JP4752156B2 - Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device - Google Patents

Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device Download PDF

Info

Publication number
JP4752156B2
JP4752156B2 JP2001253199A JP2001253199A JP4752156B2 JP 4752156 B2 JP4752156 B2 JP 4752156B2 JP 2001253199 A JP2001253199 A JP 2001253199A JP 2001253199 A JP2001253199 A JP 2001253199A JP 4752156 B2 JP4752156 B2 JP 4752156B2
Authority
JP
Japan
Prior art keywords
laminated piezoelectric
piezoelectric element
piezoelectric
composition
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001253199A
Other languages
Japanese (ja)
Other versions
JP2003055045A (en
Inventor
智之 小川
俊克 久木
勝弘 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001253199A priority Critical patent/JP4752156B2/en
Publication of JP2003055045A publication Critical patent/JP2003055045A/en
Application granted granted Critical
Publication of JP4752156B2 publication Critical patent/JP4752156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は積層圧電素子用圧電磁器組成物、積層圧電素子、積層圧電素子の製造方法および積層圧電装置に関し、特にたとえば積層圧電アクチュエータ、積層圧電ブザー、積層圧電センサなどの積層圧電装置に用いられる積層圧電素子用圧電磁器組成物などに関する。
【0002】
【従来の技術】
従来、圧電磁器組成物を利用した圧電装置は多種多様であり、たとえば、圧電アクチュエータ、圧電ブザー、圧電センサなどがある。このような圧電装置に用いられる圧電磁器組成物には、高い圧電d定数が求められている。また、このような圧電磁器組成物には、キュリー温度が高いことも求められている。キュリー温度が高いと圧電素子の耐熱性が高くなり、たとえば圧電素子が実装時のはんだリフロー炉を通過する際など200℃程度の高温にさらされても、熱による圧電特性の劣化を比較的抑制することができる。また、特に圧電アクチュエータにおいて、キュリー温度が高いと比較的低比誘電率を得ることができ、これが駆動時の低消費電力化に有効となる。また、圧電センサでは、特にショックセンサなどの加速度センサにおいて、キュリー温度が高いと圧電d定数の温度変化率が小さくなり、感度温度特性が良好になる。
従来、このように高い圧電d定数と高いキュリー温度とを両立する圧電材料として、チタン酸ジルコン酸鉛(以下「PZT」と記す)系圧電磁器組成物のTi、ZrサイトにNb、Sb、Wのうち少なくとも1種を置換する手法が用いられていた。また、これに加えて、PbサイトにCa、Sr、Baの少なくとも1種を置換する手法も用いられていた。このような2成分系PZTの圧電磁器組成物の例として、特開平5−319925号にはPbサイトにSrを置換し、Ti、ZrサイトにNbを置換したPZTが開示されている。一方、Nb、Sb、Wに加え、Cr、Mn、Mg、NiおよびFeなどの元素を含む3成分系PZTは、2成分系PZTと比較して、電気抵抗率が低いなどの信頼性上の問題が生じやすく、好ましくない。
【0003】
【発明が解決しようとする課題】
近年は圧電アクチュエータ、圧電ブザー、圧電センサなどの圧電装置への小型化、高性能化の要求が高くなり、圧電素子の積層化が行われるようになっている。積層圧電素子の製法には、圧電磁器の両主面に電極を形成し、圧電磁器を積み重ねて接着し、それらの電極を交互に接続する方法があるが、この方法は素子の小型化に限界があり、好ましくない。したがって、このような場合、圧電体原料粉体をグリーンシートにシート成形し、それらのグリーンシートに電極ペーストを塗布し、それらのグリーンシートを積み重ねて圧着し、圧電磁器と内部電極とを共焼結する製法が望ましい。この製法における内部電極には比較的安価なAg・Pd電極が一般的に用いられており、Ag・Pd電極のAg/Pd比は電極コストの観点から7/3以上にすることが好ましい。ただし、この場合、内部電極の融点を考慮して、積層圧電素子の焼成温度を1100℃以下に設定する必要がある。
しかしながら、従来の特開平5−319925号に開示されているような圧電磁器は焼結温度が1250℃程度と高く、Ag/Pd比が7/3以上の内部電極を用いた積層圧電素子の作製は困難という問題があった。
【0004】
それゆえに、この発明の主たる目的は、PZTのTi、ZrサイトにNb、Sb、Wのうち少なくとも1種を置換した2成分PZT圧電磁器において、Ag/Pd比が7/3以上の内部電極を用いた積層圧電素子の作製に適した積層圧電素子用圧電磁器組成物、その積層圧電素子用圧電磁器組成物を用いた積層圧電素子、積層圧電素子の製造方法および積層圧電素子を用いた積層圧電装置を提供することである。
【0005】
【課題を解決するための手段】
この発明にかかる積層圧電素子用圧電磁器組成物は、組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、その組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ、その組成式中のzが0.95≦z≦0.998となるようにPbを化学量論組成より減じた、積層圧電素子用圧電磁器組成物である。
また、この発明にかかる積層圧電素子用圧電磁器組成物は、組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、その組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ、その組成式中のzが0.98−y≦z≦0.998−yとなるようにPbを化学量論組成より減じた、積層圧電素子用圧電磁器組成物である。
この発明にかかる積層圧電素子用圧電磁器組成物には、Pb含有量の5.5mol%以下をCa、Sr、Baのうち少なくとも1種により置換してもよい。
この発明にかかる積層圧電素子は、この発明にかかる積層圧電素子用圧電磁器組成物からなる圧電磁器と、圧電磁器に形成される内部電極とを含む、積層圧電素子である。
この発明にかかる積層圧電素子の製造方法は、組成式Pbz 〔(Tix Zr1- x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、その組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ、その組成式中のzが0.95≦z≦0.998となるようにPbを化学量論組成より減じた積層圧電素子用圧電磁器組成物からなる圧電磁器と圧電磁器に形成される内部電極とを含む積層圧電素子の製造方法であって、圧電磁器および内部電極を1100℃以下で共焼結する、積層圧電素子の製造方法である。
また、この発明にかかる積層圧電素子の製造方法は、組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、その組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ、その組成式中のzが0.98−y≦z≦0.998−yとなるようにPbを化学量論組成より減じた積層圧電素子用圧電磁器組成物からなる圧電磁器と圧電磁器に形成される内部電極とを含む積層圧電素子の製造方法であって、圧電磁器および内部電極を1100℃以下で共焼結する、積層圧電素子の製造方法である。
この発明にかかる積層圧電素子の製造方法では、積層圧電素子用圧電磁器組成物においてPb含有量の5.5mol%以下をCa、Sr、Baのうち少なくとも1種により置換してもよい。
この発明にかかる積層圧電装置は、この発明にかかる積層圧電素子と、内部電極に接続される端子電極とを含む、積層圧電装置である。
【0006】
この発明にかかる積層圧電素子用圧電磁器組成物は、PZTのTi、ZrサイトにNb、Sb、Wのうち少なくとも1種を置換した2成分PZT圧電磁器において、Pb量を減じることにより、1100℃以下での焼成を可能にし、Ag/Pd比が7/3以上の内部電極を用いた積層圧電素子を得ることができる。
この発明にかかる積層圧電素子用圧電磁器組成物を用いて作製した積層圧電素子は、高い圧電d定数と高いキュリー温度を両立しており、積層圧電アクチュエータ、積層圧電ブザー、積層圧電センサなどの積層圧電装置に適している。
この発明にかかる積層圧電素子用圧電磁器組成物において、Pb量を化学量論組成より減じることにより、1100℃以下で焼成可能になる理由は、請求項1に記載のようにPbサイト量<Ti量+Zr量+M量(MはNb、Sb、Wのうち少なくとも1種)とすることにより、さらに望ましくは請求項2に記載のようにPbサイト量<Ti量+Zr量とすることにより、Pbを含む異相化合物の生成が抑制されるためと考えられる。たとえば、PbとMからなるパイロクロア相などが一定量存在していると、反応、焼結の進行を阻害し、また、圧電d定数、電気機械結合係数の向上をも阻害するからである。
また、この発明にかかる積層圧電素子の特有の効果として、Pb量を化学量論組成より減じることにより、電気抵抗率を高くできる効果がある。これはPbの液相と内部電極の相互作用による内部電極のセラミック中への拡散が抑制されるためと考えられる。たとえば、インクジェットプリンタヘッドなどに用いられる積層アクチュエータには内部電極間のセラミック厚みが30μm以下のものもあり、それらの内部電極間に1.0〜1.5kV/mmもの駆動電界が連続して印加される場合がある。この場合、内部電極間の電気抵抗率が高いと、大変位および高信頼性の点で非常に有効である。
【0007】
この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明の実施の形態の詳細な説明から一層明らかとなろう。
【0008】
【発明の実施の形態】
(実施例)
まず、原料粉末として、Pb34 、TiO2 、ZrO2 、Nb25 、Sb23 、WO3 、CaCO3 、SrCO3 およびBaCO3 を用意した。
次に、これらの粉末を組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 の組成で表され表1に示す組成になるように秤量し、これに水を加えて、ボールミルを用いて湿式混合して、混合物を得た。なお、表1には、組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 中のx、y、zの各値、Mの元素、Pb元素を置換した元素およびPbを置換した量を示す。
【0009】
【表1】

Figure 0004752156
【0010】
そして、得られた混合物を乾燥し、800〜1000℃の温度で仮焼して、仮焼粉を得た。この仮焼粉に水と分散剤を加えて湿式粉砕した後、有機バインダーおよび添加剤を加え湿式混合し、シート成形を行った。これを所望のサイズに打抜いた後、Ag/Pd=7/3のAg・Pd電極ペーストを塗布し、20層積み重ねた後、圧着して積層体を得た。
この積層体を1000〜1100℃の温度で焼成し、1層のセラミックの厚みが20〜40μmである積層圧電素子を得た。この積層圧電素子の内部電極を導体で接続し、絶縁オイル中にて1.5〜3.5kV/mmの電界で分極処理を行った。
【0011】
次に、この積層圧電素子の比誘電率(ε33 T /ε0 )、共振−反共振法より算出した電気機械結合係数(k31)および圧電d31定数(「|d31(1) 」と記述)、1.5kV/mm印加電界下の歪みより算出した圧電d31定数(「|d31(2) 」と記述)、電気抵抗率(ρ)、キュリー温度(Tc)、リフロー炉(ピーク温度:260℃)2回通過による|d31(1) の低下率、|d31(2) /(ε33 T /ε0 )、および|d31(1) の−20℃〜80℃における温度変化率を測定した。その結果を表2および表3に示す。なお、電気抵抗率が1.0×1011Ω・cm未満の試料については、絶縁不良の割合が高いため不良と判断し、その一部について|d31(1) の温度変化率および|d31(2) を測定していない。また、電気抵抗率は1.0×1011Ω・cm以上であれば良品とみなせるが、好ましくは2.0×1011Ω・cm以上、さらに好ましくは3.0×1011Ω・cm以上であることが望ましい。
【0012】
【表2】
Figure 0004752156
【0013】
【表3】
Figure 0004752156
【0014】
また、比較例として3成分系PZTについて示す。3成分系PZT磁器の製造方法、評価方法、評価基準は、実施例に準ずるものである。比較例の組成を表4に示し、比較例の結果を表3に実施例の結果と併せて示す。
【0015】
【表4】
Figure 0004752156
【0016】
なお、表1〜表4において、試料番号に*印を付してあるものは、本願発明の範囲外のものである。
【0017】
試料番号1のようにzが0.998を超えるもの、および試料番号34のような3成分系PZTでは、電気抵抗率ρが1.0×1011Ω・cm未満となり、好ましくない。
【0018】
試料番号9のようにzが0.95未満のもの、試料番号15のようにTi、ZrサイトのM(MはNb、Sb、Wのうち少なくとも1種)による置換量yが0.03を超えるもの、試料番号20のようにPbの置換量がPb含有量に対して5.5mol%を超えるもの、および試料番号37のような3成分系PZTでは、1100℃以下では十分に焼結しないため、電気抵抗率ρが1.0×1011Ω・cm未満となり、好ましくない。
【0019】
試料番号10のようにTi、Zrサイトの置換量yが0.005未満のもの、試料番号23、30のようにTi/Zr比を表すxが0.45≦x≦0.52の範囲外にあるもの、および試料番号36のような3成分系PZTでは、|d31(1) が100pC/N未満となり、好ましくない。
【0020】
試料番号35のような3成分系PZTでは、キュリー温度が300℃未満であり、耐熱性が悪く好ましくない。
【0021】
以上より実施例において、本願発明の範囲内における積層圧電素子用圧電磁器組成物を用いて作製した積層圧電素子は、電気抵抗率ρが1.0×1011Ω・cm以上と高く、|d31(1) が100pC/N以上と大きく、かつキュリー温度Tcが300℃以上と高く、かつリフローによる|d31(1) の低下率が20%以下と小さい。すなわち、高い圧電特性と高いキュリー温度(高耐熱性)とを両立し、かつ電気抵抗率の高い積層圧電素子を得ることができた。
【0022】
好ましくは、試料番号24、25、26を除く実施例の試料のように、Ti/Zr比を表すxが0.475≦x≦0.52の範囲内にあるものは、|d31(1) 温度変化率が800ppm/℃以下と小さく、圧電センサの感度温度特性を良くすることが可能であり、非常に有効である。
【0023】
さらに好ましくは、試料番号24、25,26、27の試料のように、Ti/Zr比を表すxが0.45≦x≦0.475の範囲内にあるものは、高い|d31(2) と比較的低いε33 T /ε0 を両立しており、変位性能に優れかつ低消費電力のアクチュエータが得られ、非常に有効である。実施例では高い|d31(2) かつ低いε33 T /ε0 の指標として|d31(2) /(ε33 T /ε0 )を用いており、試料番号24、25、26、27の|d31(2) /(ε33 T /ε0 )は0.15×10-12 以上と大きい。
【0024】
なお、この発明にかかる積層圧電素子用圧電磁器組成物は上記の実施例の組成に限定されるものではなく、発明の要旨の範囲内であれば有効である。
【0025】
図1はこの発明にかかるショックセンサの一例を示す分解斜視図であり、図2はそのショックセンサに用いられる積層圧電素子を示す図解図である。図1に示すショックセンサ10は、積層圧電素子12を含む。
【0026】
積層圧電素子12は、2層の圧電磁器層14aおよび14bを含む。これらの圧電磁器層14aおよび14bは、上述のこの発明にかかる積層圧電素子用圧電磁器組成物からなり、積層されかつ一体的に形成される。また、これらの圧電磁器層14aおよび14bは、図2の矢印で示すように、中央部分が互いに内側に向かって厚み方向に分極され、両側の外側部分が互いに外側に向かって厚み方向に分極されている。
【0027】
2層の圧電磁器層14aおよび14bの間には、その中央部を含む中間部に、内部電極16が形成される。また、圧電磁器層14aの表面には、その中央部を含む中間部から一端部にわたって、一方の外部電極18aが形成される。さらに、圧電磁器層14bの表面には、その中央部を含む中間部から他端部にわたって、他方の外部電極18bが形成される。
【0028】
積層圧電素子12は、ケース20で保持される。ケース20は、コ字状の2つの中ケース22aおよび22bを含む。積層圧電素子12の両端部は、2つの中ケース22aおよび22bの両端部で挟まれ保持される。積層圧電素子12および中ケース22a、22bの上下には、上ケース24および下ケース26が設けられる。上ケース24および下ケース26には、積層圧電素子12の中間部に対応する部分に、積層圧電素子12の振動空間となるへこみ部が形成されている。
【0029】
中ケース22aおよび22bの表面には、端子電極28aおよび28bがそれぞれ形成される。一方の端子電極28aは一方の外部電極18aに接続され、他方の端子電極28bは他方の外部電極18bに接続される。
【0030】
図3はこの発明にかかる積層圧電ブザーの一例を示す分解斜視図であり、図4はその積層圧電ブザーに用いられる積層圧電素子を示す図解図である。図3に示す積層圧電ブザー30は、積層圧電素子32を含む。
【0031】
積層圧電素子32は、2層の圧電磁器層34aおよび34bを含む。これらの圧電磁器層34aおよび34bは、上述のこの発明にかかる積層圧電素子用圧電磁器組成物からなり、積層されかつ一体的に形成される。また、これらの圧電磁器層34aおよび34bは、図4の矢印で示すように、厚み方向にかつ同じ方向に分極されている。
【0032】
2層の圧電磁器層34aおよび34bの間には、その中央部を含む中間部から一端部に、内部電極36が形成される。また、2層の圧電磁器層34aおよび34bの一端部には、一方の外部電極38aが形成される。この外部電極38aは、内部電極36に接続される。また、圧電磁器層34aおよび34bの表面の他の部分には、他方の外部電極38bが形成される。
【0033】
積層圧電素子32は、ケース40で保持される。ケース40は、箱型のケース本体42を含む。積層圧電素子32は、ケース本体42内に入れられ保持される。また、ケース本体42には、板状の蓋44が設けられる。
【0034】
蓋44の表面には、端子電極46aおよび46bがそれぞれ形成される。一方の端子電極46aは一方の外部電極38aに接続され、他方の端子電極46bは他方の外部電極38bに接続される。
【0035】
図5はこの発明にかかる積層圧電アクチュエータの一例を示す図解図である。図5に示す積層圧電アクチュエータ50は、積層圧電素子52を含む。
【0036】
積層圧電素子52は、多数の圧電磁器層54を含む。これらの圧電磁器層54は、上述のこの発明にかかる積層圧電素子用圧電磁器組成物からなり、積層されかつ一体的に形成される。また、これらの圧電磁器層54は、厚み方向にかつ1層おきに逆の方向に分極されている。
【0037】
これらの圧電磁器層54の間には、内部電極56がそれぞれ形成される。この場合、1層おきの内部電極56が積層圧電素子52の一端面から引き出され、他の内部電極56が積層圧電素子52の他端面から引き出される。
【0038】
積層圧電素子52の一端面および他端面には、外部電極58aおよび58bがそれぞれ形成される。一方の外部電極58aは1層おきの内部電極56に接続され、他方の外部電極58bは他の内部電極56に接続される。
【0039】
なお、この発明は、上述のショックセンサ10、積層圧電ブザー30および積層圧電アクチュエータ50以外のショックセンサ、積層圧電ブザーおよび積層圧電アクチュエータなど他の積層圧電装置にも適用される。
【0040】
【発明の効果】
この発明によれば、PZTのTi、ZrサイトにNb、Sb、Wのうち少なくとも1種を置換した2成分PZT圧電磁器において、Ag/Pd比が7/3以上の内部電極を用いた積層圧電素子の作製に適した積層圧電素子用圧電磁器組成物、その積層圧電素子用圧電磁器組成物を用いた積層圧電素子、積層圧電素子の製造方法および積層圧電素子を用いた積層圧電装置が得られる。
この発明にかかる積層圧電素子用圧電磁器組成物は、1100℃以下で焼成可能であるため、安価なAg/Pd比が7/3以上の内部電極と共焼結可能であり、積層圧電素子の低コスト化が可能となる。
また、この発明にかかる積層圧電素子用圧電磁器組成物を、たとえば積層圧電アクチュエータに用いることにより、変位性能、耐熱性に優れかつ低消費電力のアクチュエータが得られる。
また、この発明にかかる積層圧電素子用圧電磁器組成物を、たとえば積層圧電センサに用いることにより、感度が高くかつ耐熱性、感度温度特性の良好な圧電センサが得られる。
【図面の簡単な説明】
【図1】この発明にかかるショックセンサの一例を示す分解斜視図である。
【図2】図2に示すショックセンサに用いられる積層圧電素子を示す図解図である。
【図3】この発明にかかる積層圧電ブザーの一例を示す分解斜視図である。
【図4】図3に示す積層圧電ブザーに用いられる積層圧電素子を示す図解図である。
【図5】この発明にかかる積層圧電アクチュエータの一例を示す図解図である。
【符号の説明】
10 ショックセンサ
12、32、52 積層圧電素子
14a、14b、34a、34b、54 圧電磁器層
16、36、56 内部電極
18a、18b、38a、38b、58a、58b 外部電極
20、40 ケース
22a、22b 中ケース
24 上ケース
26 下ケース
28a、28b、46a、46b 端子電極
30 積層圧電ブザー
42 ケース本体
44 蓋
50 積層圧電アクチュエータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric ceramic composition for a laminated piezoelectric element, a laminated piezoelectric element, a method for producing a laminated piezoelectric element, and a laminated piezoelectric device, and more particularly to a laminated piezoelectric device such as a laminated piezoelectric actuator, a laminated piezoelectric buzzer, and a laminated piezoelectric sensor. The present invention relates to a piezoelectric ceramic composition for piezoelectric elements.
[0002]
[Prior art]
Conventionally, there are a wide variety of piezoelectric devices using a piezoelectric ceramic composition, such as piezoelectric actuators, piezoelectric buzzers, and piezoelectric sensors. A piezoelectric ceramic composition used in such a piezoelectric device is required to have a high piezoelectric d constant. Such a piezoelectric ceramic composition is also required to have a high Curie temperature. When the Curie temperature is high, the heat resistance of the piezoelectric element becomes high. For example, even when the piezoelectric element is exposed to a high temperature of about 200 ° C., for example, when passing through a solder reflow furnace during mounting, deterioration of piezoelectric characteristics due to heat is relatively suppressed. can do. In particular, in a piezoelectric actuator, when the Curie temperature is high, a relatively low dielectric constant can be obtained, which is effective for reducing power consumption during driving. In the case of a piezoelectric sensor, particularly in an acceleration sensor such as a shock sensor, if the Curie temperature is high, the temperature change rate of the piezoelectric d constant is reduced, and the sensitivity temperature characteristic is improved.
Conventionally, as a piezoelectric material that achieves both a high piezoelectric d constant and a high Curie temperature, Nb, Sb, W at the Ti and Zr sites of a lead zirconate titanate (hereinafter referred to as “PZT”) piezoelectric ceramic composition. A method of substituting at least one of them has been used. In addition to this, a method of substituting at least one of Ca, Sr, and Ba into the Pb site has also been used. As an example of such a two-component PZT piezoelectric ceramic composition, JP-A-5-319925 discloses PZT in which Sr is substituted at the Pb site and Nb is substituted at the Ti and Zr sites. On the other hand, a ternary PZT containing elements such as Cr, Mn, Mg, Ni and Fe in addition to Nb, Sb and W has a lower electrical resistivity than a two-component PZT. Problems are likely to occur and are not preferred.
[0003]
[Problems to be solved by the invention]
In recent years, piezoelectric devices such as piezoelectric actuators, piezoelectric buzzers, piezoelectric sensors, and the like have become more demanding for miniaturization and higher performance, and piezoelectric elements have been stacked. There is a method for producing a laminated piezoelectric element, in which electrodes are formed on both main surfaces of a piezoelectric ceramic, the piezoelectric ceramics are stacked and bonded, and these electrodes are connected alternately, but this method is limited to miniaturization of the element. Is not preferable. Therefore, in such a case, the piezoelectric material powder is formed into green sheets, electrode paste is applied to the green sheets, the green sheets are stacked and pressure-bonded, and the piezoelectric ceramic and the internal electrode are co-fired. The production method is desirable. A relatively inexpensive Ag / Pd electrode is generally used as the internal electrode in this manufacturing method, and the Ag / Pd ratio of the Ag / Pd electrode is preferably 7/3 or more from the viewpoint of electrode cost. However, in this case, it is necessary to set the firing temperature of the laminated piezoelectric element to 1100 ° C. or lower in consideration of the melting point of the internal electrode.
However, a conventional piezoelectric ceramic as disclosed in Japanese Patent Laid-Open No. 5-319925 has a sintering temperature as high as about 1250 ° C., and a multilayer piezoelectric element using an internal electrode having an Ag / Pd ratio of 7/3 or more is prepared. There was a problem of difficulty.
[0004]
Therefore, a main object of the present invention is to provide an internal electrode having an Ag / Pd ratio of 7/3 or more in a two-component PZT piezoelectric ceramic in which at least one of Nb, Sb, and W is substituted on the Ti and Zr sites of PZT. Piezoelectric ceramic composition for laminated piezoelectric element suitable for production of the laminated piezoelectric element used, laminated piezoelectric element using the piezoelectric ceramic composition for laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric using laminated piezoelectric element Is to provide a device.
[0005]
[Means for Solving the Problems]
The piezoelectric ceramic composition for a laminated piezoelectric element according to the present invention has a composition formula Pb z [(Ti x Zr 1-x ) 1- y My ] O 3 (where M is at least one of Nb, Sb, and W). ), And x and y in the composition formula are 0.45 ≦ x ≦ 0.52 and 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0.95. A piezoelectric ceramic composition for laminated piezoelectric elements in which Pb is reduced from the stoichiometric composition so that ≦ z ≦ 0.998.
The piezoelectric ceramic composition for such laminated piezoelectric element in this invention, a composition formula Pb z [(Ti x Zr 1-x) 1-y M y ] O 3 (however, M is Nb, Sb, at least one of W X and y in the composition formula are 0.45 ≦ x ≦ 0.52 and 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0. A piezoelectric ceramic composition for laminated piezoelectric elements, in which Pb is subtracted from the stoichiometric composition so that .98−y ≦ z ≦ 0.998−y.
In the piezoelectric ceramic composition for a laminated piezoelectric element according to the present invention, 5.5 mol% or less of the Pb content may be substituted with at least one of Ca, Sr, and Ba.
The multilayer piezoelectric element according to the present invention is a multilayer piezoelectric element including a piezoelectric ceramic made of the piezoelectric ceramic composition for multilayer piezoelectric element according to the present invention and an internal electrode formed on the piezoelectric ceramic.
Method of manufacturing a multilayer piezoelectric element according to the present invention, the composition formula Pb z [(Ti x Zr 1- x) 1 -y M y ] O 3 (however, M is Nb, Sb, at least one of W) X and y in the composition formula are 0.45 ≦ x ≦ 0.52, 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0.95 ≦ z. A method for producing a laminated piezoelectric element comprising a piezoelectric ceramic made of a piezoelectric ceramic composition for a laminated piezoelectric element obtained by reducing Pb from the stoichiometric composition so that ≦ 0.998 and an internal electrode formed in the piezoelectric ceramic. A method for manufacturing a laminated piezoelectric element, in which a piezoelectric ceramic and an internal electrode are co-sintered at 1100 ° C. or lower.
A method for manufacturing a laminated piezoelectric element according to the present invention, the compositional formula Pb z [(Ti x Zr 1-x) 1-y M y ] O 3 (however, M is Nb, Sb, at least one of W ), And x and y in the composition formula are 0.45 ≦ x ≦ 0.52 and 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0.98. A laminated piezoelectric element comprising a piezoelectric ceramic composed of a piezoelectric ceramic composition for laminated piezoelectric elements in which Pb is reduced from the stoichiometric composition so that -y≤z≤0.998-y, and an internal electrode formed in the piezoelectric ceramic A method for manufacturing a multilayer piezoelectric element, wherein the piezoelectric ceramic and the internal electrode are co-sintered at 1100 ° C. or lower.
In the method for manufacturing a laminated piezoelectric element according to the present invention, 5.5 mol% or less of the Pb content in the piezoelectric ceramic composition for a laminated piezoelectric element may be substituted with at least one of Ca, Sr, and Ba.
The multilayer piezoelectric device according to the present invention is a multilayer piezoelectric device including the multilayer piezoelectric element according to the present invention and a terminal electrode connected to the internal electrode.
[0006]
The piezoelectric ceramic composition for a laminated piezoelectric element according to the present invention is a two-component PZT piezoelectric ceramic in which at least one of Nb, Sb, and W is substituted on the Ti and Zr sites of PZT, and the Pb content is reduced to 1100 ° C. A multilayer piezoelectric element using an internal electrode having an Ag / Pd ratio of 7/3 or more can be obtained by enabling the following firing.
The laminated piezoelectric element produced by using the piezoelectric ceramic composition for laminated piezoelectric elements according to the present invention has both a high piezoelectric d constant and a high Curie temperature, and is a laminated piezoelectric actuator, laminated piezoelectric buzzer, laminated piezoelectric sensor, etc. Suitable for piezoelectric devices.
In the piezoelectric ceramic composition for a laminated piezoelectric element according to the present invention, the reason why it is possible to sinter at 1100 ° C. or less by reducing the Pb amount from the stoichiometric composition is that the Pb site amount <Ti Pb by making the amount + Zr amount + M amount (M is at least one of Nb, Sb, W), and more preferably by setting Pb site amount <Ti amount + Zr amount as described in claim 2. This is thought to be due to the suppression of the generation of the heterophasic compound. For example, if a certain amount of a pyrochlore phase composed of Pb and M is present, the progress of reaction and sintering is inhibited, and the improvement of the piezoelectric d constant and the electromechanical coupling coefficient is also inhibited.
Further, as a characteristic effect of the multilayer piezoelectric element according to the present invention, there is an effect that the electrical resistivity can be increased by reducing the Pb amount from the stoichiometric composition. This is presumably because the diffusion of the internal electrode into the ceramic due to the interaction between the liquid phase of Pb and the internal electrode is suppressed. For example, some laminated actuators used in ink jet printer heads have a ceramic thickness of 30 μm or less between internal electrodes, and a drive electric field of 1.0 to 1.5 kV / mm is continuously applied between the internal electrodes. May be. In this case, a high electrical resistivity between the internal electrodes is very effective in terms of large displacement and high reliability.
[0007]
The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the embodiments of the present invention with reference to the drawings.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
(Example)
First, Pb 3 O 4 , TiO 2 , ZrO 2 , Nb 2 O 5 , Sb 2 O 3 , WO 3 , CaCO 3 , SrCO 3 and BaCO 3 were prepared as raw material powders.
Then, weighed these powders to obtain the compositions shown in represented Tables 1 with the composition of the composition formula Pb z [(Ti x Zr 1-x) 1-y M y ] O 3, water was added to this Then, wet mixing was performed using a ball mill to obtain a mixture. In Table 1, each value of x, y, z in the composition formula Pb z [(Ti x Zr 1-x ) 1- y My ] O 3 , elements of M, elements substituted for the Pb element, and The amount substituted for Pb is shown.
[0009]
[Table 1]
Figure 0004752156
[0010]
And the obtained mixture was dried and calcined at a temperature of 800 to 1000 ° C. to obtain calcined powder. Water and a dispersant were added to this calcined powder and wet pulverized, then an organic binder and additives were added and wet mixed to perform sheet molding. This was punched out to a desired size, then an Ag / Pd electrode paste of Ag / Pd = 7/3 was applied, 20 layers were stacked, and then pressed to obtain a laminate.
This multilayer body was fired at a temperature of 1000 to 1100 ° C. to obtain a multilayer piezoelectric element in which the thickness of one ceramic layer was 20 to 40 μm. The internal electrodes of this laminated piezoelectric element were connected by a conductor and subjected to polarization treatment in an insulating oil with an electric field of 1.5 to 3.5 kV / mm.
[0011]
Next, the relative dielectric constant (ε 33 T / ε 0 ), the electromechanical coupling coefficient (k 31 ) calculated by the resonance-antiresonance method, and the piezoelectric d 31 constant (“| d 31 | (1)) ”, Piezoelectric d 31 constant calculated from strain under an applied electric field of 1.5 kV / mm (described as“ | d 31 | (2) ”), electrical resistivity (ρ), Curie temperature (Tc), reflow Reduction rate of | d 31 | (1) , | d 31 | (2) / (ε 33 T / ε 0 ), and −d 31 | (1) − due to two passes of furnace (peak temperature: 260 ° C.) The temperature change rate in 20 to 80 degreeC was measured. The results are shown in Tables 2 and 3. Note that a sample with an electrical resistivity of less than 1.0 × 10 11 Ω · cm is judged to be defective because of a high proportion of insulation failure, and a part of the temperature change rate of | d 31 | (1) and | d 31 | (2) is not measured. Further, if the electric resistivity is 1.0 × 10 11 Ω · cm or more, it can be regarded as a non-defective product, but preferably 2.0 × 10 11 Ω · cm or more, more preferably 3.0 × 10 11 Ω · cm or more. It is desirable that
[0012]
[Table 2]
Figure 0004752156
[0013]
[Table 3]
Figure 0004752156
[0014]
As a comparative example, a three-component PZT is shown. The manufacturing method, evaluation method, and evaluation criteria for the three-component PZT porcelain are the same as those in the examples. The composition of the comparative example is shown in Table 4, and the result of the comparative example is shown in Table 3 together with the result of the example.
[0015]
[Table 4]
Figure 0004752156
[0016]
In Tables 1 to 4, sample numbers marked with * are outside the scope of the present invention.
[0017]
In the case where z exceeds 0.998 as in sample number 1 and the three-component PZT as in sample number 34, the electrical resistivity ρ is less than 1.0 × 10 11 Ω · cm, which is not preferable.
[0018]
As in sample number 9, z is less than 0.95, and as in sample number 15, the substitution amount y by M (M is at least one of Nb, Sb, W) of Ti and Zr sites is 0.03. Exceeding, Pb substitution amount of more than 5.5 mol% with respect to Pb content like sample number 20, and ternary PZT like sample number 37 do not sinter sufficiently at 1100 ° C or lower Therefore, the electrical resistivity ρ is less than 1.0 × 10 11 Ω · cm, which is not preferable.
[0019]
The Ti and Zr site substitution amount y is less than 0.005 as in sample number 10, and x representing the Ti / Zr ratio is out of the range of 0.45 ≦ x ≦ 0.52 as in sample numbers 23 and 30. And a three-component PZT such as sample number 36 are not preferable because | d 31 | (1) is less than 100 pC / N.
[0020]
In a three-component PZT such as sample number 35, the Curie temperature is less than 300 ° C., and the heat resistance is poor, which is not preferable.
[0021]
As described above, in the examples, the laminated piezoelectric element produced using the piezoelectric ceramic composition for laminated piezoelectric elements within the scope of the present invention has a high electric resistivity ρ of 1.0 × 10 11 Ω · cm or more, and | d 31 | (1) is as large as 100 pC / N or more, the Curie temperature Tc is as high as 300 ° C. or more, and the decrease rate of | d 31 | (1) due to reflow is as small as 20% or less. That is, a multilayer piezoelectric element having both high piezoelectric characteristics and high Curie temperature (high heat resistance) and high electrical resistivity could be obtained.
[0022]
Preferably, as in the samples of Examples other than Sample Nos. 24, 25, and 26, when x representing the Ti / Zr ratio is in the range of 0.475 ≦ x ≦ 0.52, | d 31 | ( 1) The temperature change rate is as small as 800 ppm / ° C. or less, and the sensitivity temperature characteristic of the piezoelectric sensor can be improved, which is very effective.
[0023]
More preferably, as in the sample of the sample No. 24, 25, 26, 27, which x representing the Ti / Zr ratio is in the range of 0.45 ≦ x ≦ 0.475 is higher | d 31 | ( Both 2) and relatively low ε 33 T / ε 0 are compatible, and an actuator with excellent displacement performance and low power consumption is obtained, which is very effective. In the embodiment, | d 31 | (2) / (ε 33 T / ε 0 ) is used as an index of high | d 31 | (2) and low ε 33 T / ε 0 , and sample numbers 24, 25, and 26 are used. 27, | d 31 | (2) / (ε 33 T / ε 0 ) is as large as 0.15 × 10 −12 or more.
[0024]
The piezoelectric ceramic composition for a laminated piezoelectric element according to the present invention is not limited to the compositions of the above-described examples, and is effective as long as it is within the scope of the gist of the invention.
[0025]
FIG. 1 is an exploded perspective view showing an example of a shock sensor according to the present invention, and FIG. 2 is an illustrative view showing a laminated piezoelectric element used in the shock sensor. A shock sensor 10 shown in FIG. 1 includes a laminated piezoelectric element 12.
[0026]
The laminated piezoelectric element 12 includes two piezoelectric ceramic layers 14a and 14b. These piezoelectric ceramic layers 14a and 14b are composed of the piezoelectric ceramic composition for laminated piezoelectric element according to the present invention described above, and are laminated and integrally formed. Further, as shown by the arrows in FIG. 2, these piezoelectric ceramic layers 14a and 14b are polarized in the thickness direction toward the inside with respect to each other in the center portion, and are polarized in the thickness direction toward the outside with respect to both sides. ing.
[0027]
Between the two piezoelectric ceramic layers 14a and 14b, an internal electrode 16 is formed in an intermediate portion including the central portion thereof. Further, one external electrode 18a is formed on the surface of the piezoelectric ceramic layer 14a from the intermediate portion including the central portion to one end portion. Further, the other external electrode 18b is formed on the surface of the piezoelectric ceramic layer 14b from the intermediate part including the central part to the other end part.
[0028]
The laminated piezoelectric element 12 is held by the case 20. The case 20 includes two U-shaped middle cases 22a and 22b. Both end portions of the laminated piezoelectric element 12 are sandwiched and held by both end portions of the two middle cases 22a and 22b. An upper case 24 and a lower case 26 are provided above and below the laminated piezoelectric element 12 and the middle cases 22a and 22b. In the upper case 24 and the lower case 26, a dent portion serving as a vibration space of the multilayer piezoelectric element 12 is formed in a portion corresponding to the intermediate portion of the multilayer piezoelectric element 12.
[0029]
Terminal electrodes 28a and 28b are formed on the surfaces of the middle cases 22a and 22b, respectively. One terminal electrode 28a is connected to one external electrode 18a, and the other terminal electrode 28b is connected to the other external electrode 18b.
[0030]
FIG. 3 is an exploded perspective view showing an example of the laminated piezoelectric buzzer according to the present invention, and FIG. 4 is an illustrative view showing a laminated piezoelectric element used in the laminated piezoelectric buzzer. A laminated piezoelectric buzzer 30 shown in FIG. 3 includes a laminated piezoelectric element 32.
[0031]
The laminated piezoelectric element 32 includes two piezoelectric ceramic layers 34a and 34b. These piezoelectric ceramic layers 34a and 34b are composed of the piezoelectric ceramic composition for laminated piezoelectric element according to the present invention described above, and are laminated and integrally formed. These piezoelectric ceramic layers 34a and 34b are polarized in the thickness direction and in the same direction as indicated by arrows in FIG.
[0032]
Between the two piezoelectric ceramic layers 34a and 34b, an internal electrode 36 is formed from an intermediate portion including the central portion to one end portion. Also, one external electrode 38a is formed at one end of the two piezoelectric ceramic layers 34a and 34b. The external electrode 38a is connected to the internal electrode 36. Further, the other external electrode 38b is formed on the other portions of the surface of the piezoelectric ceramic layers 34a and 34b.
[0033]
The laminated piezoelectric element 32 is held by the case 40. The case 40 includes a box-shaped case main body 42. The laminated piezoelectric element 32 is placed and held in the case body 42. The case body 42 is provided with a plate-like lid 44.
[0034]
Terminal electrodes 46 a and 46 b are respectively formed on the surface of the lid 44. One terminal electrode 46a is connected to one external electrode 38a, and the other terminal electrode 46b is connected to the other external electrode 38b.
[0035]
FIG. 5 is an illustrative view showing one example of a laminated piezoelectric actuator according to the present invention. A laminated piezoelectric actuator 50 shown in FIG. 5 includes a laminated piezoelectric element 52.
[0036]
The laminated piezoelectric element 52 includes a large number of piezoelectric ceramic layers 54. These piezoelectric ceramic layers 54 are made of the above-described piezoelectric ceramic composition for laminated piezoelectric elements according to the present invention, and are laminated and integrally formed. These piezoelectric ceramic layers 54 are polarized in the thickness direction and in the opposite direction every other layer.
[0037]
Between these piezoelectric ceramic layers 54, internal electrodes 56 are respectively formed. In this case, every other internal electrode 56 is drawn from one end face of the laminated piezoelectric element 52, and the other internal electrode 56 is drawn from the other end face of the laminated piezoelectric element 52.
[0038]
External electrodes 58 a and 58 b are formed on one end surface and the other end surface of the laminated piezoelectric element 52, respectively. One external electrode 58 a is connected to every other internal electrode 56, and the other external electrode 58 b is connected to the other internal electrode 56.
[0039]
The present invention is also applicable to other multilayer piezoelectric devices such as shock sensors, multilayer piezoelectric buzzers, and multilayer piezoelectric actuators other than the above-described shock sensor 10, multilayer piezoelectric buzzer 30, and multilayer piezoelectric actuator 50.
[0040]
【The invention's effect】
According to the present invention, in a two-component PZT piezoelectric ceramic in which at least one of Nb, Sb, and W is substituted at the Ti and Zr sites of PZT, a laminated piezoelectric element using an internal electrode having an Ag / Pd ratio of 7/3 or more. Piezoelectric ceramic composition for laminated piezoelectric element suitable for element fabrication, laminated piezoelectric element using the piezoelectric ceramic composition for laminated piezoelectric element, manufacturing method of laminated piezoelectric element, and laminated piezoelectric device using laminated piezoelectric element are obtained .
Since the piezoelectric ceramic composition for laminated piezoelectric elements according to the present invention can be fired at 1100 ° C. or less, it can be co-sintered with an inexpensive internal electrode having an Ag / Pd ratio of 7/3 or more. Cost reduction is possible.
Further, by using the piezoelectric ceramic composition for a laminated piezoelectric element according to the present invention for, for example, a laminated piezoelectric actuator, an actuator having excellent displacement performance and heat resistance and low power consumption can be obtained.
In addition, by using the piezoelectric ceramic composition for a laminated piezoelectric element according to the present invention in, for example, a laminated piezoelectric sensor, a piezoelectric sensor having high sensitivity, excellent heat resistance, and sensitive temperature characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an example of a shock sensor according to the present invention.
2 is an illustrative view showing a laminated piezoelectric element used in the shock sensor shown in FIG. 2. FIG.
FIG. 3 is an exploded perspective view showing an example of a laminated piezoelectric buzzer according to the present invention.
4 is an illustrative view showing a laminated piezoelectric element used in the laminated piezoelectric buzzer shown in FIG. 3. FIG.
FIG. 5 is an illustrative view showing one example of a laminated piezoelectric actuator according to the present invention.
[Explanation of symbols]
10 Shock sensor 12, 32, 52 Multilayer piezoelectric elements 14a, 14b, 34a, 34b, 54 Piezoelectric ceramic layers 16, 36, 56 Internal electrodes 18a, 18b, 38a, 38b, 58a, 58b External electrodes 20, 40 Cases 22a, 22b Middle case 24 Upper case 26 Lower case 28a, 28b, 46a, 46b Terminal electrode 30 Multilayer piezoelectric buzzer 42 Case body 44 Lid 50 Multilayer piezoelectric actuator

Claims (8)

組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、
前記組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ
前記組成式中のzが0.95≦z≦0.998となるようにPbを化学量論組成より減じた、積層圧電素子用圧電磁器組成物。
Represented by the composition of the composition formula Pb z [(Ti x Zr 1-x ) 1- y My ] O 3 (wherein M is at least one of Nb, Sb, and W),
X and y in the composition formula are 0.45 ≦ x ≦ 0.52 and 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0.95 ≦ z ≦ 0.998. A piezoelectric ceramic composition for laminated piezoelectric elements, in which Pb is reduced from the stoichiometric composition.
組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、
前記組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ
前記組成式中のzが0.98−y≦z≦0.998−yとなるようにPbを化学量論組成より減じた、積層圧電素子用圧電磁器組成物。
Represented by the composition of the composition formula Pb z [(Ti x Zr 1-x ) 1- y My ] O 3 (wherein M is at least one of Nb, Sb, and W),
X and y in the composition formula are 0.45 ≦ x ≦ 0.52 and 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0.98−y ≦ z ≦ 0.998. A piezoelectric ceramic composition for laminated piezoelectric elements, in which Pb is reduced from the stoichiometric composition so as to be −y.
Pb含有量の5.5mol%以下をCa、Sr、Baのうち少なくとも1種により置換した、請求項1または請求項2に記載の積層圧電素子用圧電磁器組成物。The piezoelectric ceramic composition for a laminated piezoelectric element according to claim 1 or 2, wherein 5.5 mol% or less of the Pb content is substituted with at least one of Ca, Sr, and Ba. 請求項1ないし請求項3のいずれかに記載の積層圧電素子用圧電磁器組成物からなる圧電磁器、および
前記圧電磁器に形成される内部電極を含む、積層圧電素子。
A laminated piezoelectric element comprising: a piezoelectric ceramic comprising the piezoelectric ceramic composition for a laminated piezoelectric element according to any one of claims 1 to 3; and an internal electrode formed in the piezoelectric ceramic.
組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、前記組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ、前記組成式中のzが0.95≦z≦0.998となるようにPbを化学量論組成より減じた積層圧電素子用圧電磁器組成物からなる圧電磁器と前記圧電磁器に形成される内部電極とを含む積層圧電素子の製造方法であって、前記圧電磁器および前記内部電極を1100℃以下で共焼結する、積層圧電素子の製造方法。Composition formula Pb z [(Ti x Zr 1-x) 1-y M y ] O 3 (however, M is Nb, Sb, at least one of W) expressed by a composition of, x in the composition formula, y is 0.45 ≦ x ≦ 0.52, 0.005 ≦ y ≦ 0.03, and Pb is stoichiometrically such that z in the composition formula is 0.95 ≦ z ≦ 0.998. A method of manufacturing a laminated piezoelectric element comprising a piezoelectric ceramic made of a piezoelectric ceramic composition for a laminated piezoelectric element reduced from the theoretical composition and an internal electrode formed on the piezoelectric ceramic, wherein the piezoelectric ceramic and the internal electrode are heated to 1100 ° C. A method for producing a laminated piezoelectric element, which is co-sintered below. 組成式Pbz 〔(Tix Zr1-x1-yy 〕O3 (ただし、MはNb、Sb、Wのうち少なくとも1種)の組成で表され、前記組成式中のx、yは0.45≦x≦0.52、0.005≦y≦0.03であり、かつ、前記組成式中のzが0.98−y≦z≦0.998−yとなるようにPbを化学量論組成より減じた積層圧電素子用圧電磁器組成物からなる圧電磁器と前記圧電磁器に形成される内部電極とを含む積層圧電素子の製造方法であって、前記圧電磁器および前記内部電極を1100℃以下で共焼結する、積層圧電素子の製造方法。Composition formula Pb z [(Ti x Zr 1-x) 1-y M y ] O 3 (however, M is Nb, Sb, at least one of W) expressed by a composition of, x in the composition formula, y is 0.45 ≦ x ≦ 0.52, 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0.98−y ≦ z ≦ 0.998−y. A method of manufacturing a laminated piezoelectric element comprising a piezoelectric ceramic made of a piezoelectric ceramic composition for laminated piezoelectric elements obtained by subtracting Pb from a stoichiometric composition, and an internal electrode formed on the piezoelectric ceramic, wherein the piezoelectric ceramic and the internal A method for producing a laminated piezoelectric element, wherein electrodes are co-sintered at 1100 ° C. or lower. 前記積層圧電素子用圧電磁器組成物においてPb含有量の5.5mol%以下をCa、Sr、Baのうち少なくとも1種により置換した、請求項5または請求項6に記載の積層圧電素子の製造方法。The method for producing a laminated piezoelectric element according to claim 5 or 6, wherein 5.5 mol% or less of the Pb content in the piezoelectric ceramic composition for a laminated piezoelectric element is substituted with at least one of Ca, Sr, and Ba. . 請求項4に記載の積層圧電素子、および
前記内部電極に接続される端子電極を含む、積層圧電装置。
A multilayer piezoelectric device comprising the multilayer piezoelectric element according to claim 4 and a terminal electrode connected to the internal electrode.
JP2001253199A 2001-08-23 2001-08-23 Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device Expired - Lifetime JP4752156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253199A JP4752156B2 (en) 2001-08-23 2001-08-23 Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253199A JP4752156B2 (en) 2001-08-23 2001-08-23 Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device

Publications (2)

Publication Number Publication Date
JP2003055045A JP2003055045A (en) 2003-02-26
JP4752156B2 true JP4752156B2 (en) 2011-08-17

Family

ID=19081565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253199A Expired - Lifetime JP4752156B2 (en) 2001-08-23 2001-08-23 Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device

Country Status (1)

Country Link
JP (1) JP4752156B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879721B2 (en) 2003-09-24 2007-02-14 富士フイルムホールディングス株式会社 Method for manufacturing wiring board of inkjet head and polarization method for piezoelectric element
JP4535721B2 (en) * 2003-11-26 2010-09-01 京セラ株式会社 Piezoelectric ceramic, multilayer piezoelectric element, and injection device
EP1690844B1 (en) * 2003-11-26 2012-11-21 Kyocera Corporation Piezoelectric ceramic and laminated piezoelectric device
DE102004002204A1 (en) * 2004-01-15 2005-08-11 Epcos Ag ceramic material
JP2005340631A (en) * 2004-05-28 2005-12-08 Sony Corp Piezoelectric element component and electronic equipment
CN100479218C (en) * 2005-03-22 2009-04-15 精工爱普生株式会社 Piezoelectric element, liquid-jet head, method of manufacturing the same, and liquid-jet apparatus
JP5170356B2 (en) * 2005-03-22 2013-03-27 セイコーエプソン株式会社 Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus
DE102007010239A1 (en) * 2007-03-02 2008-09-04 Epcos Ag Piezoelectric material comprising a metal containing material useful in piezoelectric building elements and in piezoelectric-multi layered actuators
EP1973177B8 (en) 2007-03-22 2015-01-21 FUJIFILM Corporation Ferroelectric film, process for producing the same, ferroelectric device, and liquid discharge device
JP5229027B2 (en) 2008-03-28 2013-07-03 リコープリンティングシステムズ株式会社 Inkjet head manufacturing apparatus, inkjet head manufacturing method, and inkjet apparatus
WO2012133529A1 (en) 2011-03-30 2012-10-04 日本碍子株式会社 Method for manufacturing piezoelectric substrate
JP5935187B2 (en) * 2012-08-10 2016-06-15 日本特殊陶業株式会社 Piezoelectric ceramics and piezoelectric actuator using the same
KR20160015805A (en) * 2014-07-31 2016-02-15 삼성전기주식회사 Pzt-based piezoelectric ceramic material and piezoelectric device using the same
JP6742797B2 (en) * 2016-04-28 2020-08-19 太陽誘電株式会社 Vibration waveform sensor
CN108455985B (en) * 2018-03-21 2021-05-18 陕西学前师范学院 Ceramic material changing color along with temperature and preparation method thereof
CN114621007B (en) * 2020-12-14 2023-06-23 四川大学 High-performance PZT-based multielement modified piezoelectric ceramic prepared at low temperature

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111127A (en) * 1999-10-04 2001-04-20 Kyocera Corp Piezoelectric/electrostrictive actuator and manufacturing method therefor

Also Published As

Publication number Publication date
JP2003055045A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
KR100594859B1 (en) Method for manufacturing piezoelectric ceramic and piezoelectric element
US7910016B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP4752156B2 (en) Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device
US8316519B2 (en) Method of manufacturing a piezoelectric element
EP1382587B1 (en) Piezoelectric porcelain and method for preparation thereof, and piezoelectric element
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP4298232B2 (en) Piezoelectric ceramic composition and piezoelectric element
WO2006038389A1 (en) Piezoelectric porcelain composition and piezoelectric ceramic electronic component
US7468143B2 (en) Piezoelectric ceramic composition and piezoelectric element
US7564176B2 (en) Laminated piezoelectric element and production method of the same
JP4321526B2 (en) Dielectric porcelain composition and electronic component using the same
US8129889B2 (en) Piezoelectric ceramic compositions and piezoelectric elements
JP4868881B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic, piezoelectric actuator element and circuit module
KR20010029621A (en) Piezoelectric Ceramic Composition, Buzzer and Actuator using the same
US6878307B2 (en) Low temperature firable PZT compositions and piezoelectric ceramic devices using the same
JPH11322422A (en) Piezoelectric ceramic material
JP4009417B2 (en) Piezoelectric and piezoelectric devices
WO2023032326A1 (en) Piezoelectric ceramic composition, piezoelectric ceramics, piezoelectric element, and tactile module
KR20230110810A (en) Piezoelectric element and method for manufacturing the piezoelectric element
US7944127B2 (en) Piezoelectric ceramic composition and piezoelectric part
JP3966882B2 (en) Method for producing piezoelectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4752156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term