JP4750974B2 - Molten metal flow control device - Google Patents

Molten metal flow control device Download PDF

Info

Publication number
JP4750974B2
JP4750974B2 JP2001209695A JP2001209695A JP4750974B2 JP 4750974 B2 JP4750974 B2 JP 4750974B2 JP 2001209695 A JP2001209695 A JP 2001209695A JP 2001209695 A JP2001209695 A JP 2001209695A JP 4750974 B2 JP4750974 B2 JP 4750974B2
Authority
JP
Japan
Prior art keywords
molten metal
mold
control device
power
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001209695A
Other languages
Japanese (ja)
Other versions
JP2003025050A (en
Inventor
敬介 藤崎
潔 和嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001209695A priority Critical patent/JP4750974B2/en
Publication of JP2003025050A publication Critical patent/JP2003025050A/en
Application granted granted Critical
Publication of JP4750974B2 publication Critical patent/JP4750974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はモールド内の溶融金属の流動制御装置に係り、特に、隣接して配置された複数のモールドに適用される溶融金属の流動制御装置に関する。
【0002】
【従来の技術】
製鉄所において溶鋼からスラブを製造する連続鋳造装置においては、レードル内の溶鋼をダンデシュを介してモールド内に注入した後、モールドの底から引き抜きロールで成形する。
この場合、モールド内の溶鋼に水平方向の温度分布が存在する場合には、スラブに表面割れやシェル破断が生じ易くなる。
【0003】
そこで、表面割れやシェル破断の発生を抑制するためにモールド上方にリニアモータ用コイルを設置し、溶鋼表面にモールド内循環力を発生させ、溶鋼をモールド内で循環させることが提案されている。
このリニアモータは溶融金属の流動制御装置から電力の供給を受けるが、従来の溶融金属の流動制御装置は1台のリニアモータだけに対して電力を供給するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、1つのダンディシュに対して複数台のモールドが隣接配置される場合も多くあり、この場合に隣接するリニアモータ間の相互干渉を無視することはできない。
即ち、複数台のモールドが並列配置される場合には、1つのモールド内の溶鋼には溶鋼内を流れる渦電流と隣接するモールドのリニアモータが発生する磁束との相互作用により発生する電磁ピンチ力強度が、当該モールドのリニアモータによって生成される循環力に影響を与え、その結果スラブの品質が劣化することは回避できない。
【0005】
本発明は上記課題に鑑みなされたものであって、並列に配置された複数のモールドに適用される溶融金属の流動制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
第1の発明に係る溶融金属の流動制御装置は、相互に隣接して設置されたn個の溶融金属槽と、n個の溶融金属槽の各々に1個ずつ設置される合計n個の流動力付与用コイルと、n個の流動力付与用コイルのそれぞれに電力を供給するn台の電源と、n台の電源の発生する電圧を制御するとともに、前記電源の間に位相差を与える協調制御部と、を具備する。
【0007】
本発明にあっては、相互に隣接して設置されたn個の溶融金属槽の流動力付与用コイルを励磁する電圧(又は電流)の間に位相差が付与され、各溶融金属槽に惹起される電磁ピンチ力強度は略均一となる。
第2の発明に係る溶融金属の流動制御装置は、協調制御部がn台の電源を同電圧かつ隣接する電源の間の位相差を180度に制御する。
【0008】
本発明にあっては、隣接した溶融金属槽は相互に180度の位相差を有する電力によって励磁される
【0009】
第3の発明に係る溶融金属の流動制御装置は、協調制御部が、n台の電源を同電圧かつ隣接する電源の間の位相差を360度/nに制御する。本発明にあっては、隣接する電源の間に360度/nの位相差が与えられる。
【0010】
【発明の実施の形態】
図1は本発明に係る溶融金属の流動制御装置の構成図であって、(イ)は上面図を、(ロ)はX−X断面図を表す。
即ち3つのモールド11、12及び13が隣接して配置されており、各モールド11、12及び13の周囲にはリニアモータ用コイル111、121及び131が配置されている。そして、各リニアモータ用コイル111、121及び131は独立した3つの電源112、122及び132によって励磁され、各モールド11、12及び13内の溶鋼に対して水平方向の循環力を与える。
【0011】
3つの電源112、122及び132は協調制御部14によって以下のように制御される。
1.各電源の周波数は同一とする。
2.各電源が出力する励磁電力の間に位相差を与える。
最適な位相差を決定するために以下の実験1を実施した。
【0012】
1)3台のモールドを隣接して設置する。
2)ケース0:1台のモールドだけを励磁して、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
ケース1:3台のモールドを同一電力、同一位相で励磁して、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
【0013】
ケース2:3台のモールドを同一電力で、相互に120度の位相差を与えて励磁し、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
ケース3:3台のモールドを同一電力で、相互に180度の位相差を与えて励磁し、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
【0014】
[表1]は上記ケース0〜3の条件の一覧表であり、[表2]は実験1の結果を取り纏めた表である。なお、[表2]内の数値はケース0において右側面に発生する電磁ピンチ力強度を基準として正規化している。
【0015】
【表1】

Figure 0004750974
【0016】
【表2】
Figure 0004750974
【0017】
なお、[表2]において最大差は各モールドの右側、左側および正面に発生する電磁ピンチ力強度の中の最大値と最小値の差、平均値(Y)はそれらの平均値、差割合は最大差の平均値に対する割合、ケース間差は各モールドの電磁ピンチ力強度の平均値(Y)の最大値(Ymax )と最小値(Ymin )の差(Ymax −Ymin )の3つのモールドの電磁ピンチ力強度の平均値(Y)の平均値(Yave )に対する割合((Ymax −Ymin )/Yave )を表す。
【0018】
図2はケース1の溶鋼の流動状態図であって、相接する側面で反対方向に溶鋼が流動するため、相接する側面に発生する電磁ピンチ力は相互に相殺される。従って、中央のモールドの電磁ピンチ力強度は両端モールドの電磁ピンチ力強度に比較して小さくなる。
相互に120度の位相差を与えた場合(ケース2)は、各モールドの電磁ピンチ力の相互干渉は少なくなるため、他の場合と比較してモールド間のバラツキが少ない。これは、位相差のために相殺の度合いが低減されるためである。
【0019】
従って、n台のモールドが隣接して設置されている場合には、各モールドの励磁電力間に(360度/n)の位相差を付与すれば、各モールドに惹起される電磁ピンチ力強度の差を小さくできる。
図3はケース3の溶鋼の流動状態図であって、相接する側面で同方向に溶鋼が流動する。この場合は、相接する側面に発生する電磁ピンチ力は相互に強められるので、両端のモールドの電磁ピンチ力強度はほぼ等しく、中央の電磁ピンチ力強度だけが大きくなる。
【0020】
従って、各モールドの電磁ピンチ力強度を均一にしようとすれば、中央のモールドの励磁電力を若干小さくしてもよいことが判る。
中央のモールドに対する最適な電力量を決定するために、以下の実験2を実施した。
1)3台のモールドを隣接して設置する。
【0021】
2)ケース0:1台のモールドだけを励磁して、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
ケース4:3台のモールドを同一電力で、相互に180度の位相差を与えて励磁し、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
【0022】
ケース5:両端のモールドを同一電力、中央のモールドを−5%の電力で相互に180度の位相差を与えて励磁し、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
ケース6:両端のモールドを同一電力、中央のモールドを−10%の電力で相互に180度の位相差を与えて励磁し、モールドの左右側面及び正面に発生する電磁ピンチ力強度を測定する。
【0023】
[表3]は上記ケース0及び4〜6の条件の一覧表であり、[表4]は実験2の結果を取り纏めた表である。なお、[表4]内の数値はケース0において右側面に発生する電磁ピンチ力強度を基準として正規化している。なお、[表4]の各行の数値の意味は[表2]と同一である。
【0024】
【表3】
Figure 0004750974
【0025】
【表4】
Figure 0004750974
【0026】
[表4]から判るように、中央のモールドの励磁電力を両端のモールドの励磁電力より5%低減したときに、各モールドに惹起される電磁ピンチ力強度はほぼ均一となるが、この低減量はモールドの配置間隔によって多少異なるものと予測される。
【0027】
【発明の効果】
第1及び第4の発明に係る溶融金属の流動制御装置によれば、相互に隣接して設置された溶融金属槽に惹起される電磁ピンチ力強度が均一化される。
第2の発明に係る溶融金属の流動制御装置によれば、内側の溶融金属槽に惹起される電磁ピンチ力強度を増加することが可能となる。
【0028】
第3の発明に係る溶融金属の流動制御装置によれば、内側の溶融金属槽に供給する電力を低減することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る溶融金属の流動制御装置の構成図である。
【図2】ケース1の溶鋼の流動状態図である。
【図3】ケース3の溶鋼の流動状態図である。
【符号の説明】
11、12、13…モールド
111、121、131…励磁コイル
112、122、132…電源
14…協調制御部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten metal flow control device in a mold, and more particularly, to a molten metal flow control device applied to a plurality of molds arranged adjacent to each other.
[0002]
[Prior art]
In a continuous casting apparatus that manufactures slabs from molten steel at an ironworks, molten steel in a ladle is poured into a mold through a Dandesh and then formed from the bottom of the mold with a drawing roll.
In this case, when a horizontal temperature distribution exists in the molten steel in the mold, surface cracks and shell fractures are likely to occur in the slab.
[0003]
Therefore, in order to suppress the occurrence of surface cracks and shell breaks, it has been proposed to install a coil for a linear motor above the mold, generate a circulating force in the mold on the surface of the molten steel, and circulate the molten steel in the mold.
This linear motor is supplied with electric power from a molten metal flow control device, but the conventional molten metal flow control device supplies electric power to only one linear motor.
[0004]
[Problems to be solved by the invention]
However, there are many cases where a plurality of molds are arranged adjacent to a single dish, and in this case, mutual interference between adjacent linear motors cannot be ignored.
That is, when a plurality of molds are arranged in parallel, the electromagnetic pinch force generated by the interaction between the eddy current flowing in the molten steel and the magnetic flux generated by the linear motor of the adjacent mold is applied to the molten steel in one mold. It cannot be avoided that the strength affects the circulation force generated by the linear motor of the mold, and as a result, the quality of the slab deteriorates.
[0005]
This invention is made | formed in view of the said subject, Comprising: It aims at providing the flow control apparatus of the molten metal applied to the some mold arrange | positioned in parallel.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a molten metal flow control device comprising n molten metal tanks installed adjacent to each other, and a total of n pieces of flow installed in each of the n molten metal tanks. Coordination for controlling the voltage generated by the n power sources and the n power sources for supplying power to each of the force imparting coils and the n fluid force imparting coils, and providing a phase difference between the power sources And a control unit.
[0007]
In the present invention, a phase difference is applied between the voltages (or currents) for exciting the flow force imparting coils of the n molten metal tanks installed adjacent to each other, which are caused in each molten metal tank. The applied electromagnetic pinch force intensity is substantially uniform.
In the molten metal flow control device according to the second aspect of the invention, the cooperative control unit controls the n power supplies to the same voltage and the phase difference between adjacent power supplies to 180 degrees.
[0008]
In the present invention, adjacent molten metal tanks are excited by electric power having a phase difference of 180 degrees from each other .
[0009]
In the molten metal flow control device according to the third aspect of the invention, the cooperative control unit controls the n power supplies to the same voltage and the phase difference between adjacent power supplies to 360 degrees / n. In the present invention, a phase difference of 360 degrees / n is provided between adjacent power supplies.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram of a molten metal flow control device according to the present invention, where (A) represents a top view and (B) represents an XX cross-sectional view.
That is, three molds 11, 12 and 13 are arranged adjacent to each other, and linear motor coils 111, 121 and 131 are arranged around each mold 11, 12 and 13. Each of the linear motor coils 111, 121 and 131 is excited by three independent power sources 112, 122, and 132, and applies a horizontal circulation force to the molten steel in each mold 11, 12, and 13.
[0011]
The three power sources 112, 122, and 132 are controlled by the cooperative control unit 14 as follows.
1. The frequency of each power supply is the same.
2. A phase difference is given between the excitation powers output by each power source.
In order to determine the optimum phase difference, the following experiment 1 was performed.
[0012]
1) Install three molds adjacent to each other.
2) Case 0: Exciting only one mold, and measuring the electromagnetic pinch force intensity generated on the left and right side surfaces and the front surface of the mold.
Case 1: Exciting three molds with the same power and the same phase, and measuring the electromagnetic pinch force intensity generated on the left and right side surfaces and the front surface of the mold.
[0013]
Case 2: Exciting three molds with the same power, giving a phase difference of 120 degrees to each other, and measuring the electromagnetic pinch force intensity generated on the left and right side surfaces and the front surface of the mold.
Case 3: Exciting three molds with the same power while giving a phase difference of 180 degrees to each other, and measuring the electromagnetic pinch force strength generated on the left and right side surfaces and the front surface of the mold.
[0014]
[Table 1] is a list of conditions for cases 0 to 3, and [Table 2] is a table summarizing the results of Experiment 1. The numerical values in [Table 2] are normalized based on the electromagnetic pinch force intensity generated on the right side surface in case 0.
[0015]
[Table 1]
Figure 0004750974
[0016]
[Table 2]
Figure 0004750974
[0017]
In [Table 2], the maximum difference is the difference between the maximum and minimum values of the electromagnetic pinch force strength generated on the right side, left side and front of each mold, the average value (Y) is the average value, and the difference ratio is The ratio of the maximum difference to the average value and the difference between cases are the electromagnetic values of the three molds, the difference (Ymax-Ymin) between the maximum value (Ymax) and the minimum value (Ymin) of the average value (Y) of the electromagnetic pinch force strength of each mold. It represents the ratio ((Ymax-Ymin) / Yave) to the average value (Yave) of the average value (Y) of the pinch force intensity.
[0018]
FIG. 2 is a flow state diagram of the molten steel in case 1. Since the molten steel flows in the opposite direction on the side surfaces that contact each other, the electromagnetic pinch forces generated on the side surfaces that contact each other cancel each other. Accordingly, the electromagnetic pinch force strength of the central mold is smaller than the electromagnetic pinch force strength of the both-end mold.
When a phase difference of 120 degrees is given to each other (Case 2), the mutual interference of the electromagnetic pinch forces of the respective molds is reduced, so that there is less variation between the molds than in other cases. This is because the degree of cancellation is reduced due to the phase difference.
[0019]
Therefore, when n molds are installed adjacent to each other, if a phase difference of (360 degrees / n) is applied between the excitation powers of the molds, the electromagnetic pinch force intensity induced in each mold can be increased. The difference can be reduced.
FIG. 3 is a flow diagram of the molten steel in case 3, and the molten steel flows in the same direction on the side surfaces that contact each other. In this case, since the electromagnetic pinch force generated on the side surfaces that are in contact with each other is strengthened, the electromagnetic pinch force strengths of the molds at both ends are substantially equal, and only the central electromagnetic pinch force strength is increased.
[0020]
Therefore, it can be seen that the excitation power of the central mold may be slightly reduced if the electromagnetic pinch force strength of each mold is made uniform.
In order to determine the optimal amount of power for the central mold, the following experiment 2 was performed.
1) Install three molds adjacent to each other.
[0021]
2) Case 0: Exciting only one mold, and measuring the electromagnetic pinch force intensity generated on the left and right side surfaces and the front surface of the mold.
Case 4: Exciting three molds with the same power while giving a phase difference of 180 degrees to each other, and measuring the electromagnetic pinch force intensity generated on the left and right side surfaces and the front surface of the mold.
[0022]
Case 5: Exciting the molds at both ends with the same power and the middle mold giving a phase difference of 180 degrees to each other with a power of -5%, and measuring the electromagnetic pinch force intensity generated on the left and right side surfaces and the front surface of the mold.
Case 6: Exciting the molds at both ends with the same power and the center mold giving a phase difference of 180 degrees to each other with a power of -10%, and measuring the electromagnetic pinch force intensity generated on the left and right side surfaces and the front surface of the mold.
[0023]
[Table 3] is a list of conditions for the above cases 0 and 4 to 6, and [Table 4] is a table summarizing the results of Experiment 2. The numerical values in [Table 4] are normalized based on the electromagnetic pinch force intensity generated on the right side surface in case 0. In addition, the meaning of the numerical value of each line of [Table 4] is the same as [Table 2].
[0024]
[Table 3]
Figure 0004750974
[0025]
[Table 4]
Figure 0004750974
[0026]
As can be seen from [Table 4], when the excitation power of the central mold is reduced by 5% from the excitation power of the molds at both ends, the electromagnetic pinch force strength induced in each mold becomes almost uniform. Is expected to vary somewhat depending on the mold spacing.
[0027]
【The invention's effect】
According to the molten metal flow control device according to the first and fourth aspects of the invention, the electromagnetic pinch force strength induced in the molten metal tanks installed adjacent to each other is made uniform.
According to the molten metal flow control device according to the second aspect of the present invention, it is possible to increase the electromagnetic pinch force strength induced in the inner molten metal tank.
[0028]
According to the molten metal flow control device of the third aspect of the invention, it is possible to reduce the power supplied to the inner molten metal tank.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a flow control apparatus for molten metal according to the present invention.
FIG. 2 is a flow diagram of molten steel in case 1;
3 is a flow diagram of molten steel in case 3. FIG.
[Explanation of symbols]
11, 12, 13 ... molds 111, 121, 131 ... exciting coils 112, 122, 132 ... power supply 14 ... cooperative control unit

Claims (3)

相互に隣接して設置されたn個の溶融金属槽と、前記n個の溶融金属槽の各々に1個ずつ設置される合計n個の流動力付与用コイルと、前記n個の流動力付与用コイルのそれぞれに電力を供給するn台の電源と、前記n台の電源の発生する電圧を制御するとともに、前記電源の間に位相差を与える協調制御部と、を具備する溶融金属の流動制御装置。N molten metal tanks installed adjacent to each other, a total of n fluid force application coils installed in each of the n molten metal tanks, and the n fluid force application The flow of molten metal comprising: n power sources for supplying power to each of the coils for use, and a cooperative control unit for controlling a voltage generated by the n power sources and providing a phase difference between the power sources Control device. 前記協調制御部が、前記n台の電源を同電圧かつ隣接する前記電源の間の位相差を180度に制御する請求項1に記載の溶融金属の流動制御装置。  2. The molten metal flow control device according to claim 1, wherein the cooperative control unit controls the n power supplies to the same voltage and a phase difference between adjacent power supplies to 180 degrees. 前記協調制御部が、前記n台の電源を同電圧かつ隣接する前記電源の間の位相差を360度/nに制御する請求項1に記載の溶融金属の流動制御装置。  The molten metal flow control device according to claim 1, wherein the cooperative control unit controls the n power supplies to the same voltage and a phase difference between adjacent power supplies to 360 degrees / n.
JP2001209695A 2001-07-10 2001-07-10 Molten metal flow control device Expired - Lifetime JP4750974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209695A JP4750974B2 (en) 2001-07-10 2001-07-10 Molten metal flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209695A JP4750974B2 (en) 2001-07-10 2001-07-10 Molten metal flow control device

Publications (2)

Publication Number Publication Date
JP2003025050A JP2003025050A (en) 2003-01-28
JP4750974B2 true JP4750974B2 (en) 2011-08-17

Family

ID=19045316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209695A Expired - Lifetime JP4750974B2 (en) 2001-07-10 2001-07-10 Molten metal flow control device

Country Status (1)

Country Link
JP (1) JP4750974B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135563A (en) * 1995-11-08 1997-05-20 Nippon Steel Corp Rotating field generator and continuous casting machine

Also Published As

Publication number Publication date
JP2003025050A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
EP1448329B1 (en) A device and a method for continuous casting
KR101207687B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JP4831917B2 (en) Method and apparatus for continuous casting of metal using mold
JP4750974B2 (en) Molten metal flow control device
JP5040999B2 (en) Steel continuous casting method and flow control device for molten steel in mold
CN105014029A (en) Slab continuous-casting electromagnetic stirrer capable of regulating magnetic field action area
JP3700396B2 (en) Steel continuous casting equipment
JP3236422B2 (en) Continuous casting method of steel using magnetic field
JP4669367B2 (en) Molten steel flow control device
KR100751021B1 (en) Equipment for supplying molten metal to a continuous casting ingot mould and Method for using same
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JP2004322179A (en) Electromagnetic force control device in mold and continuous casting method
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JP5076465B2 (en) Steel continuous casting method and equipment
JP7377733B2 (en) Electroslag welding method and magnetic field application device for electroslag welding
JPH0871716A (en) Method for controlling molten steel flow in mold in continuous casting
JP7180383B2 (en) continuous casting machine
JP2626861B2 (en) Flow control device for molten steel in continuous casting mold
JP3793384B2 (en) Molten metal flow control device
JP2002120052A (en) Device and method for controlling fluidity of molten steel in mold
JP3110281B2 (en) Holding container for molten metal induction heating device
JP4910997B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP3083234B2 (en) Continuous casting method of molten metal
JPH05237621A (en) Continuous casting method
JP4288020B2 (en) Molten metal flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R151 Written notification of patent or utility model registration

Ref document number: 4750974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term