JP4752863B2 - Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric substrate wafer, and method for manufacturing piezoelectric substrate wafer - Google Patents

Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric substrate wafer, and method for manufacturing piezoelectric substrate wafer Download PDF

Info

Publication number
JP4752863B2
JP4752863B2 JP2008114041A JP2008114041A JP4752863B2 JP 4752863 B2 JP4752863 B2 JP 4752863B2 JP 2008114041 A JP2008114041 A JP 2008114041A JP 2008114041 A JP2008114041 A JP 2008114041A JP 4752863 B2 JP4752863 B2 JP 4752863B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric substrate
substrate
wafer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008114041A
Other languages
Japanese (ja)
Other versions
JP2008199660A (en
Inventor
浩一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008114041A priority Critical patent/JP4752863B2/en
Publication of JP2008199660A publication Critical patent/JP2008199660A/en
Application granted granted Critical
Publication of JP4752863B2 publication Critical patent/JP4752863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は超薄肉の振動部を厚肉の環状部で一体的に包囲した構造の圧電基板、この圧電基板に励振電極等の導電パターンを形成した圧電振動素子、圧電振動素子をパッケージ内に気密封止した圧電振動子、更にはこの圧電振動子を用いた圧電発振器、圧電基板ウェハの改良に関し、特に異方性を有した圧電結晶材料から成る圧電基板面にエッチングによって凹陥部を形成することによって前記振動部を形成した場合に、環状部内壁に発生するエッチング残渣(緩斜面)を利用することによって、圧電基板の超小型化に対応した最適の形状を実現する技術、及び品質を維持しながらバッチ処理における量産性を高める技術に関するものである。更に、本発明は、圧電基板ウェハ上に複数の凹陥部を一括形成した後に、凹陥部底面の振動部の肉厚を微調整するのに好適な加工方法、及び限られた狭い圧電基板内において可能な限り広い面積の振動部を確保するための技術に関するものである。   The present invention relates to a piezoelectric substrate having a structure in which an ultrathin vibrating portion is integrally surrounded by a thick annular portion, a piezoelectric vibrating element in which a conductive pattern such as an excitation electrode is formed on the piezoelectric substrate, and a piezoelectric vibrating element in a package. Regarding the improvement of the hermetically sealed piezoelectric vibrator, and further the piezoelectric oscillator and piezoelectric substrate wafer using this piezoelectric vibrator, a recess is formed by etching on the surface of the piezoelectric substrate made of an anisotropic piezoelectric crystal material. In this way, when the vibrating part is formed, by using the etching residue (slow slope) generated on the inner wall of the annular part, the technology and quality to realize the optimum shape corresponding to the miniaturization of the piezoelectric substrate are maintained. The present invention relates to a technique for improving mass productivity in batch processing. Furthermore, the present invention provides a processing method suitable for finely adjusting the thickness of the vibration portion on the bottom surface of the recess after forming a plurality of recesses on the piezoelectric substrate wafer at once, and in a limited narrow piezoelectric substrate. The present invention relates to a technique for securing a vibration part having the widest possible area.

[第1の従来例]
水晶振動子等の如く圧電振動素子をパッケージ内に気密封止した構造の表面実装型の圧電デバイスは、携帯電話機、ページャ等の通信機器や、コンピュータ等の電子機器等において、基準周波数発生源、フィルタ等として利用されているが、これらの各種機器の小型化に対応して圧電デバイスに対しても小型化が求められている。
また、表面実装用の圧電デバイスとしての圧電発振器は、例えばセラミック等から成るパッケージ本体の上面に形成された凹所内に、圧電振動素子と、発振回路を構成する回路部品を収納した状態で凹所開口を金属蓋により封止した構成を備えている。
従来から、上記の如き圧電デバイスに使用される圧電振動素子として、高周波化に対応できるように圧電基板の片側表面を一部掘削することにより凹陥部を形成してその底面を薄肉の振動部とすると共に、この振動部周縁を厚肉の環状部により一体的に包囲した構造の圧電基板と、この振動部の表裏両面に夫々形成した入出力用の電極と接地電極と、から成る圧電振動素子が知られている(特開平9−55635号公報)。
[First Conventional Example]
A surface mount type piezoelectric device having a structure in which a piezoelectric vibration element is hermetically sealed in a package such as a crystal resonator is used as a reference frequency generation source in communication equipment such as a mobile phone and a pager, and electronic equipment such as a computer. Although used as a filter or the like, the piezoelectric devices are also required to be miniaturized in response to the miniaturization of these various devices.
In addition, a piezoelectric oscillator as a surface-mounting piezoelectric device has a recess in a state where a piezoelectric vibration element and a circuit component constituting an oscillation circuit are housed in a recess formed on an upper surface of a package body made of, for example, ceramic. The opening is sealed with a metal lid.
Conventionally, as a piezoelectric vibration element used in the piezoelectric device as described above, a concave portion is formed by excavating a part of one side surface of a piezoelectric substrate so as to cope with a high frequency, and the bottom surface is formed as a thin vibration unit. And a piezoelectric substrate having a structure in which the periphery of the vibrating portion is integrally surrounded by a thick annular portion, and an input / output electrode and a ground electrode formed on both the front and back surfaces of the vibrating portion, respectively. Is known (Japanese Patent Laid-Open No. 9-55635).

図9(a)及び(b)は、このような圧電振動素子の一例としてのATカット水晶振動素子の構成を示す斜視図、及び断面図である。この水晶振動素子100は、異方性を有した圧電結晶材料としてのATカット水晶から成る水晶基板101と、水晶基板の両主面に夫々形成した励振電極110、及び各励振電極110から延びるリード電極111と、各リード電極端部の接続パッド112と、を備えている。水晶基板101は、x軸方向に長尺な矩形平板状の基板本体の一方の主面上に凹陥部102をエッチングにより形成することにより、凹陥部102の内底面に超薄肉の振動部103を位置させると共に、振動部103の外周縁を厚肉の環状部104にて一体的に保持した構成を備えている。環状部104のx軸方向に位置する一辺104Aは、x軸方向へ所定長延長形成されて張り出し部105となっている。張り出し部105の一面上には、各リード電極111が引き出され、各リード電極111の端部には接続パッド112が位置している。
このようにATカットの水晶基板101の形状をx軸方向へ長尺に構成する理由は、励振時のx軸方向の波の伝搬速度がz軸方向の波の伝搬速度の約1.2倍であるため、x軸方向に長尺なx軸ロング構造を採るのが慣例となっていた。
水晶基板101上に凹陥部102を形成する方法として化学エッチングを採用した場合には、異方性結晶材料としての水晶の特性から、エッチングを終了した際にz軸方向に位置する環状部104の内壁にエッチング残渣としての傾斜角度θが小さい緩やかな緩斜面104a、104bが形成される。
図9(c)は、上記の如き構成を備えた水晶振動素子100を表面実装用のパッケージ120内にマウントした状態を示す断面図であり、凹陥部102を下向きにした水晶振動素子100の接続パッド112を、パッケージ120の内底面に配置したパッド121上に導電性接着剤122を介して電気的機械的に固定する。パッケージ120の上部開口は金属蓋123にて気密封止する。
FIGS. 9A and 9B are a perspective view and a cross-sectional view showing a configuration of an AT-cut quartz crystal vibration element as an example of such a piezoelectric vibration element. The crystal resonator element 100 includes a crystal substrate 101 made of an AT-cut crystal as an anisotropic piezoelectric crystal material, excitation electrodes 110 formed on both main surfaces of the crystal substrate, and leads extending from the excitation electrodes 110, respectively. An electrode 111 and a connection pad 112 at the end of each lead electrode are provided. The quartz substrate 101 is formed by forming a recess 102 on one main surface of a rectangular flat plate-like substrate body that is long in the x-axis direction, thereby forming an ultrathin vibrating portion 103 on the inner bottom surface of the recess 102. And a configuration in which the outer peripheral edge of the vibrating portion 103 is integrally held by a thick annular portion 104. One side 104 </ b> A located in the x-axis direction of the annular portion 104 is formed to extend over a predetermined length in the x-axis direction to form an overhang portion 105. Each lead electrode 111 is drawn out on one surface of the overhang portion 105, and the connection pad 112 is located at the end of each lead electrode 111.
The reason why the AT-cut quartz crystal substrate 101 is thus elongated in the x-axis direction is that the wave propagation speed in the x-axis direction during excitation is about 1.2 times the wave propagation speed in the z-axis direction. Therefore, it has become customary to adopt an x-axis long structure that is long in the x-axis direction.
When chemical etching is employed as a method for forming the recessed portion 102 on the quartz substrate 101, the annular portion 104 positioned in the z-axis direction when the etching is finished due to the characteristics of quartz as an anisotropic crystal material. On the inner wall, gentle gentle slopes 104a and 104b having small inclination angles θ as etching residues are formed.
FIG. 9C is a cross-sectional view showing a state in which the crystal resonator element 100 having the above-described configuration is mounted in a surface mounting package 120, and the connection of the crystal resonator element 100 with the recessed portion 102 facing downward. The pad 112 is electrically and mechanically fixed on the pad 121 disposed on the inner bottom surface of the package 120 via the conductive adhesive 122. The upper opening of the package 120 is hermetically sealed with a metal lid 123.

ところで、上記の如き水晶基板101(或いは、水晶振動素子100)を大面積の圧電基板ウェハを用いてバッチ処理により生産する場合、図10に示した如く水晶振動素子個片100の配列がレイアウトされる。即ち、ウェハ130上には、予め縦横に交差する複数の直線状ダイシング溝(分割溝)131を碁盤の目状に形成し、溝間に形成される矩形領域が個々の水晶基板101となる。凹陥部102に相当する水晶基板面だけを露出させたマスク(レジスト膜)をウェハ130上に被覆した状態で所要のエッチャントを用いてエッチングを実施すると、図示の如くエッチング速度が遅い結晶方向に相当するz軸方向の内壁にエッチング残渣としての緩やかな緩斜面104a、104bが形成される。その後、各個片領域に蒸着等の方法により励振電極110、リード電極111、接続パッド112等を形成してから、ダイシング溝131に沿って切断することにより、個片としての水晶振動素子100が完成する。
ところで、縦横寸法が2.5×2.0mmである超小型パッケージ内に収納される水晶基板の縦横寸法は、1.3×0.9mm未満と、更に超小型化せざるを得ない。一方、ウェハ130を用いたバッチ処理を実施する際には、一枚のウェハから採取できる水晶基板の数を増やしてその量産性を高めるために、水晶基板個片間の間隔を接近させて密集配置する必要があるが、上記の如き超小型化の水晶基板を生産する場合には、図示の如く、ダイシング溝131と、凹陥部102の3つの外周縁との間隔wが極めて狭くなり、分割後に十分な幅と十分な強度を備えた環状部104を確保することが困難となる。このため、ダイシング溝131に沿ってダイシングブレード等の分割手段によって切断した場合に、環状部104と振動部103にひび割れが形成され易くなり、生産性が大幅に低下するという問題があった。
By the way, when the crystal substrate 101 (or the crystal resonator element 100) as described above is produced by batch processing using a large-area piezoelectric substrate wafer, the arrangement of the crystal resonator element pieces 100 is laid out as shown in FIG. The That is, on the wafer 130, a plurality of linear dicing grooves (divided grooves) 131 that cross in the vertical and horizontal directions are formed in a grid pattern in advance, and rectangular regions formed between the grooves become individual crystal substrates 101. When etching is performed using a required etchant in a state in which a mask (resist film) that exposes only the quartz substrate surface corresponding to the recess 102 is coated on the wafer 130, the etching direction corresponds to a crystal direction with a slow etching rate as shown in the figure. On the inner wall in the z-axis direction, gentle gentle slopes 104a and 104b are formed as etching residues. Thereafter, the excitation electrode 110, the lead electrode 111, the connection pad 112, and the like are formed in each individual region by a method such as vapor deposition, and then cut along the dicing groove 131 to complete the crystal resonator element 100 as an individual piece. To do.
By the way, the vertical and horizontal dimensions of a quartz crystal substrate housed in an ultra-small package having a vertical and horizontal dimension of 2.5 × 2.0 mm are less than 1.3 × 0.9 mm, and it is inevitable to further reduce the size. On the other hand, when batch processing using the wafer 130 is performed, in order to increase the number of crystal substrates that can be collected from one wafer and increase the mass productivity thereof, the intervals between the crystal substrate pieces are made close to each other to increase the density. However, when producing an ultra-miniaturized quartz substrate as described above, the interval w between the dicing groove 131 and the three outer peripheral edges of the recessed portion 102 becomes extremely narrow as shown in FIG. It will be difficult to secure the annular portion 104 having a sufficient width and sufficient strength later. For this reason, when it cut | disconnects along the dicing groove | channel 131 by division means, such as a dicing blade, it became easy to form a crack in the cyclic | annular part 104 and the vibration part 103, and there existed a problem that productivity fell significantly.

また、図9(a)に示した如く、振動部103の表裏両面に夫々形成された励振電極110から夫々延びるリード電極111は、傾斜が急峻なx軸方向に位置する環状部104の一辺104Aの内壁に沿って引き出す必要があるため、急角度で屈曲している角部にて導電パターンが断線し易いという問題がある。
更に、図9(c)のように接続パッド112は、内壁の傾斜が急峻な一辺104Aと連続した張り出し部105上に形成され、導電性接着剤122でパッケージ内底面のパッド121と接続されることにより、水晶振動素子全体が片持ち状態で支持されることになるが、この場合、導電性接着剤122を接着した位置から振動部103までの距離が短くなるため、水晶振動素子の自重によるストレスが振動部103にかかり易くなり、振動部に歪みが発生し、共振周波数変動の原因となる。
Further, as shown in FIG. 9A, the lead electrodes 111 respectively extending from the excitation electrodes 110 formed on both the front and back surfaces of the vibrating portion 103 have one side 104A of the annular portion 104 positioned in the x-axis direction having a steep inclination. Therefore, there is a problem that the conductive pattern is easily disconnected at corners that are bent at a steep angle.
Further, as shown in FIG. 9C, the connection pad 112 is formed on the overhanging portion 105 that is continuous with the side 104 </ b> A having a steep inner wall slope, and is connected to the pad 121 on the bottom surface of the package by the conductive adhesive 122. As a result, the entire crystal resonator element is supported in a cantilevered state, but in this case, the distance from the position where the conductive adhesive 122 is adhered to the vibrating portion 103 is shortened, and therefore, due to the weight of the crystal resonator element. Stress is likely to be applied to the vibration part 103, distortion occurs in the vibration part, and causes a resonance frequency fluctuation.

[第2の従来例]
次に、図11(a)及び(b)は他の従来例に係る表面実装型水晶振動子の断面図、及びA−A断面図であり、水晶振動素子100をパッケージ120の凹所内に片持ち支持した状態で金属蓋123により気密封止した構成を備えている。水晶基板101の張り出し部105の表裏両面上には、夫々2つの接続パッド112a、112bが形成されている。この場合、パッケージ内底面と対面する接続パッド112aは対応する位置関係にあるパッド121aと導電性接着122にて容易に電気的機械的に接続されるが、他方の接続パッド112bは、水晶基板の平坦面側に位置しているため対応するパッケージの凹所内に設けたパッド121bと接続するためには、接着剤を二度盛りする必要がある。接着剤の二度盛りにおいては、パッド121bと水晶基板下面との間に第一回目の接着剤を塗布してから、上側の接続パッド112bと第一回目の接着剤とを接続するように第二回目の接着剤塗布が行われる。
しかし、導電性接着剤122を二度盛りした場合には、上側の接続パッド112b上に接着剤の一部が突出し、接着剤と金属蓋123下面との接触を回避するために、パッケージ120の外周壁の高さを大きく設定する必要が生じる。この結果、パッケージの低背化に支障が生じ、小型化の要請に反する結果をもたらす。
このような不具合を解消するため従来は、図11(c)に示した如く、上面側の接続パッド112b端縁に相当する基板端縁に、内壁全体に導体膜を備えた凹状切欠き140(140a、140b)を形成し、凹状切欠き140b内壁の導体膜と上面側接続パッド112bとを導通させる一方で、対応する基板下面側にも凹状切欠き140b内壁の導体膜と導通する下側の接続パッド112b’を形成する。このため、下側の接続パッド112b’とパッケージ内底面のパッド121bとを導電性接着剤122により接続することにより、一回の接着剤塗布により上側の接続パッド112bとパッド121bとの電気的導通を確保することができる。
[Second Conventional Example]
Next, FIGS. 11A and 11B are a cross-sectional view and a cross-sectional view taken along the line AA of the surface-mount type crystal resonator according to another conventional example, and the crystal resonator element 100 is cut into the recess of the package 120. It has a configuration in which it is hermetically sealed with a metal lid 123 while being held and supported. Two connection pads 112a and 112b are formed on both the front and back surfaces of the protruding portion 105 of the quartz substrate 101, respectively. In this case, the connection pad 112a facing the inner bottom surface of the package is easily electrically and mechanically connected to the corresponding pad 121a and the conductive adhesive 122, but the other connection pad 112b is connected to the quartz substrate. Since it is located on the flat surface side, in order to connect with the pad 121b provided in the recess of the corresponding package, it is necessary to pour adhesive twice. In the second time of the adhesive, the first adhesive is applied between the pad 121b and the lower surface of the quartz substrate, and then the upper connection pad 112b and the first adhesive are connected to each other. A second adhesive application is performed.
However, when the conductive adhesive 122 is deposited twice, a part of the adhesive protrudes on the upper connection pad 112b, and in order to avoid contact between the adhesive and the lower surface of the metal lid 123, It is necessary to set the height of the outer peripheral wall large. As a result, the low profile of the package is hindered, resulting in a result contrary to the demand for downsizing.
In order to eliminate such problems, conventionally, as shown in FIG. 11 (c), a concave notch 140 having a conductor film on the entire inner wall at the substrate edge corresponding to the edge of the connection pad 112b on the upper surface side ( 140a, 140b), and the conductive film on the inner wall of the concave notch 140b is electrically connected to the upper surface side connection pad 112b, while the lower side of the corresponding conductive film on the lower surface of the substrate is also connected to the conductive film on the inner wall of the concave notch 140b. A connection pad 112b ′ is formed. For this reason, by connecting the lower connection pad 112b ′ and the pad 121b on the inner bottom surface of the package with the conductive adhesive 122, electrical conduction between the upper connection pad 112b and the pad 121b by one adhesive application. Can be secured.

上記の如き凹状切欠きの形成に当たっては、図11(d)に示す如く、大面積の圧電基板ウェハ130に対するマスク(レジスト膜)を用いた化学エッチングにより水晶基板個片101の表裏両面側から小凹所の掘削を行い、両小凹所を連通させることにより貫通穴140Hを形成してから、貫通穴内壁に導電膜を塗布し、ダイシング溝131に沿って分割する手順が行われる。しかし、例えば縦横寸法が1.3×0.9mm以下の超小型水晶振動素子上の接続パッド112b内に形成される個々の貫通穴140Hの径(幅)はμmオーダーの微小寸法とならざるを得ないため、表裏両面側から形成される両小凹所間が完全に連通しないエッチング不良が多発し易くなる。一方、凹状切欠き140を構成する貫通穴140Hは、面積が極限された接続パッド112bの狭い面積内に形成される以上、その大径化に限界がある。特に、極めて小面積の圧電基板の一端縁に沿って2つの貫通穴を形成すること自体が困難である。
従って、大面積の圧電基板ウェハ130上に凹状切欠き140を構成する貫通穴140Hを化学的エッチングにより形成する際の貫通穴形成不良に起因した超小型水晶振動素子の歩留まりの低下という問題の解決が従来から強く望まれていた。
なお、凹状切欠き140を水晶基板101の端縁に2個設ける理由は、一方の凹状切欠き140bについては、上述の如く、下側の接続パッド112b上側の接続パッド112bとパッケージ側のパッド121bとの導通を確保する為であり、他方の凹状切欠き140aについては、下側の接続パッド112aと導通した上側の接続パッド112a’を水晶基板の上面に設けるためである。この結果、ウェハ130上に形成された個々の水晶振動素子についての共振周波数等の特性を測定する際に、水晶基板の上面に配置された2つの接続パッド112b、112a’、或いは、下面側の2つの接続パッド112a、112b’に対して、測定器のプローブピンを同一方向から当接させた測定が可能となる。これは、基板上の同一面上に位置する2つの接続パッドにプローブピンを当接させた測定を行うことが最も効率的だからである。
また、水晶振動素子100をパッケージ内に搭載する際の方向としては、図11(a)のように凹陥部側を常に下向きにする訳ではなく、凹陥部側を上向きにした搭載も行われる。このため、各接続パッドを基板の両面に2個ずつ配置しておけば、一つの水晶振動素子100を任意の向きにて、パッケージ内へ搭載することができる。
In forming the concave notch as described above, as shown in FIG. 11 (d), the quartz substrate piece 101 is small from both the front and back sides by chemical etching using a mask (resist film) on the piezoelectric substrate wafer 130 having a large area. After the excavation of the recess and the formation of the through hole 140H by connecting both small recesses, a conductive film is applied to the inner wall of the through hole, and a procedure of dividing along the dicing groove 131 is performed. However, for example, the diameter (width) of each through hole 140H formed in the connection pad 112b on the ultra-small crystal resonator element having a vertical and horizontal dimension of 1.3 × 0.9 mm or less must be a minute dimension on the order of μm. Since it cannot be obtained, etching defects that do not completely communicate between the two small recesses formed from the front and back both sides are likely to occur frequently. On the other hand, as long as the through hole 140H constituting the concave notch 140 is formed within a narrow area of the connection pad 112b having a limited area, there is a limit to increasing the diameter thereof. In particular, it is difficult to form two through holes along one end edge of a very small piezoelectric substrate.
Accordingly, a solution to the problem of a decrease in the yield of the micro crystal resonator element due to poor formation of the through hole when the through hole 140H constituting the concave notch 140 is formed on the large-area piezoelectric substrate wafer 130 by chemical etching. Has been strongly desired.
The reason why the two concave cutouts 140 are provided on the edge of the quartz substrate 101 is that, as described above, with respect to one concave cutout 140b, the connection pad 112b above the lower connection pad 112b and the pad 121b on the package side. This is for the purpose of providing the upper connection pad 112a ′, which is electrically connected to the lower connection pad 112a, on the upper surface of the quartz substrate. As a result, when measuring the characteristics such as the resonance frequency of the individual crystal resonator elements formed on the wafer 130, the two connection pads 112b and 112a ′ arranged on the upper surface of the crystal substrate, or the lower surface side Measurement can be performed with the probe pins of the measuring instrument in contact with the two connection pads 112a and 112b ′ from the same direction. This is because it is most efficient to perform measurement by bringing the probe pin into contact with two connection pads located on the same surface on the substrate.
In addition, as a direction for mounting the crystal resonator element 100 in the package, the concave portion side is not always directed downward as shown in FIG. 11A, and the concave portion side is also mounted upward. For this reason, if two connection pads are arranged on both sides of the substrate, one crystal resonator element 100 can be mounted in the package in any orientation.

[第3の従来例]
次に、複数の圧電基板を縦横に配列して連結した構成を備えたシート状の圧電基板ウェハ上の各個片領域に凹陥部を化学エッチングによって形成した際に、全ての凹陥部底部の超薄肉振動部の肉厚を均一化することは困難である。このため、従来は、予め各凹陥部毎にその深さ、換言すれば各凹陥部内の振動部の肉厚のばらつきを測定しておき、規定肉厚に達しない振動部の肉厚を微調整するために各凹陥部毎に個別にエッチング液を用いた調整作業を行っていた。
図12(a)及び(b)は、従来の凹陥部毎の微調整方法を説明するための図であり、圧電基板ウェハ130の一方の主面上に図示しないマスク(レジスト膜)を被覆した状態でマスクの各開口部から露出したウェハ面だけを一括してエッチングすることにより、凹陥部102を一括形成する。このようなエッチングによる一括作業では、各凹陥部102の底部に位置する振動部103の肉厚は一定とはならないため、各凹陥部102内の振動部103の肉厚を予め測定しておき、次いで、符号150で示した如き碁盤目状の構成を備えたガイドマスクをウェハ130の凹陥部側面に密着配置した状態で、個別エッチングを実施する。即ち、ガイドマスク150は、例えば樹脂薄板に所定のピッチにて矩形、その他の形状の開口152を形成した構成を備え、碁盤目状に交差した仕切り部151間に、凹陥部102の平面形状と整合した形状の開口152が複数形成されている。このガイドマスク150を、図12(b)のように仕切り部151を凹陥部102の周縁の平面上に密着配置した状態でウェハ130上に固定する。この状態で、最大肉厚を有する振動部を備えた凹陥部から肉厚が薄い振動部を備えた凹陥部の順に、予め計算された所要の時間差をもって、順次各凹陥部内にエッチング液155を適量ずつ充填してゆく。そして、全ての振動部の肉厚が一定値にまでエッチングされた時点で一括してウェハごと洗浄を行い、エッチング液を除去する。
[Third conventional example]
Next, when recesses are formed by chemical etching in each piece region on a sheet-like piezoelectric substrate wafer having a configuration in which a plurality of piezoelectric substrates are arranged in rows and columns, the ultrathin portions of the bottoms of all the recesses are formed. It is difficult to make the thickness of the vibration portion uniform. For this reason, conventionally, the depth of each concave portion, in other words, the variation in the thickness of the vibrating portion in each concave portion is measured in advance, and the thickness of the vibrating portion that does not reach the specified thickness is finely adjusted. In order to do this, adjustment work using an etching solution is performed individually for each recess.
FIGS. 12A and 12B are diagrams for explaining a conventional fine adjustment method for each recessed portion, and a mask (resist film) (not shown) is coated on one main surface of the piezoelectric substrate wafer 130. FIG. In this state, only the wafer surface exposed from each opening of the mask is etched in a lump, thereby forming the recess 102 in a lump. In such a batch operation by etching, since the thickness of the vibrating portion 103 located at the bottom of each concave portion 102 is not constant, the thickness of the vibrating portion 103 in each concave portion 102 is measured in advance, Next, individual etching is performed in a state where a guide mask having a grid-like configuration as indicated by reference numeral 150 is disposed in close contact with the side surface of the recessed portion of the wafer 130. That is, the guide mask 150 has a configuration in which openings 152 having a rectangular shape or other shape are formed on a resin thin plate at a predetermined pitch, for example, and the planar shape of the recessed portion 102 is formed between the partition portions 151 intersecting in a grid pattern. A plurality of aligned openings 152 are formed. The guide mask 150 is fixed on the wafer 130 in a state where the partition portion 151 is in close contact with the peripheral plane of the recessed portion 102 as shown in FIG. In this state, an appropriate amount of the etching solution 155 is sequentially put into each concave portion with a predetermined time difference in order from the concave portion having the vibration portion having the maximum thickness to the concave portion having the thin thickness vibration portion. Fill one by one. Then, when the thickness of all the vibrating parts is etched to a constant value, the wafer is cleaned in a lump to remove the etching solution.

ところで、上記ガイドマスク150が有する開口152の寸法は、機械加工技術上の制限から微小化に限界があり、図12(b)に示した如き寸法が限界である。従って、例えば図12(c)に示した如く、更に微小サイズの圧電基板個片から成るウェハ130に形成した微小サイズの凹陥部102の振動部の肉厚を個別エッチングによって微調整する為には、大きいサイズの凹陥部用に製作したガイドマスク150をそのまま使用せざるを得なくなる。或いは、エッチング液を凹陥部内に確実に滴下する為には、最低限図12(b)に示した程度の大きさの開口152が必要となる。すると、図示した如く、仕切り部151の間の開口152内に凹陥部102とダイシング溝131が露出した状態となる。このような状態で、開口152内にエッチング液を充填した場合には、凹陥部内からはみ出したエッチング液がダイシング溝131内を浸透してエッチングしたくない部分までエッチングしてしまい当該部分の強度低下を来す。更に、(d)に示すように、エッチング液155の表面張力によって、凹陥部102内に充填されたエッチング液が凹陥部内底部に密着せずに、未充填空所156を形成する虞があり、この場合には個別エッチングが不良となる。
このようにウェハ上に一括形成した凹陥部の深さのばらつきを解消するために、凹陥部毎に個別にエッチング行おうとした場合には、使用するガイドマスク150の開口寸法についての制限から、エッチング不要箇所に対するエッチングが行われたり、或いは振動部に対するエッチングが不良となる虞がある。
By the way, the size of the opening 152 of the guide mask 150 is limited to miniaturization due to limitations in machining technology, and the size as shown in FIG. 12B is the limit. Therefore, for example, as shown in FIG. 12C, in order to finely adjust the thickness of the vibrating portion of the concave portion 102 having a small size formed on the wafer 130 made of a further small size piezoelectric substrate piece by individual etching. Therefore, it is necessary to use the guide mask 150 manufactured for the concave portion having a large size as it is. Alternatively, in order to reliably drop the etching solution into the recessed portion, an opening 152 having a size as small as shown in FIG. Then, as shown in the drawing, the recessed portion 102 and the dicing groove 131 are exposed in the opening 152 between the partition portions 151. In such a state, when the opening 152 is filled with an etching solution, the etching solution that protrudes from the recessed portion penetrates into the dicing groove 131 and etches the portion that is not desired to be etched, resulting in a decrease in strength of the portion. Come on. Furthermore, as shown in (d), the surface tension of the etching solution 155 may cause the etching solution filled in the recessed portion 102 not to adhere to the bottom of the recessed portion, thereby forming an unfilled void 156, In this case, the individual etching becomes defective.
In order to eliminate the variation in the depth of the concave portions formed on the wafer as described above, when the individual etching is performed for each concave portion, the etching is performed due to the restriction on the opening size of the guide mask 150 to be used. There is a possibility that etching is performed on unnecessary portions, or etching on the vibrating portion becomes defective.

[第4の従来例]
次に、図13は、圧電基板の一例としてのATカット水晶基板の構成を示す断面図である。この水晶基板101は、異方性を有した圧電結晶材料としてのATカット水晶から成り、水晶基板101の両主面には夫々点対称形状の凹陥部102a、102bが化学エッチングにより形成されている。即ち、水晶基板101は、矩形平板状の基板本体の両主面上にマスク(レジスト)160を被覆した状態で、凹陥部102a、102bをエッチングにより形成することにより、各凹陥部102a、102bの共通する内底面に超薄肉の振動部103を位置させると共に、振動部103の外周縁を厚肉の環状部104にて一体的に保持した構成を備えている。z軸方向とx軸方向へのエッチングの速度差により、各環状部104のz軸方向に位置する2つの辺の内壁104a、104bは、x軸方向側に位置する他の内壁よりも緩やかな傾斜面となっている。しかも、両内壁104a、104bの傾斜角度は異なっている。
しかし、このように同一開口形状を備えたマスク160を、水晶基板101の両面の同一位置に整合させた状態で被覆してエッチングを行うと、図示の如く各凹陥部102a、102bのz軸方向側の各内壁104a、104bが対称の位置関係となり、各凹陥部102a、102bの内底面の端縁102a’、102b’の位置が合致しない。このように各凹陥部102a、102bの内底面の端縁102a’、102b’の位置がz軸方向にずれているため、両内底面が合致せず、振動部103の面積が狭くなり、有効薄肉領域(有効振動領域)が狭くなる。このため、この水晶基板に電極等を形成することによって製造された水晶振動素子の特性が低下するという問題があった。特に、圧電基板の小型化が進行すると、このような不具合が深刻化する。
特開平9−55635号公報
[Fourth Conventional Example]
Next, FIG. 13 is a cross-sectional view showing a configuration of an AT-cut quartz crystal substrate as an example of a piezoelectric substrate. The quartz substrate 101 is made of AT-cut quartz as an anisotropic piezoelectric crystal material, and concave portions 102a and 102b having point symmetrical shapes are formed on both main surfaces of the quartz substrate 101 by chemical etching. . That is, the quartz substrate 101 is formed by etching the recesses 102a and 102b with the masks (resist) 160 covered on both main surfaces of the rectangular flat plate main body, thereby forming the recesses 102a and 102b. An ultra-thin vibrating portion 103 is positioned on a common inner bottom surface, and the outer peripheral edge of the vibrating portion 103 is integrally held by a thick annular portion 104. Due to the difference in etching rate between the z-axis direction and the x-axis direction, the inner walls 104a and 104b of the two sides located in the z-axis direction of each annular portion 104 are gentler than the other inner walls located on the x-axis direction side. It is an inclined surface. Moreover, the inclination angles of the inner walls 104a and 104b are different.
However, when the mask 160 having the same opening shape is covered and etched in a state in which the mask 160 is aligned at the same position on both sides of the quartz substrate 101, the z-axis direction of the recesses 102a and 102b is shown as shown in the figure. The inner walls 104a and 104b on the side have a symmetrical positional relationship, and the positions of the edges 102a ′ and 102b ′ of the inner bottom surfaces of the recessed portions 102a and 102b do not match. Thus, since the positions of the edges 102a ′ and 102b ′ of the inner bottom surfaces of the concave portions 102a and 102b are shifted in the z-axis direction, the inner bottom surfaces do not match, and the area of the vibrating portion 103 is reduced, which is effective. The thin region (effective vibration region) becomes narrow. For this reason, there has been a problem that the characteristics of the quartz resonator element manufactured by forming electrodes or the like on the quartz substrate are deteriorated. In particular, when the piezoelectric substrate is miniaturized, such a problem becomes serious.
Japanese Patent Laid-Open No. 9-55635

本発明は上記に鑑みてなされたものであり、第1の従来例に対応する第一の課題は、異方性を有した圧電結晶材料から成る圧電基板面にエッチングによって凹陥部を形成することによって振動部を形成した超小型の圧電基板を、大面積の圧電基板ウェハを用いたバッチ処理により量産する場合に、凹陥部を包囲する環状部の肉厚を十分に確保して分割時のひび割れを防止することにある。また、環状部内壁に発生するエッチング残渣により形成される急峻な傾斜面を避けた環状部内壁を経由して導電パターンを配線することによって断線を防止することを他の課題とする。更に、パッケージ内に圧電振動素子を片持ち状態で支持した場合に、片持ち支持部から振動部までの距離を可能な限り離間させることにより、水晶振動素子の自重に起因したストレスが振動部に加わることを防止することを他の課題とする。このように、第一の課題は、超薄肉の振動部と、それを包囲する厚肉の環状部を備えた圧電基板において、圧電基板の超小型化に対応した最適の形状を実現することにある。
第2の従来例に対応する第二の課題は、圧電基板個片をシート状に連結した大面積の圧電基板ウェハ上に、各基板個片の表裏両面に夫々接続パッドを2個ずつ形成するための電気的接続手段としての貫通穴(凹状切欠き)を化学的エッチングにより形成する際に、貫通穴の開口寸法の大型化に制約があることに起因して発生する貫通穴形成不良と、それに起因した生産性の低下を防止することにある。
The present invention has been made in view of the above, and the first problem corresponding to the first conventional example is to form a recess by etching on the surface of a piezoelectric substrate made of an anisotropic piezoelectric crystal material. When mass-producing ultra-small piezoelectric substrates with vibrating parts formed by batch processing using a large-area piezoelectric substrate wafer, ensure sufficient thickness of the annular part surrounding the recessed part to crack during splitting Is to prevent. Another object of the present invention is to prevent disconnection by wiring a conductive pattern via an inner wall of the annular portion that avoids a steeply inclined surface formed by etching residues generated on the inner wall of the annular portion. Furthermore, when the piezoelectric vibration element is supported in a cantilever state in the package, the stress due to the weight of the quartz crystal vibration element is applied to the vibration part by separating the distance from the cantilever support part to the vibration part as much as possible. Another challenge is to prevent the addition. As described above, the first problem is to realize an optimum shape corresponding to the miniaturization of the piezoelectric substrate in the piezoelectric substrate including the ultrathin vibrating portion and the thick annular portion surrounding the vibrating portion. It is in.
A second problem corresponding to the second conventional example is that two connection pads are formed on each of the front and back surfaces of each substrate piece on a large-area piezoelectric substrate wafer obtained by connecting the piezoelectric substrate pieces in a sheet shape. When forming a through hole (concave notch) as an electrical connection means for chemical etching, a through hole formation failure that occurs due to restrictions on an increase in the opening size of the through hole, This is to prevent the productivity from being lowered.

第3の従来例に対応する第三の課題は、圧電基板ウェハ上に複数の凹陥部を一括形成した後に、個々の凹陥部内の振動部の肉厚を時間差によるエッチングにより個別調整する場合に発生する種々の不具合を解決するために、凹陥部内にエッチング液を充填する調整作業に代えて、平坦面側からエッチングを行うことにより、振動部の微調整を行うようにすることにある。
第4の従来例に対応する第四の課題は、異方性結晶材料から成る圧電基板の両主面に夫々化学エッチングにより凹陥部を形成することによって薄肉の振動部を形成した圧電基板において、振動部を介して対向配置された両凹陥部の位置が一方の結晶軸方向にずれていることにより、有効な振動領域が狭く形成される不具合を解決することにある。
A third problem corresponding to the third conventional example occurs when a plurality of concave portions are collectively formed on a piezoelectric substrate wafer, and then the thickness of the vibration portion in each concave portion is individually adjusted by etching with a time difference. In order to solve various problems, there is an attempt to perform fine adjustment of the vibration part by performing etching from the flat surface side instead of the adjustment work of filling the recess with the etching solution.
A fourth problem corresponding to the fourth conventional example is a piezoelectric substrate in which a thin vibrating portion is formed by forming concave portions on both main surfaces of a piezoelectric substrate made of an anisotropic crystal material by chemical etching. An object of the present invention is to solve the problem that an effective vibration region is narrowly formed because the positions of both concave portions disposed opposite to each other through the vibration portion are shifted in one crystal axis direction.

上記課題を解決するため、本発明の第1の形態は、一方の主面から、当該主面とは反対側の他方の主面に向けて凹陥した凹陥部を有し、前記凹陥部の底部に設けられている振動部と、当該振動部の外周縁を一体的に包囲する前記振動部の厚みよりも厚肉の環状部と、を備える圧電基板であって、前記他方の主面は、前記環状部の外周縁の1つの縁部に段差部が残るように、前記環状部及び前記振動部に亘って平坦となるようにエッチングすることにより前記振動部の板厚を微調整した板厚微調整加工部である圧電基板を特徴とする。
また、本発明の第2の形態は、第1の形態に記載の圧電基板の前記振動部の両面に夫々対向形成した励振電極と、各励振電極から圧電基板の長手方向一端縁に延びるリード電極と、各リード電極と夫々接続された接続パッドと、を備えた圧電振動素子を特徴とする。
また、本発明の第3の形態は、第2の形態に記載の圧電振動素子を構成する前記圧電基板の長手方向一端縁側の一端部を表面実装用のパッケージ内に接着保持した圧電振動子を特徴とする。
また、本発明の第4の形態は、第3の形態に記載の圧電振動子と、発振回路と、を少なくとも備えた表面実装型の圧電発振器を特徴とする。
また、本発明の第5の形態は、第1の形態に記載の圧電基板を複数個シート状に連結した圧電基板ウェハを特徴とする。
また、本発明の第6の形態は、前記圧電基板ウェハは、圧電基板個片間の厚肉部に、前記圧電基板ウェハを切断して圧電基板個片を得るための互いに平行な2本の分割溝を備え、該分割溝の間に、前記圧電基板ウェハの平坦な基板面をエッチングして前記圧電基板個片の振動部の板厚を微調整加工する際に、隣り合う振動部に影響を与えないためのスペースを備える第5の形態に記載の圧電基板ウェハを特徴とする。
また、本発明の第7の形態は、第5又は第6の形態に記載の圧電基板ウェハ上の各圧電基板個片の凹陥部と反対側面をエッチングすることにより前記振動部の板厚を微調整した板厚微調整加工部は、前記凹陥部よりも大きい開口部を複数個配列した碁盤目状のガイドマスクを圧電基板ウェハの該反対側面に当接した状態で、該ガイドマスクの各開口部内にエッチング液を充填することによって加工形成される圧電基板ウェハの製造方法を特徴とする。
[適用例1]本適用例に係る圧電基板は、薄肉の振動部と、該振動部の外周縁を一体的に包囲する厚肉の環状部と、を備えることにより、少なくとも一方の主面側に凹陥部を形成した構成の圧電基板であって、異方性を有した圧電結晶から成るものにおいて、前記環状部は、一方の結晶軸方向側の内壁が、これと直交する他の結晶軸方向側の内壁よりも緩やかな傾斜角度を備えており、前記圧電基板の外形寸法は、前記他の結晶軸方向の基板長さよりも、前記一方の結晶軸方向の基板長さが長いことを特徴とする。
異方性圧電材料を、直交する2つの結晶軸に沿った平板状の圧電基板に加工した場合、この圧電基板面に化学エッチングにより凹陥部を形成すると、一方の結晶軸方向へのエッチング速度が他方のエッチング速度よりも速くなるため、凹陥部を構成する環状部の内壁のうち、エッチング速度が遅い結晶軸方向側の内壁が緩やかな傾斜面(緩斜面)となる。本発明では、環状部の内壁のうちこのような緩斜面を備えた一辺を延長形成して張り出し部としたので、大面積の圧電基板ウェハを用いたバッチ処理により圧電基板(圧電振動素子)を量産する際に、同一面積でありながら、個片間を区画するダイシング溝等の分割溝と凹陥部との間の幅を十分に確保することができ、その結果環状部の肉厚を大きく確保できる。従って、分割溝に沿った切断時に環状部にひび割れが発生することが無くなる。この結果、超薄肉の振動部と、それを包囲する厚肉の環状部を備えた圧電基板において、圧電基板の超小型化に対応した最適の形状を実現することができる。
[適用例2]本適用例に係る圧電基板は、薄肉の振動部と、該振動部の外周縁を一体的に包囲する厚肉の環状部と、を備えることにより、少なくとも一方の主面側に凹陥部を形成したATカット水晶から成る圧電基板において、前記ATカット水晶から成る圧電基板の外形寸法は、z’軸方向寸法が、x軸方向寸法よりも長いことを特徴とする。
前記圧電基板として、ATカット水晶基板を採用した場合には、z軸方向に沿った基板長さをx軸方向に沿った基板長さよりも長く構成することが好ましい。

In order to solve the above-described problem, the first embodiment of the present invention has a recessed portion that is recessed from one main surface toward the other main surface opposite to the main surface, and the bottom of the recessed portion. a vibration portion provided to, a piezoelectric substrate with an annular portion of the thicker than the thickness of the vibrating portion surrounding integrally with the outer peripheral edge of the vibrating portion, the other main surface, A plate thickness obtained by finely adjusting the plate thickness of the vibrating portion by etching so as to be flat across the annular portion and the vibrating portion so that a stepped portion remains at one edge of the outer peripheral edge of the annular portion. It is characterized by a piezoelectric substrate which is a fine adjustment processing part.
According to a second aspect of the present invention, there is provided an excitation electrode formed on both surfaces of the vibrating portion of the piezoelectric substrate according to the first embodiment, and a lead electrode extending from each excitation electrode to one longitudinal edge of the piezoelectric substrate. And a piezoelectric vibration element including connection pads respectively connected to the lead electrodes.
According to a third aspect of the present invention, there is provided a piezoelectric vibrator in which one end portion on one end side in the longitudinal direction of the piezoelectric substrate constituting the piezoelectric vibration element according to the second embodiment is bonded and held in a surface mounting package. Features.
According to a fourth aspect of the present invention, there is provided a surface-mount type piezoelectric oscillator including at least the piezoelectric vibrator described in the third aspect and an oscillation circuit.
According to a fifth aspect of the present invention, there is provided a piezoelectric substrate wafer in which a plurality of piezoelectric substrates according to the first embodiment are connected in a sheet form.
According to a sixth aspect of the present invention, the piezoelectric substrate wafer includes two parallel substrates for obtaining the piezoelectric substrate pieces by cutting the piezoelectric substrate wafer into a thick portion between the piezoelectric substrate pieces. There is a dividing groove, and when the flat substrate surface of the piezoelectric substrate wafer is etched between the dividing grooves to finely adjust the thickness of the vibrating portion of the piezoelectric substrate piece, the adjacent vibrating portion is affected. The piezoelectric substrate wafer according to the fifth embodiment is provided with a space not to give the resistance.
Further, according to the seventh aspect of the present invention, the thickness of the vibrating portion is made fine by etching the side surface opposite to the recessed portion of each piezoelectric substrate piece on the piezoelectric substrate wafer according to the fifth or sixth embodiment. The adjusted plate thickness fine-adjustment processing section is configured so that each of the openings of the guide mask is in contact with the opposite side surface of the piezoelectric substrate wafer with a grid-shaped guide mask in which a plurality of openings larger than the recessed portion are arranged. It is characterized by a method of manufacturing a piezoelectric substrate wafer that is processed and formed by filling an etching solution into the portion.
Application Example 1 A piezoelectric substrate according to this application example includes a thin vibrating portion and a thick annular portion that integrally surrounds the outer peripheral edge of the vibrating portion, thereby at least one main surface side. In the piezoelectric substrate having a concave portion formed of an anisotropic piezoelectric crystal, the annular portion has an inner wall on one crystal axis direction side and the other crystal axis orthogonal to this The piezoelectric substrate has an inclination angle that is gentler than the inner wall on the direction side, and the outer dimension of the piezoelectric substrate is such that the substrate length in the one crystal axis direction is longer than the substrate length in the other crystal axis direction. And
When an anisotropic piezoelectric material is processed into a plate-like piezoelectric substrate along two orthogonal crystal axes, if a recess is formed on the surface of this piezoelectric substrate by chemical etching, the etching rate in the direction of one crystal axis is increased. Since the etching rate is faster than the other etching rate, the inner wall on the crystal axis direction side where the etching rate is slow among the inner walls of the annular portion constituting the recessed portion becomes a gently inclined surface (slowly inclined surface). In the present invention, since one side having such a gentle slope is extended and formed as an overhanging portion of the inner wall of the annular portion, the piezoelectric substrate (piezoelectric vibration element) is obtained by batch processing using a large-area piezoelectric substrate wafer. When mass-producing, it is possible to secure a sufficient width between the dicing grooves and other divided grooves that divide the individual pieces and the recessed portions while maintaining the same area. it can. Therefore, no cracks are generated in the annular portion when cutting along the dividing groove. As a result, an optimum shape corresponding to the miniaturization of the piezoelectric substrate can be realized in the piezoelectric substrate including the ultrathin vibrating portion and the thick annular portion surrounding the vibrating portion.
Application Example 2 A piezoelectric substrate according to this application example includes a thin vibrating portion and a thick annular portion that integrally surrounds the outer peripheral edge of the vibrating portion, thereby at least one main surface side. In the piezoelectric substrate made of AT-cut quartz having a concave portion formed therein, the outer dimensions of the piezoelectric substrate made of AT-cut quartz are longer in the z′-axis direction than in the x-axis.
When an AT-cut quartz substrate is employed as the piezoelectric substrate, it is preferable that the substrate length along the z-axis direction is longer than the substrate length along the x-axis direction.

[適用例3]本適用例に係る圧電振動素子は、前記圧電基板の前記振動部の両面に夫々対向形成した励振電極と、各励振電極から圧電基板の長手方向一端縁に延びるリード電極と、各リード電極と夫々接続された接続パッドと、を備え、を備え、前記凹陥部側の励振電極から延びるリード電極は前記緩やかな傾斜角度を備えた環状部内壁を経て引き出されることを特徴とする。
これによれば、環状部内壁に発生するエッチング残渣により形成される急峻な傾斜面を避けた環状部内壁を経由してリード電極(導電パターン)を配線することによって断線を防止することができる。
[適用例4]本適用例に係る圧電振動素子は、前記圧電振動素子を構成する圧電基板の長手方向一端部を表面実装用のパッケージ内に片持ち状態で接着保持したことを特徴とする。
これによれば、パッケージ内に圧電振動素子を片持ち状態で支持した場合に、片持ち支持部から振動部までの距離を可能な限り離間させることにより、水晶振動素子の自重に起因したストレスが振動部に加わることを防止できる。
[適用例5]本適用例に係る圧電発振器は、前記圧電振動子と、発振回路と、を少なくとも備えたことを特徴とする。
Application Example 3 A piezoelectric vibration element according to this application example includes an excitation electrode formed opposite to both surfaces of the vibration portion of the piezoelectric substrate, a lead electrode extending from each excitation electrode to one longitudinal edge of the piezoelectric substrate, Each lead electrode and a connection pad connected to each lead electrode, wherein the lead electrode extending from the excitation electrode on the recessed portion side is drawn out through the inner wall of the annular portion having the gentle inclination angle. .
According to this, disconnection can be prevented by wiring the lead electrode (conductive pattern) via the annular portion inner wall that avoids the steeply inclined surface formed by the etching residue generated on the annular portion inner wall.
Application Example 4 A piezoelectric vibration element according to this application example is characterized in that one end in the longitudinal direction of a piezoelectric substrate constituting the piezoelectric vibration element is bonded and held in a cantilevered state in a surface mounting package.
According to this, when the piezoelectric vibration element is supported in a cantilever state in the package, the stress due to the weight of the crystal vibration element is reduced by separating the distance from the cantilever support part to the vibration part as much as possible. It can prevent adding to a vibration part.
Application Example 5 A piezoelectric oscillator according to this application example includes at least the piezoelectric vibrator and an oscillation circuit.

[適用例6]本適用例に係る圧電基板は、薄肉の振動部と、該振動部の外周縁を一体的に包囲する厚肉の環状部と、を備えることにより、少なくとも一方の主面側に凹陥部を形成した構成の圧電基板であって、前記環状部の一辺を延長形成した張り出し部を備えたものにおいて、前記張り出し部の終端縁に、圧電基板の表裏両面側に貫通する少なくとも一つ凹状切欠きを備えたことを特徴とする。
圧電基板の張り出し部の同一面上に、表裏2つの励振電極と導通接続された接続パッドを配置する場合には、導電性接着剤を一回塗布するだけで、パッケージ内底面のパッドとの接続が可能となり、パッケージの外周壁の大型化を防止できる。一方、前記張り出し部の表裏両面側に夫々2つの接続パッドを配置した場合には、圧電振動素子をパッケージ内に搭載する際の表裏の方向性を任意に選択することができるため、張り出し部の終端縁に2つの凹状切欠きを配置して表裏両面に夫々2つずつ配置した接続パッド同士を導通させる必要がある。この際、従来のように、張り出し部の終端縁の幅内に2つの凹状切欠きを配置するとすれば、個々の凹状切欠きの幅が極小となり、圧電基板ウェハに対するエッチングによって表裏両面側に貫通した凹状切欠き(貫通穴)を形成できなくなる虞が高まる。そこで、本発明では、ウェハ上において隣接し合う基板個片領域に跨った長穴状の貫通穴を形成することにより、エッチング不良による凹状切欠きの形成不良が発生することを防止できる。
[適用例7]本適用例に係る圧電基板は、前記凹状切欠きは、前記張り出し部の終端縁の両端角部に夫々一個ずつ配置されていることを特徴とする。
このように、圧電基板ウェハ上における一つの圧電基板の張り出し部の終端縁の両端角部に対して隣接する領域に跨った前記貫通穴を形成することが有効である。
[適用例8]本適用例に係る圧電振動素子は、前記圧電基板の前記振動部の両面に夫々対向形成した励振電極と、各励振電極から前記張り出し部の終端縁に夫々延びるリード電極と、を備え、何れか一方のリード電極は前記凹状切欠き内を経て反対側面に引き回されて該反対側面に形成した接続パッドと導通していることを特徴とする。
張り出し部の同一面上に2つの接続パッドを並置したり、張り出し部の表裏両面に夫々2つの接続パッドを並置することができる。
Application Example 6 A piezoelectric substrate according to this application example includes a thin vibrating portion and a thick annular portion that integrally surrounds the outer peripheral edge of the vibrating portion, thereby at least one main surface side. A piezoelectric substrate having a concave portion formed therein, and having a projecting portion formed by extending one side of the annular portion, at least one penetrating the front and back sides of the piezoelectric substrate at the end edge of the projecting portion. It is characterized by having a concave notch.
When connecting pads that are conductively connected to the two excitation electrodes on the front and back sides on the same surface of the overhanging portion of the piezoelectric substrate, connection with the pads on the bottom surface inside the package is achieved by applying a conductive adhesive only once. It is possible to prevent an increase in the size of the outer peripheral wall of the package. On the other hand, when two connection pads are arranged on both the front and back sides of the overhanging portion, the direction of the front and back when the piezoelectric vibration element is mounted in the package can be arbitrarily selected. It is necessary to place two concave notches on the end edge and to make the connection pads arranged two on each of the front and back surfaces conductive. At this time, if two concave cutouts are arranged within the width of the end edge of the overhanging portion as in the prior art, the width of each concave cutout is minimized, and the piezoelectric substrate wafer is etched through both the front and back sides. There is an increased risk that the recessed notch (through hole) cannot be formed. Therefore, in the present invention, it is possible to prevent the formation of a concave notch due to defective etching by forming a long through hole extending over adjacent substrate piece regions on a wafer.
Application Example 7 The piezoelectric substrate according to this application example is characterized in that the concave notches are arranged one by one at both corners of the end edge of the overhanging portion.
As described above, it is effective to form the through-hole extending over a region adjacent to both end corners of the terminal edge of the protruding portion of one piezoelectric substrate on the piezoelectric substrate wafer.
Application Example 8 A piezoelectric vibration element according to this application example includes an excitation electrode formed to face both surfaces of the vibration portion of the piezoelectric substrate, a lead electrode extending from each excitation electrode to a terminal edge of the overhang portion, One of the lead electrodes is routed to the opposite side surface through the concave notch and is electrically connected to the connection pad formed on the opposite side surface.
Two connection pads can be juxtaposed on the same surface of the overhang part, or two connection pads can be juxtaposed on both the front and back surfaces of the overhang part.

[適用例9]本適用例に係る圧電振動子は、前記圧電振動素子を構成する圧電基板の張り出し部の同一面上に並置された2つの接続パッドを、表面実装用のパッケージ内の各パッドと夫々導電性接着剤にて接着保持したことを特徴とする。
[適用例10]本適用例に係る表面実装型圧電発振器は、前記圧電振動子と、発振回路と、を少なくとも備えたことを特徴とする。
[適用例11]本適用例に係る圧電基板ウェハの構造は、圧電基板ウェハの構造は、前記圧電基板を複数個シート状に連結した圧電基板ウェハであって、前記凹状切欠きは、ウェハ上において隣接し合う圧電基板個片間に跨る貫通穴を形成することにより両圧電基板個片上に同時に形成されることを特徴とする。
ウェハ上において隣接し合う個片領域間に跨るように貫通穴を形成する際には、貫通穴の長さを大きくできる。この結果、圧電基板上の表裏両面側から夫々同時に小凹所をエッチング形成する場合に、確実に両小凹所間を連通させて貫通穴を完成することができることとなる。或いは、一つの圧電基板の端縁に設ける凹状切欠きは2個である必要はなく、張り出し部の終端縁の幅内部に設けた一つの長穴であっても良い。この場合には、ウェハ上の圧電基板個片の張り出し部終端縁の幅内に長穴状の貫通穴を形成すればよい。
[適用例12]本適用例に係る圧電基板ウェハは、前記圧電基板を複数個シート状に連結した圧電基板ウェハであって、隣接し合う前記圧電基板個片間には、未使用領域が配置されており、前記凹状切欠きは、一つの圧電基板個片と隣接する未使用領域間に跨る貫通穴を形成することにより該圧電基板個片上に形成されることを特徴とする。
圧電基板個片の両隣側に圧電基板個片を直接配置すると、励振電極、リード電極、及び接続パッドを形成してから、プローブピンを各接続パッド上に当接して当該圧電振動素子個片の特性の測定を行う場合に、プローブピンの当接圧が共振周波数の変動をもたらし、正確な測定が不可能となる。そこで、圧電基板の両隣位置に未使用領域(ダミー領域)を配置し、当該未使用領域上に接続パッドを跨って形成する。そして、プローブピンを未使用領域上の接続パッドに対して当接して測定を行えば、プローブピンの当接圧力による悪影響が解消される。特に、圧電基板個片と未使用領域との間の基板面に分割溝を形成しておけば、当接圧力による悪影響がさらに減殺される。
Application Example 9 In the piezoelectric vibrator according to this application example, two connection pads juxtaposed on the same surface of the protruding portion of the piezoelectric substrate constituting the piezoelectric vibration element are connected to each pad in the surface mounting package. Each of these is characterized in that it is adhered and held with a conductive adhesive.
Application Example 10 A surface-mount piezoelectric oscillator according to this application example includes at least the piezoelectric vibrator and an oscillation circuit.
Application Example 11 A piezoelectric substrate wafer according to this application example has a piezoelectric substrate wafer structure in which a plurality of the piezoelectric substrates are connected in a sheet shape, and the concave notch is formed on the wafer. Are formed on both piezoelectric substrate pieces at the same time by forming a through hole extending between the adjacent piezoelectric substrate pieces.
When the through hole is formed so as to straddle between the adjacent individual regions on the wafer, the length of the through hole can be increased. As a result, when the small recesses are simultaneously formed by etching from both the front and back sides of the piezoelectric substrate, the through holes can be completed by reliably communicating the small recesses. Alternatively, the number of concave cutouts provided on the edge of one piezoelectric substrate is not necessarily two, and may be one long hole provided in the width of the end edge of the overhanging portion. In this case, an elongated through hole may be formed in the width of the end edge of the overhang portion of the piezoelectric substrate piece on the wafer.
[Application Example 12] A piezoelectric substrate wafer according to this application example is a piezoelectric substrate wafer in which a plurality of the piezoelectric substrates are connected in a sheet shape, and an unused area is arranged between the adjacent piezoelectric substrate pieces. The concave notch is formed on the piezoelectric substrate piece by forming a through hole extending between one piezoelectric substrate piece and an adjacent unused area.
When the piezoelectric substrate pieces are directly arranged on both sides of the piezoelectric substrate piece, the excitation electrode, the lead electrode, and the connection pad are formed, and then the probe pin is brought into contact with each connection pad and the piezoelectric vibration element piece is When the characteristic is measured, the contact pressure of the probe pin brings about the fluctuation of the resonance frequency, and the accurate measurement becomes impossible. In view of this, an unused area (dummy area) is disposed on both sides of the piezoelectric substrate, and the connection pad is formed on the unused area. If the measurement is performed by bringing the probe pin into contact with the connection pad on the unused area, the adverse effect due to the contact pressure of the probe pin is eliminated. In particular, if the dividing groove is formed on the substrate surface between the piezoelectric substrate piece and the unused area, the adverse effect due to the contact pressure is further reduced.

[適用例13]本適用例に係る圧電基板は、前記薄肉の振動部と、該振動部の外周縁を一体的に包囲する厚肉の環状部と、を備えることにより、少なくとも一方の主面側に凹陥部を形成した構成の圧電基板において、前記凹陥部の反対側の基板面に振動部の板厚微調整加工部を備えたことを特徴とする。
圧電ウェハの一方の主面上に複数の凹陥部を所定のピッチにてエッチング形成した後で、凹陥部内の振動部の肉厚を微調整するために、ガイドマスクを基板面上に添設した状態で、個々の凹陥部内にエッチング液を充填することが従来から行われているが、凹陥部のサイズが超小型化すると、エッチング液が個片間に形成した分割溝を介して他の部位に浸透してエッチング不要箇所をエッチングすることによる基板強度の低下等の不具合が発生する。
本適用例では、上記ガイドマスクをウェハの平坦面側に当接して、ガイドマスクの開口内にエッチング液を個別充填して振動部肉厚を微調整するようにしたので、上記従来の不具合が解消され、凹陥部サイズが超小型化した圧電基板における振動部の肉厚調整を確実化することができる。
[適用例14]本適用例に係る圧電振動素子は、前記圧電基板の前記振動部の両面に夫々対向形成した励振電極と、各励振電極から圧電基板の長手方向一端縁に延びるリード電極と、各リード電極と夫々接続された接続パッドと、を備えたことを特徴とする。
[適用例15]本適用例に係る圧電振動子は、前記圧電振動素子を構成する圧電基板の一端部を表面実装用のパッケージ内に片持ち状態で接着保持したことを特徴とする。
[適用例16]本適用例に係る圧電発振器は、前記圧電振動子と、発振回路と、を少なくとも備えたことを特徴とする。
[適用例17]本適用例に係る圧電基板ウェハは、前記圧電基板を複数個シート状に連結したことを特徴とする。
[適用例18]本適用例に係る圧電基板ウェハは、前記圧電基板ウェハは、圧電基板個片間に2本の平行な分割溝を介してデッドスペースを介在させた構成を備えていることを特徴とする。
圧電基板個片間に十分なデッドスペースとなるダミー領域を配置することにより、ウェハの平坦面側からの肉厚調整作業に際してのエッチング液による悪影響を回避できる。
Application Example 13 A piezoelectric substrate according to this application example includes the thin vibrating portion and a thick annular portion that integrally surrounds an outer peripheral edge of the vibrating portion, thereby at least one main surface. A piezoelectric substrate having a concave portion formed on a side thereof is characterized in that a plate thickness fine adjustment processing portion of a vibrating portion is provided on a substrate surface opposite to the concave portion.
After etching a plurality of recesses on one main surface of the piezoelectric wafer at a predetermined pitch, a guide mask is attached on the substrate surface in order to finely adjust the thickness of the vibration part in the recess. In the state, it has been conventionally performed to fill each recessed portion with an etching solution. However, when the size of the recessed portion is reduced to an ultra-small size, other portions are provided via the dividing grooves formed between the individual pieces of the etching solution. Inconveniences such as a decrease in the substrate strength due to etching into the etching unnecessary portions.
In this application example, the guide mask is brought into contact with the flat surface side of the wafer, and an etching solution is individually filled in the opening of the guide mask to finely adjust the thickness of the vibrating portion. As a result, the thickness adjustment of the vibration part in the piezoelectric substrate in which the size of the recessed part is miniaturized can be ensured.
[Application Example 14] A piezoelectric vibration element according to this application example includes an excitation electrode formed to face both surfaces of the vibration portion of the piezoelectric substrate, a lead electrode extending from each excitation electrode to one longitudinal edge of the piezoelectric substrate, And a connection pad connected to each lead electrode.
[Application Example 15] A piezoelectric vibrator according to this application example is characterized in that one end of a piezoelectric substrate constituting the piezoelectric vibration element is bonded and held in a cantilevered state in a surface mounting package.
Application Example 16 A piezoelectric oscillator according to this application example includes at least the piezoelectric vibrator and an oscillation circuit.
Application Example 17 A piezoelectric substrate wafer according to this application example is characterized in that a plurality of the piezoelectric substrates are connected in a sheet form.
[Application Example 18] The piezoelectric substrate wafer according to this application example is provided with a configuration in which the piezoelectric substrate wafer has a dead space interposed between two pieces of piezoelectric substrate through two parallel dividing grooves. Features.
By disposing a dummy region that becomes a sufficient dead space between the piezoelectric substrate pieces, it is possible to avoid an adverse effect due to the etching solution during the thickness adjustment operation from the flat surface side of the wafer.

[適用例19]本適用例に係る圧電基板ウェハの製造方法は、前記圧電基板ウェハ上の各圧電基板個片の凹陥部と反対側面に形成した振動部の板厚微調整加工部は、凹陥部よりも大きい開口部を複数個配列した碁盤目状のガイドマスクを圧電基板ウェハの該反対側面に当接した状態で、該ガイドマスクの各開口部内にエッチング液を充填することによって加工形成されることを特徴とする。
[適用例20]本適用例に係る圧電基板は、前記薄肉の振動部と、該振動部の外周縁を一体的に包囲する厚肉の環状部と、を備えることにより、両主面上に夫々凹陥部を形成した構成の圧電基板であって、異方性を有した圧電結晶から成るものにおいて、前記各凹陥部は、一方の結晶軸方向側の内壁が、これと直交する他の結晶軸方向側の内壁よりも緩やかな傾斜角度を備えており、前記各凹陥部の各内底面の端縁のうち前記一方の結晶軸方向側の端縁同士の位置が合致するように構成されていることを特徴とする。
異方性圧電結晶材料から成る圧電基板の表裏両面から同一形状のマスクを用いてエッチングによって凹陥部を形成する場合、表裏の各マスクの開口部の位置が合致していると、各凹陥部は点対称形状となり、各凹陥部の内底面の端縁(特に、エッチング速度が遅い軸方向側の端縁)同士の位置関係が一致しない。このため、薄肉の振動部の面積が狭くなる。
本適用例では、表裏のマスクの開口部の端縁(特に、エッチング速度が遅い軸方向側の端縁)の位置を予め所定にずらしておくことにより、エッチング後に両凹陥部の端縁同士の位置が合致するようにした。このため、振動部の面積を最大にすることができ、信頼性の高い圧電基板、圧電振動子等を得ることができる。
[Application Example 19] In the method of manufacturing a piezoelectric substrate wafer according to this application example, the plate thickness fine adjustment processing portion of the vibration portion formed on the side surface opposite to the concave portion of each piezoelectric substrate piece on the piezoelectric substrate wafer has a concave portion. In a state where a grid-shaped guide mask in which a plurality of openings larger than the portion are arranged is in contact with the opposite side surface of the piezoelectric substrate wafer, it is formed by filling each opening of the guide mask with an etching solution. It is characterized by that.
Application Example 20 A piezoelectric substrate according to this application example includes the thin vibrating portion and a thick annular portion that integrally surrounds the outer peripheral edge of the vibrating portion. A piezoelectric substrate having a structure in which a recessed portion is formed, each of which is made of an anisotropic piezoelectric crystal, and each of the recessed portions has an inner wall on one crystal axis direction side and another crystal perpendicular thereto It has a gentler inclination angle than the inner wall on the axial direction side, and is configured so that the positions of the edges on the one crystal axial direction side of the inner bottom surfaces of the respective recessed portions coincide with each other. It is characterized by being.
When forming concave portions by etching using masks of the same shape from both sides of a piezoelectric substrate made of an anisotropic piezoelectric crystal material, if the positions of the openings of the masks on the front and back sides match, It has a point-symmetric shape, and the positional relationship between the edges of the inner bottom surface of each recess (particularly, the edge on the axial direction side where the etching rate is slow) does not match. For this reason, the area of a thin vibration part becomes narrow.
In this application example , the positions of the edges of the opening portions of the front and back masks (particularly, the edge on the axial direction side where the etching rate is slow) are shifted in advance, so that the edges of the two recessed portions after the etching The position was matched. For this reason, the area of a vibration part can be maximized and a highly reliable piezoelectric substrate, piezoelectric vibrator, etc. can be obtained.

[適用例21]本適用例に係る圧電基板は、前記圧電基板がATカット水晶であることを特徴とする。
[適用例22]本適用例に係る圧電振動素子は、前記圧電基板の前記振動部の両面に夫々対向形成した励振電極と、各励振電極から圧電基板の長手方向一端縁に延びるリード電極と、各リード電極と夫々接続された接続パッドと、を備えたことを特徴とする。
[適用例23]本適用例に係る圧電振動子は、前記圧電振動素子を構成する圧電基板の長手方向一端部を表面実装用のパッケージ内に片持ち状態で接着保持したことを特徴とする。
[適用例24]本適用例に係る表面実装型の圧電発振器は、前記圧電振動子と、発振回路と、を少なくとも備えたことを特徴とする。
[適用例25]本適用例に係る圧電基板の製造方法は、前記薄肉の振動部と、該振動部の外周縁を一体的に包囲する厚肉の環状部と、を備えることにより、両主面上に夫々凹陥部を形成した構成の圧電基板であって異方性を有した圧電結晶から成り、且つ前記各凹陥部は、一方の結晶軸方向側の内壁が、これと直交する他の結晶軸方向側の内壁よりも緩やかな傾斜角度を備えた圧電基板の製造方法において、平板状の圧電基板の両主面に対して夫々前記各凹陥部を掘削形成するためのマスクを被覆するマスク形成工程と、前記各マスクを被覆した圧電基板に対してエッチングを行うことにより、各マスクの開口内に露出した圧電基板の両主面に夫々凹陥部を形成する凹陥部形成工程と、から成り、前記各マスクの位置を、前記一方の結晶軸方向にずらすことにより、前記各凹陥部の各内底面の端縁同士を合致させたことを特徴とする。
[適用例26]本適用例に係る圧電基板の製造方法は、前記圧電基板は、複数の圧電基板個片をシート状に連結した圧電基板ウェハであることを特徴とする。
Application Example 21 A piezoelectric substrate according to this application example is characterized in that the piezoelectric substrate is an AT cut crystal.
[Application Example 22] A piezoelectric vibration element according to this application example includes an excitation electrode formed to face both surfaces of the vibration portion of the piezoelectric substrate, a lead electrode extending from each excitation electrode to one longitudinal edge of the piezoelectric substrate, And a connection pad connected to each lead electrode.
Application Example 23 A piezoelectric vibrator according to this application example is characterized in that one end portion in the longitudinal direction of a piezoelectric substrate constituting the piezoelectric vibration element is bonded and held in a surface mount package in a cantilever state.
Application Example 24 A surface-mount type piezoelectric oscillator according to this application example includes at least the piezoelectric vibrator and an oscillation circuit.
Application Example 25 A method for manufacturing a piezoelectric substrate according to this application example includes the thin vibrating portion and a thick annular portion that integrally surrounds the outer peripheral edge of the vibrating portion. A piezoelectric substrate having a structure in which concave portions are formed on the surface, each of which is made of an anisotropic piezoelectric crystal, and each of the concave portions has an inner wall on one crystal axis direction side that is orthogonal to the other. In a method of manufacturing a piezoelectric substrate having a gentler inclination angle than an inner wall on the crystal axis direction side, a mask covering a mask for excavating and forming each of the concave portions on both main surfaces of a flat plate-like piezoelectric substrate And a recess forming step of forming recesses on both principal surfaces of the piezoelectric substrate exposed in the openings of the respective masks by etching the piezoelectric substrate covering each of the masks. , The position of each of the masks, the one crystal axis direction Shifting the result, characterized in that said align your edges of the respective inner bottom surface of the concave portion.
Application Example 26 In the piezoelectric substrate manufacturing method according to this application example, the piezoelectric substrate is a piezoelectric substrate wafer in which a plurality of piezoelectric substrate pieces are connected in a sheet shape.

以上のように、第一の本発明によれば、異方性圧電結晶材料から成る圧電基板面にエッチングによって凹陥部を形成することによって振動部を形成した超小型の圧電基板を、大面積の圧電基板ウェハを用いたバッチ処理により量産する場合に、凹陥部を包囲する環状部の肉厚を十分に確保して分割時のひび割れを防止することができる。また、環状部内壁により形成される急峻な傾斜面を避けた緩斜面を経由して導電パターンを配線することによって断線を防止することができる。更に、パッケージ内に圧電振動素子を片持ち状態で支持した場合に、片持ち支持部から振動部までの距離を可能な限り離間させることにより、水晶振動素子の自重に起因したストレスが振動部に加わることを防止することを他の課題とする。このように、第一の課題は、超薄肉の振動部と、それを包囲する厚肉の環状部を備えた圧電基板において、圧電基板の超小型化に対応した最適の形状を実現することにある。
第二の本発明によれば、圧電基板ウェハ上に、各基板個片の表裏両面に夫々接続パッドを2個ずつ形成するための電気的接続手段としての貫通穴(凹状切欠き)を化学的エッチングにより形成する際に、貫通穴の開口寸法の大型化に制約があることに起因して発生する貫通穴形成不良と、それに起因した生産性の低下を防止することができる。
第三の本発明によれば、圧電基板ウェハ上に複数の凹陥部を一括形成した後に、個々の凹陥部内の振動部の肉厚を時間差によるエッチングにより個別調整する場合に発生する種々の不具合を解決するために、凹陥部内にエッチング液を充填する調整作業に代えて、平坦面側からエッチングを行うことにより、各振動部肉厚の微調整を行うことができる。
第四の発明によれば、異方性結晶材料から成る圧電基板の両主面に夫々化学エッチングにより凹陥部を形成することによって薄肉の振動部を形成した圧電基板において、振動部を介して対向配置された両凹陥部の位置が一方の結晶軸方向にずれていることにより、有効な振動領域が狭く形成される不具合を解決することができる。
As described above , according to the first aspect of the present invention, an ultra-small piezoelectric substrate in which a vibrating portion is formed by forming a recessed portion by etching on a surface of a piezoelectric substrate made of an anisotropic piezoelectric crystal material is obtained. When mass production is performed by batch processing using a piezoelectric substrate wafer, a sufficient thickness of the annular portion surrounding the recessed portion can be secured to prevent cracking during division. Also, disconnection can be prevented by wiring the conductive pattern via a gentle slope that avoids the steep slope formed by the inner wall of the annular portion. Furthermore, when the piezoelectric vibration element is supported in a cantilever state in the package, the stress due to the weight of the quartz crystal vibration element is applied to the vibration part by separating the distance from the cantilever support part to the vibration part as much as possible. Another challenge is to prevent the addition. As described above, the first problem is to realize an optimum shape corresponding to the miniaturization of the piezoelectric substrate in the piezoelectric substrate including the ultrathin vibrating portion and the thick annular portion surrounding the vibrating portion. It is in.
According to the second aspect of the present invention, on the piezoelectric substrate wafer, through holes (concave notches) are chemically formed as electrical connection means for forming two connection pads on each of the front and back surfaces of each substrate piece. When forming by etching, it is possible to prevent a through-hole formation failure caused by the restriction on the enlargement of the opening size of the through-hole and a decrease in productivity due to the formation.
According to the third aspect of the present invention, after forming a plurality of recesses on the piezoelectric substrate wafer at once, various problems that occur when the thickness of the vibration part in each recess is individually adjusted by time-dependent etching. In order to solve the problem, the thickness of each vibration part can be finely adjusted by performing etching from the flat surface side instead of the adjustment work of filling the recess with the etching solution.
According to the fourth invention, in the piezoelectric substrate in which the thin vibrating portion is formed by forming the concave portions on both main surfaces of the piezoelectric substrate made of an anisotropic crystal material by chemical etching, the piezoelectric substrate is opposed to the piezoelectric substrate through the vibrating portion. Since the positions of the arranged concave and convex portions are shifted in the direction of one crystal axis, it is possible to solve the problem that an effective vibration region is formed narrowly.

以下、本発明を図面に示した実施の形態により詳細に説明する。
[第1の従来例に対応する実施の形態]
図1(a)及び(b)は本発明の一実施形態に係る圧電振動素子の一例としてのATカット水晶から成る水晶振動素子1の外観斜視図、及び平面図である。
この水晶振動素子1は、異方性を有した圧電結晶材料としてのATカット水晶から成る水晶基板2と、水晶基板2の両主面に夫々形成した励振電極10a、10b、及び各励振電極10a、10bから夫々延びるリード電極11a、11bと、各リード電極端部の接続パッド12a、12bと、を備えている。
水晶基板2は、z軸方向に長尺な矩形平板状の基板本体の一方の主面上に凹陥部3をエッチングにより形成することにより、凹陥部3の内底面に超薄肉の振動部4を位置させると共に、振動部4の外周縁を厚肉の環状部5にて一体的に保持した構成を備えている。環状部5のz軸方向に位置する一辺5Aは、z軸方向へ所定長延長形成されて平板状の張り出し部6となっている。張り出し部6の一面上には、各リード電極11a、11bが引き出され、各リード電極11a、11bの端部には接続パッド12a、12bが位置している。
この実施形態に係る水晶振動素子1が従来例に係る水晶振動素子と異なる一つの特徴的な点は、水晶基板2をz軸方向に長尺なz軸ロングな長方形状とし、その結果、環状部5の幅と強度を十分に大きく確保した点にある。従って、最も傾斜角度が緩やかな緩斜面5aは張り出し部6側に位置することとなる。また、振動部4の凹陥部側内底面に形成される励振電極10aから引き出されるリード電極11aを最も緩やかな緩斜面5aに沿って配線することが可能となる。更に、パッケージ内に水晶振動素子を片持ち支持した場合における支持部と振動部との間の距離を可能な限り長くすることができる。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
[Embodiment corresponding to the first conventional example]
1A and 1B are an external perspective view and a plan view of a crystal resonator element 1 made of an AT-cut crystal as an example of a piezoelectric resonator element according to an embodiment of the present invention.
The crystal resonator element 1 includes a crystal substrate 2 made of AT cut crystal as an anisotropic piezoelectric crystal material, excitation electrodes 10a and 10b formed on both main surfaces of the crystal substrate 2, and each excitation electrode 10a. 10b, lead electrodes 11a and 11b respectively extending from 10b, and connection pads 12a and 12b at the ends of the lead electrodes.
The quartz substrate 2 is formed by etching the recessed portion 3 on one main surface of a rectangular flat plate-like substrate main body elongated in the z-axis direction, so that the ultrathin vibrating portion 4 is formed on the inner bottom surface of the recessed portion 3. And a configuration in which the outer peripheral edge of the vibrating portion 4 is integrally held by the thick annular portion 5. One side 5 </ b> A located in the z-axis direction of the annular portion 5 is formed by extending a predetermined length in the z-axis direction to form a flat plate-like protruding portion 6. The lead electrodes 11a and 11b are drawn out on one surface of the overhang portion 6, and the connection pads 12a and 12b are located at the ends of the lead electrodes 11a and 11b.
One characteristic feature of the crystal resonator element 1 according to this embodiment that is different from the crystal resonator element according to the conventional example is that the crystal substrate 2 has a long z-axis rectangular shape that is long in the z-axis direction. The width and strength of the portion 5 are ensured sufficiently large. Therefore, the gentle slope 5a having the gentlest inclination angle is located on the overhanging portion 6 side. In addition, the lead electrode 11a drawn from the excitation electrode 10a formed on the inner bottom surface on the recessed portion side of the vibration portion 4 can be wired along the gentlest gentle slope 5a. Furthermore, when the crystal resonator element is cantilevered in the package, the distance between the support portion and the vibration portion can be made as long as possible.

水晶基板2の主面上に凹陥部3を形成する際には、凹陥部3に相当する箇所のみを露出させた状態で他の箇所をマスクにて隠蔽し、所要のエッチャントを用いてエッチングを行うが、この際に、凹陥部3の4つの内壁のうち、z軸方向に位置する各内壁5a、5bには、x軸方向に位置する各内壁よりも緩やかな緩斜面がエッチング残渣として形成される。本実施形態では、エッチングに際してのこの現象を利用して、凹陥部3のz軸方向に張り出し部6が位置するように水晶基板2をレイアウトした。このため、ウェハ30上にダイシング溝等の分割溝31を介して各水晶基板個片を配列する場合には、図1(c)のように横長の状態となる。この際、個々の水晶基板の面積は、図10に示した従来の水晶基板と同等である。
即ち、本発明においては、水晶基板自体の面積、形状を図10に示した従来例と同等に設定する一方で、水晶基板の長手方向がz軸方向と一致するように構成している。従って、凹陥部3の3つの端縁と各分割溝31との間の間隔wを十分に大きく確保することが可能となり、環状部5の肉厚をより厚くすることができるため、分割溝31に沿った切断分割時にひび割れが発生することを防止できることとなる。
また、リード電極11a、11b間の間隔、及び接続パッド12a、12b間の間隔が夫々近すぎる場合には、電気的な干渉が発生して水晶振動素子の特性に悪影響を及ぼす虞があるため、凹陥部側のリード電極11aを緩斜面5aに沿って形成した場合は、平坦面側のリード電極11bはできる限りリード電極11aから離間する経路にて凹陥部側面に配線する。
凹陥部側のリード電極11aと接続された接続パッド12aについては張り出し部6の幅方向(x軸方向)一端縁寄りに配置する一方で、平坦面側から凹陥部側へ引き回されたリード電極11bについては幅方向他端寄りに偏位させることにより他の接続パッド12bを接続パッド12aからできるだけ離間させる。
When the recess 3 is formed on the main surface of the quartz substrate 2, only the portion corresponding to the recess 3 is exposed, the other portion is concealed with a mask, and etching is performed using a required etchant. At this time, among the four inner walls of the recessed portion 3, each of the inner walls 5a and 5b positioned in the z-axis direction has a gentle slope as an etching residue than the inner walls positioned in the x-axis direction. Is done. In the present embodiment, the crystal substrate 2 is laid out so that the protruding portion 6 is positioned in the z-axis direction of the recessed portion 3 by utilizing this phenomenon during etching. For this reason, when the crystal substrate pieces are arranged on the wafer 30 via the dividing grooves 31 such as dicing grooves, the horizontally long state is obtained as shown in FIG. At this time, the area of each quartz substrate is the same as that of the conventional quartz substrate shown in FIG.
That is, in the present invention, the area and shape of the quartz substrate itself are set to be equivalent to those of the conventional example shown in FIG. 10, while the longitudinal direction of the quartz substrate is configured to coincide with the z-axis direction. Therefore, it is possible to ensure a sufficiently large interval w between the three end edges of the recessed portion 3 and each of the divided grooves 31, and the thickness of the annular portion 5 can be increased. It is possible to prevent cracks from occurring during the cutting division along the line.
Further, when the distance between the lead electrodes 11a and 11b and the distance between the connection pads 12a and 12b are too close, there is a possibility that electrical interference occurs and adversely affects the characteristics of the crystal resonator element. When the lead electrode 11a on the concave portion side is formed along the gentle slope 5a, the lead electrode 11b on the flat surface side is wired on the side surface of the concave portion through a path as far as possible from the lead electrode 11a.
The connection pad 12a connected to the lead electrode 11a on the recessed portion side is disposed near one end edge in the width direction (x-axis direction) of the overhang portion 6, while the lead electrode is drawn from the flat surface side to the recessed portion side. The other connection pads 12b are separated from the connection pads 12a as much as possible by shifting the position 11b toward the other end in the width direction.

次に、図2は図1に示した水晶振動素子1を表面実装用のパッケージ20内に搭載して気密収納した状態を示す断面図である。このパッケージ20は、凹所を備えたパッケージ本体21と、パッケージ本体21の凹所の開口を閉止する金属蓋26と、を備えている。パッケージ本体21は、外底面に形成した外部電極22と、凹所内底面に形成され且つ外部電極22と導通された内部電極23と、を備えており、内部電極23上に導電性接着剤25を介して接続パッド12を電気的機械的に接続することにより水晶振動素子1を片持ち状態で支持する。
この際、接続パッド12と内部電極23との接続部(支持部)と、振動部4とは、凹陥部3の内壁のうち最も傾斜角度の緩やかな緩斜面5aを介して連設された構成となっている。即ち、緩やかな傾斜を有した緩斜面5aを利用して接着剤による接続部を振動部4から遠ざけ、片持ち支持構造により振動部に加わる応力を緩和し、振動部に歪みが発生しにくくしている。
Next, FIG. 2 is a cross-sectional view showing a state where the crystal resonator element 1 shown in FIG. 1 is mounted in a surface mounting package 20 and hermetically stored. The package 20 includes a package body 21 having a recess and a metal lid 26 that closes the opening of the recess of the package body 21. The package body 21 includes an external electrode 22 formed on the outer bottom surface, and an internal electrode 23 formed on the inner bottom surface of the recess and electrically connected to the external electrode 22. A conductive adhesive 25 is provided on the internal electrode 23. The crystal oscillator 1 is supported in a cantilever state by electrically and mechanically connecting the connection pads 12 to each other.
At this time, the connection part (support part) between the connection pad 12 and the internal electrode 23 and the vibration part 4 are connected to each other via the gentle slope 5 a having the gentlest inclination angle among the inner walls of the recessed part 3. It has become. That is, the connecting portion made of the adhesive is moved away from the vibrating portion 4 by using the gentle slope 5a having a gentle slope, the stress applied to the vibrating portion is relaxed by the cantilever support structure, and the vibrating portion is less likely to be distorted. ing.

次に、図3は本発明の水晶振動素子1を表面実装型の水晶発振器に適用した例であり、この水晶発振器40は、例えば水晶振動素子1をパッケージ本体21内に設けた段差上の内部電極23上に導電性接着剤25により接続パッド12を固定して片持ち支持すると共に、パッケージ本体21の内底面上に設けたパッド上に発振回路等を構成する回路部品41を搭載した上で、パッケージ本体21の凹所を金属蓋26により封止した構成を備えている。
なお、上記実施形態は、異方性圧電結晶材料としてATカット水晶を例示したが、これは一例に過ぎず、本発明(他の実施形態についても同様)はあらゆる異方性圧電結晶材料に適用可能である。即ち、薄肉の振動部と、該振動部の外周縁を一体的に包囲する厚肉の環状部と、を備えることにより少なくとも一方の主面側に凹陥部を形成した構成を備え、且つ異方性圧電結晶材料から成る圧電基板に対して本発明の圧電基板構造を適用することが可能であり、この場合、圧電基板の外形寸法を、環状部内壁のうち傾斜角度が最も小さい緩斜面が存在する方向に沿った基板長さを、該緩斜面が存在する方向と直交する方向に沿った基板長さよりも長く設定する。
このように構成することにより、環状部の厚肉化、リード電極の断線の防止、及びパッケージ内に片持ち状態でマウントした場合における振動部での歪み発生防止、といった効果を発揮することが可能となる。
Next, FIG. 3 shows an example in which the crystal resonator element 1 of the present invention is applied to a surface-mount type crystal oscillator. The crystal oscillator 40 includes, for example, an internal portion on a step where the crystal resonator element 1 is provided in the package body 21. The connection pad 12 is fixed and cantilevered by the conductive adhesive 25 on the electrode 23 and a circuit component 41 constituting an oscillation circuit or the like is mounted on the pad provided on the inner bottom surface of the package body 21. The recess of the package body 21 is sealed with a metal lid 26.
In the above embodiment, the AT-cut quartz is exemplified as the anisotropic piezoelectric crystal material. However, this is only an example, and the present invention (the same applies to other embodiments) can be applied to all anisotropic piezoelectric crystal materials. Is possible. That is, it has a configuration in which a concave portion is formed on at least one main surface side by including a thin vibrating portion and a thick annular portion that integrally surrounds the outer peripheral edge of the vibrating portion, and is anisotropic The piezoelectric substrate structure of the present invention can be applied to a piezoelectric substrate made of a conductive piezoelectric crystal material. In this case, there is a gentle slope with the smallest inclination angle among the inner walls of the annular portion. The length of the substrate along the direction to be set is set longer than the length of the substrate along the direction orthogonal to the direction in which the gentle slope exists.
By configuring in this way, it is possible to achieve effects such as thickening the annular part, preventing disconnection of the lead electrode, and preventing distortion at the vibration part when mounted in a cantilevered state in the package. It becomes.

[第2の従来例に対応する実施の形態]
図4(a)(b)及び(c)は第2の従来例に対応する本発明の一実施形態に係る水晶振動素子(水晶基板)の斜視図、パッケージに搭載した状態の断面図、及びウェハの構成説明図である。なお、本実施形態でも圧電材料として水晶基板を用いた例を示しているが、これは一例に過ぎず、本発明はあらゆるタイプの圧電材料に適用可能である。
この水晶振動素子1は、圧電結晶材料としてのATカット水晶から成る水晶基板2と、水晶基板2の両主面に夫々形成した励振電極10a、10b、及び各励振電極10a、10bから夫々延びるリード電極11a、11bと、各リード電極端部の接続パッド12a、12a’、12b、12b’と、を備えている。
水晶基板2は、薄肉の振動部4と、該振動部の外周縁を一体的に包囲する厚肉の環状部5と、を備えることにより、少なくとも一方の主面側に凹陥部3を形成した構成の圧電基板であって、環状部5の一辺5Aを延長形成した張り出し部6を備えている。この張り出し部6の終端縁6aには、水晶基板2の表裏両面側に貫通する少なくとも一つの凹状切欠き7a、7bを備えている。この例では、終端縁6aの両端部、即ち張り出し部6の両角部に凹状切欠き7a、7bを備えており、各凹状切欠き7a、7bの内壁には各接続パッド12a、12a’、12b、12b’と導通する導体膜が形成されている。
[Embodiment corresponding to second conventional example]
4 (a), 4 (b), and 4 (c) are a perspective view of a crystal resonator element (crystal substrate) according to an embodiment of the present invention corresponding to a second conventional example, a cross-sectional view of a state mounted on a package, and It is a structure explanatory view of a wafer. In this embodiment, an example in which a quartz substrate is used as the piezoelectric material is shown, but this is only an example, and the present invention can be applied to all types of piezoelectric materials.
The crystal resonator element 1 includes a crystal substrate 2 made of an AT-cut crystal as a piezoelectric crystal material, excitation electrodes 10a and 10b formed on both main surfaces of the crystal substrate 2, and leads extending from the excitation electrodes 10a and 10b, respectively. Electrodes 11a, 11b and connection pads 12a, 12a ′, 12b, 12b ′ at the end portions of the lead electrodes are provided.
The quartz substrate 2 includes the thin vibrating portion 4 and the thick annular portion 5 that integrally surrounds the outer peripheral edge of the vibrating portion, thereby forming the concave portion 3 on at least one main surface side. The piezoelectric substrate having the configuration includes an overhanging portion 6 formed by extending one side 5A of the annular portion 5. At the end edge 6 a of the overhanging portion 6, at least one concave notch 7 a, 7 b that penetrates the both sides of the quartz substrate 2 is provided. In this example, concave notches 7a and 7b are provided at both ends of the end edge 6a, that is, both corners of the overhanging portion 6, and the connection pads 12a, 12a ′, 12b are provided on the inner walls of the concave notches 7a, 7b. , 12b ′ is formed.

凹陥部3側に設けた励振電極10aから延びるリード電極11aと接続された接続パッド12aは、凹状切欠き7aの内壁の導体膜を介して平坦面側に設けた接続パッド12a’と導通する。一方、基板の平坦面側に設けた励振電極10bから延びるリード電極11bと接続された接続パッド12bは、凹状切欠き7bの内壁の導体膜を介して凹陥部側に設けた接続パッド12b’と導通する。
なお、凹状切欠きを一つだけ設け、いずれか一方のリード電極のみを反対側面に引き回して、基板の反対側面に第2の接続パッドを配置するようにしてもよい。
このように本実施形態では、圧電基板2の振動部4の両面に夫々対向形成した励振電極10a、10bから張り出し部6の終端縁6aに夫々延びるリード電極11a、11bのうちの何れか一方を、凹状切欠き内の導体膜を経て反対側面に引き回し、該反対側面に接続パッドを配置しているので、図4(b)のようにパッケージ20内に凹陥部側を下向きにして水晶振動素子1を搭載する際に、凹陥部側の張り出し部6上に2つの接続パッド12a、12b’が位置していることとなり、夫々導電性接着剤を一回塗布するだけでパッケージ側のパッド23a、23bとの接続が可能となり、その結果、基板の平坦面側に導電性接着剤が突出することがなくなる。このため、パッケージ20の外周壁の高さを導電性接着剤の突出量にあわせて高くする必要が無くなり、パッケージの低背化を実現できる。
また、張り出し部6の両面側に2個ずつの接続パッド12a、12b’と、接続パッド12b、12b’を夫々配置することにより、水晶振動素子1を任意の方向に向けた状態でパッケージ内に搭載することができる。
The connection pad 12a connected to the lead electrode 11a extending from the excitation electrode 10a provided on the recessed portion 3 side is electrically connected to the connection pad 12a ′ provided on the flat surface side via the conductor film on the inner wall of the concave notch 7a. On the other hand, the connection pad 12b connected to the lead electrode 11b extending from the excitation electrode 10b provided on the flat surface side of the substrate is connected to the connection pad 12b ′ provided on the recessed portion side through the conductor film on the inner wall of the concave notch 7b. Conduct.
Alternatively, only one concave cutout may be provided, and only one of the lead electrodes may be routed to the opposite side surface, and the second connection pad may be disposed on the opposite side surface of the substrate.
As described above, in the present embodiment, any one of the lead electrodes 11a and 11b extending from the excitation electrodes 10a and 10b formed to face both surfaces of the vibration part 4 of the piezoelectric substrate 2 to the terminal edge 6a of the projecting part 6 is provided. Since it is routed through the conductor film in the concave notch to the opposite side surface and the connection pad is arranged on the opposite side surface, the crystal resonator element with the recessed portion side facing down in the package 20 as shown in FIG. 1 is mounted, the two connection pads 12a and 12b ′ are positioned on the overhanging portion 6 on the recessed portion side, and each of the pads 23a on the package side can be formed by applying a conductive adhesive only once. As a result, the conductive adhesive does not protrude on the flat surface side of the substrate. For this reason, it is not necessary to increase the height of the outer peripheral wall of the package 20 in accordance with the protruding amount of the conductive adhesive, and a reduction in the height of the package can be realized.
Further, by arranging two connection pads 12a and 12b ′ and connection pads 12b and 12b ′ on both sides of the overhanging portion 6, the crystal resonator element 1 is oriented in an arbitrary direction in the package. Can be installed.

次に、図4(c)に基づいて、本発明の圧電基板2、或いは水晶振動素子1を大面積の水晶基板ウェハ(圧電基板ウェハ)30を用いたバッチ処理により量産する手順を説明する。(なお、参考のため、図4(c)の一部にのみ導体パターンを形成した状態を示した。)即ち、本実施形態では、分割溝31を縦横に形成することによって分割溝間に形成される矩形のスペースを水晶基板個片とし、所要のエッチャントとマスクを用いた化学エッチング方法により、凹陥部3と、凹状切欠き7a、7bを構成する貫通穴7Hを形成する。このウェハの特徴的な構成は、凹状切欠きを構成する貫通穴7Hを、左右に隣接し合う2つの基板個片に跨って形成することにより、張り出し部6の終端縁6aの両端角部に凹状切欠き7a、7bが夫々位置するようにした点にある。
なお、貫通穴7Hは、従来例の説明において言及した如く、基板の両面側の同一箇所から小凹所を同時に形成し、両小凹所を貫通させることにより形成される。そして、小凹所の径が過小な場合には、貫通不良が生じ易い不具合を有する。
Next, a procedure for mass production of the piezoelectric substrate 2 or the crystal resonator element 1 of the present invention by batch processing using a large-area crystal substrate wafer (piezoelectric substrate wafer) 30 will be described with reference to FIG. (For reference, the state in which the conductor pattern is formed only in a part of FIG. 4C is shown.) That is, in this embodiment, the divided grooves 31 are formed between the divided grooves by forming them vertically and horizontally. The rectangular space to be formed is a quartz substrate piece, and the recessed portion 3 and the through hole 7H constituting the recessed notches 7a and 7b are formed by a chemical etching method using a required etchant and mask. The characteristic configuration of this wafer is that the through holes 7H constituting the concave cutouts are formed across two substrate pieces adjacent to each other on the left and right, so that both end corners of the terminal edge 6a of the overhanging portion 6 are formed. The concave cutouts 7a and 7b are located respectively.
The through hole 7H is formed by simultaneously forming small recesses from the same location on both sides of the substrate and penetrating both small recesses as mentioned in the description of the conventional example. And when the diameter of a small recess is too small, it has the malfunction which a penetration defect tends to produce.

このように本実施形態においては、凹状切欠き7a、7bは、ウェハ30上において隣接し合う水晶基板個片間に跨る貫通穴7Hを形成することにより両水晶基板個片上に同時に形成される。この際、貫通穴7Hは、凹状切欠きを2個連結した大きな寸法を有するため、基板の表裏両面側の対応位置に夫々小凹所を同時にエッチング形成することにより、両小凹所を連通させた貫通穴を形成する際に、貫通不良が発生する虞が大幅に低減する。
その後、所要のマスクを用いた蒸着、スパッタリング等の任意の方法により、各基板個片の表裏に励振電極10a、10b、リード電極11a、11b、及び接続パッド12a、12a’、12b、12b’を夫々形成すると共に、各凹状切欠き7a、7b内には導体膜を形成する。
これらの導体パターンの形成後に、平坦面側の接続パッド12a’、12b、或いは凹陥部側の接続パッド12a、12b’に対して測定装置のプローブピンを当接させることにより、各水晶振動素子個片の共振周波数等の特性を測定する作業が行われ、測定結果に基づいて個片毎の調整作業を行った後で、分割溝31に沿った切断が行われる。
As described above, in this embodiment, the concave notches 7a and 7b are simultaneously formed on both crystal substrate pieces by forming the through holes 7H extending between the crystal substrate pieces adjacent to each other on the wafer 30. At this time, since the through hole 7H has a large dimension in which two concave cutouts are connected, the small recesses are simultaneously etched at the corresponding positions on both the front and back sides of the substrate so that the small recesses communicate with each other. When forming the through-hole, the possibility of occurrence of poor penetration is greatly reduced.
Thereafter, the excitation electrodes 10a and 10b, the lead electrodes 11a and 11b, and the connection pads 12a, 12a ′, 12b, and 12b ′ are formed on the front and back of each substrate piece by an arbitrary method such as vapor deposition and sputtering using a required mask. A conductive film is formed in each of the concave cutouts 7a and 7b.
After the formation of these conductor patterns, the probe pins of the measuring device are brought into contact with the connection pads 12a ′, 12b on the flat surface side or the connection pads 12a, 12b ′ on the recessed portion side, thereby allowing each crystal resonator element An operation of measuring the characteristics such as the resonance frequency of the piece is performed, and after the adjustment operation for each piece is performed based on the measurement result, cutting along the dividing groove 31 is performed.

ところで、水晶基板ウェハ30上の各水晶基板個片上に励振電極等の導体パターンを形成して水晶振動素子個片を形成した後で、プローブピンを用いた水晶振動素子個片毎の特性を測定する作業が行われるが、この際、図4(c)のように個片同士が直近位置にて直接隣接し合っていると、測定対象となる一つの水晶振動素子個片に設けられた2つの接続パッド12a、12b’に対するプローブピンの当接を左右の分割溝31の内側にて行うことになる。しかし、プローブピンを当接する位置と振動部4との距離は、0.5mm以下の至近距離であるため、プローブピンが各接続パッドを介して基板面に当接する僅かな圧力であっても、振動部4の共振周波数に影響を及ぼす虞があり、正確な測定が困難になる要因となっている。
図5はこのような不具合を解消するための実施形態に係る圧電基板ウェハの要部構成を示す平面図である。
この圧電基板ウェハ30の特徴的な構成は、水晶振動素子1(圧電基板2)の左右両側に、分割溝31を介して個片を構成しない領域としてのデッドスペース50を配置し、当該デッドスペース50上には、水晶振動素子個片上に設けた接続パッド12a、12b’、又は12a’、12bと夫々導通するダミー接続パッド51を形成するようにした点にある。各ダミー接続パッド51は、貫通孔7H(凹状切欠き7a、7b)内面の導体膜を介して隣接する位置にある表裏両面側の各接続パッドと導通している。
By the way, after forming a crystal oscillation element piece by forming a conductor pattern such as an excitation electrode on each crystal substrate piece on the quartz substrate wafer 30, the characteristics of each crystal oscillation element piece using a probe pin are measured. In this case, if the pieces are directly adjacent to each other at the nearest position as shown in FIG. 4C, 2 provided on one piece of crystal vibrating element to be measured. The probe pins are brought into contact with the two connection pads 12a and 12b ′ inside the left and right dividing grooves 31. However, since the distance between the position where the probe pin abuts and the vibrating portion 4 is a close distance of 0.5 mm or less, even if the probe pin is a slight pressure abutting against the substrate surface via each connection pad, There is a possibility that the resonance frequency of the vibration unit 4 may be affected, which is a factor that makes accurate measurement difficult.
FIG. 5 is a plan view showing a main configuration of a piezoelectric substrate wafer according to an embodiment for solving such a problem.
A characteristic configuration of the piezoelectric substrate wafer 30 is that dead spaces 50 as regions not forming individual pieces are arranged on both the left and right sides of the crystal resonator element 1 (piezoelectric substrate 2) via the dividing grooves 31. 50, the dummy connection pads 51 that are electrically connected to the connection pads 12a, 12b ′ or 12a ′, 12b provided on the crystal resonator element piece are formed. Each dummy connection pad 51 is electrically connected to each connection pad on both the front and back surfaces at adjacent positions via a conductor film on the inner surface of the through hole 7H (concave notches 7a and 7b).

以上の構成を備えた圧電基板ウェハ30上の各振動素子個片1の特性測定を行う場合には、図示しない測定装置のプローブピンを接続パッド12a、12b’、又は12a’、12b上に直接当接させることなく、分割溝31を介して各接続パッドと隣接配置されたダミー接続パッド51に対してプローブピンを当接させた状態での測定を実施することができる。
この場合、ダミー接続パッド51に対してプローブピンを当接させることによって発生した応力の伝達は、分割溝31により遮断され、水晶振動素子個片1の振動部4に及ぼす影響が減殺され、正確な測定が可能となる。
なお、図示の例では、デッドスペース50の面積を隣接する圧電基板2と同等に図示したが、これは一例に過ぎず、デッドスペース50の面積を更に狭くしてもよい。
なお、図4、図5の実施形態では、夫々貫通穴7Hを隣接し合う個片領域間、或いは個片領域とデッドスペース間に跨って形成したため、一つの圧電基板2の張り出し部6の終端縁6aの両端部に一カ所ずつ、合計2個の凹状切欠き7a、7bが形成されたが、凹状切欠きの個数は1個であってもよい。
When measuring the characteristics of each vibration element piece 1 on the piezoelectric substrate wafer 30 having the above configuration, probe pins of a measuring device (not shown) are directly placed on the connection pads 12a, 12b ′ or 12a ′, 12b. It is possible to perform measurement in a state where the probe pin is in contact with the dummy connection pad 51 arranged adjacent to each connection pad via the dividing groove 31 without making contact.
In this case, the transmission of the stress generated by bringing the probe pin into contact with the dummy connection pad 51 is blocked by the dividing groove 31, and the influence on the vibration part 4 of the crystal vibrating element piece 1 is reduced and accurate. Measurement is possible.
In the illustrated example, the area of the dead space 50 is illustrated equivalent to that of the adjacent piezoelectric substrate 2, but this is only an example, and the area of the dead space 50 may be further narrowed.
4 and 5, the through holes 7H are formed between the adjacent individual regions or between the individual regions and the dead space, so that the end of the overhanging portion 6 of one piezoelectric substrate 2 is formed. In total, two concave cutouts 7a and 7b are formed at both ends of the edge 6a, but the number of concave cutouts may be one.

図6(a)及び(b)は、他の実施形態に係る圧電基板ウェハの要部構成図、及び水晶振動素子個片の斜視図である。この圧電基板ウェハ30は、圧電基板個片2の張り出し部6の終端縁6aに沿って長穴状の貫通穴7Hを貫通形成した構成を備えるとともに、貫通穴7Hの内壁に分割導体膜7Cを形成することによって表裏両面側の接続パッド12a、12a’間、及び12b、12b’間を夫々導通させている。
励振電極10a、10b、リード電極11a、11b、接続パッド12a、12a’12b、12b’、及び分割導体膜7Cを夫々形成し、各接続パッド、或いはダミー接続パッド51(図5参照)を利用したプローブピンによる測定を行った後で、分割溝31に沿って切断分割することにより、図6(b)の如き個片が得られる。この際、貫通穴7Hに相当する部分は、分割溝31の軌跡に沿った切断により、凹状切欠き7となる。凹状切欠き7内壁の各分割導体膜7Cは互いに分離している。
これによれば、各個片毎に一個の貫通穴を形成すればよいので、エッチング時に使用するマスクの構成が簡略化され、製造コストが低減し、量産性が高まる。
なお、上記の如き構成を備えた圧電基板の振動部の両面に夫々励振電極を対向形成すると共に、各励振電極から張り出し部の終端縁に夫々延びるリード電極と、接続パッドとを形成することにより圧電振動素子が完成する。
また、上記圧電振動素子を構成する圧電基板の張り出し部の同一面上に並置された2つの接続パッドを、表面実装用のパッケージ内の各パッドと夫々導電性接着剤にて接着保持することにより圧電振動子が完成する。
更に、上記の如き圧電振動子を構成するパッケージ対して、発振回路を構成する回路部品を組み付けることにより、表面実装用の圧電発振器が完成する。
FIGS. 6A and 6B are a main part configuration diagram of a piezoelectric substrate wafer according to another embodiment, and a perspective view of a crystal vibration element piece. The piezoelectric substrate wafer 30 has a configuration in which a long hole-like through hole 7H is formed through the terminal edge 6a of the projecting portion 6 of the piezoelectric substrate piece 2, and a divided conductor film 7C is formed on the inner wall of the through hole 7H. By forming, the connection pads 12a and 12a 'on both the front and back sides and the connection pads 12b and 12b' are electrically connected.
Excitation electrodes 10a and 10b, lead electrodes 11a and 11b, connection pads 12a, 12a′12b and 12b ′, and divided conductor film 7C are formed, and each connection pad or dummy connection pad 51 (see FIG. 5) is used. After the measurement with the probe pin, the individual pieces as shown in FIG. 6B are obtained by cutting and dividing along the dividing grooves 31. At this time, the portion corresponding to the through hole 7 </ b> H becomes the concave notch 7 by cutting along the trajectory of the dividing groove 31. The divided conductor films 7C on the inner wall of the concave notch 7 are separated from each other.
According to this, since one through hole may be formed for each piece, the configuration of the mask used at the time of etching is simplified, the manufacturing cost is reduced, and the mass productivity is increased.
In addition, by forming the excitation electrodes on both surfaces of the vibration part of the piezoelectric substrate having the above-described configuration, respectively, and forming the lead electrodes extending from the respective excitation electrodes to the terminal edge of the projecting part and the connection pads, respectively. A piezoelectric vibration element is completed.
In addition, by bonding and holding two connection pads juxtaposed on the same surface of the projecting portion of the piezoelectric substrate constituting the piezoelectric vibration element, with each pad in the surface mounting package by a conductive adhesive. The piezoelectric vibrator is completed.
Furthermore, a surface mount piezoelectric oscillator is completed by assembling circuit components constituting the oscillation circuit to the package constituting the piezoelectric vibrator as described above.

[第3の従来例に対応する実施の形態]
図7(a)及び(b)は第3の従来例に対応する実施形態の説明図であり、本実施形態では予め開口部61(仕切り62)のサイズ、及びピッチが確定したガイドマスク60を、圧電基板ウェハ30の平坦面側に当接させ、各開口部61内に露出する各圧電基板個片2の振動部4の平坦面側を個別にエッチングする。
即ち、従来技術の説明にて言及した如く、機械加工技術上の制約から、ガイドマスク60の開口部61のサイズ、及びピッチの極小化には限界がある。このため、最小サイズの開口部61よりも更に小さい凹陥部3内の振動部4の肉厚を個別調整するとすれば、ガイドマスク60を使用せざるを得ない。しかし、従来の如く凹陥部側にガイドマスク60を当接した個別エッチングにはデメリットが多過ぎる。
そこで、本発明では、ウェハ30上の圧電基板個片2の配置間隔を、予めガイドマスク60の開口部61の開口寸法、ピッチに合わせて広く設定するとともに、圧電基板個片2間の厚肉部上には2本の平行な分割溝31を形成する。各凹陥部3内の振動部4の肉厚は、予め測定済みの状態であり、肉厚の異なる振動部4を均一肉厚にエッチングするのに要する時間について予め算出しておく。
そして、ガイドマスク60の全ての開口部61の中心部に各振動部4が位置決めされる様に、ウェハ30の平坦面側にガイドマスク60を添設固定する。この状態で、各開口部61を介して各凹陥部内にエッチング液を所定の順序にて充填する。この際、肉厚の厚い振動部4を有した凹陥部から、順次薄い肉厚の振動部を有した凹陥部の順に、エッチング液を充填して行き、全ての振動部の肉厚が規定肉厚にまで薄肉化された時点でエッチング液を一括して洗浄する。
[Embodiment corresponding to third conventional example]
FIGS. 7A and 7B are explanatory views of an embodiment corresponding to the third conventional example. In this embodiment, the guide mask 60 in which the size and pitch of the opening 61 (partition 62) are determined in advance is shown. Then, the flat surface side of the vibration part 4 of each piezoelectric substrate piece 2 exposed to the flat surface side of the piezoelectric substrate wafer 30 and exposed in each opening 61 is individually etched.
That is, as mentioned in the description of the prior art, there is a limit to minimizing the size and pitch of the opening 61 of the guide mask 60 due to limitations in machining technology. For this reason, if the thickness of the vibrating part 4 in the recessed part 3 that is smaller than the opening 61 of the minimum size is individually adjusted, the guide mask 60 must be used. However, there are too many disadvantages for the individual etching in which the guide mask 60 is brought into contact with the recessed portion side as in the prior art.
Therefore, in the present invention, the arrangement interval of the piezoelectric substrate pieces 2 on the wafer 30 is set in advance according to the opening size and pitch of the openings 61 of the guide mask 60, and the thick wall between the piezoelectric substrate pieces 2 is set. Two parallel dividing grooves 31 are formed on the part. The thickness of the vibration part 4 in each recessed part 3 is in a measured state in advance, and the time required for etching the vibration part 4 having different thicknesses to a uniform thickness is calculated in advance.
Then, the guide mask 60 is additionally fixed to the flat surface side of the wafer 30 so that each vibration part 4 is positioned at the center of all the openings 61 of the guide mask 60. In this state, an etching solution is filled in each recess through each opening 61 in a predetermined order. At this time, the etching solution is filled in order from the recessed portion having the thick vibrating portion 4 to the recessed portion having the thin vibrating portion, and the thickness of all the vibrating portions is the specified thickness. When the thickness is reduced to the thickness, the etching solution is cleaned at once.

この結果、図7(c)に示すように、開口部61内に露出していたウェハ平坦面に凹陥部よりも広い面積を備えた微小凹所としての板厚微調整加工部65が形成された状態となる。なお、符号50は個片間に配置したダミー領域である。
このように、本実施形態では、ウェハの平坦面側にガイドマスクを当接し、振動部の肉厚の微調整が必要な凹陥部内にエッチング液を時間差をもって充填し、エッチング終了時に一括洗浄するようにしたので、ウェハの凹陥部側にはエッチング液による悪影響が及ぼされることがなくなり、分割溝31を介してエッチング液が他所に浸透して不具合をもたらすことが無くなる。また、凹陥部内に充填されたエッチング液がその表面張力により凹陥部内壁に密着できないことによるエッチング不良等の不具合も勿論発生しない。
なお、圧電基板個片間に2本ずつの分割溝31を平行に配置することにより、2本の分割溝間に位置する厚肉部はデッドスペースとなる。このデッドスペースの幅を十分に確保することにより、ある開口部61内に充填されたエッチング液が隣接する圧電基板個片に悪影響を及ぼす虞を回避することができる。このようにして凹陥部内の振動部4の肉厚調整を経たウェハ30を分割溝31に沿って切断分割することにより、凹陥部3の反対側の基板面に振動部4の板厚微調整加工部65を備えた圧電基板個片2を得ることができる。
このような構成を備えた圧電基板2の振動部4の両面に夫々励振電極を対向形成するとともに、各励振電極から圧電基板の長手方向一端縁に延びるリード電極と、各リード電極と夫々接続された接続パッドと、を蒸着等により形成することにより、圧電振動素子が完成する。
As a result, as shown in FIG. 7C, a plate thickness fine adjustment processing portion 65 is formed as a fine recess having a larger area than the recess on the wafer flat surface exposed in the opening 61. It becomes a state. Reference numeral 50 denotes a dummy area arranged between the pieces.
As described above, in this embodiment, the guide mask is brought into contact with the flat surface side of the wafer, and the etching solution is filled into the recesses that require fine adjustment of the thickness of the vibration part with a time difference, and is collectively cleaned at the end of the etching. As a result, there is no adverse effect of the etching solution on the recessed portion side of the wafer, and the etching solution does not permeate to other places through the dividing grooves 31 to cause problems. In addition, of course, problems such as defective etching due to the fact that the etching liquid filled in the recessed portion cannot be brought into close contact with the inner wall of the recessed portion due to the surface tension thereof do not occur.
In addition, by arranging two split grooves 31 in parallel between the piezoelectric substrate pieces, the thick portion located between the two split grooves becomes a dead space. By sufficiently securing the width of this dead space, it is possible to avoid the possibility that the etching solution filled in a certain opening 61 adversely affects the adjacent piezoelectric substrate pieces. In this way, by finely adjusting the thickness of the vibrating portion 4 in the recessed portion, the wafer 30 is cut and divided along the dividing groove 31 to finely adjust the thickness of the vibrating portion 4 on the substrate surface opposite to the recessed portion 3. The piezoelectric substrate piece 2 having the portion 65 can be obtained.
Excitation electrodes are respectively formed on both surfaces of the vibrating portion 4 of the piezoelectric substrate 2 having such a configuration, and lead electrodes extending from the respective excitation electrodes to one end in the longitudinal direction of the piezoelectric substrate are connected to the respective lead electrodes. The piezoelectric vibration element is completed by forming the connection pads by vapor deposition or the like.

また、このような圧電振動素子を構成する圧電基板の一端部を表面実装用のパッケージ内に片持ち状態で接着保持し、且つパッケージを蓋により気密封止することにより圧電振動子が完成する。
更に、上記圧電振動子を構成するパッケージの適所に発振回路を構成する回路部品を組付け一体化することにより、表面実装型の圧電発振器が完成する。
[第4の従来例に対応する実施の形態]
次に、図8(a)は第4の従来例に対応する本発明の実施形態に係る圧電基板の断面図である。
ここでは、異方性を有した圧電結晶材料の一例としてATカット水晶から成る圧電基板を示す。
この水晶基板2は、薄肉の振動部4と、振動部4の外周縁を一体的に包囲する厚肉の環状部5と、を備えることにより、両主面上に夫々凹陥部3a、3bを形成した構成を有する。各凹陥部3a、3bは、一方の結晶軸方向(z軸方向)側の内壁5a、5bが、これと直交する他の結晶軸方向(x軸方向)側の内壁よりも緩やかな傾斜角度を備えている。そして、各凹陥部3a、3bの各内底面の端縁3a’、3b’の位置が合致するように構成されている。このため、振動部4の有効領域面積を最大とすることができる。
Further, one end of a piezoelectric substrate constituting such a piezoelectric vibration element is bonded and held in a cantilevered state in a surface mounting package, and the package is hermetically sealed with a lid, thereby completing a piezoelectric vibrator.
Further, the surface mount type piezoelectric oscillator is completed by assembling and integrating the circuit components constituting the oscillation circuit at appropriate positions of the package constituting the piezoelectric vibrator.
[Embodiment corresponding to the fourth conventional example]
Next, FIG. 8A is a cross-sectional view of a piezoelectric substrate according to an embodiment of the present invention corresponding to the fourth conventional example.
Here, a piezoelectric substrate made of AT-cut quartz is shown as an example of an anisotropic piezoelectric crystal material.
The quartz crystal substrate 2 includes a thin vibrating portion 4 and a thick annular portion 5 that integrally surrounds the outer peripheral edge of the vibrating portion 4, thereby providing concave portions 3 a and 3 b on both main surfaces, respectively. It has a formed configuration. Each recess 3a, 3b has an inner wall 5a, 5b on one crystal axis direction (z-axis direction) side having a gentler inclination angle than an inner wall on the other crystal axis direction (x-axis direction) side orthogonal thereto. I have. And it is comprised so that the position of edge 3a ', 3b' of each inner bottom face of each recessed part 3a, 3b may correspond. For this reason, the effective region area of the vibration part 4 can be maximized.

このような構成を備えた水晶基板2の凹陥部3a、3bを化学エッチングにより製造する場合は、図8(b)中に示した如く基板の表裏に夫々被覆形成する各マスク(レジスト)70a、70bの開口部70a’、70b’のz軸方向端縁の位置を所定距離Lだけずらしておく。この所定距離Lは、エッチングを行った際に、各凹陥部3a、3bの各内底面の端縁3a’、3b’の位置が合致することとなるように設定すればよい。
なお、上記の如き構成を備えた圧電基板2の振動部4の両面に夫々対向形成した励振電極と、各励振電極から圧電基板の長手方向一端縁に延びるリード電極と、各リード電極と夫々接続された接続パッドと、を形成することにより圧電振動素子が完成する。
また、前記圧電振動素子を構成する圧電基板2の一端部を表面実装用のパッケージ内に片持ち状態で接着保持することにより圧電振動子が構築される。
また、前記圧電振動子を構成するパッケージに、発振回路を構成する回路部品を組み込むことにより表面実装型の圧電発振器が構築される。
なお、図8に示した如き圧電基板の製造に当たっては、平板状の圧電基板2の両主面に対して夫々各凹陥部を掘削形成するためのマスク70a、70bを被覆するマスク形成工程と、各マスクを被覆した圧電基板に対してエッチングを行うことにより、各マスクの開口内に露出した圧電基板の両主面に夫々凹陥部3a、3bを形成する凹陥部形成工程と、が実施されるが、マスク形成工程においては、各マスク70a、70bの位置を、一方の結晶軸方向(z軸方向)にずらすことにより、各凹陥部の各内底面の端縁3a’、3b’同士を合致させる。
なお、上記圧電基板2は、複数の圧電基板個片をシート状に連結した圧電基板ウェハであってもよく、この場合にはバッチ処理による量産が可能となる。
When the recesses 3a and 3b of the quartz crystal substrate 2 having such a structure are manufactured by chemical etching, as shown in FIG. 8B, each mask (resist) 70a for covering the front and back of the substrate, respectively, The positions of the z-axis direction edges of the openings 70a ′ and 70b ′ of 70b are shifted by a predetermined distance L. The predetermined distance L may be set so that the positions of the edges 3a ′ and 3b ′ of the inner bottom surfaces of the recessed portions 3a and 3b coincide with each other when etching is performed.
It should be noted that an excitation electrode formed opposite to both surfaces of the vibrating portion 4 of the piezoelectric substrate 2 having the above-described configuration, a lead electrode extending from each excitation electrode to one longitudinal edge of the piezoelectric substrate, and a connection to each lead electrode By forming the connection pads, the piezoelectric vibration element is completed.
Further, a piezoelectric vibrator is constructed by adhering and holding one end portion of the piezoelectric substrate 2 constituting the piezoelectric vibration element in a surface mounting package in a cantilever state.
Further, a surface-mount type piezoelectric oscillator is constructed by incorporating a circuit component constituting an oscillation circuit into a package constituting the piezoelectric vibrator.
In the manufacture of the piezoelectric substrate as shown in FIG. 8, a mask forming step for covering the masks 70a and 70b for excavating and forming the respective concave portions on both main surfaces of the plate-like piezoelectric substrate 2; By performing etching on the piezoelectric substrate coated with each mask, a recessed portion forming step of forming recessed portions 3a and 3b on both principal surfaces of the piezoelectric substrate exposed in the openings of the respective masks is performed. However, in the mask formation process, the positions of the masks 70a and 70b are shifted in the direction of one crystal axis (z-axis direction), thereby matching the edges 3a ′ and 3b ′ of the inner bottom surfaces of the recessed portions. Let
The piezoelectric substrate 2 may be a piezoelectric substrate wafer in which a plurality of piezoelectric substrate pieces are connected in a sheet shape. In this case, mass production by batch processing is possible.

(a)(b)及び(c)は本発明の一実施形態に係る圧電振動素子の一例としてのATカット水晶から成る水晶振動素子の外観斜視図、平面図、及びウェハの要部構成図。(A), (b) and (c) are an external perspective view, a plan view, and a main part configuration diagram of a crystal resonator element made of an AT-cut crystal as an example of a piezoelectric resonator element according to an embodiment of the present invention. 図1の水晶振動素子をパッケージ内に気密収納した水晶振動子の断面図。FIG. 2 is a cross-sectional view of a crystal resonator in which the crystal resonator element of FIG. 本発明の水晶振動素子を表面実装型の水晶発振器に適用した例を示す図。The figure which shows the example which applied the crystal oscillation element of this invention to the surface mount type crystal oscillator. (a)(b)及び(c)は第2の従来例に対応する本発明の一実施形態に係る水晶振動素子(水晶基板)の斜視図、パッケージに搭載した状態の断面図、及びウェハの構成説明図。(A), (b) and (c) are perspective views of a crystal resonator element (crystal substrate) according to an embodiment of the present invention corresponding to the second conventional example, a cross-sectional view of a state mounted on a package, and a wafer FIG. 本発明の他の実施形態に係る圧電基板ウェハの要部構成を示す平面図。The top view which shows the principal part structure of the piezoelectric substrate wafer which concerns on other embodiment of this invention. (a)及び(b)は、他の実施形態に係る圧電基板ウェハの要部構成図、及び水晶振動素子個片の斜視図。(A) And (b) is a principal part block diagram of the piezoelectric substrate wafer which concerns on other embodiment, and the perspective view of a crystal vibration element piece. (a)及び(b)は第3の従来例に対応する実施形態の説明図、(c)は板厚微調整加工部の説明図。(A) And (b) is explanatory drawing of embodiment corresponding to a 3rd prior art example, (c) is explanatory drawing of a plate | board thickness fine adjustment process part. (a)は第4の従来例に対応する本発明の実施形態に係る圧電基板の断面図、(b)は圧電振動子の断面図。(A) is sectional drawing of the piezoelectric substrate which concerns on embodiment of this invention corresponding to a 4th prior art example, (b) is sectional drawing of a piezoelectric vibrator. (a)及び(b)は従来の圧電振動素子の一例としてのATカット水晶振動素子の構成を示す斜視図、及び断面図、(c)は水晶振動素子を表面実装用のパッケージ内にマウントした状態を示す断面図。(A) And (b) is the perspective view and sectional drawing which show the structure of the AT cut quartz-crystal vibrating element as an example of the conventional piezoelectric vibrating element, (c) is mounting the quartz-crystal vibrating element in the package for surface mounting Sectional drawing which shows a state. 図9の圧電基板を形成する際に使用する圧電基板ウェハの要部構成図。The principal part block diagram of the piezoelectric substrate wafer used when forming the piezoelectric substrate of FIG. (a)及び(b)は他の従来例に係る表面実装型水晶振動子の断面図、及びA−A断面図、(c)は張り出し部終端縁に設けた凹状切欠きの構成を示す斜視図、(d)は圧電ウェハの要部構成図。(A) And (b) is sectional drawing and AA sectional drawing of the surface mount-type quartz crystal resonator concerning another prior art example, (c) is a perspective view which shows the structure of the concave notch provided in the overhang | projection part termination edge FIG. 4D is a configuration diagram of a main part of the piezoelectric wafer. (a)(b)、及び(c)は、従来の凹陥部毎の微調整方法を説明するための図、(d)は従来の微調整方法の欠点を説明する為の図。(A) (b) And (c) is a figure for demonstrating the conventional fine adjustment method for every recessed part, (d) is a figure for demonstrating the fault of the conventional fine adjustment method. 両面に凹陥部を備えた従来の圧電基板の断面図。Sectional drawing of the conventional piezoelectric substrate provided with the recessed part on both surfaces.

符号の説明Explanation of symbols

1 水晶振動素子(圧電振動素子)、2 水晶基板(圧電基板)、3 凹陥部、3a、3b 凹陥部、3a’、3b’ 内底面の端縁、4 振動部、5 環状部、5a 緩斜面、5b 内壁、5A 一辺、6 張り出し部、6a 終端縁、7、7a、7b 凹状切欠き、7H 貫通穴、10a、10b 励振電極、11a、11b リード電極、12a、12b 接続パッド、12a’、12b’ 接続パッド、20 パッケージ、21 パッケージ本体、22 外部電極、23 内部電極、25 導電性接着剤、26 金属蓋、30 水晶基板ウェハ(圧電基板ウェハ)、31 分割溝、40 水晶発振器、41 回路部品、50 デッドスペース、51 ダミー接続パッド、60 ガイドマスク、61 開口部、65 板厚微調整加工部、70a、70b マスク、70a’、70b’ 開口部   DESCRIPTION OF SYMBOLS 1 Quartz vibration element (piezoelectric vibration element), 2 Quartz substrate (piezoelectric substrate), 3 Recessed part, 3a, 3b Recessed part, 3a ', 3b' Edge of inner bottom face, 4 Vibration part, 5 Ring part, 5a Slow slope 5b inner wall, 5A side, 6 overhang, 6a end edge, 7, 7a, 7b concave notch, 7H through hole, 10a, 10b excitation electrode, 11a, 11b lead electrode, 12a, 12b connection pad, 12a ′, 12b 'Connection pad, 20 package, 21 package body, 22 external electrode, 23 internal electrode, 25 conductive adhesive, 26 metal lid, 30 crystal substrate wafer (piezoelectric substrate wafer), 31 split groove, 40 crystal oscillator, 41 circuit components , 50 dead space, 51 dummy connection pad, 60 guide mask, 61 opening, 65 plate thickness fine adjustment processing part, 70a, 70b , 70a ', 70b' opening

Claims (7)

一方の主面から、当該主面とは反対側の他方の主面に向けて凹陥した凹陥部を有し、
前記凹陥部の底部に設けられている振動部と、当該振動部の外周縁を一体的に包囲する前記振動部の厚みよりも厚肉の環状部と、を備える圧電基板であって、
前記他方の主面は、前記環状部の外周縁の1つの縁部に段差部が残るように、前記環状部及び前記振動部に亘って平坦となるようにエッチングすることにより前記振動部の板厚を微調整した板厚微調整加工部であることを特徴とする圧電基板。
Having a recessed portion recessed from one main surface toward the other main surface opposite to the main surface;
A vibrating section is provided at the bottom of the recessed portion, a piezoelectric substrate with an annular portion of the thicker than the thickness of the vibrating portion surrounding integrally with the outer peripheral edge of the vibrating portion,
The other main surface is etched so that a stepped portion remains at one edge of the outer peripheral edge of the annular portion so as to be flat across the annular portion and the vibrating portion. A piezoelectric substrate characterized in that it is a plate thickness fine-adjustment processing part in which the thickness is fine-adjusted.
請求項1に記載の圧電基板の前記振動部の両面に夫々対向形成した励振電極と、各励振電極から圧電基板の長手方向一端縁に延びるリード電極と、各リード電極と夫々接続された接続パッドと、を備えたことを特徴とする圧電振動素子。   2. An excitation electrode formed opposite to both surfaces of the vibrating portion of the piezoelectric substrate according to claim 1, a lead electrode extending from each excitation electrode to one longitudinal edge of the piezoelectric substrate, and a connection pad connected to each lead electrode And a piezoelectric vibration element. 請求項2に記載の圧電振動素子を構成する前記圧電基板の長手方向一端縁側の一端部を表面実装用のパッケージ内に接着保持したことを特徴とする圧電振動子。   3. A piezoelectric vibrator, wherein one end portion on one end side in the longitudinal direction of the piezoelectric substrate constituting the piezoelectric vibration element according to claim 2 is bonded and held in a surface mounting package. 請求項3に記載の圧電振動子と、発振回路と、を少なくとも備えたことを特徴とする表面実装型の圧電発振器。   A surface-mounted piezoelectric oscillator comprising at least the piezoelectric vibrator according to claim 3 and an oscillation circuit. 請求項1に記載の圧電基板を複数個シート状に連結したことを特徴とする圧電基板ウェハ。   A piezoelectric substrate wafer comprising a plurality of piezoelectric substrates according to claim 1 connected in a sheet form. 前記圧電基板ウェハは、
圧電基板個片間の厚肉部に、前記圧電基板ウェハを切断して圧電基板個片を得るための互いに平行な2本の分割溝を備え、
該分割溝の間に、前記圧電基板ウェハの平坦な基板面をエッチングして前記圧電基板個片の振動部の板厚を微調整加工する際に、隣り合う振動部に影響を与えないためのスペースを備えることを特徴とする請求項5に記載の圧電基板ウェハ。
The piezoelectric substrate wafer is
In the thick part between the piezoelectric substrate pieces, two parallel grooves for cutting the piezoelectric substrate wafer to obtain the piezoelectric substrate pieces are provided,
When the flat substrate surface of the piezoelectric substrate wafer is etched between the divided grooves to finely adjust the thickness of the vibrating portion of the piezoelectric substrate piece, the adjacent vibrating portions are not affected. The piezoelectric substrate wafer according to claim 5, further comprising a space.
請求項5又は6に記載の圧電基板ウェハ上の各圧電基板個片の凹陥部と反対側面をエッチングすることにより前記振動部の板厚を微調整した板厚微調整加工部は、前記凹陥部よりも大きい開口部を複数個配列した碁盤目状のガイドマスクを圧電基板ウェハの該反対側面に当接した状態で、該ガイドマスクの各開口部内にエッチング液を充填することによって加工形成されることを特徴とする圧電基板ウェハの製造方法。   The plate thickness fine adjustment processing portion obtained by finely adjusting the plate thickness of the vibrating portion by etching a side surface opposite to the concave portion of each piezoelectric substrate piece on the piezoelectric substrate wafer according to claim 5 or 6 is the concave portion. In a state where a grid-shaped guide mask having a plurality of larger openings arranged in contact with the opposite side surface of the piezoelectric substrate wafer, each opening of the guide mask is filled with an etching solution. A method for manufacturing a piezoelectric substrate wafer, comprising:
JP2008114041A 2008-04-24 2008-04-24 Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric substrate wafer, and method for manufacturing piezoelectric substrate wafer Expired - Fee Related JP4752863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114041A JP4752863B2 (en) 2008-04-24 2008-04-24 Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric substrate wafer, and method for manufacturing piezoelectric substrate wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114041A JP4752863B2 (en) 2008-04-24 2008-04-24 Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric substrate wafer, and method for manufacturing piezoelectric substrate wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002326066A Division JP2004165743A (en) 2002-11-08 2002-11-08 Piezoelectric substrate, piezoelectric vibrator element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric wafer, its structure and its manufacturing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010223897A Division JP5591053B2 (en) 2010-10-01 2010-10-01 Vibration element, vibrator, oscillator and wafer
JP2010223896A Division JP5163725B2 (en) 2010-10-01 2010-10-01 Vibration element, vibrator and oscillator

Publications (2)

Publication Number Publication Date
JP2008199660A JP2008199660A (en) 2008-08-28
JP4752863B2 true JP4752863B2 (en) 2011-08-17

Family

ID=39758128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114041A Expired - Fee Related JP4752863B2 (en) 2008-04-24 2008-04-24 Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric substrate wafer, and method for manufacturing piezoelectric substrate wafer

Country Status (1)

Country Link
JP (1) JP4752863B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432077B2 (en) * 2010-07-08 2014-03-05 セイコーインスツル株式会社 Manufacturing method of glass substrate with through electrode and manufacturing method of electronic component
JP5466102B2 (en) * 2010-07-08 2014-04-09 セイコーインスツル株式会社 Manufacturing method of glass substrate with through electrode and manufacturing method of electronic component
JP7434724B2 (en) * 2019-05-23 2024-02-21 セイコーエプソン株式会社 Vibration devices, electronic equipment and moving objects
CN114826185B (en) * 2022-05-23 2023-03-10 河北时硕微芯科技有限公司 Surface acoustic wave filter packaging method and structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255534B2 (en) * 1993-03-22 2002-02-12 東洋通信機株式会社 Manufacturing method of ultra-thin piezoelectric resonator element plate
JP3231203B2 (en) * 1994-12-19 2001-11-19 日本電波工業株式会社 Surface mount type temperature compensated crystal oscillator
JPH09199977A (en) * 1996-01-16 1997-07-31 Matsushita Electric Ind Co Ltd Piezoelectric vibrator and its manufacture
JPH10256867A (en) * 1997-01-07 1998-09-25 Matsushita Electric Ind Co Ltd Vibrator, its manufacture and electronic device using the vibrator
JP2000312130A (en) * 1999-04-28 2000-11-07 Matsushita Electric Ind Co Ltd Piezoelectric device, manufacture thereof and mobile communication unit employing them
JP2001185954A (en) * 1999-12-27 2001-07-06 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2002204140A (en) * 2000-10-24 2002-07-19 Seiko Epson Corp Piezoelectric vibrator
JP3541810B2 (en) * 2001-02-13 2004-07-14 セイコーエプソン株式会社 High frequency vibrator and method of manufacturing the same

Also Published As

Publication number Publication date
JP2008199660A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US7098574B2 (en) Piezoelectric resonator and method for manufacturing the same
JP2004165743A (en) Piezoelectric substrate, piezoelectric vibrator element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric wafer, its structure and its manufacturing method
US8004157B2 (en) Piezoelectric resonator plate and piezoelectric resonator device
US8702891B2 (en) Method for manufacturing glass-sealed package, apparatus for manufacturing glass-sealed package, and oscillator
US20150171821A1 (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP5163725B2 (en) Vibration element, vibrator and oscillator
KR20100092915A (en) Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, and oscillator
US8987974B2 (en) Piezoelectric device and method for manufacturing the same
EP2219291A2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
JP2006203700A (en) Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator
JP5591053B2 (en) Vibration element, vibrator, oscillator and wafer
JP4752863B2 (en) Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric substrate wafer, and method for manufacturing piezoelectric substrate wafer
US8341814B2 (en) Methods for manufacturing piezoelectric devices
JP5171210B2 (en) Method for manufacturing piezoelectric vibrator
JP2000049561A (en) Structure of piezoelectric vibrator and its manufacture
JP2014110488A (en) Piezoelectric vibration element, piezoelectric wafer, and manufacturing method of piezoelectric vibration element
JP2006197547A (en) Method of manufacturing piezoelectric oscillator, piezoelectric oscillator sheet substrate, and piezoelectric oscillator
JP6871112B2 (en) Tuning fork type crystal element and crystal device using the tuning fork type crystal element
KR101629520B1 (en) Manufacturing method of glass-sealed package, and glass substrate
JP2014175900A (en) Piezoelectric vibration piece, piezoelectric vibration piece manufacturing method, and piezoelectric device
JP2008182468A (en) Manufacturing method of piezoelectric vibration device
JP2012186532A (en) Wafer, package manufacturing method, and piezoelectric vibrator
JP2009111931A (en) Piezoelectric vibrator and method for manufacturing piezoelectric vibrator
US20230006124A1 (en) Crystal element, crystal device, electronic equipment, and method for manufacturing crystal element
CN106972838B (en) Method for manufacturing piezoelectric vibrating reed

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4752863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees