JP4754269B2 - Filter material for air filter, method for producing the same, and air filter - Google Patents

Filter material for air filter, method for producing the same, and air filter Download PDF

Info

Publication number
JP4754269B2
JP4754269B2 JP2005156010A JP2005156010A JP4754269B2 JP 4754269 B2 JP4754269 B2 JP 4754269B2 JP 2005156010 A JP2005156010 A JP 2005156010A JP 2005156010 A JP2005156010 A JP 2005156010A JP 4754269 B2 JP4754269 B2 JP 4754269B2
Authority
JP
Japan
Prior art keywords
filter medium
fibers
filter
sheet
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005156010A
Other languages
Japanese (ja)
Other versions
JP2006007209A (en
Inventor
範一 新舎
芳信 柿崎
正昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2005156010A priority Critical patent/JP4754269B2/en
Publication of JP2006007209A publication Critical patent/JP2006007209A/en
Application granted granted Critical
Publication of JP4754269B2 publication Critical patent/JP4754269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、半導体製造工業、医薬品製造工業、食品工業及び病院などの分野で使用されるクリーンルームの浄化、オフィスの空調、家庭用エアコン等に使用されるエアフィルタに用いられるエアフィルタ用ろ材及びその製造方法並びにエアフィルタに関する。 The present invention relates to a semiconductor manufacturing industry, pharmaceutical manufacturing industry, cleaning of clean rooms used in the fields such as food industry and hospitals, office air conditioning, domestic air conditioner filter for an air filter used in air filters used for material and The present invention relates to a manufacturing method and an air filter .

従来、エアフィルタとしては、大面積のろ材をジグザグ状に折り、前記ろ材の間隔を間隔保持材である波形状のセパレータで保持してフィルタパックを形成し、例えば、奥行き290mmの箱形のフィルタ枠に収容させたエアフィルタが使用されている。このようなエアフィルタは、ろ材面積が大きいため長寿命であるという利点がある。また、エレクレット不織布等をジグザグ状に折ったろ材の微小な間隔をリボン材で保持したプリーツ型のフィルタパックを形成し、例えば、奥行き610mmの箱形のフィルタ枠に収容させたタイプのエアフィルタも使用されている。このタイプのエアフィルタは、ろ材である不織布を構成する繊維にプラス若しくはマイナスの電荷を帯電させているため、反対の電荷を有する粉塵等を吸着しやすいという利点がある。このタイプのエアフィルタは、ろ材を頻繁に交換することで、エアフィルタを長く使用している。また、例えば、特許文献1のように、袋状のろ材の開口部に枠体を取り付けた吹き流しタイプのエアフィルタも使用されている。このような吹き流しタイプのエアフィルタも奥行きが610mmと大きいため、ろ材面積が大きく長寿命であるという利点がある。 Conventionally, as an air filter , a large-area filter medium is folded in a zigzag shape, and a filter pack is formed by holding the interval of the filter medium with a wave-shaped separator as an interval holding material. For example, a box-shaped filter having a depth of 290 mm An air filter housed in a frame is used. Such an air filter has an advantage that it has a long life because of a large filter medium area. Also, an air filter of a type in which a pleat type filter pack is formed in which a fine interval of filter media obtained by folding an electret nonwoven fabric or the like in a zigzag shape is held by a ribbon material and accommodated in a box-shaped filter frame having a depth of 610 mm, for example. Has also been used. This type of air filter has the advantage that dust or the like having an opposite charge is easily adsorbed because positive or negative charges are charged on the fibers constituting the nonwoven fabric as a filter medium. This type of air filter has been used for a long time by frequently changing the filter medium. Moreover, for example, as in Patent Document 1, a blow-off type air filter in which a frame is attached to an opening of a bag-shaped filter medium is also used. Such an airflow type air filter has a large depth of 610 mm, and thus has an advantage of a large filter medium area and a long life.

前記エアフィルタに用いられるろ材としては、前記エレクレット不織布等の他に、合成繊維や無機繊維にバインダを添加して湿式抄紙法で抄造したシートからなるろ材が用いられていた。このようなエアフィルタ用のろ材としては、強度が強く、粉塵の捕集効率が高く、圧力損失が低いものが望まれている。
例えば、図3に示すように、ガラス繊維等を湿式抄紙法で抄造したシートからなる従来のろ材10は、平均繊維径の比較的小さいガラス繊維9によって、ろ材の厚さ方向に平均孔径の小さな隙間が均一に形成されてしまうため、空気の流入側に多くの粉塵8が偏って捕集され、圧力損失が高くなるという問題があった。前記ろ材10には平均繊維径のやや大きいガラス繊維16も含まれている。
As the filter medium used for the air filter, in addition to the electret nonwoven fabric, a filter medium made of a sheet made by a wet paper making method by adding a binder to synthetic fibers or inorganic fibers has been used. As such a filter medium for an air filter , a filter medium having high strength, high dust collection efficiency, and low pressure loss is desired.
For example, as shown in FIG. 3, a conventional filter medium 10 made of a sheet made of glass fiber or the like by a wet papermaking method has a small average pore diameter in the thickness direction of the filter medium due to glass fibers 9 having a relatively small average fiber diameter. Since the gaps are formed uniformly, there is a problem that a large amount of dust 8 is collected on the air inflow side and the pressure loss increases. The filter medium 10 also includes glass fibers 16 having a slightly large average fiber diameter.

圧力損失を低くするためには、平均繊維径の大きい繊維を使用してろ材の密度を低くすることが考えられる。しかし、平均繊維径の大きな繊維のみで抄造したシートをろ材とした場合、繊維と繊維の隙間が大きくなり、粉塵の捕集効率が低下する。このため、特許文献2には、図4に示すように、平均繊維径の大きな合成繊維11と、平均繊維径の小さなガラス繊維12と、発泡性粒子を分散媒に分散し、湿式抄紙法によってシート状物を形成した後、発泡性粒子の発泡によって空隙部13を形成したシートをろ材15としたものが開示されている。前記発泡性粒子は、発泡した際にシート状物を構成する繊維を押し広げて空隙部13を形成し、この空隙部13を維持したまま、発泡性粒子の外壁14を溶融させて周囲の繊維を接着している。
特開平7−253028号公報 特開平9−155127号公報
In order to reduce the pressure loss, it is conceivable to reduce the density of the filter medium by using fibers having a large average fiber diameter. However, when a sheet made with only fibers having a large average fiber diameter is used as a filter medium, the gap between the fibers increases, and the dust collection efficiency decreases. Therefore, in Patent Document 2, as shown in FIG. 4, a synthetic fiber 11 having a large average fiber diameter, a glass fiber 12 having a small average fiber diameter, and expandable particles are dispersed in a dispersion medium, and a wet papermaking method is used. After forming a sheet-like material, a sheet in which voids 13 are formed by foaming of expandable particles is used as a filter medium 15. When the foamable particles are foamed, the fibers constituting the sheet-like material are spread to form a void portion 13, and while maintaining the void portion 13, the outer wall 14 of the expandable particles is melted to surround the surrounding fibers. Is glued.
Japanese Patent Laid-Open No. 7-253028 JP-A-9-155127

しかしながら、図4に示すように、特許文献2に記載のろ材15は、発泡性粒子の発泡によって形成された空隙部13によって、ろ材15の密度は低下するものの、骨格繊維となる平均繊維径の大きな合成繊維11によって形成された大きな網目構造中に、平均繊維径の小さなガラス繊維12が充填され、やはりろ材15の厚さ方向に平均孔径の小さな隙間が均一に形成されてしまうため、空気の流入側に多くの粉塵8が偏って捕集されるという問題は改善されていなかった。このため、ろ材15は、圧力損失が高くなり、ろ材の寿命が短いという問題があった。また、ろ材15は、発泡性粒子の発泡により形成された空隙部13によって空気の通路が確保されるという利点を有するものの、せっかく確保された空気の通路が、骨格繊維となる平均繊維径の大きな合成繊維11によって邪魔され、圧力損失が高くなるという問題があった。
そこで、本発明は、ろ材を構成するシート内の空隙部によって空気の通路が確保されるとともに、空気の流入側に偏って粉塵を捕集することなく、ろ材の厚み方向に均一に粉塵を捕集することができ、長寿命化することの可能なエアフィルタ用ろ材及びその製造方法並びにエアフィルタを提供することを目的とする。
However, as shown in FIG. 4, the filter medium 15 described in Patent Document 2 has an average fiber diameter of skeleton fibers, although the density of the filter medium 15 is reduced by the voids 13 formed by foaming of expandable particles. The large mesh structure formed by the large synthetic fibers 11 is filled with the glass fibers 12 having a small average fiber diameter, and gaps having a small average pore diameter are formed uniformly in the thickness direction of the filter medium 15. The problem that a large amount of dust 8 is collected on the inflow side is not improved. For this reason, the filter medium 15 has a problem that the pressure loss becomes high and the life of the filter medium is short. In addition, the filter medium 15 has an advantage that an air passage is ensured by the gap portion 13 formed by foaming of the expandable particles, but the air passage secured with great effort has a large average fiber diameter as a skeleton fiber. There was a problem that the pressure loss was increased due to obstruction by the synthetic fiber 11.
Therefore, the present invention secures air passages by the gaps in the sheet constituting the filter medium, and collects dust uniformly in the thickness direction of the filter medium without being biased toward the air inflow side and collecting dust. It can be condensed, and an object thereof is to provide a filter medium and method of manufacturing the same, and an air filter for possible air filter to long life.

本発明のエアフィルタ用ろ材は、請求項1に記載の通り、発泡性粒子を破裂させた破片で周囲の繊維を接着して空隙部を形成したシートからなるエアフィルタ用ろ材であって、前記シートは平均繊維径4〜8μmのガラス短繊維70〜90質量%と、平均繊維径2μm未満のガラス短繊維0〜15質量%と、平均繊維径10〜35μmの接着性合成繊維5〜15質量%と、発泡性粒子の破片3〜10質量%からなることを特徴する。
また、本発明のエアフィルタ用ろ材の製造方法は、請求項2に記載の通り、平均繊維径4〜8μmのガラス短繊維70〜90質量%と、平均繊維径2μm未満のガラス短繊維0〜15質量%と、平均繊維径10〜35μmの接着性合成繊維5〜15質量%と、平均粒径3〜20μmの未発泡の発泡性粒子3〜10質量%を分散させた水性分散液を用いてシート状物を抄造し、前記発泡性粒子を発泡させて空隙部を形成した後、前記発泡性粒子を破裂させた破片で周囲の繊維を接着してシートとすることを特徴とする。
また、本発明のエアフィルタは、請求項3に記載の通り、請求項1に記載のエアフィルタ用ろ材を用いたことを特徴とする。
Air filter medium of the present invention is a street for an air filter media comprising a sheet formed a gap portion by bonding a fiber around at debris rupture the expandable particles of claim 1, wherein sheet and 70 to 90 wt% short glass fibers having an average fiber diameter of 4-8 [mu] m, and 0 to 15 wt% short glass fibers less than the average fiber diameter of 2 [mu] m, an adhesive synthetic fibers 5-15 weight average fiber diameter of 10~35μm %, And 3 to 10% by mass of expandable particle fragments.
Moreover, the manufacturing method of the filter material for air filters of this invention is 70-90 mass% of short glass fibers with an average fiber diameter of 4-8 micrometers , and short glass fibers 0 with an average fiber diameter of less than 2 micrometers as described in Claim 2. An aqueous dispersion in which 15% by mass, 5 to 15% by mass of an adhesive synthetic fiber having an average fiber diameter of 10 to 35 μm, and 3 to 10% by mass of unfoamed expandable particles having an average particle diameter of 3 to 20 μm are used. The sheet is made into a sheet, the foamable particles are foamed to form a void portion, and then the surrounding fibers are adhered to each other by a fragment obtained by rupturing the foamable particles to form a sheet.
Moreover, the air filter of the present invention is characterized in that, as described in claim 3, the air filter medium according to claim 1 is used.

本発明のエアフィルタ用ろ材は、発泡性粒子を破裂させた破片で周囲の繊維を接着して空隙部を形成したシートであって、前記シートは平均繊維径4〜8μmのガラス短繊維70〜90質量%と、平均繊維径2μm未満のガラス短繊維0〜15質量%と、平均繊維径10〜35μmの接着性合成繊維5〜15質量%と、発泡性粒子の破片3〜10質量%からなるものである。従って、前記シート中の空隙部が空気の通路となって、ろ材の流入側から流出側まで空気が移動しやすくなるとともに、ろ材の厚さ方向全体に亘って、前記シートを構成する平均繊維径4〜8μmのガラス短繊維によって形成された比較的細かい網目構造中に均等に粉塵を捕集することができ、前記シートからなるろ材を長寿命とすることができる。また、平均繊維径2μm未満のガラス短繊維を混合した場合は、平均繊維径4〜8μmのガラス短繊維によって形成された比較的細かい網目構造によって、前記微細ガラス短繊維が分散されて、圧力損失を上昇させない程度の微細な網目構造を形成し、ろ材の厚さ方向全体にわたって粉塵の捕集効率を高くすることができ、ろ材寿命をより長くすることができる。
また、前記シート中に発泡性粒子の破片が3〜10質量%含まれるため、破裂した発泡性粒子の破片が通気性を悪化させない程度に強固に周囲の繊維を接着し、ろ材の強度を向上することができる。
本発明のエアフィルタ用ろ材の製造方法によれば、前記発泡性粒子を破裂させた破片で周囲の繊維を接着しているため、接着性合成繊維のみで繊維を接着する場合と比較して、シートの強度が向上し、長寿命のろ材を製造することができる。
本発明のエアフィルタ用ろ材を用いたエアフィルタは、ろ材強度が高いため、従来のガラス繊維を抄造したシートをろ材として用いた場合と比較して、ろ材の寿命を約2倍長くすることができ、前記ろ材を用いたエアフィルタをコンパクトに形成できる。
The filter material for an air filter of the present invention is a sheet in which voids are formed by adhering surrounding fibers with fragments obtained by rupturing foamable particles, and the sheet is formed of short glass fibers 70 to 70 having an average fiber diameter of 4 to 8 μm. From 90% by mass, from 0 to 15% by mass of short glass fibers having an average fiber diameter of less than 2 μm, from 5 to 15% by mass of adhesive synthetic fibers having an average fiber diameter of from 10 to 35 μm, and from 3 to 10% by mass of foamable particles. It will be. Therefore, the voids in the sheet serve as air passages, making it easier for air to move from the inflow side to the outflow side of the filter medium, and the average fiber diameter constituting the sheet over the entire thickness direction of the filter medium. Dust can be evenly collected in a relatively fine network structure formed by short glass fibers of 4 to 8 μm, and the filter medium comprising the sheet can have a long life. Further, when glass short fibers having an average fiber diameter of less than 2 μm are mixed, the fine glass short fibers are dispersed by a relatively fine network structure formed by glass short fibers having an average fiber diameter of 4 to 8 μm , and pressure loss As a result, a fine mesh structure can be formed so that the dust collection efficiency can be increased over the entire thickness direction of the filter medium, and the life of the filter medium can be further extended.
Further, since 3 to 10% by mass of expandable particle fragments are contained in the sheet, the surrounding fibers are firmly bonded to the extent that the fragments of expandable expandable particles do not deteriorate the air permeability, and the strength of the filter medium is improved. can do.
According to the method for producing a filter medium for an air filter of the present invention, since the surrounding fibers are bonded with the fragments obtained by rupturing the expandable particles, compared to the case where the fibers are bonded only with the adhesive synthetic fibers, The strength of the sheet is improved and a long-life filter medium can be produced.
Since the air filter using the air filter medium of the present invention has a high filter medium strength, the life of the filter medium may be increased by about twice as compared with the case where a sheet made of a conventional glass fiber is used as the filter medium. And an air filter using the filter medium can be formed compactly.

本発明のエアフィルタ用ろ材は、発泡性粒子を破裂させた破片で周囲の繊維を接着して空隙部を形成しているシートであって、前記シートは平均繊維径4〜8μmのガラス短繊維70〜90質量%と、平均繊維径2μm未満のガラス短繊維0〜15質量%と、平均繊維径10〜35μmの接着性合成繊維5〜15質量%と、発泡性粒子の破片3〜10質量%からなっている。
前記シート中に、平均繊維径4〜8μmのガラス短繊維を70〜90質量%配合しているのは、配合量が70質量%未満では接着性合成繊維、発泡性粒子の破片の配合量が増加するため、ろ材の圧力損失が高くなる問題があり、平均繊維径が8μmを超えるか若しくは配合量が90質量%を超えると、接着性合成繊維、発泡性粒子の破片の配合量も少なくなるため、ろ材の強度が低下するという問題があるからである。
前記シート中の繊維と繊維の隙間を小さくし、圧力損失を上昇させない範囲で粉塵の捕集効率を向上させるため、前記ガラス短繊維の一部を配合量0〜15質量%の範囲で平均繊維径2μm未満のガラス短繊維を使用することもできる。尚、安定した品質のガラス短繊維を使用するためには、平均繊維径0.3μm以上のものを使用することが好ましい。
前記ガラス短繊維は、蒸気吹付法、スピニング法、火焔挿入法、ロータリー法などで形成したものを使用することができる。
The filter material for an air filter of the present invention is a sheet in which voids are formed by adhering surrounding fibers with fragments obtained by rupturing expandable particles, and the sheet is a short glass fiber having an average fiber diameter of 4 to 8 μm. 70 to 90% by mass, 0 to 15% by mass of short glass fibers having an average fiber diameter of less than 2 μm, 5 to 15% by mass of adhesive synthetic fibers having an average fiber diameter of 10 to 35 μm, and 3 to 10 mass of foamable particles. %.
In the sheet, short glass fibers having an average fiber diameter of 4 to 8 μm are blended in an amount of 70 to 90% by mass. When the blending amount is less than 70% by mass, the blending amount of adhesive synthetic fibers and foam particles is small. Therefore, when the average fiber diameter exceeds 8 μm or the blending amount exceeds 90% by mass, the blending amount of the adhesive synthetic fiber and the debris of the expandable particles decreases. Therefore, there is a problem that the strength of the filter medium is lowered.
In order to reduce the gap between the fibers in the sheet and increase the dust collection efficiency within a range where pressure loss is not increased, a part of the short glass fibers are average fibers in the range of 0 to 15% by mass. It is also possible to use short glass fibers having a diameter of less than 2 μm. In addition, in order to use the short glass fiber of the stable quality, it is preferable to use a thing with an average fiber diameter of 0.3 micrometer or more.
As the short glass fibers, those formed by a steam spraying method, a spinning method, a flame insertion method, a rotary method, or the like can be used.

前記シート中に、平均繊維径10〜35μmの接着性合成繊維を5〜15質量%配合しているのは、配合量が5質量%未満或いは接着性合成繊維の平均繊維径が10μm未満では、ガラス短繊維との接着面積が少なくなり、接着力が不足するため、ろ材強度が弱くなる問題があるからである。また、配合量が15質量%を超えるか或いは接着性合成繊維の平均繊維径が35μmを超えると、樹脂が溶けてバインダ化した際に繊維間に皮膜が形成され、ろ材の圧力損失が高くなってフィルタ寿命が短くなる問題があるからである。   In the sheet, 5 to 15% by mass of an adhesive synthetic fiber having an average fiber diameter of 10 to 35 μm is blended when the blending amount is less than 5% by mass or the average fiber diameter of the adhesive synthetic fiber is less than 10 μm. This is because the adhesive area with the short glass fiber is reduced and the adhesive strength is insufficient, which causes a problem that the strength of the filter medium is weakened. When the blending amount exceeds 15% by mass or the average fiber diameter of the adhesive synthetic fiber exceeds 35 μm, a film is formed between the fibers when the resin is melted to form a binder, and the pressure loss of the filter medium increases. This is because the filter life is shortened.

前記接着性合成繊維としては、芯鞘型合成繊維を使用することができる。例えば、芯成分にポリエステル、鞘成分に低融点の変成ポリエステルを使用した芯鞘型合成繊維(例えば、株式会社クラレ製N720)や、芯成分にポリエステル、鞘成分にポリエチレンを使用した芯鞘型合成繊維(例えば、株式会社クラレ製N710)を使用することができる。また、前記接着性合成繊維は、芯鞘型合成繊維に限ることなく、例えば、アクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の熱可塑性樹脂からなる合成繊維、エポキシ樹脂等の熱硬化性樹脂からなる合成繊維等を使用することもできる。   A core-sheath type synthetic fiber can be used as the adhesive synthetic fiber. For example, core-sheath type synthetic fiber (for example, N720 manufactured by Kuraray Co., Ltd.) using polyester as the core component and low-melting modified polyester as the sheath component, or core-sheath type synthesis using polyester as the core component and polyethylene as the sheath component A fiber (for example, N710 manufactured by Kuraray Co., Ltd.) can be used. Further, the adhesive synthetic fiber is not limited to the core-sheath type synthetic fiber, for example, synthetic fiber made of thermoplastic resin such as acrylic resin, polyester resin, polyolefin resin, or synthetic resin made of thermosetting resin such as epoxy resin. Fiber etc. can also be used.

前記シート中に、発泡性粒子の破片を3〜10質量%配合しているのは、3質量%未満であると、発泡後破裂させた発泡性粒子の破片の量が少なくなり、繊維と接着する量が少なく、ろ材強度が弱くなるという問題があり、10質量%を超えると、ろ材強度は高くなるものの、破裂させた発泡性粒子の破片の量が多くなって、前記ガラス短繊維及び接着性合成繊維の隙間に破裂した発泡性粒子が多量に付着して、通気性が悪化し、圧力損失が高くなり、ろ材寿命が短くなるという問題があるからである。   In the sheet, 3 to 10% by mass of expandable particle fragments are incorporated in an amount of less than 3% by mass, and the amount of expandable particle fragments to be ruptured after foaming is reduced. There is a problem that the amount of the filter medium is small and the strength of the filter medium is weakened. If the amount exceeds 10% by mass, the amount of fragments of the expanded foam particles is increased, but the short glass fiber and the adhesive are bonded. This is because there is a problem that a large amount of explosive foam particles adhering to the gaps between the synthetic fibers deteriorates the air permeability, increases the pressure loss, and shortens the filter medium life.

次に、本発明のエアフィルタ用ろ材の製造方法について説明する。
本発明の製造方法によれば、前記配合のガラス短繊維及び接着性合成繊維に、平均粒径3〜20μmの未発泡の発泡性粒子を分散させた水性分散液を用いて湿式抄紙法によりシート状物を抄造し、前記発泡性粒子を発泡させて空隙部を形成した後、前記発泡性粒子を破裂させた破片で周囲の繊維を接着したシートからなるエアフィルタ用ろ材を製造している。
また、平均粒径が3〜20μmの未発泡の発泡性粒子を使用しているのは、未発泡の発泡性粒子の平均粒径が3μm未満であると、発泡した発泡性粒子の膨張率が低いため、ろ材中に空気の通路となる充分な大きさの空隙部を形成することができないという問題があり、平均粒径が20μmを超えると、空隙が大きくなるため、ろ材の捕集効率は向上するものの、破裂した発泡性粒子が前記繊維の隙間に多量に接着してしまうため、圧力損失が高くなり、ろ材寿命が短くなるという問題があるからである。
Next, the manufacturing method of the filter material for air filters of this invention is demonstrated.
According to the production method of the present invention, a sheet is obtained by a wet papermaking method using an aqueous dispersion in which unfoamed expandable particles having an average particle diameter of 3 to 20 μm are dispersed in the short glass fibers and adhesive synthetic fibers having the above-mentioned composition. A filter medium for air filter is manufactured, which is made of a sheet, foamed with the foamable particles to form voids, and then a sheet in which surrounding fibers are bonded with fragments obtained by rupturing the foamable particles.
In addition, the unexpanded expandable particles having an average particle diameter of 3 to 20 μm are used because the expansion coefficient of the expanded foamed particles is that the average particle diameter of the unexpanded expandable particles is less than 3 μm. Since it is low, there is a problem that it is not possible to form a sufficiently large void portion serving as an air passage in the filter medium, and when the average particle diameter exceeds 20 μm, the void becomes large, so the collection efficiency of the filter medium is This is because, although improved, the expanded foam particles adhere to the gaps between the fibers in a large amount, so that there is a problem that the pressure loss is increased and the filter medium life is shortened.

前記発泡性粒子は、発泡により粒径が約4〜5倍、体積が約50〜100倍に膨張するものを使用している。
前記発泡性粒子としては、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン及び/又はこれらの共重合体からなる外壁に、エタン、エチレン、プロパン、ブタン、イソブタン等の熱膨脹性ガスを内包したものを使用することができる。特に、発泡性粒子の膨張度、発泡した発泡性粒子とガラス短繊維の接着具合等から発泡性粒子の外壁にアクリロニトリル−メチルメタアクリレート(MMA)、内包する熱膨脹性ガスにイソブタンを使用した発泡性粒子を使用することが好ましい。前記熱膨脹性の発泡性粒子を使用した場合、加熱による膨張によって、前記発泡性粒子が発泡し、更に、前記発泡性粒子が破裂して内包された熱膨脹性ガスが外部に放出されるとともに、破裂した発泡性粒子の破片が溶融して、周囲にある繊維の表面及び/又は交点を強固に接着する。尚、前記ガスが外部に放出された前後で発泡性粒子の質量はほとんど変化しない。
As the expandable particles, those having a particle size of about 4 to 5 times and a volume of about 50 to 100 times due to foaming are used.
As the expandable particles, those in which a heat-expandable gas such as ethane, ethylene, propane, butane, or isobutane is included in the outer wall made of polystyrene, polyvinyl chloride, polyvinylidene chloride and / or a copolymer thereof are used. be able to. In particular, due to the degree of expansion of the expandable particles, the degree of adhesion between the expandable expandable particles and the short glass fibers, acrylonitrile-methyl methacrylate (MMA) is used on the outer wall of the expandable particles, and isobutane is used as the heat-expandable gas to be included. It is preferred to use particles. When the heat-expandable expandable particles are used, the expandable particles are expanded by heating, and the expandable particles are ruptured and the contained heat-expandable gas is released to the outside. The broken pieces of the expandable particles are melted and firmly adhere to the surface and / or intersection of the surrounding fibers. The mass of the expandable particles hardly changes before and after the gas is released to the outside.

尚、前記シート中には、捕集効率を低下させず、圧力損失を上昇させない範囲であれば、極細のフィブリル化合成繊維や天然繊維、ガラス長繊維等のフィラメント状繊維等の繊維を配合してもよい。その他、前記繊維等を分散液に均一に分散させるための界面活性剤を添加して湿式抄紙法によりシートを抄造することも可能であり、シートを抄造した後、強度向上のためにバインダを付与することも可能である。   In the sheet, fibers such as ultrafine fibrillated synthetic fibers, natural fibers, and filamentous fibers such as long glass fibers are blended so long as the collection efficiency is not lowered and the pressure loss is not increased. May be. In addition, it is also possible to make a sheet by wet paper making method by adding a surfactant to uniformly disperse the fibers etc. in the dispersion, and after making the sheet, a binder is added to improve the strength It is also possible to do.

次に、本発明のエアフィルタ用ろ材及びそのろ材の製造方法の実施例を図面に基づき説明し、併せてろ材の比較例及び従来例を説明する。 Next, an embodiment of a filter medium for an air filter and a method for producing the filter medium of the present invention will be described with reference to the drawings, and a comparative example and a conventional example of the filter medium will be described together.

(実施例1)
平均繊維径0.8μmのCガラス短繊維3’(日本板硝子株式会社製MLF#208)10質量%と、平均繊維径4μmのCガラス短繊維3(株式会社マグ製W50)78質量%と、接着性合成繊維として、平均繊維径17μm、平均繊維長5mmの芯鞘型合成繊維2(芯成分ポリエステル、鞘成分変成ポリエステル、140℃の熱収縮率55%、クラレ株式会社製N720)7質量%と、発泡性粒子として、平均粒径10〜20μmの熱膨脹性マイクロカプセル4(発泡開始温度100〜105℃、外壁にアクリロニトリル−メチルメタアクリレート(MMA)共重合体、熱膨張性ガスにイソブタンを内包した松本油脂製薬株式会社製マツモトマイクロスフェアーF−55)5質量%とを水中に分散、混合して水性分散液とした。この水性分散液に対して、分子量150万のカチオン性アクリルアミド吸着剤を添加して前記熱膨脹性マイクロカプセル4を前記Cガラス短繊維3,3’及び芯鞘型合成繊維2の表面に吸着・担持させた。
図1(a)に示すように、通常の抄紙機を用いて前記水性分散液をシート状物とした後、界面活性剤処理を行った。図1(b)に示すように、前記シート状物を140℃で乾燥して、Cガラス短繊維3,3’と芯鞘型合成繊維2を接着するとともに、未発泡の熱膨張性マイクロカプセル4を約20倍に発泡させて、発泡したマイクロカプセル5とし、このマイクロカプセル5の球面に沿って周囲のCガラス短繊維3、3’及び芯鞘型合成繊維2を押し広げた。そして、図1(c)と図2に示すように、発泡したマイクロカプセル5を破裂させ、破裂させた破片7で周囲のCガラス短繊維3,3’と芯鞘型合成繊維2を接着し、内部に複数の空隙部6を形成した厚さ0.71mm、目付92g/cm2のシート1をエアフィルタ用ろ材とした。尚、図2中、8は粉塵を示す。
Example 1
10% by mass of C glass short fibers 3 ′ having an average fiber diameter of 0.8 μm (MLF # 208 manufactured by Nippon Sheet Glass Co., Ltd.), 78% by mass of C glass short fibers 3 having an average fiber diameter of 4 μm (W50 manufactured by Mag Co., Ltd.) As an adhesive synthetic fiber, a core-sheath type synthetic fiber 2 having an average fiber diameter of 17 μm and an average fiber length of 5 mm (core component polyester, sheath component modified polyester, heat shrinkage rate of 140 ° C. 55%, N720 manufactured by Kuraray Co., Ltd.) 7% by mass And, as expandable particles, thermally expandable microcapsules 4 having an average particle diameter of 10 to 20 μm (foaming start temperature 100 to 105 ° C., acrylonitrile-methyl methacrylate (MMA) copolymer on the outer wall, and isobutane included in the thermally expandable gas) Matsumoto Yushi Seiyaku Co., Ltd. Matsumoto Microsphere F-55) 5% by mass was dispersed and mixed in water to obtain an aqueous dispersion. A cationic acrylamide adsorbent having a molecular weight of 1,500,000 is added to this aqueous dispersion to adsorb and carry the heat-expandable microcapsules 4 on the surfaces of the C glass short fibers 3, 3 ′ and the core-sheath type synthetic fiber 2. I let you.
As shown to Fig.1 (a), after making the said aqueous dispersion into a sheet-like material using the normal paper machine, surfactant processing was performed. As shown in FIG. 1 (b), the sheet-like material is dried at 140 ° C. to bond the C glass short fibers 3, 3 ′ and the core-sheath type synthetic fiber 2, and unexpanded thermally expandable microcapsules 4 was foamed about 20 times to obtain a foamed microcapsule 5, and the surrounding C glass short fibers 3, 3 ′ and the core-sheath type synthetic fiber 2 were spread along the spherical surface of the microcapsule 5. Then, as shown in FIGS. 1 (c) and 2, the foamed microcapsule 5 is ruptured, and the surrounding C glass short fibers 3, 3 ′ and the core-sheath type synthetic fiber 2 are bonded with the ruptured pieces 7. The sheet 1 having a thickness of 0.71 mm and a basis weight of 92 g / cm 2 in which a plurality of voids 6 were formed was used as an air filter medium. In FIG. 2, 8 indicates dust.

(実施例2)
平均繊維径4μmのCガラス短繊維(株式会社マグ製W50)73質量%とし、発泡性粒子として、前記熱膨脹性マイクロカプセルを10質量%としたこと以外は、実施例1と同様にして、厚さ0.86mm、目付91g/cm2のシートをエアフィルタ用ろ材とした。
(Example 2)
The thickness is the same as in Example 1, except that the short glass fiber C (W50 manufactured by Mag Co., Ltd.) having an average fiber diameter of 4 μm is 73% by mass, and the thermally expandable microcapsules are 10% by mass as expandable particles. A sheet having a thickness of 0.86 mm and a basis weight of 91 g / cm 2 was used as a filter medium for an air filter .

(実施例3)
平均繊維径0.8μmのCガラス短繊維(日本板硝子株式会社製MLF#208)を0質量%とし、平均繊維径4μmのCガラス短繊維(株式会社マグ製W50)88質量%としたこと以外は、実施例1と同様にして、厚さ0.70mm、目付90g/cm2のシートをエアフィルタ用ろ材とした。
(Example 3)
Other than the fact that C glass short fibers (MLF # 208 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.8 μm were 0% by mass and C glass short fibers (M50 W50) with an average fiber diameter of 4 μm were used. In the same manner as in Example 1, a sheet having a thickness of 0.70 mm and a basis weight of 90 g / cm 2 was used as a filter medium for an air filter .

(実施例4)
平均繊維径4μmのCガラス短繊維3(株式会社マグ製W50)の代わりに、平均繊維径4μmのCガラス短繊維(NANJING AIXIN FIBREGLASS PRODUCT CO.,LTD製)を用いたこと以外は、実施例1と同様にして、厚さ0.71mm、目付92g/cm2のシート1をエアフィルタ用ろ材とした。
Example 4
Example except that C glass short fiber 3 (manufactured by Mag Co., Ltd. W50) having an average fiber diameter of 4 μm was used, except that C glass short fiber (NANJING AIXIN FIBREGRATION PRODUCT CO., LTD) was used. In the same manner as in Example 1, a sheet 1 having a thickness of 0.71 mm and a basis weight of 92 g / cm 2 was used as a filter medium for an air filter .

(比較例1)
平均繊維径4μmのCガラス短繊維(株式会社マグ製W50)を83質量%とし、発泡性粒子として、前記熱膨脹性マイクロカプセルを0質量%としたこと以外は、実施例1と同様にして、厚さ0.60mm、目付95g/cm2のシートをエアフィルタ用ろ材とした。
(Comparative Example 1)
In the same manner as in Example 1 except that C glass short fibers (W50 manufactured by Mag Co., Ltd.) having an average fiber diameter of 4 μm were 83% by mass, and the thermally expandable microcapsules were 0% by mass as expandable particles, A sheet having a thickness of 0.60 mm and a basis weight of 95 g / cm 2 was used as a filter medium for an air filter .

(比較例2)
平均繊維径4μmのCガラス短繊維(株式会社マグ製W50)を68質量%とし、発泡性粒子として、前記熱膨脹性マイクロカプセルを15質量%としたこと以外は、実施例1と同様にして、厚さ0.91mm、目付88g/cm2のシートをエアフィルタ用ろ材とした。
(Comparative Example 2)
In the same manner as in Example 1 except that C glass short fibers having an average fiber diameter of 4 μm (W50 manufactured by Mag Co., Ltd.) were 68% by mass, and the thermally expandable microcapsules were 15% by mass as expandable particles, A sheet having a thickness of 0.91 mm and a basis weight of 88 g / cm 2 was used as a filter medium for an air filter .

(従来例1)
市販の湿式抄紙法により抄造した平均繊維径2μmガラス繊維を主体とする厚さ0.36mm、目付64g/cm2のシートをエアフィルタ用ろ材とした。
(Conventional example 1)
A sheet having an average fiber diameter of 2 μm and a thickness of 0.36 mm and a basis weight of 64 g / cm 2 made by a commercially available wet papermaking method was used as a filter medium for an air filter .

(従来例2)
市販の湿式抄紙法により抄造した平均繊維径2μmガラス繊維を主体とする厚さ0.50mm、目付90g/cm2のシートをエアフィルタ用ろ材とした。
(Conventional example 2)
A sheet with an average fiber diameter of 2 μm and a thickness of 0.50 mm and a basis weight of 90 g / cm 2 made by a commercially available wet papermaking method was used as a filter medium for an air filter .

次に、このようにして得られた実施例1〜4、比較例1〜2及び従来例1〜2の各エアフィルタ用ろ材について、以下の方法によりろ材の捕集効率、ろ材の寿命を測定し、測定結果を評価した。また、ろ材の流出側の粉塵付着の有無を評価した。更に、これらの評価結果に基づいて、以下のように総合評価を行った。結果を表1に示す。 Next, for each of the filter media for air filters of Examples 1 to 4, Comparative Examples 1 and 2 and Conventional Examples 1 and 2 thus obtained, the filtration efficiency of the filter media and the filter media life were measured by the following methods. The measurement results were evaluated. Moreover, the presence or absence of dust adhesion on the outflow side of the filter medium was evaluated. Further, based on these evaluation results, comprehensive evaluation was performed as follows. The results are shown in Table 1.

[捕集効率]
平均粒径0.3μmの大気塵を0.5m/sの風速でエアフィルタ用ろ材に通過させ、JIS B9908に準拠した捕集効率を測定した。
捕集効率(%)=(1−下流側粒子個数/上流側粒子個数)×100
評価基準:捕集効率50%以上を◎、40〜50%を○、40%未満を×とした。
[Collection efficiency]
Air dust having an average particle size of 0.3 μm was passed through the filter medium for air filter at a wind speed of 0.5 m / s, and the collection efficiency in accordance with JIS B9908 was measured.
Collection efficiency (%) = (1−number of downstream particles / number of upstream particles) × 100
Evaluation criteria: A collection efficiency of 50% or more was evaluated as ◎, 40 to 50% as 、, and less than 40% as ×.

[ろ材の寿命]
JIS B9908に規定された方法に基づいて、以下のようにろ材の寿命を測定した。
JIS Z8901に規定する試験用粉体である15種類の粉体を用いて、粉塵濃度70±30mg/m3で風速5.3cm/sで最終圧力損失250Paになる粉体塵保持量を測定した。
W=W2−W1(g/フィルタユニット)
W :粉塵保持量
W1:試験開始時のフィルタユニット重量(g)
W2:試験終了時のフィルタユニット重量(g)
評価基準:前記方法に基づいて測定した従来例1のエアフィルタ用ろ材の寿命を100とし、前記従来例1のろ材の寿命よりも寿命が2倍を超えるろ材を◎とし、2倍のろ材を○とし、2倍未満の寿命のろ材を×とした。
[Life of filter media]
Based on the method defined in JIS B9908, the life of the filter medium was measured as follows.
Using 15 kinds of powders as test powders specified in JIS Z8901, the amount of powder dust retained at a final pressure loss of 250 Pa at a dust density of 70 ± 30 mg / m 3 and a wind speed of 5.3 cm / s was measured. .
W = W 2 −W 1 (g / filter unit)
W: Dust retention amount W1: Filter unit weight at start of test (g)
W2: Filter unit weight at the end of the test (g)
Evaluation criteria: The life of the filter medium for the air filter of Conventional Example 1 measured based on the above method is set to 100, the filter medium whose life is twice as long as that of the filter medium of Conventional Example 1 is given as ◎, and A circle indicates that the filter medium has a lifetime of less than twice.

[流出側粉塵付着の有無]
前記寿命試験をしたろ材を使って、流出側の各ろ材に粉塵が付着しているか否かを評価した。粉塵が付着している場合は、○(有り)とし、粉塵が付着していない場合は、×(無し)とした。
[Existence of dust on the outflow side]
Using the filter medium subjected to the life test, it was evaluated whether dust adhered to each filter medium on the outflow side. In the case where dust is adhered, the mark is “Yes” (Yes), and in the case where dust is not adhered, the mark is “No”.

[総合評価]
捕集効率及び寿命が全てが○か◎の場合は◎とし、捕集効率が×でろ材の寿命が○の場合は○とし、ろ材の寿命が×の場合は×とした。
[Comprehensive evaluation]
When the collection efficiency and life were all ○ or ◎, ◎, when the collection efficiency was x and the filter media life was ○, it was marked as ◯, and when the filter media life was x, it was marked as x.

Figure 0004754269
Figure 0004754269

表1に示す結果から以下のことが分かった。
実施例1〜4のエアフィルタ用ろ材は、ろ材の寿命が従来例1の市販品のろ材に比較して2倍以上も長くなっていることが確認できた。更に、実施例1、2、4は捕集効率もよいことが確認できた。実施例1〜4のエアフィルタ用ろ材は、発泡性粒子を発泡させ、前記発泡性粒子を破裂させた破片で周囲の繊維表面及び/又は交点を接着した空隙部を有しており、この空隙部が通路となって、ろ材の厚さ方向に空気が通過しやすくなり、ろ材を構成するシートの主体となる平均繊維径4〜8μmのガラス短繊維による細かい網目構造よって、ろ材の厚さ方向全体にわたって略均等に粉塵が捕集されるため、ろ材寿命が長くなることが確認できた。また、実施例1、2、4のように、平均繊維径2μm未満の微細なガラス短繊維を配合した場合は、この微細なガラス短繊維が、平均繊維径4〜8μmのガラス短繊維によって形成された比較的細かい網目構造によって分散されて、更に細かい網目構造が形成され、ろ材の厚さ方向全体にわたって粉塵を捕集する効率が高くなり、ろ材寿命がより長くなることが確認できた。
また、実施例3のように、平均繊維径が2μm未満のガラス短繊維を全く配合しない場合は、従来例1のろ材よりもろ材寿命が2倍長くなるものの、ろ材を構成する繊維と繊維の隙間が大きくなるため、粉塵の捕集効率が実施例1、2、4よりも低下していた。
また、比較例1のように、発泡性粒子を全く配合しないろ材は、前記発泡性粒子の発泡による空隙部が形成されないため、ろ材の厚さ方向に空気の通路が確保されず、ろ材寿命が従来例1と同様に短くなっていた。また、比較例1のろ材は、空気の流出側に付着している粉塵が無かったため、発泡性粒子の発泡による空隙部が形成されていないことから、空気の通路が確保されておらず、空気の流入側となるろ材に偏って粉塵が捕集されているものと推測された。
また、比較例2のように、10質量%を超える発泡性粒子を配合したろ材は、発泡性粒子の発泡による空隙が多く形成されるため見掛け上の粉塵の捕集効率は上がるものの、本来粉塵を捕集する部分である単位体積当たりのろ材の部分が少なくなり、この少ないろ材部分に粉塵が捕集されるため、圧力損失が高くなり、ろ材の寿命が従来例1と同様に短くなっていた。
また、従来例2のように市販品のろ材の目付を実施例1〜4と同様にした場合であっても、実施例1〜4のようにろ材が長寿命化しなかった。
The results shown in Table 1 revealed the following.
It was confirmed that the filter media for the air filters of Examples 1 to 4 have a filter media life of two or more times longer than that of the commercially available filter media of Conventional Example 1. Furthermore, it was confirmed that Examples 1, 2, and 4 had good collection efficiency. The filter material for an air filter of Examples 1 to 4 has a void portion in which foamable particles are foamed, and the surrounding fiber surface and / or the intersection is bonded with a fragment obtained by rupturing the foamable particles. The part becomes a passage and air easily passes in the thickness direction of the filter medium, and the fine mesh structure of short glass fibers having an average fiber diameter of 4 to 8 μm , which is the main component of the sheet constituting the filter medium, makes the thickness direction of the filter medium It was confirmed that the filter media life was prolonged because the dust was collected almost uniformly throughout. Moreover, when the fine glass short fiber with an average fiber diameter of less than 2 micrometers is mix | blended like Examples 1, 2, and 4, this fine glass short fiber is formed with the short glass fiber with an average fiber diameter of 4-8 micrometers. It was confirmed that the finer mesh structure was dispersed by the relatively fine mesh structure formed, and the efficiency of collecting dust was increased throughout the thickness direction of the filter medium, and the life of the filter medium was further prolonged.
In addition, as in Example 3, when no short glass fibers having an average fiber diameter of less than 2 μm are blended, the filter medium life is twice as long as that of the filter medium of Conventional Example 1, but the fibers and fibers constituting the filter medium Since the gap became larger, the dust collection efficiency was lower than in Examples 1, 2, and 4.
Further, as in Comparative Example 1, the filter medium containing no foamable particles does not form voids due to foaming of the foamable particles, so that no air passage is secured in the thickness direction of the filter medium, and the filter medium life is shortened. Similar to Conventional Example 1, it was shortened. In addition, since the filter medium of Comparative Example 1 had no dust adhering to the air outflow side, voids due to foaming of the foamable particles were not formed. It was speculated that dust was collected on the filter medium on the inflow side.
In addition, as in Comparative Example 2, the filter medium containing the foamable particles exceeding 10% by mass forms many voids due to foaming of the foamable particles, so that although apparent dust collection efficiency is increased, The part of the filter medium per unit volume, which is the part that collects water, is reduced, and dust is collected in this small part of the filter medium, so that the pressure loss increases and the life of the filter medium is shortened as in the conventional example 1. It was.
Moreover, even if it was a case where the basis weight of a commercially available filter medium was made the same as in Examples 1 to 4 as in Conventional Example 2, the filter medium did not prolong its life as in Examples 1 to 4.

本発明は、ろ材の厚さ方向全体に亘って、比較的細かい網目構造中に均等に粉塵を捕集し、ろ材を長寿命とする、エアフィルタ用ろ材及びその製造方法並びにエアフィルタを提供することができる点において、産業上の利用可能性を有する。 The present invention, through the thickness direction of the filter medium, evenly collect dust in a relatively fine mesh structure, the filter media and long life, provides a filter medium and method of manufacturing the same, and an air filter air filter It has industrial applicability in that it can.

(a)本発明のエアフィルタ用ろ材となる発泡性粒子を発泡させる前のシート、(b)発泡性粒子を発泡させた状態のシート、(c)発泡性粒子を破裂させた状態のシートを示す概念図(A) a sheet before foaming expandable particles to be a filter medium for an air filter of the present invention, (b) a sheet in a state where foamable particles are foamed, and (c) a sheet in a state where foamable particles are ruptured. Conceptual diagram showing 本発明のエアフィルタ用ろ材に空気を通過させた状態を示す概念図The conceptual diagram which shows the state which allowed air to pass through the filter medium for air filters of this invention 従来例のろ材に空気を通過させた状態を示す概念図The conceptual diagram which shows the state which allowed air to pass through the filter medium of a prior art example 従来例のシート中に空隙部を有するろ材に空気を通過させた状態を示す概念図The conceptual diagram which shows the state which allowed air to pass through the filter medium which has a space | gap part in the sheet | seat of a prior art example.

エアフィルタ用ろ材としたシート
2 接着性合成繊維である芯鞘型合成繊維
3 平均繊維径4μmのCガラス短繊維
3’ 平均繊維径0.8μmのCガラス短繊維
4 未発泡の熱膨張性マイクロカプセル
5 熱膨張により発泡したマイクロカプセル
6 空隙部
7 破裂したマイクロカプセルの破片
8 粉塵
9 ガラス繊維
10 ろ材
11 平均繊維径の大きい合成繊維
12 平均繊維径の小さいガラス短繊維
13 空隙部
14 外壁
15 ろ材
16 平均繊維径のやや大きいガラス繊維
1 Sheet as filter medium for air filter 2 Core-sheath type synthetic fiber as adhesive synthetic fiber 3 Short C glass fiber with average fiber diameter of 4 μm 3 Short C glass fiber with average fiber diameter of 0.8 μm 4 Unexpanded thermal expansibility Microcapsule 5 Microcapsule foamed by thermal expansion 6 Void part 7 Broken microcapsule piece 8 Dust 9 Glass fiber 10 Filter medium 11 Synthetic fiber with large average fiber diameter 12 Glass short fiber with small average fiber diameter 13 Void part 14 Outer wall 15 Filter medium 16 Glass fiber with slightly larger average fiber diameter

Claims (3)

発泡性粒子を破裂させた破片で周囲の繊維を接着して空隙部を形成したシートからなるエアフィルタ用ろ材であって、前記シートは平均繊維径4〜8μmのガラス短繊維70〜90質量%と、平均繊維径2μm未満のガラス短繊維0〜15質量%と、平均繊維径10〜35μmの接着性合成繊維5〜15質量%と、発泡性粒子の破片3〜10質量%からなることを特徴するエアフィルタ用ろ材A filter medium for an air filter comprising a sheet in which voids are formed by adhering surrounding fibers with fragments obtained by rupturing expandable particles, wherein the sheet is 70 to 90% by mass of short glass fibers having an average fiber diameter of 4 to 8 μm. And 0 to 15% by mass of short glass fibers having an average fiber diameter of less than 2 μm, 5 to 15% by mass of adhesive synthetic fibers having an average fiber diameter of 10 to 35 μm, and 3 to 10% by mass of foam particles. Characteristic air filter media . 平均繊維径4〜8μmのガラス短繊維70〜90質量%と、平均繊維径2μm未満のガラス短繊維0〜15質量%と、平均繊維径10〜35μmの接着性合成繊維5〜15質量%と、平均粒径3〜20μmの未発泡の発泡性粒子3〜10質量%を分散させた水性分散液を用いてシート状物を抄造し、前記発泡性粒子を発泡させて空隙部を形成した後、前記発泡性粒子を破裂させた破片で周囲の繊維を接着してシートとすることを特徴とするエアフィルタ用ろ材の製造方法。 And 70 to 90 wt% short glass fibers having an average fiber diameter of 4-8 [mu] m, and 0 to 15 wt% short glass fibers less than the average fiber diameter 2 [mu] m, and 5 to 15 wt% adhesive synthetic fibers having an average fiber diameter of 10~35μm After making a sheet using an aqueous dispersion in which 3 to 10% by mass of unfoamed expandable particles having an average particle diameter of 3 to 20 μm are dispersed, the foamable particles are foamed to form voids. A method for producing a filter material for an air filter , characterized in that surrounding fibers are bonded to each other by a fragment obtained by rupturing the foamable particles to form a sheet. 請求項1に記載のエアフィルタ用ろ材を用いたことを特徴とするエアフィルタ Air filter characterized by using the air filter media of claim 1.
JP2005156010A 2004-05-28 2005-05-27 Filter material for air filter, method for producing the same, and air filter Active JP4754269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156010A JP4754269B2 (en) 2004-05-28 2005-05-27 Filter material for air filter, method for producing the same, and air filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004160360 2004-05-28
JP2004160360 2004-05-28
JP2005156010A JP4754269B2 (en) 2004-05-28 2005-05-27 Filter material for air filter, method for producing the same, and air filter

Publications (2)

Publication Number Publication Date
JP2006007209A JP2006007209A (en) 2006-01-12
JP4754269B2 true JP4754269B2 (en) 2011-08-24

Family

ID=35775020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156010A Active JP4754269B2 (en) 2004-05-28 2005-05-27 Filter material for air filter, method for producing the same, and air filter

Country Status (1)

Country Link
JP (1) JP4754269B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797175B2 (en) * 2012-09-12 2015-10-21 北越紀州製紙株式会社 Air filter media
JP6866895B2 (en) 2016-10-24 2021-04-28 王子ホールディングス株式会社 Inorganic fiber sheet, honeycomb molded product and honeycomb filter
JP6941462B2 (en) * 2017-03-31 2021-09-29 日本無機株式会社 Filter media for air filters and air filters
JP7215871B2 (en) * 2018-10-22 2023-01-31 北越コーポレーション株式会社 AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170B2 (en) * 1987-11-19 1996-01-10 日本バイリーン株式会社 Air filter material
JPH04263695A (en) * 1991-02-15 1992-09-18 Mitsubishi Paper Mills Ltd Production of glass fiber sheet
JPH09155127A (en) * 1995-12-12 1997-06-17 Mitsubishi Paper Mills Ltd Filter medium
JPH10252000A (en) * 1997-03-05 1998-09-22 Oji Paper Co Ltd Prefilter raw paper for car air conditioning

Also Published As

Publication number Publication date
JP2006007209A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4944540B2 (en) FILTER ELEMENT, MANUFACTURING METHOD THEREOF, AND USE METHOD
JP5434076B2 (en) Filter media and filter unit
JP5346301B2 (en) Wave filter material and filter element
JP5470850B2 (en) Filter media and filter unit
US8728212B2 (en) High efficiency low pressure drop synthetic fiber based air filter made completely from post consumer waste materials
JP5052935B2 (en) Filter medium for dust removal air filter and manufacturing method thereof
US20070220852A1 (en) High Capacity Filter Medium
CA2495810A1 (en) High efficiency ashrae filter media
US20180056219A1 (en) Filter material for air filter
JP2009226321A (en) Flame-retardant electret filter medium and filter unit
JP4754269B2 (en) Filter material for air filter, method for producing the same, and air filter
JP5080753B2 (en) Filter element, manufacturing method and usage thereof
JP2011104529A (en) Harmful gas removing material
JP2017113670A (en) Filter medium for air filter and air filter
JP2014151299A (en) Filter material for filter and air filter
JP3269103B2 (en) Flame retardant filter media
JP6578673B2 (en) Flame retardant support
JPH08281030A (en) Filter sheet for air cleaning
JP2019166513A (en) Dust collection deodorizing filter material and dust collection deodorizing filter
KR102372578B1 (en) Method of manufacturing embossed non-woven electrostatic filter and embossed non-woven electrostatic filter using the same
JP6318716B2 (en) Air filter unit
WO2005115586A1 (en) Medium for mid-performance air filter, process for producing the same and mid-performance air filter
JP2004267828A (en) Coarse dust filter
JP2004271797A (en) Sound absorbing material
JP2018061924A (en) Nonwoven fabric filter medium for air filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250