JP4753250B2 - Hydrodynamic bearing device and rotating device - Google Patents

Hydrodynamic bearing device and rotating device Download PDF

Info

Publication number
JP4753250B2
JP4753250B2 JP2006041826A JP2006041826A JP4753250B2 JP 4753250 B2 JP4753250 B2 JP 4753250B2 JP 2006041826 A JP2006041826 A JP 2006041826A JP 2006041826 A JP2006041826 A JP 2006041826A JP 4753250 B2 JP4753250 B2 JP 4753250B2
Authority
JP
Japan
Prior art keywords
bearing
bearing sleeve
plating
inner hole
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006041826A
Other languages
Japanese (ja)
Other versions
JP2007218386A (en
Inventor
香織 安田
信弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2006041826A priority Critical patent/JP4753250B2/en
Publication of JP2007218386A publication Critical patent/JP2007218386A/en
Application granted granted Critical
Publication of JP4753250B2 publication Critical patent/JP4753250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Motor Or Generator Frames (AREA)

Description

本発明は、レーザープリンタ、バーコードリーダー等の光学機器に用いられる回転多面鏡を回転支持する流体軸受装置および回転装置に関するものである。   The present invention relates to a hydrodynamic bearing device and a rotating device that rotatably supports a rotating polygon mirror used in an optical apparatus such as a laser printer or a barcode reader.

レーザープリンタ、バーコードリーダー等の画像成形機器に用いられる回転多面鏡を回転支持する装置には、高速回転を可能にするため流体軸受が用いられている。特に高速で回転する場合はいわゆる空気動圧軸受が主に採用されている。しかしセラミックスを高精度加工した空気動圧軸受は非常に高価であるため、低コスト化が進められる今日では、空気に代わり潤滑流体を用いた動圧軸受が採用されつつある。   Fluid bearings are used in devices that rotate and support rotating polygonal mirrors used in image forming equipment such as laser printers and barcode readers in order to enable high-speed rotation. Especially when rotating at high speed, so-called air dynamic pressure bearings are mainly employed. However, since air dynamic pressure bearings made of ceramics with high precision are very expensive, today dynamic pressure bearings using a lubricating fluid instead of air are being adopted.

しかしながら軸受に銅合金を使用した場合、合金中に含まれる鉛が潤滑流体中に溶け出し、潤滑流体の粘度が上昇して焼き付けを生じ潤滑性を低下させる場合がある。また、このような軸受装置を搭載する画像成形装置では省電力化のため画像形成実行時のみ電源が入るものも多く、上記の軸受部にも駆動・停止を繰り返し行う間欠駆動が必要とされる。このため、モータ起動時の低速回転においては軸受スリーブと軸との接触により軸受内孔への損傷や磨耗、焼き付け等を生じる場合がある。また、生じた摩擦粉が潤滑流体中に混入し、回転駆動を阻害することがある。   However, when a copper alloy is used for the bearing, lead contained in the alloy may be dissolved into the lubricating fluid, and the viscosity of the lubricating fluid may increase to cause seizure and reduce lubricity. Also, in many image forming apparatuses equipped with such a bearing device, the power is turned on only when image formation is performed for power saving, and the above-described bearing portion needs to be intermittently driven and stopped repeatedly. . For this reason, in the low speed rotation at the time of starting the motor, the bearing inner hole may be damaged, worn or burned by contact between the bearing sleeve and the shaft. Further, the generated friction powder may be mixed in the lubricating fluid and hinder the rotational drive.

これを防止するために軸受スリーブに無電解ニッケル−リンやニッケル−リン−ポリテトラフルオロエチレン、ニッケル−リン−ボロンめっき等の表面処理を行うことが一般的である。この方法は、特許文献1に開示されたように、軸受スリーブの表面硬度を増大させ、耐磨耗性を向上させるので軸受寿命を高める効果がある。
特開2005−242042号公報
In order to prevent this, the bearing sleeve is generally subjected to surface treatment such as electroless nickel-phosphorus, nickel-phosphorus-polytetrafluoroethylene, or nickel-phosphorus-boron plating. As disclosed in Patent Document 1, this method increases the surface hardness of the bearing sleeve and improves the wear resistance, so that there is an effect of increasing the bearing life.
JP 2005-242042 A

しかしながら軸受スリーブにめっきを施し、その後潤滑流体を保持するために底部にスラスト板をかしめ固定すると、曲げられたことによりかしめ部の内側では圧縮方向、かしめ部の外側では引張方向に歪みが生じる。そして、軸受材質よりもめっき膜の硬度が高いため、かしめ時に内外面の伸縮によりめっき膜に亀裂が入り、膜が剥がれてしまう。かしめ部の膜が剥がれると、スキャナユニット内のレンズに付着したり、ミラーを傷つけたりする。また、モータの基板やコイルに付着してショートさせるという問題があった。   However, if the bearing sleeve is plated and then the thrust plate is caulked and fixed to hold the lubricating fluid, the bending causes distortion in the compression direction inside the caulking portion and in the tension direction outside the caulking portion. And since the plating film is harder than the bearing material, the plating film cracks due to expansion and contraction of the inner and outer surfaces during caulking, and the film is peeled off. If the film of the caulking part is peeled off, it adheres to the lens in the scanner unit or damages the mirror. In addition, there is a problem that a short circuit occurs due to adhesion to the motor board or coil.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、スラスト板を軸受スリーブにかしめ固定する時のめっき膜の割れを防止することのできる流体軸受装置および回転装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and includes a hydrodynamic bearing device and a rotating device capable of preventing cracking of a plating film when a thrust plate is caulked and fixed to a bearing sleeve. It is intended to provide.

上記目的を達成するため、本発明の流体軸受装置は、軸受スリーブと、前記軸受スリーブの軸受内孔に回転自在に嵌合する軸と、前記軸受スリーブ内に充填された流体と、前記軸の下端を支えるように前記軸受スリーブのかしめ部にかしめ固定されたスラスト板と、を有する流体軸受装置において、前記軸受スリーブの少なくとも内面には無電解ニッケルリンめっきによる被膜が形成されており、前記軸受内孔における前記被膜の膜厚は3.0μm以上5.0μm以下であり、前記かしめ部における前記被膜の膜厚は1.5μm以上で前記軸受内孔における前記被膜の膜厚の70%以下であることを特徴とする。 In order to achieve the above object, a hydrodynamic bearing device according to the present invention includes a bearing sleeve, a shaft rotatably fitted in a bearing inner hole of the bearing sleeve, a fluid filled in the bearing sleeve, in the fluid bearing device comprising a thrust plate fixed by caulking, the caulking portion of the bearing sleeve so as to support the bottom of at least the inner surface is coated is formed by electroless nickel-phosphorus plating of the bearing sleeve, the bearing The film thickness of the coating in the inner hole is 3.0 μm or more and 5.0 μm or less, and the film thickness of the coating in the caulking portion is 1.5 μm or more and 70% or less of the film thickness of the coating in the bearing inner hole. characterized in that there.

軸受スリーブに耐磨耗性の被膜を形成する際に、スラスト板を固定するためのかしめ部における被膜の膜厚を軸受内孔の膜厚より薄くする。これによって、かしめ部の被膜に柔軟性を与えておき、軸受スリーブにスラスト板をかしめる際に生じる歪みのために被膜に亀裂が発生するのを防ぐ。   When forming a wear-resistant film on the bearing sleeve, the film thickness at the caulking portion for fixing the thrust plate is made thinner than the film thickness of the bearing inner hole. This provides flexibility to the coating of the caulking portion, and prevents the coating from cracking due to distortion that occurs when the thrust plate is caulked on the bearing sleeve.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、多角柱形状の側面に複数の反射面を有する回転多面鏡1を回転させる回転装置のモータ部の流体軸受装置は、軸受スリーブ2に回転自在に嵌合する棒状の回転軸(軸)3を有する。回転軸3にはロータボス4を介してロータフレーム5が結合され、ベース板6にはステータコイル7が固定される。ステータコイル7は、ロータフレーム5の内側に支持されたロータマグネット8に対向して回転多面鏡1を回転させる。回転多面鏡1は、押さえ板9によってロータボス4に押圧され、ロータボス4とロータフレーム5とロータマグネット8等を含む回転部と一体化されている。   As shown in FIG. 1, the hydrodynamic bearing device of the motor unit of the rotating device that rotates the rotary polygon mirror 1 having a plurality of reflecting surfaces on the side surface of the polygonal column shape is a rod-shaped rotation that is rotatably fitted to the bearing sleeve 2. It has an axis (axis) 3. A rotor frame 5 is coupled to the rotary shaft 3 via a rotor boss 4, and a stator coil 7 is fixed to the base plate 6. The stator coil 7 rotates the rotary polygon mirror 1 so as to face the rotor magnet 8 supported inside the rotor frame 5. The rotary polygon mirror 1 is pressed against the rotor boss 4 by a pressing plate 9 and is integrated with a rotating portion including the rotor boss 4, the rotor frame 5, the rotor magnet 8, and the like.

軸受スリーブ2は、回転軸3と嵌合するために円柱状の軸受内孔を有し、軸受スリーブ2の一端には、スラスト板10をかしめ固定するためのかしめ部11が形成されている。回転軸3には焼入れ鋼や焼入れ硬化型ステンレス鋼を用いることが多く、軸受スリーブ2には加工性が高いことからアルミニウム合金:Al−Mg、Al−Zn−Mgおよび銅合金:真鍮を用いることが多い。   The bearing sleeve 2 has a cylindrical bearing inner hole for fitting with the rotary shaft 3, and a caulking portion 11 for caulking and fixing the thrust plate 10 is formed at one end of the bearing sleeve 2. Often hardened steel or hardened stainless steel is used for the rotating shaft 3 and the bearing sleeve 2 has high workability, so aluminum alloy: Al—Mg, Al—Zn—Mg and copper alloy: brass are used. There are many.

図2に示すように、軸受スリーブ2の軸受内孔には、上下2つのヘリングボーン状の動圧発生溝12a、12bが形成されている。また、軸受スリーブ2の少なくとも内面にはめっきによる被膜(めっき膜)が形成される。モータの駆動によって回転軸3が回転すると、軸受隙間の潤滑流体は各動圧発生溝中央部に寄せられ、潤滑流体の圧力が高まって回転軸3を軸受スリーブ2の軸受内孔から離し、流体潤滑による非接触な回転を行う。これによって、軸受装置をより低磨耗、長寿命化することができる。   As shown in FIG. 2, upper and lower two herringbone-like dynamic pressure generating grooves 12 a and 12 b are formed in a bearing inner hole of the bearing sleeve 2. Further, a coating film (plating film) by plating is formed on at least the inner surface of the bearing sleeve 2. When the rotating shaft 3 is rotated by driving the motor, the lubricating fluid in the bearing gap is brought to the center of each dynamic pressure generating groove, the pressure of the lubricating fluid is increased, and the rotating shaft 3 is separated from the bearing inner hole of the bearing sleeve 2. Non-contact rotation by lubrication. As a result, the bearing device can have lower wear and longer life.

軸受スリーブ2をめっき処理後に潤滑流体を充填するために、図3に示すように、回転軸3の下端を支えるためのスラスト板10を軸受スリーブ2のかしめ部11に挿入し、かしめ固定する。   In order to fill the bearing sleeve 2 with a lubricating fluid after plating, a thrust plate 10 for supporting the lower end of the rotary shaft 3 is inserted into the caulking portion 11 of the bearing sleeve 2 and fixed by caulking, as shown in FIG.

すなわち、潤滑流体として用いる潤滑油を軸受スリーブ2内に充填する密閉空間を作るために、軸受の一端にスラスト板10がかしめ固定されている。ここで用いられる潤滑油としては、ジエステル系、ポリオールエステル系等のオイルを用いることができる。   That is, the thrust plate 10 is caulked and fixed to one end of the bearing in order to create a sealed space in which the lubricating oil used as the lubricating fluid is filled in the bearing sleeve 2. As the lubricating oil used here, oils such as diester type and polyol ester type can be used.

また、軸受スリーブ2は、回転軸3との摺擦部における耐磨耗性を得るために、前述のように、少なくとも内面には、無電解ニッケル−リンめっき等のめっきが施されており、めっきによる被膜中のリン含有量は、通常、2〜12wt%程度である。   The bearing sleeve 2 is plated with electroless nickel-phosphorus plating or the like on at least the inner surface as described above in order to obtain wear resistance at the sliding portion with the rotating shaft 3. The phosphorus content in the film formed by plating is usually about 2 to 12 wt%.

めっき膜の膜厚は、軸受スリーブ2との接触による耐久性から軸受内孔では2〜10μmの範囲が好ましい。これに対して、かしめ部11では軸受内孔のめっき膜の膜厚よりも薄くする。かしめ部のめっき膜厚は、軸受内孔のめっき膜厚の70%以下とするのが好ましい。70%以上ではスラスト板10をかしめる際にめっき膜に亀裂が発生するおそれがある。   The thickness of the plating film is preferably in the range of 2 to 10 μm in the bearing inner hole because of durability due to contact with the bearing sleeve 2. On the other hand, the caulking portion 11 is made thinner than the thickness of the plating film in the bearing inner hole. The plating film thickness of the caulking portion is preferably 70% or less of the plating film thickness of the bearing inner hole. If it is 70% or more, there is a risk of cracking in the plating film when the thrust plate 10 is caulked.

図4および図5は、軸受スリーブ2のめっき処理を行う工程を示す。マスキング治具13に軸受スリーブ2を乗せて、軸受内孔が垂直になるように金属かご14にセットする。金属かご14をめっき液槽15に浸漬して、上下揺動ユニット16で定期的に上下揺動(5〜20回/分程度)させながらめっき処理する。めっき処理中に、所定時間経過後、軸受スリーブ2からマスキング治具13を外してめっきを継続することにより、マスキング治具13でマスキングされていたかしめ部11のめっき膜厚のみを薄くし、所望の膜厚を得る。   4 and 5 show a process of plating the bearing sleeve 2. The bearing sleeve 2 is placed on the masking jig 13 and set in the metal cage 14 so that the bearing inner hole is vertical. The metal cage 14 is immersed in the plating solution tank 15 and plated while being periodically rocked up and down (about 5 to 20 times / min) by the vertical rocking unit 16. During the plating process, after a predetermined time has elapsed, the masking jig 13 is removed from the bearing sleeve 2 and the plating is continued, so that only the plating film thickness of the caulking portion 11 masked by the masking jig 13 is reduced. The film thickness is obtained.

めっき膜を形成するためのめっき液は市販の無電解ニッケル−リンめっき液等を用いる。プロセス条件としては、例えば、浴温82〜94℃、pH5〜6である。   As the plating solution for forming the plating film, a commercially available electroless nickel-phosphorous plating solution or the like is used. The process conditions are, for example, a bath temperature of 82 to 94 ° C. and a pH of 5 to 6.

図1の軸受スリーブに、末尾の表1に示すように処理条件を変えてめっき処理を行った。実施例1〜5および比較例1〜3に対して、軸受スリーブのめっき膜厚測定、およびスラスト板のかしめ、連続耐久試験を次の通り行った。   The bearing sleeve shown in FIG. 1 was subjected to a plating process under different processing conditions as shown in Table 1 at the end. For Examples 1 to 5 and Comparative Examples 1 to 3, the plating film thickness measurement of the bearing sleeve, the caulking of the thrust plate, and the continuous durability test were performed as follows.

<膜厚測定>
かしめ部のめっき膜の膜厚は、軸受スリーブを全長方向に半分に切断し、めっき膜の切断面を走査電子顕微鏡(HITACHI社製 S−4300)を用いて観察して測長した。
<Film thickness measurement>
The thickness of the plating film in the caulking portion was measured by cutting the bearing sleeve in half in the full length direction, and observing the cut surface of the plating film with a scanning electron microscope (HITACHI S-4300).

軸受内孔のめっき膜の膜厚は、まず、ギャップジェット(東京精密社製)を用いてめっき処理前後の軸受内孔の動圧内径を測定し、以下の式より膜厚を算出した。
めっき膜の膜厚=(めっき前の内径−めっき後の内径)/2×1000
The film thickness of the plating film in the bearing inner hole was measured by first measuring the dynamic pressure inner diameter of the bearing inner hole before and after plating using a gap jet (manufactured by Tokyo Seimitsu Co., Ltd.), and calculating the film thickness from the following formula.
Plating film thickness = (inner diameter before plating−inner diameter after plating) / 2 × 1000

スラスト板のかしめ固定は、リベットマシン(吉川鐵工社製 US−1)を用いて、推進力35kgfで軸受スリーブにスラスト板をかしめることによって行った。   The thrust plate was caulked and fixed by caulking the thrust plate to the bearing sleeve with a propulsive force of 35 kgf using a rivet machine (US-1 manufactured by Yoshikawa Seiko Co., Ltd.).

実施例1〜5で用いる軸受スリーブは、長さ14.0mm、内径φ3.00、材質は真鍮製とした。めっき処理は図5の装置を用いて以下のように行った。   The bearing sleeves used in Examples 1 to 5 were 14.0 mm in length, the inner diameter was 3.00, and the material was brass. The plating process was performed as follows using the apparatus of FIG.

マスキング治具に軸受スリーブを乗せて、金属かごにセットし、金属かごごと、めっき液中に浸漬して、定期的に15回/分上下揺動させながらめっきした。めっき中に軸受スリーブからマスキング治具を外して、さらに所定時間、めっきを継続した。   The bearing sleeve was placed on the masking jig, set in a metal cage, immersed in a plating solution together with the metal cage, and plated while periodically rocking up and down 15 times / minute. During the plating, the masking jig was removed from the bearing sleeve, and the plating was continued for a predetermined time.

なお、各実施例毎に各100個のサンプルを作成した。実施例1〜5で用いためっき液および組成は以下のとおりである。
めっき液:ニッケルブーマーLP−26(日本化学産業社製)
(無電解ニッケル−リンめっき、低リンタイプ)
ニッケルブーマーLP−26−A 90ml/L
ニッケルブーマーLP−26−B 200ml/L
純水 710ml/L
In addition, 100 samples were prepared for each example. The plating solutions and compositions used in Examples 1 to 5 are as follows.
Plating solution: Nickel Boomer LP-26 (Nippon Chemical Industry Co., Ltd.)
(Electroless nickel-phosphorus plating, low phosphorus type)
Nickel Boomer LP-26-A 90ml / L
Nickel Boomer LP-26-B 200ml / L
Pure water 710ml / L

比較例1〜3では、実施例1〜5と同じ軸受スリーブとめっき装置およびめっき液を用いて、同じ浸漬・揺動条件とした。   In Comparative Examples 1-3, the same dipping / swinging conditions were set using the same bearing sleeve, plating apparatus, and plating solution as in Examples 1-5.

比較例1、2ではマスキングした時間を実施例1〜5に比べて短縮し、比較例3ではマスキング治具を用いずに金属かごに軸受スリーブを垂直になるように設置し、軸受スリーブ全面に均一にめっきを施した。   In Comparative Examples 1 and 2, the masking time was shortened compared to Examples 1 to 5, and in Comparative Example 3, the bearing sleeve was installed vertically on the metal cage without using the masking jig, Plating was performed uniformly.

実施例1〜5、比較例1〜3で作製した軸受スリーブのサンプル各100個にスラスト板をかしめ、かしめ部のめっき膜が割れていないかの確認を行った。その結果、表1に示すように実施例1〜5ではかしめ部のめっき膜の割れが起こらなかったが、比較例1〜3ではめっき膜に割れが起こった。このことより、かしめ部のめっき膜厚を軸受内孔のめっき膜厚の70%以下にすると、スラスト板をかしめる際に生じるかしめ部のめっき膜の割れを防止することができることがわかった。   Thrust plates were caulked to 100 bearing sleeve samples prepared in Examples 1 to 5 and Comparative Examples 1 to 3, respectively, and it was confirmed whether or not the plating film of the caulking portion was cracked. As a result, as shown in Table 1, in Examples 1 to 5, cracks in the caulking portion did not occur, but in Comparative Examples 1 to 3, cracks occurred in the plating film. From this, it was found that if the plating film thickness of the caulking part is 70% or less of the plating film thickness of the bearing inner hole, cracking of the caulking part plating film that occurs when the thrust plate is caulked can be prevented.

Figure 0004753250
Figure 0004753250

一実施の形態による流体軸受装置を示す模式図である。It is a mimetic diagram showing a fluid dynamic bearing device by one embodiment. 図1の装置の軸受スリーブのみを示す断面図である。It is sectional drawing which shows only the bearing sleeve of the apparatus of FIG. 図2のの軸受スリーブのかしめ部を拡大して示す拡大部分断面図である。FIG. 3 is an enlarged partial cross-sectional view showing an enlarged crimped portion of the bearing sleeve of FIG. 2. マスキング治具を説明する図である。It is a figure explaining a masking jig. めっき装置を説明する図である。It is a figure explaining a plating apparatus.

符号の説明Explanation of symbols

1 回転多面鏡
2 軸受スリーブ
3 回転軸
5 ロータフレーム
7 ステータコイル
8 ロータマグネット
9 押え板
10 スラスト板
11 かしめ部
13 マスキング治具
14 金属かご
15 めっき槽
DESCRIPTION OF SYMBOLS 1 Rotating polygon mirror 2 Bearing sleeve 3 Rotating shaft 5 Rotor frame 7 Stator coil 8 Rotor magnet 9 Presser plate 10 Thrust plate 11 Caulking part 13 Masking jig 14 Metal cage 15 Plating tank

Claims (2)

軸受スリーブと、前記軸受スリーブの軸受内孔に回転自在に嵌合する軸と、前記軸受スリーブ内に充填された流体と、前記軸の下端を支えるように前記軸受スリーブのかしめ部にかしめ固定されたスラスト板と、を有する流体軸受装置において、前記軸受スリーブの少なくとも内面には無電解ニッケルリンめっきによる被膜が形成されており、前記軸受内孔における前記被膜の膜厚は3.0μm以上5.0μm以下であり、前記かしめ部における前記被膜の膜厚は1.5μm以上で前記軸受内孔における前記被膜の膜厚の70%以下であることを特徴とする流体軸受装置。 A bearing sleeve, a shaft that is rotatably fitted in a bearing inner hole of the bearing sleeve, a fluid filled in the bearing sleeve, and a caulking portion of the bearing sleeve so as to support a lower end of the shaft. In the hydrodynamic bearing device having a thrust plate, a coating by electroless nickel phosphorus plating is formed on at least the inner surface of the bearing sleeve, and the thickness of the coating in the bearing inner hole is 3.0 μm or more. A hydrodynamic bearing device, wherein the film thickness is 0 μm or less, and the film thickness of the film in the caulking portion is 1.5 μm or more and 70% or less of the film thickness of the film in the bearing inner hole. 請求項記載の流体軸受装置を備えたモータ部と、前記モータ部によって回転される回転多面鏡と、を備えたことを特徴とする回転装置。 A rotating device comprising: a motor unit including the hydrodynamic bearing device according to claim 1; and a rotary polygon mirror rotated by the motor unit.
JP2006041826A 2006-02-20 2006-02-20 Hydrodynamic bearing device and rotating device Expired - Fee Related JP4753250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041826A JP4753250B2 (en) 2006-02-20 2006-02-20 Hydrodynamic bearing device and rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041826A JP4753250B2 (en) 2006-02-20 2006-02-20 Hydrodynamic bearing device and rotating device

Publications (2)

Publication Number Publication Date
JP2007218386A JP2007218386A (en) 2007-08-30
JP4753250B2 true JP4753250B2 (en) 2011-08-24

Family

ID=38495906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041826A Expired - Fee Related JP4753250B2 (en) 2006-02-20 2006-02-20 Hydrodynamic bearing device and rotating device

Country Status (1)

Country Link
JP (1) JP4753250B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070811A (en) * 2008-09-18 2010-04-02 Canon Electronics Inc Machine component, method for producing the same and rotary device using the same
JP5868276B2 (en) * 2012-07-03 2016-02-24 日本特殊陶業株式会社 Ceramic heater, gas sensor, and method of manufacturing ceramic heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200087A (en) * 1986-02-25 1987-09-03 日立電線株式会社 Hose fitting and manufacture thereof
JPH11313461A (en) * 1997-12-19 1999-11-09 Matsushita Electric Ind Co Ltd Motor with dynamic pressure fluid bearing and device mounted with the motor
JP3885399B2 (en) * 1999-01-07 2007-02-21 松下電器産業株式会社 Spindle motor

Also Published As

Publication number Publication date
JP2007218386A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP2001200838A (en) Fluid dynamic pressure bearing, fluid dynamic pressure bearing device, manufacturing method of fluid dynamic pressure bearing, and bearing surface machining method
JP4753250B2 (en) Hydrodynamic bearing device and rotating device
JP2006271034A (en) Oscillatory wave motor
US6779924B2 (en) Dynamic pressure bearing and method of manufacturing the same
JP2746830B2 (en) Dynamic pressure air bearing device and method of manufacturing groove for generating dynamic pressure
JP2000120695A (en) Dynamic pressure bearing device
CN1221742C (en) Bearing member and its manufacture method and kinetic pressure bearing device
JP3630810B2 (en) Hydrodynamic air bearing and polygon scanner using the same
EP1538355A1 (en) Bearing material
JP3573125B2 (en) Motor and motor built-in device
JP2007092816A (en) Bearing device
JP2002161912A (en) Manufacturing method of fluid bearing unit
JP2003165032A (en) Fixing method by shrink fit
JP2002238228A (en) Fluid bearing unit
JP2007092847A (en) Bearing device
JP4928194B2 (en) Drive motor and rotary polygon mirror drive device including the same
JP3989282B2 (en) Manufacturing method and apparatus for hydrodynamic bearing device
JP2007239795A (en) Sliding bearing
JP2007263312A (en) Manufacturing method of slide bearing
JP2010070811A (en) Machine component, method for producing the same and rotary device using the same
JP2002286038A (en) Motor and disk apparatus provided therewith
JP2002235742A (en) Pneumatic dynamic pressure bearing device
JP2002147443A (en) Fluid bearing device
JP3159918B2 (en) Dynamic pressure bearing device and method of manufacturing the same
JPH11223213A (en) Gas bearing device and its working method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees