得られる。なお、イオン化工程は、本発明の効果を損なわない限り、どのような段階で行ってもよい。たとえば、イオン化工程は、包装材料の形態に加工する前あるいは加工した後に行ってもよいし、さらに包装材料中に内容物を充填して密封した後に行ってもよい。   Gas barrier properties used in the present invention by bringing the laminate (A) obtained by the above process into contact with a solution containing metal ions having a valence of 2 or more (hereinafter sometimes referred to as solution (MI)) (ionization process). A laminate is obtained. The ionization process may be performed at any stage as long as the effects of the present invention are not impaired. For example, the ionization step may be performed before or after being processed into the form of the packaging material, or may be performed after the packaging material is filled with the contents and sealed.

溶液(MI)は、溶解によって2価以上の金属イオンを放出する化合物(多価金属化合物)を、溶媒に溶解させることによって調製できる。溶液(MI)を調製する際に使用する溶媒としては、水を使用することが望ましいが、水と混和しうる有機溶媒と水との混合物であってもよい。そのような溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノールなどの低級アルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン類;エチレングリコール、プロピレングリコール等のグリコール類;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタン等の有機溶媒を挙げることができる。   The solution (MI) can be prepared by dissolving a compound (a polyvalent metal compound) that releases metal ions having a valence of 2 or more by dissolution in a solvent. As a solvent used in preparing the solution (MI), it is desirable to use water, but it may be a mixture of an organic solvent miscible with water and water. Examples of such a solvent include lower alcohols such as methanol, ethanol, n-propanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and trioxane; ketones such as acetone, methyl ethyl ketone, methyl vinyl ketone, and methyl isopropyl ketone; ethylene glycol, Examples include glycols such as propylene glycol; glycol derivatives such as methyl cellosolve, ethyl cellosolve, and n-butyl cellosolve; glycerin; organic solvents such as acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, and dimethoxyethane.

多価金属化合物としては、本発明に用いられるガスバリア層に関して例示した金属イオン(すなわち2価以上の金属イオン)を放出する化合物を用いることができる。たとえば、酢酸カルシウム、水酸化カルシウム、塩化カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸マグネシウム、水酸化マグネシウム、塩化マグネシウム、炭酸マグネシム、酢酸鉄(II)、塩化鉄(II)、酢酸鉄(III)、塩化鉄(III)、酢酸亜鉛、塩化亜鉛、酢酸銅(II)、酢酸銅(III)、酢酸鉛、酢酸水銀(II)、塩化バリウム、硫酸バリウム、硫酸ニッケル、硫酸鉛、塩化ジルコニウム、硝酸ジルコニウム、硫酸アルミニウム、カリウムミョウバン(KAl(SO)、硫酸チタン(IV)などを用いることができる。多価金属化合物は、1種類のみを用いても、2種類以上を組み合わせて用いてもよい。好ましい多価金属化合物としては、酢酸カルシウム、水酸化カルシウム、酢酸マグネシウム、酢酸亜鉛が挙げられる。 As the polyvalent metal compound, compounds capable of releasing the metal ions exemplified for the gas barrier layer used in the present invention (that is, divalent or higher metal ions) can be used. For example, calcium acetate, calcium hydroxide, calcium chloride, calcium nitrate, calcium carbonate, magnesium acetate, magnesium hydroxide, magnesium chloride, magnesium carbonate, iron acetate (II), iron chloride (II), iron acetate (III), chloride Iron (III), zinc acetate, zinc chloride, copper acetate (II), copper acetate (III), lead acetate, mercury acetate (II), barium chloride, barium sulfate, nickel sulfate, lead sulfate, zirconium chloride, zirconium nitrate, Aluminum sulfate, potassium alum (KAl (SO 4 ) 2 ), titanium (IV) sulfate, or the like can be used. Only one type of polyvalent metal compound may be used, or two or more types may be used in combination. Preferred polyvalent metal compounds include calcium acetate, calcium hydroxide, magnesium acetate, and zinc acetate.

溶液(MI)における多価金属化合物の濃度は、特に制限されないが、好ましくは5×10-4重量%〜50重量%の範囲であり、より好ましくは1×10-2重量%〜30重量%の範囲であり、さらに好ましくは1重量%〜20重量%の範囲である。 The concentration of the polyvalent metal compound in the solution (MI) is not particularly limited, but is preferably in the range of 5 × 10 −4 wt% to 50 wt%, more preferably 1 × 10 −2 wt% to 30 wt%. More preferably, it is in the range of 1 to 20% by weight.

溶液(MI)に積層体(A)を接触させる際において、溶液(MI)の温度は、特に制限されないが、温度が高いほどカルボキシル基含有重合体のイオン化速度が速い。好ましい温度は、たとえば30〜140℃の範囲であり、好ましくは40℃〜120℃の範囲であり、さらに好ましくは50℃〜100℃の範囲である。   When the laminate (A) is brought into contact with the solution (MI), the temperature of the solution (MI) is not particularly limited, but the higher the temperature, the faster the ionization rate of the carboxyl group-containing polymer. A preferable temperature is, for example, in the range of 30 to 140 ° C, preferably in the range of 40 ° C to 120 ° C, and more preferably in the range of 50 ° C to 100 ° C.

溶液(MI)に積層体(A)を接触させた後、その積層体に残留した溶媒を除去することが望ましい。溶媒の除去の方法は、特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法といった乾燥法を単独で、または2種以上を組み合わせて適用できる。溶媒の除去を行う温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、好ましくは40〜200℃の範囲であり、より好ましくは40〜150℃の範囲であり、さらに好ましくは40〜100℃の範囲である。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。   It is desirable to remove the solvent remaining in the laminate after bringing the laminate (A) into contact with the solution (MI). The method for removing the solvent is not particularly limited, and a known method can be applied. Specifically, drying methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied singly or in combination of two or more. The temperature at which the solvent is removed is not particularly limited as long as it is 15 to 20 ° C. or more lower than the flow start temperature of the substrate and 15 to 20 ° C. or lower than the thermal decomposition start temperature of the carboxylic acid-containing polymer. A drying temperature becomes like this. Preferably it is the range of 40-200 degreeC, More preferably, it is the range of 40-150 degreeC, More preferably, it is the range of 40-100 degreeC. The removal of the solvent may be carried out under normal pressure or reduced pressure.

また、ガスバリア性積層体の表面の外観を損なわないためには、溶媒の除去を行う前または後に、積層体の表面に付着した過剰の多価金属化合物を除去することが好ましい。多価金属化合物を除去する方法としては、多価金属化合物が溶解していく溶剤を用いた洗浄が好ましい。多価金属化合物が溶解していく溶剤としては、溶液(MI)に用いることができる溶媒を用いることができ、溶液(MI)の溶媒と同一のものを用いることが好ましい。   In order not to impair the appearance of the surface of the gas barrier laminate, it is preferable to remove excess polyvalent metal compound adhering to the surface of the laminate before or after removing the solvent. As a method for removing the polyvalent metal compound, washing using a solvent in which the polyvalent metal compound dissolves is preferable. As the solvent in which the polyvalent metal compound dissolves, a solvent that can be used for the solution (MI) can be used, and the same solvent as the solvent for the solution (MI) is preferably used.

本発明に用いられるガスバリア性積層体の製造方法では、第1の工程ののちであって第2の工程の前および/または後に、第1の工程で形成された層を120〜240℃の温度で熱処理する工程をさらに含んでもよい。すなわち、積層体(A)または(B)に対して熱処理を施してもよい。熱処理は、塗工された溶液(S)の溶媒の除去がほぼ終了した後であれば、どの段階で行ってもよいが、イオン化工程を行う前の積層体(すなわち積層体(A))を熱処理することによって、表面の外観が良好なガスバリア性積層体が得られる。熱処理の温度は、好ましくは120℃〜240℃の範囲であり、より好ましくは130〜230℃の範囲であり、さらに好ましくは150℃〜210℃の範囲である。熱処理は、空気中、窒素雰囲気下、アルゴン雰囲気下などで実施することができる。   In the method for producing a gas barrier laminate used in the present invention, the layer formed in the first step is heated to 120 to 240 ° C. after the first step and before and / or after the second step. It may further include a step of heat-treating. That is, you may heat-process with respect to a laminated body (A) or (B). The heat treatment may be performed at any stage as long as the removal of the solvent of the applied solution (S) is almost completed. However, the laminate (ie, the laminate (A)) before the ionization step is performed. By performing the heat treatment, a gas barrier laminate having a good surface appearance can be obtained. The temperature of the heat treatment is preferably in the range of 120 ° C to 240 ° C, more preferably in the range of 130 to 230 ° C, and still more preferably in the range of 150 ° C to 210 ° C. The heat treatment can be performed in air, under a nitrogen atmosphere, under an argon atmosphere, or the like.

また、本発明の製造方法では、積層体(A)または(B)に、紫外線を照射してもよい。紫外線照射は、塗工された溶液(S)の溶媒の除去がほぼ終了した後であれば、いつ行ってもよい。その方法は、特に限定されず、公知の方法を適用できる。照射する紫外線の波長は、170〜250nmの範囲であることが好ましく、170〜190nmの範囲及び/又は230〜250nmの範囲であることがより好ましい。また、紫外線照射に代えて、電子線やγ線などの放射線の照射を行ってもよい。   Moreover, in the manufacturing method of this invention, you may irradiate a laminated body (A) or (B) with an ultraviolet-ray. The ultraviolet irradiation may be performed any time after the removal of the solvent of the coated solution (S) is almost completed. The method is not particularly limited, and a known method can be applied. The wavelength of the ultraviolet rays to be irradiated is preferably in the range of 170 to 250 nm, more preferably in the range of 170 to 190 nm and / or in the range of 230 to 250 nm. Further, instead of ultraviolet irradiation, radiation such as an electron beam or γ-ray may be irradiated.

熱処理と紫外線照射は、どちらか一方のみを行ってもよいし、両者を併用してもよい。熱処理及び/又は紫外線照射を行うことによって、積層体のガスバリア性能がより高度に発現する場合がある。   Only one of heat treatment and ultraviolet irradiation may be performed, or both may be used in combination. By performing heat treatment and / or ultraviolet irradiation, the gas barrier performance of the laminate may be expressed to a higher degree.

基材とガスバリア層との間に接着層(T)を配置するために、溶液(S)の塗工前に基材の表面に処理(アンカーコーティング剤による処理、または接着剤の塗布)を施す場合、第1の工程(溶液(S)の塗工)の後であって上記熱処理および第2の工程(イオン化工程)の前に、溶液(S)が塗工された基材を、比較的低温下に長時間放置する熟成処理を行うことが好ましい。熟成処理の温度は、30〜200℃が好ましく、より好ましくは30〜150℃、さらに好ましくは30〜120℃である。熟成処理の時間は0.5〜10日の範囲であることが好ましく、1〜7日の範囲であることがより好ましく、1〜5日の範囲であることがさらに好ましい。このような熟成処理を行うことにより、基材とガスバリア層との間の接着力がより強固となる。この熟成処理ののちに、さらに上記熱処理(120℃〜240℃の熱処理)を行うことが好ましい。   In order to dispose the adhesive layer (T) between the base material and the gas barrier layer, the surface of the base material is treated (treatment with an anchor coating agent or application of an adhesive) before the application of the solution (S). In this case, after the first step (application of the solution (S)) and before the heat treatment and the second step (ionization step), the substrate coated with the solution (S) is relatively It is preferable to perform an aging treatment that is allowed to stand for a long time at a low temperature. The temperature of the aging treatment is preferably 30 to 200 ° C, more preferably 30 to 150 ° C, still more preferably 30 to 120 ° C. The time for aging treatment is preferably in the range of 0.5 to 10 days, more preferably in the range of 1 to 7 days, and further preferably in the range of 1 to 5 days. By performing such an aging treatment, the adhesive force between the base material and the gas barrier layer becomes stronger. After the aging treatment, it is preferable to perform the above heat treatment (heat treatment at 120 ° C. to 240 ° C.).

本発明のラミネートチューブ容器は、高い酸素バリア性を有し、スクイーズした後も酸素バリア性が低下することがないため、酸素劣化し易い内容物を長期間に亘り酸素から保護することができる。さらに内容物が透視でき、廃棄の際に問題がない。本発明のラミネートチューブ容器は、化粧品、薬品、医薬品、歯磨などのトイレタリー用品、練りからし、わさび等の食品などを内容物とするラミネートチューブ容器として使用することができる。   The laminated tube container of the present invention has a high oxygen barrier property, and the oxygen barrier property does not decrease even after squeezing. Therefore, it is possible to protect contents that are susceptible to oxygen degradation from oxygen for a long period of time. Furthermore, the contents can be seen through, and there is no problem in disposal. The laminate tube container of the present invention can be used as a laminate tube container containing toiletries such as cosmetics, medicines, pharmaceuticals, and toothpastes, foods such as kneaded and wasabi.

以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって限定されない。以下の実施例における測定および評価は、次に示す方法(1)〜(3)によって実施した。なお、以下の実施例において積層体の層構成を表記する際に、物質名のみを表記し、「層」の表記を省略することがある。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Measurement and evaluation in the following examples were performed by the following methods (1) to (3). In the following examples, when describing the layer structure of the laminate, only the substance name may be described, and the “layer” may be omitted.

(1)酸素バリア性の測定
実施例で得られたラミネートチューブ容器から酸素透過度測定用のサンプルを切り取った。酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて測定した。具体的には、酸素供給側に蓋材を構成する積層体の外層が向くように、積層体の内層がキャリアガス側に向くように積層体をセットし、温度20℃、酸素供給側の湿度90%RH、キャリアガス側の湿度90%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で酸素透過度(単位:cm3/m2・day・atm)を測定した。
(1) Measurement of oxygen barrier property A sample for measuring oxygen permeability was cut out from the laminate tube container obtained in the examples. The oxygen transmission rate was measured using an oxygen transmission amount measuring device ("MOCON OX-TRAN 2/20" manufactured by Modern Control). Specifically, the laminate is set so that the inner layer of the laminate faces the carrier gas side so that the outer layer of the laminate constituting the lid material faces the oxygen supply side, the temperature is 20 ° C., and the humidity on the oxygen supply side Oxygen permeability (unit: cm 3 / m 2 · day · atm) was measured under the conditions of 90% RH, humidity 90% RH on the carrier gas side, oxygen pressure 1 atm, and carrier gas pressure 1 atm.

(2)スクイーズ後の酸素バリア性
練りわさびを充填したラミネートチューブ容器を、指で挟み、ラミネートチューブに沿って、指で一定の力で押さえるようにしてを往復運動させた。2000往復した後に、内容物の練りわさびを取り出し、ラミネートチューブ容器から酸素透過度測定用のサンプルを切り取った。内容物は紙タオルにより拭きとった。酸素透過度の測定は上記(1)の測定と同じ条件により実施した。
(2) Oxygen barrier property after squeezing A laminate tube container filled with kneaded wasabi was sandwiched between fingers and reciprocated along the laminate tube so as to be pressed with a certain force with the fingers. After 2000 reciprocations, the kneaded wasabi of the contents was taken out, and a sample for measuring oxygen permeability was cut out from the laminate tube container. The contents were wiped off with a paper towel. The measurement of oxygen permeability was carried out under the same conditions as the measurement in (1) above.

(3)イオンによるカルボキシル基の中和度(イオン化度)
実施例1〜2で得られた積層体(B−1)について、フーリエ変換赤外分光光度計(株式会社島津製作所製、8200PC)を用いて、ATR(全反射測定)のモードで、ガスバリア層に含まれるC=O伸縮振動のピークを観察した。イオン化前のカルボン酸含有重合体のカルボキシル基のC=O伸縮振動に帰属されるピークは1600cm−1〜1850cm−1の範囲に観察され、イオン化された後のカルボキシル基のC=O伸縮振動は1500cm−1〜1600cm−1の範囲に観察された。そして、それぞれの範囲における最大の吸光度からその比を算出し、その比と予め下記の方法で作成した検量線とを用いてイオン化度を求めた。
(3) Degree of neutralization of carboxyl groups by ions (degree of ionization)
About the laminated body (B-1) obtained in Examples 1 and 2, using a Fourier transform infrared spectrophotometer (manufactured by Shimadzu Corporation, 8200PC), in the mode of ATR (total reflection measurement), the gas barrier layer The peak of the C═O stretching vibration contained in was observed. Peak attributed to C = O stretching vibration of the carboxyl group of the ionization front of a carboxylic acid containing polymer was observed in a range of 1600cm -1 ~1850cm -1, C = O stretching vibration of the carboxyl group after being ionized It was observed in the range of 1500cm -1 ~1600cm -1. Then, the ratio was calculated from the maximum absorbance in each range, and the degree of ionization was determined using the ratio and a calibration curve prepared in advance by the following method.

[検量線の作成]
数平均分子量150,000のポリアクリル酸を蒸留水に溶解し、所定量の水酸化ナトリウムでカルボキシル基を中和した。得られたポリアクリル酸の中和物の水溶液を、基材上に、イオン化度の測定の対象となる積層体のガスバリア層と同じ厚さになるようにコートし、乾燥させた。基材には、2液型のアンカーコート剤(三井武田ケミカル株式会社製、タケラックA626(商品名)およびタケネートA50(商品名)、以下ACと略記することがある)を表面にコートした延伸PETフィルム(東レ株式会社製、ルミラー(商品名)。厚さ12μm。以下、「OPET」と略記することがある)を用いた。このようにして、カルボキシル基の中和度が、0〜100モル%間で10モル%ずつ異なる11種類の標準サンプル[積層体(ポリアクリル酸の中和物からなる層/AC/OPET)]を作製した。これらのサンプルについて、フーリエ変換赤外分光光度計(島津製作所製、8200PC)を用いて、ATR(全反射測定)のモードで、赤外吸収スペクトルを測定した。そして、ポリアクリル酸の中和物からなる層に含まれるC=O伸縮振動に対応する2つのピーク、すなわち、1600cm−1〜1850cm−1の範囲に観察されるピークと1500cm−1〜1600cm−1の範囲に観察されるピークとについて、吸光度の最大値の比を算出した。そして、算出した比と、各標準サンプルのイオン化度とを用いて検量線を作成した。
[Create calibration curve]
Polyacrylic acid having a number average molecular weight of 150,000 was dissolved in distilled water, and the carboxyl group was neutralized with a predetermined amount of sodium hydroxide. The obtained aqueous solution of neutralized polyacrylic acid was coated on a substrate so as to have the same thickness as the gas barrier layer of the laminate to be measured for ionization degree, and dried. Stretched PET whose surface is coated with a two-component anchor coating agent (Mitsui Takeda Chemical Co., Ltd., Takelac A626 (trade name) and Takenate A50 (trade name), hereinafter sometimes abbreviated as AC)) A film (manufactured by Toray Industries, Inc., Lumirror (trade name), thickness 12 μm, hereinafter may be abbreviated as “OPET”) was used. In this way, 11 types of standard samples [layered product (layer comprising a neutralized product of polyacrylic acid / AC / OPET)] in which the degree of neutralization of carboxyl groups varies by 10 mol% between 0 and 100 mol%. Was made. About these samples, the infrared absorption spectrum was measured in the mode of ATR (total reflection measurement) using the Fourier-transform infrared spectrophotometer (the Shimadzu Corporation make, 8200PC). The two peaks corresponding to the C = O stretching vibration in the layer consisting of neutralized product of polyacrylic acid, i.e., a peak observed in the range of 1600cm -1 ~1850cm -1 and 1500cm -1 ~1600cm - The ratio of the maximum absorbance was calculated for the peak observed in the range of 1 . Then, a calibration curve was created using the calculated ratio and the ionization degree of each standard sample.

数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、その後、アンモニア水を加えてポリアクリル酸のカルボキシル基の1.5モル%を中和し、水溶液中の固形分濃度が10重量%であるポリアクリル酸水溶液を得た。   Polyacrylic acid (PAA) having a number average molecular weight of 150,000 is dissolved in distilled water, and then ammonia water is added to neutralize 1.5 mol% of the carboxyl group of the polyacrylic acid, so that the solid content concentration in the aqueous solution A polyacrylic acid aqueous solution having a content of 10% by weight was obtained.

次に、テトラメトキシシラン(TMOS)68.4重量部をメタノール82.0重量部に溶解し、続いてγ−グリシドキシプロピルトリメトキシシラン13.6重量部を溶解した後、蒸留水5.13重量部と0.1N(0.1規定)の塩酸12.7重量部とを加えてゾルを調製し、これを攪拌しながら10℃で1時間、加水分解および縮合反応を行った。得られたゾルを蒸留水185重量部で希釈した後、攪拌下の上記10重量%ポリアクリル酸水溶液634重量部に速やかに添加し、溶液(S1)を得た。   Next, 68.4 parts by weight of tetramethoxysilane (TMOS) is dissolved in 82.0 parts by weight of methanol, and then 13.6 parts by weight of γ-glycidoxypropyltrimethoxysilane is dissolved. 13 parts by weight and 12.7 parts by weight of 0.1N (0.1 N) hydrochloric acid were added to prepare a sol, and this was stirred and hydrolyzed and condensed at 10 ° C. for 1 hour. The obtained sol was diluted with 185 parts by weight of distilled water, and then quickly added to 634 parts by weight of the 10 wt% polyacrylic acid aqueous solution under stirring to obtain a solution (S1).

一方、2液型のアンカーコート剤(AC;三井武田ケミカル株式会社製タケラックA626(商品名)およびタケネートA50(商品名)を、延伸PETフィルム(OPET;東レ株式会社製、ルミラー(商品名))上にコートし、乾燥させることによってアンカーコート層を有する基材(AC/OPET)を作製した。この基材のアンカーコート層上に、乾燥後の厚さが1μmになるようにバーコーターによって溶液(S1)をコートしたのち、80℃で5分間乾燥した。延伸PETフィルムの反対面に同様にアンカーコート剤、および溶液(S1)をコートした。その後さらに、乾燥空気中で200℃で5分間熱処理を施した。このようにして、無色透明で外観良好なガスバリア層を有する積層体(ガスバリア層(1μm)/AC層/OPET層(12μm)/AC層/ガスバリア層(1μm))を得た(以下、この積層体を積層体(1)という場合がある)。   On the other hand, a two-component anchor coating agent (AC; Takelac A626 (trade name) manufactured by Mitsui Takeda Chemical Co., Ltd.) and Takenate A50 (trade name) are drawn PET film (OPET; Lumirror (trade name) manufactured by Toray Industries, Inc.) A substrate (AC / OPET) having an anchor coat layer was prepared by coating on the substrate and drying the solution on the anchor coat layer of this substrate by a bar coater so that the thickness after drying was 1 μm. After coating (S1), it was dried for 5 minutes at 80 ° C. Similarly, the opposite surface of the stretched PET film was coated with the anchor coating agent and the solution (S1), and then further in dry air at 200 ° C. for 5 minutes. In this way, a laminate (gas barrier layer (1 μm) / AC layer / OP having a gas barrier layer that is colorless and transparent and has a good appearance) An ET layer (12 μm) / AC layer / gas barrier layer (1 μm)) was obtained (hereinafter, this laminate may be referred to as a laminate (1)).

次に、濃度が10重量%となるように酢酸カルシウムを蒸留水に溶解し、この水溶液を80℃に保温した。そして、この水溶液(80℃;MI−1)に、上記で得られた積層体(1)を約300秒浸漬した。浸漬後、該積層体を取り出して、80℃に調整された蒸留水で該積層体の表面を洗浄し、その後、80℃で5分間乾燥して、本発明に用いられるガスバリア性積層体積層体(B−1)を得た。該積層体(B−1)について、ガスバリア層中のポリアクリル酸のカルボキシル基の中和度を上記の方法によって測定した。その結果、カルボキシル基の94モル%がカルシウムイオンで中和されていることが分かった。   Next, calcium acetate was dissolved in distilled water to a concentration of 10% by weight, and this aqueous solution was kept at 80 ° C. And the laminated body (1) obtained above was immersed in this aqueous solution (80 degreeC; MI-1) for about 300 seconds. After the immersion, the laminate is taken out, the surface of the laminate is washed with distilled water adjusted to 80 ° C., and then dried at 80 ° C. for 5 minutes, so that the gas barrier laminate laminate used in the present invention is used. (B-1) was obtained. About this laminated body (B-1), the neutralization degree of the carboxyl group of the polyacrylic acid in a gas barrier layer was measured by said method. As a result, it was found that 94 mol% of the carboxyl groups were neutralized with calcium ions.

無延伸ポリプロピレンフィルム(トーセロ株式会社製、RXC−18(商品名)、厚さ100μm、以下「PP」と略記することがある)上に、それぞれ2液型の接着剤(三井武田ケミカル株式会社製、A−385(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、上記積層体(B−1;ガスバリア層/AC/OPET/AC/ガスバリア層)の一方の面にグラビア法により印刷を施し印刷を施した面とラミネートした。このようにして、CPP/接着剤/ガスバリア層/AC層/OPET層/AC層/ガスバリア層/印刷層/接着剤/接着剤/CPPという構造を有する積層体(B−1−1)を得た。この積層体から所定の形状に切り取った後、筒状にし重ね合わせた部分をヒートシールし、筒状胴部を製造した。次いで、上記で製造した筒状胴部をチューブ容器成形用のマンドレルに装着し、次に該筒状胴部の一方の端部に、常法により円筒台形状の肩部とそれに連続する細首の口頸部からなる頭部を、ポリプロピレン樹脂を使用し、圧縮成形法で成形して、本発明にかかるチューブ容器を製造した。次に、上記の頭部を有する円筒体の口頸部に、ポリプロピレン樹脂製のキャップを螺旋した。次いで、該筒状胴部の他方の開口部をヒートシールして、ラミネートチューブ容器を製造した。上記した方法により、スクイーズ試験を実施した。スクイ−ズ前の酸素透過度0.15cm/m・day・at、スクイーズ後の酸素透過度0.17cm/m・day・atm。スクイーズ後も酸素バリア性の低下が見られなかった。さらに、レトルト試験前の酸素透過度0.15cm/m・day・at、120℃、30分の条件のレトルト試験後の酸素透過度0.20cm/m・day・atmであり、酸素透過度の低下は殆ど無く、レトルト耐性も非常に優れていた。環境・廃棄適性にも優れ、内容物が透視できた。 Two-component adhesive (Mitsui Takeda Chemical Co., Ltd.) on unstretched polypropylene film (Tosero Co., Ltd., RXC-18 (trade name), thickness 100 μm, hereinafter sometimes abbreviated as “PP”) , A-385 (trade name) and A-50 (trade name)) were prepared by drying and one of the laminates (B-1; gas barrier layer / AC / OPET / AC / gas barrier layer) was prepared. The surface was printed by the gravure method and laminated with the printed surface. Thus, a laminate (B-1-1) having a structure of CPP / adhesive / gas barrier layer / AC layer / OPET layer / AC layer / gas barrier layer / printing layer / adhesive / adhesive / CPP is obtained. It was. After cutting out from this laminated body into a predetermined shape, the cylindrically overlapped portion was heat-sealed to produce a cylindrical body. Next, the cylindrical barrel manufactured as described above is attached to a mandrel for forming a tube container, and then a cylindrical trapezoidal shoulder and a narrow neck continuous therewith are attached to one end of the cylindrical barrel by a conventional method. A tube container according to the present invention was manufactured by molding a head composed of the mouth and neck of the above by a compression molding method using polypropylene resin. Next, a cap made of polypropylene resin was spiraled around the mouth and neck of the cylindrical body having the head. Subsequently, the other opening part of this cylindrical trunk | drum was heat-sealed and the laminated tube container was manufactured. A squeeze test was performed by the method described above. Rake -'s previous oxygen permeability 0.15cm 3 / m 2 · day · at, oxygen permeability 0.17cm 3 / m 2 · day · atm after squeezing. Even after squeezing, the oxygen barrier property was not reduced. Furthermore, the oxygen permeability before retorting testing 0.15cm 3 / m 2 · day · at, 120 ℃, an oxygen transmission rate after the retort test 30 minutes conditions 0.20cm 3 / m 2 · day · atm, There was almost no decrease in oxygen permeability, and the retort resistance was also excellent. Excellent environment and disposal, and the contents could be seen through.

一方、2液型のアンカーコート剤(AC;三井武田ケミカル株式会社製タケラックA626(商品名)およびタケネートA50(商品名)を、延伸ポリアミドフィルム(ユニチカ株式会社製、エンブレム(商品名)、厚さ15μm)上にコートし、乾燥させることによってアンカーコート層を有する基材(AC/OPA)を作製した。この基材のアンカーコート層上に、乾燥後の厚さが1μmになるようにバーコーターによって、実施例1で得た溶液(S1)をコートしたのち、80℃で5分間乾燥した。延伸ポリアミドフィルムの反対面に同様にアンカーコート剤、および溶液(S1)をコートした。その後さらに、乾燥空気中で200℃で5分間熱処理を施した。このようにして、無色透明で外観良好なガスバリア層を有する積層体(ガスバリア層(1μm)/AC層/OPA層(15μm)/AC層/ガスバリア層(1μm))を得た(以下、この積層体を積層体(2)という場合がある)。   On the other hand, a two-pack anchor coating agent (AC; Takelac A626 (trade name) manufactured by Mitsui Takeda Chemical Co., Ltd.) and Takenate A50 (trade name) are made of a stretched polyamide film (Emblem (trade name) manufactured by Unitika Ltd., thickness). A substrate (AC / OPA) having an anchor coat layer was prepared by coating the substrate and drying the bar coater on the anchor coat layer of the substrate so that the thickness after drying was 1 μm. Then, the solution (S1) obtained in Example 1 was coated and then dried for 5 minutes at 80 ° C. Similarly, the other side of the stretched polyamide film was coated with the anchor coating agent and the solution (S1). Heat treatment was performed in dry air for 5 minutes at 200 ° C. In this way, a laminate (gas gas) having a gas barrier layer that was colorless and transparent and had a good appearance. Barrier layer (1 μm) / AC layer / OPA layer (15 μm) / AC layer / gas barrier layer (1 μm)) was obtained (hereinafter, this laminate may be referred to as a laminate (2)).

次に、濃度が10重量%となるように酢酸カルシウムを蒸留水に溶解し、この水溶液を80℃に保温した。そして、この水溶液(80℃;MI−1)に、上記で得られた積層体(2)を約300秒浸漬した。浸漬後、該積層体を取り出して、80℃に調整された蒸留水で該積層体の表面を洗浄し、その後、80℃で5分間乾燥して、本発明の積層体(B−2)を得た。該積層体(B−2)について、ガスバリア層中のポリアクリル酸のカルボキシル基の中和度を上記の方法によって測定した。その結果、カルボキシル基の95モル%がカルシウムイオンで中和されていることが分かった。   Next, calcium acetate was dissolved in distilled water to a concentration of 10% by weight, and this aqueous solution was kept at 80 ° C. And the laminated body (2) obtained above was immersed in this aqueous solution (80 degreeC; MI-1) for about 300 seconds. After the immersion, the laminate is taken out, the surface of the laminate is washed with distilled water adjusted to 80 ° C., and then dried at 80 ° C. for 5 minutes to obtain the laminate (B-2) of the present invention. Obtained. About this laminated body (B-2), the neutralization degree of the carboxyl group of the polyacrylic acid in a gas barrier layer was measured by said method. As a result, it was found that 95 mol% of the carboxyl groups were neutralized with calcium ions.

無延伸ポリプロピレンフィルム(トーセロ株式会社製、RXC−18(商品名)、厚さ100μm、以下「PP」と略記することがある)上に、それぞれ2液型の接着剤(三井武田ケミカル株式会社製、A−385(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、上記積層体(B−2;ガスバリア層/AC層/OPA層/AC層/ガスバリア層)の一方の面にグラビア法により印刷を施し印刷を施した面とラミネートした。このようにして、CPP/接着剤/ガスバリア層/AC層/OPA層/AC層/ガスバリア層/印刷層/接着剤/CPPという構造を有する積層体(B−2−1)を得た。この積層体から所定の形状に切り取った後、筒状にし重ね合わせた部分をヒートシールし、筒状胴部を製造した。次いで、上記で製造した筒状胴部をチューブ容器成形用のマンドレルに装着し、次に該筒状胴部の一方の端部に、常法により円筒台形状の肩部とそれに連続する細首の口頸部からなる頭部を、ポリプロピレン樹脂を使用し、圧縮成形法で成形して、本発明にかかるチューブ容器を製造した。次に、上記の頭部を有する円筒体の口頸部に、ポリプロピレン樹脂製のキャップを螺旋した。次いで、該筒状胴部の他方の開口部をヒートシールして、ラミネートチューブ容器を製造した。上記した方法により、スクイーズ試験を実施した。スクイ−ズ前の酸素透過度0.19cm/m・day・at、スクイーズ後の酸素透過度0.19cm/m・day・atm。スクイーズ後も酸素バリア性の低下が見られなかった。さらに、レトルト試験前の酸素透過度0.19cm/m・day・at、120℃、30分の条件のレトルト試験後の酸素透過度0.24cm/m・day・atmであり、酸素透過度の低下は殆ど無く、レトルト耐性も非常に優れていた。環境・廃棄適性にも優れ、内容物が透視できた。 Two-component adhesive (Mitsui Takeda Chemical Co., Ltd.) on unstretched polypropylene film (Tosero Co., Ltd., RXC-18 (trade name), thickness 100 μm, hereinafter sometimes abbreviated as “PP”) , A-385 (trade name) and A-50 (trade name)) are dried and prepared, and the laminate (B-2; gas barrier layer / AC layer / OPA layer / AC layer / gas barrier layer) is prepared. ) Was printed by the gravure method and laminated with the printed surface. Thus, a laminate (B-2-1) having a structure of CPP / adhesive / gas barrier layer / AC layer / OPA layer / AC layer / gas barrier layer / printing layer / adhesive / CPP was obtained. After cutting out from this laminated body into a predetermined shape, the cylindrically overlapped portion was heat-sealed to produce a cylindrical body. Next, the cylindrical barrel manufactured as described above is attached to a mandrel for forming a tube container, and then a cylindrical trapezoidal shoulder and a narrow neck continuous therewith are attached to one end of the cylindrical barrel by a conventional method. A tube container according to the present invention was manufactured by molding a head composed of the mouth and neck of the above by a compression molding method using polypropylene resin. Next, a cap made of polypropylene resin was spiraled around the mouth and neck of the cylindrical body having the head. Subsequently, the other opening part of this cylindrical trunk | drum was heat-sealed and the laminated tube container was manufactured. A squeeze test was performed by the method described above. Rake -'s previous oxygen permeability 0.19cm 3 / m 2 · day · at, oxygen permeability 0.19cm 3 / m 2 · day · atm after squeezing. Even after squeezing, the oxygen barrier property was not reduced. Furthermore, the oxygen permeability before retorting testing 0.19cm 3 / m 2 · day · at, 120 ℃, an oxygen transmission rate after the retort test 30 minutes conditions 0.24cm 3 / m 2 · day · atm, There was almost no decrease in oxygen permeability, and the retort resistance was also excellent. Excellent environment and disposal, and the contents could be seen through.

無延伸直鎖状(線状)低密度ポリエチレンフィルム(トーセロ株式会社製、トーセロT.U.X.(商品名)、厚さ100μm、以下「LLDPE」と略記することがある)上に、それぞれ2液型の接着剤(三井武田ケミカル株式会社製、A−385(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、実施例1で得られた上記積層体(B−1;ガスバリア層/AC層/OPET層/AC層/ガスバリア層)の一方の面にグラビア法により印刷を施し印刷を施した面とラミネートした。このようにして、LLDPE/接着剤/ガスバリア層/AC層/OPET層/AC層/ガスバリア層/印刷層/接着剤/LLDPEという構造を有する積層体(B−1−2)を得た。この積層体から所定の形状に切り取った後、筒状にし重ね合わせた部分をヒートシールし、筒状胴部を製造した。次いで、上記で製造した筒状胴部をチューブ容器成形用のマンドレルに装着し、次に該筒状胴部の一方の端部に、常法により円筒台形状の肩部とそれに連続する細首の口頸部からなる頭部を、直鎖状ポリエチレン樹脂を使用し、圧縮成形法で成形して、本発明にかかるチューブ容器を製造した。次に、上記の頭部を有する円筒体の口頸部に、直鎖状ポリエチレン樹脂製のキャップを螺旋した。次いで、該筒状胴部の他方の開口部をヒートシールして、ラミネートチューブ容器を製造した。上記した方法により、スクイーズ試験を実施した。スクイ−ズ前の酸素透過度0.19cm/m・day・at、スクイーズ後の酸素透過度0.22cm/m・day・atm。スクイーズ後も酸素バリア性の低下が見られなかった。環境・廃棄適性にも優れ、内容物が透視できた。
On an unstretched linear (linear) low-density polyethylene film (manufactured by Tosello Co., Ltd., Tosero TUX (trade name), thickness 100 μm, hereinafter sometimes abbreviated as “LLDPE”), respectively A two-component adhesive (made by Mitsui Takeda Chemical Co., Ltd., A-385 (trade name) and A-50 (trade name)) was prepared by drying and the laminate obtained in Example 1 was prepared. One side of the body (B-1; gas barrier layer / AC layer / OPET layer / AC layer / gas barrier layer) was printed by the gravure method and laminated with the printed surface. In this way, a laminate (B-1-2) having a structure of LLDPE / adhesive / gas barrier layer / AC layer / OPET layer / AC layer / gas barrier layer / printing layer / adhesive / LLDPE was obtained. After cutting out from this laminated body into a predetermined shape, the cylindrically overlapped portion was heat-sealed to produce a cylindrical body. Next, the cylindrical barrel manufactured as described above is attached to a mandrel for forming a tube container, and then a cylindrical trapezoidal shoulder and a narrow neck continuous therewith are attached to one end of the cylindrical barrel by a conventional method. A tube container according to the present invention was manufactured by molding a head composed of the neck and neck of the above by a compression molding method using a linear polyethylene resin. Next, a cap made of a linear polyethylene resin was spiraled around the mouth and neck of the cylindrical body having the head. Subsequently, the other opening part of this cylindrical trunk | drum was heat-sealed and the laminated tube container was manufactured. A squeeze test was performed by the method described above. Rake -'s previous oxygen permeability 0.19cm 3 / m 2 · day · at, oxygen permeability 0.22cm 3 / m 2 · day · atm after squeezing. Even after squeezing, the oxygen barrier property was not reduced. Excellent environment and disposal, and the contents could be seen through.

数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、水溶液中の固形分濃度が10重量%であるポリアクリル酸水溶液の溶液(S4)を得た。
以下、溶液(S1)の代わりに溶液(S4)を用いること以外は実施例1の通りの操作を行い、無色透明で外観良好なガスバリア層を有する積層体(4)を得た。
Polyacrylic acid (PAA) having a number average molecular weight of 150,000 was dissolved in distilled water to obtain a polyacrylic acid aqueous solution (S4) having a solid content concentration of 10% by weight in the aqueous solution.
Hereinafter, the operation as in Example 1 was performed except that the solution (S4) was used instead of the solution (S1) to obtain a laminate (4) having a gas barrier layer that was colorless and transparent and had a good appearance.

次に、濃度が10重量%となるように酢酸カルシウムを蒸留水に溶解し、この水溶液を80℃に保温した。そして、この水溶液(80℃;MI−1)に、上記で得られた積層体(4)を約300秒浸漬した。浸漬後、該積層体を取り出して、80℃に調整された蒸留水で該積層体の表面を洗浄し、その後、80℃で5分間乾燥して、本発明の積層体(B−4)を得た。該積層体(B−4)について、ガスバリア層中のポリアクリル酸のカルボキシル基の中和度を上記の方法によって測定した。その結果、カルボキシル基の95モル%がカルシウムイオンで中和されていることが分かった。   Next, calcium acetate was dissolved in distilled water to a concentration of 10% by weight, and this aqueous solution was kept at 80 ° C. And the laminated body (4) obtained above was immersed in this aqueous solution (80 degreeC; MI-1) for about 300 seconds. After the immersion, the laminate is taken out, the surface of the laminate is washed with distilled water adjusted to 80 ° C., and then dried at 80 ° C. for 5 minutes to obtain the laminate (B-4) of the present invention. Obtained. About this laminated body (B-4), the neutralization degree of the carboxyl group of the polyacrylic acid in a gas barrier layer was measured by said method. As a result, it was found that 95 mol% of the carboxyl groups were neutralized with calcium ions.

以下、実施例1の積層体(B−1)の代わりに積層体(B−4)を用いること以外は実施例1の通りの操作を行い、ラミネートチューブ容器を製造した。   Hereafter, except having used a laminated body (B-4) instead of the laminated body (B-1) of Example 1, operation as Example 1 was performed and the laminated tube container was manufactured.

上記したラミネートチューブ容器について、上記した方法により、スクイーズ試験を実施した。スクイ−ズ前の酸素透過度1.5cm/m・day・at、スクイーズ後の酸素透過度1.8cm/m・day・atm。スクイーズ後も酸素バリア性の低下が見られなかった。さらに、レトルト試験前の酸素透過度1.5cm/m・day・at、120℃、30分の条件のレトルト試験後の酸素透過度3.1cm/m・day・atmであり、酸素透過度の低下は殆ど無く、レトルト耐性も非常に優れていた。環境・廃棄適性にも優れ、内容物が透視できた。
A squeeze test was performed on the above-described laminated tube container by the method described above. Rake -'s previous oxygen permeability 1.5cm 3 / m 2 · day · at, oxygen permeability 1.8cm 3 / m 2 · day · atm after squeezing. Even after squeezing, the oxygen barrier property was not reduced. Furthermore, the oxygen permeability 1.5cm before retort test 3 / m 2 · day · at , 120 ℃, an oxygen transmission rate after the retort test 30 minutes condition 3.1cm 3 / m 2 · day · atm, There was almost no decrease in oxygen permeability, and the retort resistance was also excellent. Excellent environment and disposal, and the contents could be seen through.

本発明は、化粧品、薬品、医薬品、食品、歯磨などの内容物の充填包装に適するチューブ容器に関する。本発明のラミネートチューブ容器は、酸素バリア性に優れ、さらにラミネートチューブ容器をスクイーズした後も酸素バリア性が低下することがないため、長期に亘り内容物を酸化劣化から保護できるラミネートチューブ容器に関する。
The present invention relates to a tube container suitable for filling and packaging contents such as cosmetics, medicines, pharmaceuticals, foods, and toothpastes. The laminate tube container of the present invention relates to a laminate tube container that is excellent in oxygen barrier properties and that can protect the contents from oxidative degradation over a long period of time because the oxygen barrier properties do not decrease even after the laminate tube container is squeezed.

Claims (6)

基材と、前記基材の少なくとも一方の面に積層されたガスバリア層とを含むガスバリア性積層体からなるラミネートチューブ容器であって、前記ガスバリア層が、化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物を含む組成物からなり、
前記化合物(L)が、以下の化学式(I)で示される少なくとも1種の化合物(A)と、以下の化学式(II)で示される少なくとも1種の化合物(B)とからなり、
前記化合物(A)/前記化合物(B)のモル比が0.5/99.5〜40/60の範囲であり、
前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されていることを特徴とするラミネートチューブ容器。
(OR m−n−k ・・・(I)
[化学式(I)中、M はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaまたはNdを表す。R はアルキル基を表す。X はハロゲン原子を表す。Zは、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。mはM の原子価と等しい。nは0〜(m−1)の整数を表す。kは0〜(m−1)の整数を表す。1≦n+k≦(m−1)である。]
(OR p−q−r ・・・(II)
[化学式(II)中、M はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaまたはNdを表す。R はアルキル基を表す。R はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X はハロゲン原子を表す。pはM の原子価と等しい。qは0〜pの整数を表す。rは0〜pの整数を表す。1≦q+r≦pである。]
A laminate tube container comprising a base material and a gas barrier laminate comprising a gas barrier layer laminated on at least one surface of the base material, wherein the gas barrier layer comprises a hydrolysis condensate of compound (L), A composition comprising a neutralized product of a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group;
The compound (L) comprises at least one compound (A) represented by the following chemical formula (I) and at least one compound (B) represented by the following chemical formula (II):
The molar ratio of the compound (A) / the compound (B) is in the range of 0.5 / 99.5 to 40/60,
A laminate tube container, wherein at least a part of —COO— group contained in the at least one functional group is neutralized with a divalent or higher metal ion.
M 1 (OR 1 ) n X 1 k Z m−n−k (I)
[In the chemical formula (I), M 1 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La or Represents Nd. R 1 represents an alkyl group. X 1 represents a halogen atom. Z represents an alkyl group substituted with a functional group having reactivity with a carboxyl group. m is equal to the valence of M 1 . n represents an integer of 0 to (m-1). k represents an integer of 0 to (m−1). 1 ≦ n + k ≦ (m−1). ]
M 2 (OR 2) q R 3 p-q-r X 2 r ··· (II)
[In the chemical formula (II), M 2 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La or Represents Nd. R 2 represents an alkyl group. R 3 represents an alkyl group, an aralkyl group, an aryl group or an alkenyl group. X 2 represents a halogen atom. p is equal to the valence of M 2 . q represents an integer of 0 to p. r represents an integer of 0 to p. 1 ≦ q + r ≦ p. ]
前記化学式(I)において、カルボキシル基との反応性を有する前記官能基が、エポキシ基、アミノ基、ハロゲン基、メルカプト基、イソシアネート基、ウレイド基および水酸基から選ばれる少なくとも1つの官能基である請求項に記載のラミネートチューブ容器。 In the chemical formula (I), the functional group having reactivity with a carboxyl group is at least one functional group selected from an epoxy group, an amino group, a halogen group, a mercapto group, an isocyanate group, a ureido group, and a hydroxyl group. Item 2. The laminated tube container according to Item 1 . 前記重合体が、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体である請求項1または2に記載のラミネートチューブ容器。 The laminate tube container according to claim 1 or 2 , wherein the polymer is at least one polymer selected from polyacrylic acid and polymethacrylic acid. 前記金属イオンが、カルシウムイオン、マグネシウムイオン、バリウムイオンおよび亜鉛イオンから選ばれる少なくとも1つのイオンである請求項1〜のいずれか1項に記載のラミネートチューブ容器。 The laminate tube container according to any one of claims 1 to 3 , wherein the metal ion is at least one ion selected from calcium ion, magnesium ion, barium ion, and zinc ion. 前記ラミネートチューブ容器の最内層が無延伸のポリプロピレン層である、請求項1〜のいずれか1項に記載のラミネートチューブ容器。 The laminate tube container according to any one of claims 1 to 4 , wherein the innermost layer of the laminate tube container is an unstretched polypropylene layer. 前記ガスバリア性積層体が、基材とガスバリア層の間に、蒸着法で得た無機物からなる層を有する請求項1〜のいずれか1項に記載のラミネートチューブ容器。 The laminate tube container according to any one of claims 1 to 5 , wherein the gas barrier laminate has a layer made of an inorganic material obtained by a vapor deposition method between a base material and a gas barrier layer.
JP2006094653A 2005-06-03 2006-03-30 Laminated tube container Active JP4754383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094653A JP4754383B2 (en) 2005-06-03 2006-03-30 Laminated tube container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005164318 2005-06-03
JP2005164318 2005-06-03
JP2006094653A JP4754383B2 (en) 2005-06-03 2006-03-30 Laminated tube container

Publications (2)

Publication Number Publication Date
JP2007008584A JP2007008584A (en) 2007-01-18
JP4754383B2 true JP4754383B2 (en) 2011-08-24

Family

ID=37747586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094653A Active JP4754383B2 (en) 2005-06-03 2006-03-30 Laminated tube container

Country Status (1)

Country Link
JP (1) JP4754383B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383245B2 (en) 2007-05-29 2013-02-26 Toppan Printing Co., Ltd. Gas barrier multilayer structure precursor,gas barrier multilayer structure and processes for producing the same
JP5366750B2 (en) * 2008-12-17 2013-12-11 株式会社クラレ Laminated tube container
CN103249550A (en) * 2010-12-06 2013-08-14 高露洁-棕榄公司 Laminate tube having enhanced resiliency by a block copolymer
EP3526037B1 (en) 2016-10-11 2022-02-09 Kimpai Lamitube Co., Ltd. Polymer barrier laminate tube for container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361779A (en) * 2001-06-13 2002-12-18 Dainippon Printing Co Ltd Packaging material for tube container and tube container using the same
JP3856718B2 (en) * 2002-04-01 2006-12-13 レンゴー株式会社 Gas barrier resin composition and gas barrier film molded therefrom

Also Published As

Publication number Publication date
JP2007008584A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4865707B2 (en) Gas barrier laminate, method for producing the same, and package using the same
KR101220103B1 (en) Laminate having gas barrier properties, and manufacturing method therefor
JP4828282B2 (en) Pouch with spout
WO2006104053A1 (en) Paper container
JP4778346B2 (en) Vacuum insulation
JP4828281B2 (en) Vacuum packaging bag
JP4754383B2 (en) Laminated tube container
JP5059335B2 (en) Infusion bag
JP5139964B2 (en) Infusion bag
JP5280166B2 (en) Vacuum packaging bag
JP4974556B2 (en) Paper container with window
JP4795724B2 (en) Oxygen-absorbing laminate and packaging material
JP5081139B2 (en) Laminated tube container
JP4828280B2 (en) Container lid
JP4974557B2 (en) Retort processing paper container
JP2006335042A (en) Molded body
JP5366750B2 (en) Laminated tube container
JP5292085B2 (en) Pouch with spout
JP5436128B2 (en) Pouch with spout
JP5155102B2 (en) Vertical bag filling and sealing bag
JP2008200990A (en) Packaging material and its manufacturing method
JP2010162328A (en) Infusion bag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4754383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150