JP4750897B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP4750897B2
JP4750897B2 JP2010173917A JP2010173917A JP4750897B2 JP 4750897 B2 JP4750897 B2 JP 4750897B2 JP 2010173917 A JP2010173917 A JP 2010173917A JP 2010173917 A JP2010173917 A JP 2010173917A JP 4750897 B2 JP4750897 B2 JP 4750897B2
Authority
JP
Japan
Prior art keywords
light
detection
amount
color misregistration
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010173917A
Other languages
Japanese (ja)
Other versions
JP2010282221A (en
Inventor
潤 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010173917A priority Critical patent/JP4750897B2/en
Publication of JP2010282221A publication Critical patent/JP2010282221A/en
Application granted granted Critical
Publication of JP4750897B2 publication Critical patent/JP4750897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に電子写真プロセスを採用したカラーレーザプリンタ、カラー複写機、カラーファクシミリ等の画像形成装置に関するものである。   The present invention relates to an image forming apparatus such as a color laser printer, a color copying machine, and a color facsimile mainly employing an electrophotographic process.

本発明は、電子写真装置、レーザビームプリンター、印刷装置等のように画像情報を転写材のような像支持体上に形成する画像形成装置に関し、特にカラー電子写真装置あるいはカラーレーザビームプリンタ等のように、画像形成手段を複数個、配置して多重画像を形成する多重画像形成装置に関する。以下、本発明の多重画像形成装置に関連して、本明細書では複数の異なる色の画像形成手段を直列に配置し、転写ベルトにより搬送された転写材に現像像を転写するインライン方式を例に取り述べる。   The present invention relates to an image forming apparatus that forms image information on an image support such as a transfer material, such as an electrophotographic apparatus, a laser beam printer, and a printing apparatus, and more particularly to a color electrophotographic apparatus or a color laser beam printer. As described above, the present invention relates to a multiple image forming apparatus in which a plurality of image forming units are arranged to form a multiple image. Hereinafter, in connection with the multiplex image forming apparatus of the present invention, in this specification, an example of an in-line method in which a plurality of different color image forming units are arranged in series and a developed image is transferred onto a transfer material conveyed by a transfer belt. I will talk about it.

従来、複数個の画像形成部を備え、各画像形成部に於いてそれぞれ色の異なった画像を形成し、該画像を同一転写材に重ねて転写する画像形成装置、いわゆるカラー画像形成装置のような多重画像形成装置が種々提案されているが、このような多重画像形成装置では、画像形成部の画像を転写材に転写する際に、該転写材を画像形成部に搬送する搬送手段として、ベルトが用いられることが多い。上記したような多重画像を形成する場合に、転写材に重ねて転写される、例えばシアン、マゼンタ、イエロー、ブラック等の各4色のトナー像のレジストレーションが悪い場合、色ズレ、色相の変化として現われ転写画像の品位を著しく劣化させ、レジストレーション精度は、画像品位にとって大きなウェイトを占める。また、各画像部ごとに転写材に転写される各色の画像の濃度及び階調性は、環境、耐久等による感光ドラム特性の変化、現像剤のトナーとキャリア量の比の変化、現像剤の耐久による劣化等に伴い変化し、高品位で、かつ安定した濃度の画像を常に出力させるためにも画像濃度の制御が必要である。   Conventionally, an image forming apparatus that includes a plurality of image forming units, forms images of different colors in each image forming unit, and transfers the images on the same transfer material, such as a so-called color image forming apparatus. Various multi-image forming apparatuses have been proposed. In such a multi-image forming apparatus, when transferring the image of the image forming unit to the transfer material, as a conveying means for conveying the transfer material to the image forming unit, A belt is often used. When forming multiple images as described above, if the registration of toner images of four colors, such as cyan, magenta, yellow, and black, transferred on the transfer material is poor, color misregistration and hue change As a result, the quality of the transferred image is significantly deteriorated, and the registration accuracy occupies a large weight for the image quality. In addition, the density and gradation of each color image transferred to the transfer material for each image area are the change in the photosensitive drum characteristics due to the environment, durability, etc., the change in the ratio of the developer toner to the carrier amount, the developer The image density needs to be controlled in order to always output a high-quality and stable density image that changes with deterioration due to durability.

ところが、従来の多重画像形成装置においては、上記ベルトの速度変動や、ベルト、画像形成部などのメンテナンスや交換後の位置再現性が完全でないこと等によって、各画像形成部から1枚の転写材へ転写される際に各画像部から形成される画像相互間の転写ズレ(色ずれ)が発生する。これは特にカラー画像における色のにじみや色相の変化等といった重大な問題点となる。それ故、従来の多重画像形成装置では、各画像形成部から1枚の転写材に転写され重ねられる各色の転写位置のズレを補正するために、特定の色ずれ検出パターンを転写ベルトに転写した後に、そのパターンを、パターン読み取り装置としての色ずれ検出センサで、電気的信号として読み取り、その信号を処理して各色の転写位置のズレを補正していた(以下、色ずれ補正と呼ぶ)。   However, in the conventional multiplex image forming apparatus, one transfer material from each image forming unit due to fluctuations in the speed of the belt, incomplete maintenance of the belt, the image forming unit, etc. or position reproducibility after replacement, etc. Transfer between images formed from each image portion (color misregistration) occurs. This is a serious problem such as color blur or hue change in a color image. Therefore, in the conventional multiple image forming apparatus, a specific color misregistration detection pattern is transferred to the transfer belt in order to correct a shift in the transfer position of each color transferred from each image forming unit onto one transfer material and superimposed. Later, the pattern was read as an electrical signal by a color misregistration detection sensor as a pattern reading device, and the signal was processed to correct a shift in the transfer position of each color (hereinafter referred to as color misregistration correction).

さらに、転写材上に転写される画像の濃度を制御するために、前記と同様に、転写ベルトに各色毎に階調をもった濃度検出パターンを転写した後に、そのパターンの各濃度検出パターンを、パターン読み取り装置としての濃度検出センサで、光学的に読み取り、転写材上に転写される画像の濃度を制御することも行なわれていた(以下、濃度補正と呼ぶ)。   Further, in order to control the density of the image transferred onto the transfer material, after transferring the density detection pattern having gradation for each color to the transfer belt, the density detection pattern of the pattern is transferred to the transfer belt as described above. A density detection sensor as a pattern reading device has also been used to control the density of an image that is optically read and transferred onto a transfer material (hereinafter referred to as density correction).

しかしながら、上記従来例では、色ずれ検出パターンと濃度検出パターンとのそれぞれに対して別個のパターン読み取り装置で読み取るために、多重画像形成装置内の空間の有効利用の面からも、また、コストの面からも最適なものとは言えなかった。したがって、転写材に転写される色ずれ検出パターン及び濃度検出パターンを、同一のパターン読み取り装置で読み取ることができ、パターン読み取り装置の占める空間を最小にすると共に製造コストを低減させることができる多重画像形成装置が提供されている(例えば、特許文献1参照。)。   However, in the above-described conventional example, since each of the color misregistration detection pattern and the density detection pattern is read by a separate pattern reading device, from the viewpoint of effective use of the space in the multiple image forming apparatus, the cost is also reduced. It could not be said that it was the best from the aspect. Therefore, the color misregistration detection pattern and the density detection pattern transferred to the transfer material can be read by the same pattern reading device, and the multiple image which can minimize the space occupied by the pattern reading device and reduce the manufacturing cost. A forming apparatus is provided (see, for example, Patent Document 1).

更に色ずれ補正と画像濃度調整を同一シーケンスにて行い、ユーザーの待ち時間を短縮する方式も提案されている。   Furthermore, a method has been proposed in which color misregistration correction and image density adjustment are performed in the same sequence to shorten the waiting time of the user.

また、使用度合いによって下地の表面状態が変動した場合、反射光量も変動してしまう為、解決方法として下地の反射光量によって色ずれ検出及び濃度検出時の光量を変化させる方式が考案されている。但し特許文献2では、色ずれ検出時と濃度検出時の光量設定値は同様の光量設定値を用いている(例えば、特許文献2参照。)。   In addition, when the surface state of the ground changes depending on the degree of use, the amount of reflected light also varies. Therefore, as a solution, a method has been devised in which the amount of light during color misregistration detection and density detection is changed according to the amount of reflected ground light. However, in Patent Document 2, the same light amount setting value is used as the light amount setting value at the time of color misregistration detection and density detection (see, for example, Patent Document 2).

また、近年の色ずれ検出センサ及び濃度検出センサは、主に反射光の正反射成分又は乱反射成分を検知する方式を採用している。図2は、照射光と正反射光の関係を示す概念図である。図3は、照射光と乱反射光の関係を示す概念図である。正反射光を検知するタイプのセンサでは、図2に示すように下地面(静電吸着ベルト面、以下ETB面と呼ぶ)の法線に対して照射角αと対称となる方向に反射される光を検知する。乱反射光を検知するタイプのセンサでは、図3に示すように下地面(ETB面)の法線に対して照射角αとは異なる方向(受光角β)に反射される光を検知する。正反射光量は、下地(ETB)の材質固有の屈折率と表面状態により決まる反射率に依存し、光沢として感じる。図4は、ETB上にトナーが存在する場合の照射光と正反射光の関係を示す概念図であり、図5は、トナー量と正反射光量の関係を示すグラフである。この正反射光量は、下地上にトナーが存在しない場合に最大となる。下地の上のトナーパターンが形成された場合、図4に示すようにトナーのある部分では下地が隠され正反射光が無くなる。したがって、トナーパターンのトナー量と反射光量の関係は図5に示すように、トナー量の増加につれて正反射光量は小さくなる。またここでのトナーパターンとは、搬送ベルト上にトナーを敷いて作成されたパターンであり、色ずれ検出パターンと濃度検出パターンを含むものとする。   Further, recent color misregistration detection sensors and density detection sensors mainly employ a method of detecting regular reflection components or irregular reflection components of reflected light. FIG. 2 is a conceptual diagram showing the relationship between irradiation light and regular reflection light. FIG. 3 is a conceptual diagram showing the relationship between irradiation light and irregular reflection light. In the type of sensor that detects specularly reflected light, as shown in FIG. 2, the reflected light is reflected in a direction that is symmetrical to the irradiation angle α with respect to the normal of the base surface (electrostatic adsorption belt surface, hereinafter referred to as ETB surface). Detect light. As shown in FIG. 3, the sensor of the type that detects irregularly reflected light detects light reflected in a direction (light receiving angle β) different from the irradiation angle α with respect to the normal line of the base surface (ETB surface). The amount of specular reflection depends on the refractive index specific to the material of the base (ETB) and the reflectance determined by the surface state, and feels glossy. FIG. 4 is a conceptual diagram showing the relationship between irradiation light and regular reflection light when toner is present on the ETB, and FIG. 5 is a graph showing the relationship between toner amount and regular reflection light amount. The amount of regular reflection is maximized when no toner is present on the ground. When the toner pattern is formed on the ground, the ground is hidden and the specular reflection light disappears in a portion where the toner is present as shown in FIG. Therefore, the relationship between the toner amount of the toner pattern and the amount of reflected light becomes smaller as the amount of toner increases as shown in FIG. The toner pattern here is a pattern created by laying toner on the conveyance belt, and includes a color misregistration detection pattern and a density detection pattern.

しかしながら、正反射光を検知するタイプの濃度検出センサで有彩色のトナーを検知した場合には問題が生じる。図6は、有彩色トナーを検知した場合の照射光と反射光の概念図である。有彩色トナーの濃度検出パターンに光を照射した場合、トナー量の増加に応じて乱反射光が増加し、その反射光は全方向にまんべんなく拡散される。したがって、濃度検出センサで検知される光は、図6に示すように正反射成分と乱反射成分の和になる。このときのトナー量と反射光量の関係は、図7に示す通り、正反射の特性である細実線と乱反射の特性である破線の和になり、太実線のような負性特性を示す。このため、濃度検知に必要なリニアリティが得られず、濃度検知精度が十分ではなかった。そのため正反射光成分と乱反射光成分の和から、乱反射光成分を差し引くことによって、より簡素な濃度検知手段で、視覚特性に対して敏感かつ反射光強度が強く検知精度の高い正反射光成分のみを取り出すことが可能な方式が考案されている(例えば、特許文献3参照。)。   However, a problem arises when chromatic toner is detected by a density detection sensor that detects regular reflection light. FIG. 6 is a conceptual diagram of irradiation light and reflected light when chromatic toner is detected. When light is applied to the density detection pattern of the chromatic color toner, irregularly reflected light increases as the amount of toner increases, and the reflected light is diffused in all directions. Therefore, the light detected by the density detection sensor is the sum of the regular reflection component and the irregular reflection component as shown in FIG. As shown in FIG. 7, the relationship between the toner amount and the amount of reflected light at this time is the sum of the fine solid line that is the regular reflection characteristic and the broken line that is the irregular reflection characteristic, and exhibits negative characteristics such as a thick solid line. For this reason, the linearity necessary for density detection cannot be obtained, and the density detection accuracy is not sufficient. Therefore, by subtracting the diffuse reflection light component from the sum of the regular reflection light component and the diffuse reflection light component, only a regular reflection light component that is sensitive to visual characteristics and has high reflected light intensity and high detection accuracy can be obtained with a simpler density detection means. Has been devised (see, for example, Patent Document 3).

特許第2573855号公報Japanese Patent No. 2573855 特開2001−16553号公報JP 2001-16553 A 特開2003−215883号公報JP 2003-215883 A

1発光2受光センサの系において、上記従来例のように色ずれ検出時と濃度検出時に同様の光量設定値用いた場合、色ずれ検出と濃度検出のパターン濃度の違いや検出条件の違いにより、色ずれ検出時或いは濃度検出時のどちらか一方が適切な光量設定値に決定されないという課題があった。例えば下地の反射光量を予め検出し、その結果を元に色ずれ検出及び濃度検出時の光量を求めた時、トナーパターンからの乱反射出力がベルトからの正反射出力よりも高い場合には乱反射出力が飽和し、トナーパターンからの乱反射出力がベルトからの正反射出力よりも低い場合には、乱反射出力のダイナミックレンジが減ることによって波形のなまりやランダムノイズによる影響を受け、正確な濃度検出と色ずれ検出が行えない。更にトナーパターンの反射光量を予め検出し、その結果を元に色ずれ検出及び濃度検出時の光量を求めたとすると、同様に正反射出力が飽和するか、或いはダイナミックレンジが足りない為に正確な濃度検出と色ずれ検出が行えない場合が存在する。   In the one-emission two-light-receiving sensor system, when the same light amount setting value is used at the time of color misregistration detection and density detection as in the conventional example, the difference in pattern density between color misregistration detection and density detection and the difference in detection conditions There has been a problem that either the color misregistration detection or the density detection is not determined as an appropriate light amount setting value. For example, if the reflected light amount of the background is detected in advance and the light amount at the time of color misregistration detection and density detection is obtained based on the result, if the irregular reflection output from the toner pattern is higher than the regular reflection output from the belt, the irregular reflection output Is saturated and the irregular reflection output from the toner pattern is lower than the regular reflection output from the belt, the dynamic range of the irregular reflection output is reduced, which is affected by waveform rounding and random noise, so accurate density detection and color Misalignment cannot be detected. Furthermore, if the amount of reflected light of the toner pattern is detected in advance and the amount of light at the time of color misregistration detection and density detection is obtained based on the result, the specular reflection output is saturated or the dynamic range is insufficient. There are cases where density detection and color misregistration detection cannot be performed.

そこで本発明は、1発光2受光センサの系において色ずれ検出時と濃度検出時の光量設定値を各々別々に決定し、それぞれの検出時に適切な光量値を設定することで、高精度な色ずれ補正及び濃度補正を可能とする画像形成装置を提供することを目的とする。   Therefore, the present invention determines a light amount setting value at the time of color misregistration detection and density detection separately in a system of one light emission and two light receiving sensors, and sets an appropriate light amount value at each detection, thereby achieving high-precision color. It is an object of the present invention to provide an image forming apparatus that can perform deviation correction and density correction.

上述した課題を解決するため、本発明は以下の(1)〜(3)の構成を有する。
(1)トナー像を担持する像担持体をそれぞれ有する複数の画像形成手段と、
無端ベルトと、
前記複数の画像形成手段のそれぞれの像担持体に担持されたトナー像を前記無端ベルト上に転写する転写手段と、
該転写手段により前記無端ベルト上に色ずれ検出用パターン及び濃度検出用パターンを形成するパターン形成手段と、
前記無端ベルト上、及び前記色ずれ検出用パターンと前記濃度検出用パターンを照明する照明手段と、
前記照明手段によって光が照射される照射領域からの正反射光量を検出する第1検出部と前記照射領域からの乱反射光量を検出する第2検出部とを有する光量検出手段を具備し、
前記無端ベルト上からの正反射光量と、トナー領域からの正反射光量或いは乱反射光量から、色ずれ検出時及び濃度検出時の発光光量を別々に決定し、色ずれ検出時に、次回色ずれ検出時及び濃度検出時の発光光量を別々に決定することを特徴とする画像形成装置。
(2)トナー像を担持する像担持体をそれぞれ有する複数の画像形成手段と、
無端ベルトと、
前記複数の画像形成手段のそれぞれの像担持体に担持されたトナー像を前記無端ベルト上に転写する転写手段と、
該転写手段により前記無端ベルト上に色ずれ検出用パターン及び濃度検出用パターンを形成するパターン形成手段と、
前記無端ベルト上、及び前記色ずれ検出用パターンと前記濃度検出用パターンを照明する照明手段と、
前記照明手段によって光が照射される照射領域からの正反射光量を検出する第1検出部と前記照射領域からの乱反射光量を検出する第2検出部とを有する光量検出手段を具備し、
前記無端ベルト上からの正反射光量と、トナー領域からの正反射光量或いは乱反射光量から、色ずれ検出時及び濃度検出時の発光光量を別々に決定し、
濃度検出時に、次回色ずれ検出時及び濃度検出時の発光光量を別々に決定することを特徴とする画像形成装置。
(3)感光ドラムと、
前記感光ドラムにトナー像を形成する画像形成手段と、
前記感光ドラム上に形成されたトナー像が転写されるベルトと、を有し、
色ずれ検出用パターンを形成及び検出し該検出結果に基づき色ずれ補正を行うとともに、濃度検出用パターンを形成及び検出し該検出結果に基づき画像濃度制御を行う画像形成装置であって、
前記光を照射する発光素子、及び前記発光素子により光を照射したときの正反射光を受光する正反射光受光素子、及び前記発光素子により光を照射したときの乱反射光を受光する乱反射光受光素子を含む一の光学検知手段と、
前記色ずれ検出用パターンの検出を、前記色ずれ検出用パターンに前記発光素子により光を照射したときの前記乱反射光受光素子の出力に基づき実行するとともに、前記濃度検出用パターンの検出を、前記濃度検出用パターンに前記発光素子により光を照射したときの前記正反射光受光素子の出力及び前記乱反射光受光素子の出力に基づき実行し、
更に、前記色ずれ検出用パターンの検出に関して、前記発光素子により前記色ずれ検出用パターン或いは発光光量決定用トナーパターンに向けて光を照射したときの前記乱反射光受光素子の出力が飽和しないように前記発光素子の発光光量を調整及び設定するとともに、
前記濃度検出用パターンの検出に関して、前記発光素子により前記ベルトに向けて光を照射したときの前記正反射光受光素子の出力が飽和しないように前記発光素子の発光光量を調整及び設定する制御手段と、を有することを特徴とする画像形成装置。
In order to solve the above-described problems, the present invention has the following configurations (1) to (3).
(1) a plurality of image forming units each having an image carrier for carrying a toner image;
An endless belt,
Transfer means for transferring a toner image carried on each image carrier of the plurality of image forming means onto the endless belt;
Pattern forming means for forming a color misregistration detection pattern and a density detection pattern on the endless belt by the transfer means;
Illuminating means for illuminating the endless belt and the color misregistration detection pattern and the density detection pattern;
Comprising a first light detecting means for detecting the amount of specular reflection from the irradiation area irradiated with light by the illumination means and a second detection section for detecting the amount of irregular reflection light from the irradiation area;
The amount of emitted light at the time of color misregistration detection and density detection is determined separately from the amount of specular reflection from the endless belt and the amount of specular reflection or irregular reflection from the toner area. And an image forming apparatus characterized by separately determining the amount of emitted light at the time of density detection.
(2) a plurality of image forming units each having an image carrier for carrying a toner image;
An endless belt,
Transfer means for transferring a toner image carried on each image carrier of the plurality of image forming means onto the endless belt;
Pattern forming means for forming a color misregistration detection pattern and a density detection pattern on the endless belt by the transfer means;
Illuminating means for illuminating the endless belt and the color misregistration detection pattern and the density detection pattern;
Comprising a first light detecting means for detecting the amount of specular reflection from the irradiation area irradiated with light by the illumination means and a second detection section for detecting the amount of irregular reflection light from the irradiation area;
From the regular reflection light amount from the endless belt and the regular reflection light amount or irregular reflection light amount from the toner area, separately determine the light emission amount at the time of color shift detection and density detection,
An image forming apparatus characterized by separately determining the amount of emitted light at the next color misregistration detection and density detection at the time of density detection.
(3) a photosensitive drum;
Image forming means for forming a toner image on the photosensitive drum;
A belt to which a toner image formed on the photosensitive drum is transferred,
An image forming apparatus that forms and detects a color misregistration detection pattern, performs color misregistration correction based on the detection result, forms and detects a density detection pattern, and performs image density control based on the detection result,
A light emitting element that emits light, a regular reflection light receiving element that receives specular reflection light when irradiated by the light emitting element, and a diffuse reflection light reception that receives irregular reflection light when irradiated by the light emitting element. An optical detection means including an element;
The detection of the color misregistration detection pattern is performed based on the output of the irregularly reflected light receiving element when the light misregistration light is irradiated to the color misregistration detection pattern, and the detection of the density detection pattern is performed as described above. Based on the output of the regular reflection light receiving element and the output of the irregular reflection light receiving element when light is emitted from the light emitting element to the density detection pattern,
Further, regarding the detection of the color misregistration detection pattern, the output of the irregularly reflected light receiving element is not saturated when the light emitting element emits light toward the color misregistration detection pattern or the light emission amount determining toner pattern. While adjusting and setting the light emission amount of the light emitting element,
Control means for adjusting and setting the light emission amount of the light emitting element so that the output of the regular reflection light receiving element is not saturated when the light emitting element emits light toward the belt with respect to detection of the density detection pattern And an image forming apparatus.

本発明に係る第1の発明によれば、1発光2受光センサの系において色ずれ検出時と濃度検出時の光量設定値を各々別々に決定し、それぞれの検出時に適切な光量値を設定することで、高精度な色ずれ補正及び濃度補正を行うことが可能である。   According to the first aspect of the present invention, the light quantity setting value at the time of color misregistration detection and density detection is determined separately in the one light emission two light receiving sensor system, and an appropriate light quantity value is set at each detection. Thus, it is possible to perform highly accurate color misregistration correction and density correction.

本発明に係る第2の発明によれば、1発光2受光センサの系において色ずれ検出時に、色ずれ検出時と濃度検出時の光量設定値を各々別々に決定し、それぞれの検出時に適切な光量値を設定することが可能である。   According to the second aspect of the present invention, when color misregistration is detected in the one-emission two-light-receiving sensor system, the light amount setting values at the time of color misregistration detection and density detection are determined separately, and appropriate for each detection. It is possible to set the light quantity value.

本発明に係る第3の発明によれば、1発光2受光センサの系において濃度検出時に、色ずれ検出時と濃度検出時の光量設定値を各々別々に決定し、それぞれの検出時に適切な光量値を設定することが可能である。   According to the third aspect of the present invention, the light amount setting value at the time of color misregistration detection and at the time of density detection is separately determined at the time of density detection in the system of one light emission and two light receiving sensors, and an appropriate light amount at the time of each detection. It is possible to set a value.

本発明に係る第4の発明によれば、1発光2受光センサで濃度補正はベルトからの正反射光量と乱反射光量を検出して行い、色ずれ補正はベルトとトナーパターンからの乱反射光量を検出する系において、色ずれ検出時と濃度検出時の光量設定値を各々別々に決定し、それぞれの検出時に適切な光量値を設定することが可能である。   According to the fourth aspect of the present invention, the density correction is performed by detecting the regular reflection light quantity and the irregular reflection light quantity from the belt, and the color shift correction is performed by detecting the irregular reflection light quantity from the belt and the toner pattern. In this system, it is possible to separately determine the light amount setting values at the time of color misregistration detection and density detection, and to set an appropriate light amount value at each detection.

本発明に係る第5の発明によれば、1発光2受光センサで濃度補正はベルトからの正反射光量と乱反射光量を検出して行い、色ずれ補正はベルトとトナーパターンからの正反射光量を検出する系において、色ずれ検出時と濃度検出時の光量設定値を各々別々に決定し、それぞれの検出時に適切な光量値を設定することが可能である。   According to the fifth aspect of the present invention, the density correction is performed by detecting the regular reflection light quantity and the irregular reflection light quantity from the belt, and the color misregistration correction is performed by calculating the regular reflection light quantity from the belt and the toner pattern. In the detection system, it is possible to separately determine the light amount setting value at the time of color misregistration detection and density detection, and to set an appropriate light amount value at the time of each detection.

搬送ベルト上のトナーパターン検出時における搬送ベルトとセンサ出力の変化グラフChange graph of conveyor belt and sensor output when detecting toner pattern on conveyor belt 光源よりの照射光と受光素子へ反射する正反射光の関係を示す概念図Conceptual diagram showing the relationship between the light emitted from the light source and the specularly reflected light reflected to the light receiving element 照射光と乱反射光の関係を示す概念図Conceptual diagram showing the relationship between irradiated light and diffusely reflected light ETB上にトナーが存在する場合の照射光と正反射光の関係を示す概念図Conceptual diagram showing the relationship between irradiation light and regular reflection light when toner is present on the ETB トナー量と正反射光量の関係を示すグラフA graph showing the relationship between the amount of toner and the amount of specular reflection 有彩色トナーを検知した場合の照射光と反射光の概念図Conceptual diagram of irradiated light and reflected light when chromatic toner is detected トナー量と反射光量の関係を示す概念図Conceptual diagram showing the relationship between the amount of toner and the amount of reflected light 本発明の画像形成装置の概略構成を示す斜視説明図1 is a perspective explanatory view showing a schematic configuration of an image forming apparatus of the present invention. 本発明の検出手段の説明図Explanatory drawing of the detection means of this invention 本発明の検出手段の回路構成図Circuit configuration diagram of detection means of the present invention 第1実施形態、第2実施形態の動作のアルゴリズムAlgorithm of operation of the first embodiment and the second embodiment 第1実施形態の色ずれ検出パターンの構成図Configuration diagram of color misregistration detection pattern of the first embodiment 第2実施形態の色ずれ検出パターンの構成図Configuration diagram of color misregistration detection pattern of second embodiment 第1実施形態における光量補正前のトナー量と反射光量の関係図Relationship diagram between the amount of toner before light amount correction and the amount of reflected light in the first embodiment 第1実施形態における濃度検出時の光量補正後のトナー量と反射光量の関係図FIG. 4 is a relationship diagram between the amount of toner after light amount correction and the amount of reflected light when density is detected in the first embodiment. 第1実施形態における色ずれ検出時の光量補正後のトナー量と乱反射光量の関係図FIG. 6 is a relationship diagram between the toner amount after light amount correction and the amount of irregularly reflected light when color misregistration is detected in the first embodiment. 第2実施形態における光量補正前のトナー量と反射光量の関係図Relationship diagram between toner amount before light amount correction and reflected light amount in the second embodiment 第2実施形態における濃度検出時の光量補正後のトナー量と反射光量の関係図Relationship diagram between the amount of toner after light amount correction and the amount of reflected light at the time of density detection in the second embodiment 第2実施形態における色ずれ検出時の光量補正後のトナー量と反射光量の関係図FIG. 6 is a relationship diagram between a toner amount after light amount correction and a reflected light amount when color misregistration is detected in the second embodiment.

以下本発明を実施するための最良の形態を、実施例により詳しく説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

本実施例では、1発光2受光センサで濃度補正は正反射出力と乱反射出力を用いて行い、色ずれ補正は乱反射出力を用いて行う系において、色ずれ検出時に搬送ベルトを検出した際の正反射出力と発光光量決定用パターンを検出した際の乱反射出力から、色ずれ検出時及び濃度検出時に必要なセンサ出力のダイナミックレンジが大きくなるように光量算出を行い、次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定する。   In the present embodiment, in a system in which density correction is performed using a regular reflection output and irregular reflection output with a single light emission and two light receiving sensor, and color misregistration correction is performed using irregular reflection output, the positive correction when the conveyance belt is detected at the time of color misalignment detection is performed. The light amount is calculated from the diffuse output when the reflected output and the light emission quantity determination pattern are detected, so that the dynamic range of the sensor output required at the time of color shift detection and density detection is increased, and at the next color shift detection and density detection. Determine the optimal amount of light separately.

以下、本発明の第1の実施形態を図面を参照して説明する。   A first embodiment of the present invention will be described below with reference to the drawings.

始めに、図8を参照して本発明の画像形成装置の概略構成を説明する。本実施形態のカラー画像形成装置は、4色(イエローY、マゼンタM、シアンC、ブラックBk)の画像形成部を各々備えている。図8中の添え字記号a,b,c,dは各々C,Y,M,Bk用を示す。1は静電潜像を形成する感光体ドラムである。2は画像信号に応じてレーザ露光を行い、感光体ドラム1上に静電潜像を形成するレーザスキャナである。3は用紙を各色の画像形成部に順次搬送する無端状の搬送ベルトであり、転写ベルトの機能も兼ね備える。4は搬送ベルト3を回転駆動する駆動ローラであり、不図示のモータとギア等からなる駆動手段に接続される。5は搬送ベルト3の移動に伴い従動回転し、かつ搬送ベルト3に一定の張力を付与する従動ローラである。20は転写ローラである。6は搬送ベルト3上に形成された色ずれ検出パターンと濃度検出パターンを検出する1対の光センサであり、搬送ベルトの両サイドに設けられる。   First, a schematic configuration of the image forming apparatus of the present invention will be described with reference to FIG. The color image forming apparatus of the present embodiment includes four color (yellow Y, magenta M, cyan C, and black Bk) image forming units. Subscript symbols a, b, c, and d in FIG. 8 indicate C, Y, M, and Bk, respectively. Reference numeral 1 denotes a photosensitive drum that forms an electrostatic latent image. A laser scanner 2 performs laser exposure according to an image signal to form an electrostatic latent image on the photosensitive drum 1. Reference numeral 3 denotes an endless conveyance belt that sequentially conveys the paper to the image forming units for each color, and also has a function of a transfer belt. Reference numeral 4 denotes a driving roller that rotationally drives the conveyor belt 3, and is connected to a driving means including a motor and a gear (not shown). Reference numeral 5 denotes a driven roller that rotates following the movement of the conveyance belt 3 and applies a constant tension to the conveyance belt 3. Reference numeral 20 denotes a transfer roller. Reference numeral 6 denotes a pair of optical sensors that detect a color misregistration detection pattern and a density detection pattern formed on the conveyance belt 3, and are provided on both sides of the conveyance belt.

図8中の第1の感光体ドラム1aは矢印d1の方向に所定の周速で回転駆動されながら帯電ローラ17aにて一様に帯電され、レーザスキャナ2aから走査されるデジタル画像信号に対応して変調されたレーザビームを結像露光光学系を介して受けることにより第1色(ここではシアン)成分の静電潜像を形成する。尚、各色の画像信号は搬送転写ベルト3による用紙搬送のタイミングから所定時間経過後に各レーザスキャナに送信される。   The first photosensitive drum 1a in FIG. 8 is uniformly charged by the charging roller 17a while being driven to rotate at a predetermined peripheral speed in the direction of arrow d1, and corresponds to a digital image signal scanned from the laser scanner 2a. By receiving the modulated laser beam through the imaging exposure optical system, an electrostatic latent image of the first color (here, cyan) component is formed. The image signals of the respective colors are transmitted to the laser scanners after a predetermined time has elapsed from the timing of sheet conveyance by the conveyance transfer belt 3.

続いて、第1の現像器18aを用いて第1色(シアン)トナーによって静電潜像は現像され、第1色成分に対する可視像を得る。以上に記した手順を第2色(イエロー)、第3色(マゼンタ)、第4色(ブラック)に対して行う。尚、搬送転写ベルト3は矢印d2の方向に感光体ドラム1aと同じ周速で回転駆動される。感光体ドラム1aから搬送転写ベルト3上に吸着担持されたシートPへのシアン可視像の転写は、不図示の高圧電源から供給される転写バイアスを印加することにより行う。   Subsequently, the electrostatic latent image is developed with the first color (cyan) toner using the first developing device 18a to obtain a visible image for the first color component. The procedure described above is performed for the second color (yellow), the third color (magenta), and the fourth color (black). The transport transfer belt 3 is rotationally driven in the direction of the arrow d2 at the same peripheral speed as the photosensitive drum 1a. The transfer of the cyan visible image from the photosensitive drum 1a to the sheet P adsorbed and supported on the transport transfer belt 3 is performed by applying a transfer bias supplied from a high voltage power supply (not shown).

以後、イエロー、マゼンタ、ブラックについても同様の手順を用いて順次搬送転写ベルト上に吸着担持されたシートP上に重ね合わせて転写を行うことによって、フルカラーのトナー画像を得る。   Thereafter, for yellow, magenta, and black, a full-color toner image is obtained by sequentially superimposing and transferring on the sheet P adsorbed and supported on the conveyance transfer belt using the same procedure.

トナー画像を転写されたシートPは、搬送転写ベルトから分離されて不図示の定着装置へ搬送される。定着装置へ搬送されたシートPは、定着ローラと加圧ローラの定着ニップ部において熱と圧力によってトナー画像が定着される。またクリーニング時は、転写時に印加したバイアスとは逆極性のバイアスを印加することにより、トナーをカートリッジに回収させる。   The sheet P to which the toner image has been transferred is separated from the transport transfer belt and transported to a fixing device (not shown). The sheet P conveyed to the fixing device is fixed with a toner image by heat and pressure at a fixing nip portion between the fixing roller and the pressure roller. At the time of cleaning, a toner having a polarity opposite to that applied at the time of transfer is applied to collect the toner in the cartridge.

図8の6にあたる検出手段(光センサ)を図9に示す。51は発光素子であり、例えばLEDである。52、59は受光素子であり、例えばフォトセンサである。3は搬送ベルトであり、9はトナーパターンである。53は発光素子51からの発光光である。54は受光素子52にて受光される受光光であり、58は受光素子59にて受光される受光光である。発光部51と受光部52は、搬送ベルト3を反射面として、正反射光学系により構成されており、発光部51と受光部59は、搬送ベルト3を反射面として、乱反射光学系により構成されている。また搬送ベルト3による光反射率とトナーパターンによる光反射率の差によって、色ずれ検出パターンの位置或いは濃度検出パターンの濃度を検出する。   FIG. 9 shows detection means (light sensor) corresponding to 6 in FIG. 51 is a light emitting element, for example, LED. 52 and 59 are light receiving elements, for example, photosensors. 3 is a conveyance belt, and 9 is a toner pattern. Reference numeral 53 denotes light emitted from the light emitting element 51. 54 is light received by the light receiving element 52, and 58 is light received by the light receiving element 59. The light emitting unit 51 and the light receiving unit 52 are configured by a regular reflection optical system with the transport belt 3 as a reflecting surface, and the light emitting unit 51 and the light receiving unit 59 are configured by an irregular reflection optical system with the transport belt 3 as a reflecting surface. ing. Further, the position of the color misregistration detection pattern or the density of the density detection pattern is detected based on the difference between the light reflectance by the conveyor belt 3 and the light reflectance by the toner pattern.

図9における検出手段の回路構成を図10に示す。LED発光部(LED)とフォトセンサ受光部等(PD)からなるパターン検出部から構成される。LEDを搬送ベルトに対して発光し、搬送ベルトからの反射光を受光素子PDで受け取る。受光素子PDからの検出電流は、IV変換回路によって電圧V1に変換され、図示しないCPUに入力される。CPUは、「IV変換回路の出力電圧値」と「目標出力電圧値」との大小関係を比較演算し、次回色ずれ検出時及び濃度検出時の光量を各々決定する。また発光素子のオン/オフ及び光量調整は、図示しないCPUのPWM制御(図10のInput)によって、LED駆動電流を可変させることにより行う。   FIG. 10 shows a circuit configuration of the detection means in FIG. The pattern detection unit is composed of an LED light emitting unit (LED) and a photosensor light receiving unit or the like (PD). The LED emits light to the transport belt, and the reflected light from the transport belt is received by the light receiving element PD. The detected current from the light receiving element PD is converted into a voltage V1 by an IV conversion circuit and input to a CPU (not shown). The CPU compares and calculates the magnitude relationship between the “output voltage value of the IV conversion circuit” and the “target output voltage value”, and determines the light amount at the next color misalignment detection and density detection. Further, on / off of the light emitting element and light amount adjustment are performed by varying the LED drive current by PWM control (Input in FIG. 10) of a CPU (not shown).

図12は、図8の搬送ベルト3上に形成する色ずれ検出パターンの構成を示す。本色ずれ検出装置は、次回色ずれ検出時と濃度検出時の最適な光量設定値を算出する為に、搬送ベルト3上に図12に示す様な発光光量決定用パターン93(93a,93b)を形成する。発光光量決定用パターンは、Bk以外のベタの色パターンであれば、何色であっても良い。また色ずれ補正を行う為に搬送ベルト3上に図12に示す様な色ずれ検出用パターン9、10、11、12(a:C、b:Y、c:M、d:Bk)を形成する。色ずれ検出パターンもベタのパターンとする。また9及び10は、副走査方向の色ずれ量を検出するためのパターンであり、11及び12は、主走査方向の色ずれ量を検出するためのパターンである。またパターンは、搬送ベルトの主走査方向に並んで設けられた1対のセンサ6で読み取り、次回検出時の最適光量設定値を決定し、各色間の色ずれ量を検出する。また本実施形態の色ずれ検出装置では乱反射検知を行う為、Bkトナーの検出を行う場合Bkトナーパターンの下層に光反射率の異なる色トナーパターン13a、13b、13c、13dを敷くことで色ずれ検出を行う。   FIG. 12 shows a configuration of a color misregistration detection pattern formed on the conveyance belt 3 of FIG. This color misregistration detection apparatus uses a light emission light quantity determination pattern 93 (93a, 93b) as shown in FIG. 12 on the conveyor belt 3 in order to calculate the optimum light quantity setting value at the next color misregistration detection and density detection. Form. The light emission quantity determination pattern may be any color as long as it is a solid color pattern other than Bk. Further, color misregistration detection patterns 9, 10, 11, 12 (a: C, b: Y, c: M, d: Bk) as shown in FIG. To do. The color misregistration detection pattern is also a solid pattern. Reference numerals 9 and 10 are patterns for detecting the amount of color misregistration in the sub-scanning direction, and reference numerals 11 and 12 are patterns for detecting the amount of color misregistration in the main scanning direction. The pattern is read by a pair of sensors 6 provided side by side in the main scanning direction of the conveyor belt, the optimum light amount setting value at the next detection is determined, and the color misregistration amount between each color is detected. In addition, since the color misregistration detection apparatus of this embodiment performs diffuse reflection detection, when detecting Bk toner, color misregistration is performed by placing color toner patterns 13a, 13b, 13c, and 13d having different light reflectivities under the Bk toner pattern. Perform detection.

一般的に受光センサは、受光光量が少量だと応答速度が落ちる特性を持っている。図1は、搬送ベルト3上に色ずれ検出パターン9、10、11、12(図ではマゼンタ)をのせて搬送ベルト3を回転駆動させ、光センサ6によって搬送ベルトと色ずれ検出パターンの表面を検出した際のセンサ出力の変化を示した図である。横軸が時間、縦軸が光センサ出力を示す。d2は、搬送ベルト3の搬送方向を示す。また波形Mは、実際のセンサ出力波形を示す。波形Nは、センサ出力が遅延することなく応答した場合の理想波形を示す。波形Oは、波形Mと比較してセンサ受光量が低下した場合のセンサ出力波形を示す。色ずれ量は、従来例と同様に受光素子の出力が閾値電圧と交差した時の時間の中心値をもとに算出する。実際のセンサ出力波形Mは、図1のように理想波形Nと比較してなまり波形となっている。その為、実際のセンサ出力波形Mは理想波形に対してなまり波形による色ずれ量時間誤差ΔTaが生まれる。センサ受光量が低下すると、波形Oのように更に波形のなまりの影響を受ける。その為、なまり波形による影響が増加し、色ずれ量時間誤差ΔTbが生まれる。これはΔTaよりも大きい。また波形がなまるとランダムノイズからの影響等も受け易い。   In general, the light receiving sensor has a characteristic that the response speed decreases when the amount of received light is small. In FIG. 1, color misregistration detection patterns 9, 10, 11, and 12 (magenta in the drawing) are put on the transport belt 3 to rotate the transport belt 3, and the surface of the transport belt and the color misregistration detection pattern is detected by the optical sensor 6. It is the figure which showed the change of the sensor output at the time of detecting. The horizontal axis represents time, and the vertical axis represents the optical sensor output. d2 indicates the conveyance direction of the conveyance belt 3. A waveform M represents an actual sensor output waveform. A waveform N shows an ideal waveform when the sensor output responds without delay. A waveform O indicates a sensor output waveform when the amount of received light from the sensor is lower than that of the waveform M. The color misregistration amount is calculated based on the center value of the time when the output of the light receiving element crosses the threshold voltage as in the conventional example. The actual sensor output waveform M is a round waveform compared to the ideal waveform N as shown in FIG. Therefore, the actual sensor output waveform M has a color shift amount time error ΔTa due to a rounded waveform with respect to the ideal waveform. When the amount of light received by the sensor is reduced, the waveform is further affected by the rounding like the waveform O. For this reason, the influence of the round waveform increases, and a color shift amount time error ΔTb is generated. This is larger than ΔTa. Also, if the waveform is rounded, it is easily affected by random noise.

このような理由から濃度検出及び色ずれ検出時の目標光量設定値は、センサ出力が飽和しないことを条件にセンサ出力のダイナミックレンジが大きくなるように設定し、ベルトによる光反射率とトナーパターンによる光反射率の差を大きくしなくてはならない。   For this reason, the target light amount setting value at the time of density detection and color misregistration detection is set so that the dynamic range of the sensor output is increased on condition that the sensor output is not saturated, and it depends on the light reflectance by the belt and the toner pattern. The difference in light reflectance must be increased.

図11は本実施形態の動作のアルゴリズムを示す。図11を用いて光量決定までの動作を説明する。   FIG. 11 shows the algorithm of the operation of this embodiment. The operation up to the determination of the light amount will be described with reference to FIG.

始めに、発光光量決定用パターン(図12:93a,93b)を搬送ベルト上に形成し、色ずれ検出パターン(図12:9、10、11、12、13)を形成する。(ステップS1)。第1番目の発光光量決定用パターン以前の搬送ベルト面からの反射光読み込みを行えるタイミングになるまで待つ。光センサの読み込みタイミングは、パターン形成タイミングからCPUによって算出し制御する。搬送ベルト面からの反射光読み込みを行えるタイミングが来たら、発光素子(LED)を発光させ、ベルト新品時でもベルトを検出した時の正反射光量が飽和しない光量に設定する。発光素子のオン/オフ及び光量調整は、CPUからの信号によりLED駆動回路をPWM制御することによって行う(ステップS2)。搬送ベルトを回転駆動させ、発光光量決定用パターンの検出を行う(ステップS3)。色ずれ検出時の最適光量値と次回濃度検出時の最適光量値を算出し、CPUによって記憶する。また算出した色ずれ検出時の最適光量値を光量に設定する(ステップS4)搬送ベルトを回転駆動させ、色ずれ検出用パターンの検出を行う(ステップS5)。画像周波数の微調整や書き出しタイミングの調整といった色ずれ補正を行うための色ずれ補正値を算出する(ステップS6)。同時に。LEDをOFFし、転写時に印加したバイアスとは逆極性のバイアスを印加することにより、トナーをカートリッジに回収し、搬送ベルトのクリーニングを行う(ステップS7、S8)。   First, a light emission quantity determination pattern (FIG. 12: 93a, 93b) is formed on the conveyor belt, and a color misregistration detection pattern (FIG. 12, 9, 10, 11, 12, 13) is formed. (Step S1). Wait until it is time to read the reflected light from the surface of the conveyor belt before the first light emission quantity determining pattern. The reading timing of the optical sensor is calculated and controlled by the CPU from the pattern formation timing. When it is time to read the reflected light from the conveyor belt surface, the light emitting element (LED) is caused to emit light, and the amount of regular reflected light when the belt is detected is set to a level that does not saturate even when the belt is new. The on / off of the light emitting element and the light amount adjustment are performed by PWM control of the LED driving circuit with a signal from the CPU (step S2). The conveyance belt is driven to rotate, and the light emission quantity determination pattern is detected (step S3). The optimum light quantity value at the time of color misregistration detection and the optimum light quantity value at the next density detection are calculated and stored by the CPU. In addition, the calculated optimal light amount value at the time of color misregistration detection is set as the light amount (step S4), and the conveyance belt is rotated to detect a color misregistration detection pattern (step S5). A color misregistration correction value for performing color misregistration correction such as fine adjustment of image frequency and adjustment of writing timing is calculated (step S6). at the same time. By turning off the LED and applying a bias reverse in polarity to the bias applied at the time of transfer, the toner is collected in the cartridge and the transport belt is cleaned (steps S7 and S8).

図14(a)は、本実施例のトナー量と反射光量の関係であり、光量補正前を示す。本実施例では、乱反射の最大受光量より正反射の最大受光量の方が大きい。図14(a)において、Vxは正反射及び乱反射出力の目標出力電圧、Vaは光量補正前の正反射最大出力、Vbは光量補正前の乱反射最大出力を示す。また光量補正前は、正反射出力及び乱反射出力が飽和しない光量L1での状態を示す。図14(b)に濃度検出時の光量補正後の反射出力とトナー量との関係を示し、図14(c)に色ずれ検出時の光量補正後の乱反射出力とトナー量との関係を示す。濃度検出では正反射出力と乱反射出力の両方を用いる為、正反射出力が飽和せず且つダイナミックレンジが大きくなるような光量Ldをセットする。色ずれ検出では正反射出力を用いない為、乱反射出力が飽和せず且つダイナミックレンジが大きくなるような光量Lrをセットする。   FIG. 14A shows the relationship between the toner amount and the reflected light amount in this embodiment, and shows the state before the light amount correction. In this embodiment, the maximum light reception amount of regular reflection is larger than the maximum light reception amount of irregular reflection. In FIG. 14A, Vx is the target output voltage for regular reflection and irregular reflection output, Va is the regular reflection maximum output before light amount correction, and Vb is the irregular reflection maximum output before light amount correction. Before the light quantity correction, a state at a light quantity L1 at which the regular reflection output and the irregular reflection output are not saturated is shown. FIG. 14B shows the relationship between the reflected output after the light amount correction at the time of density detection and the toner amount, and FIG. 14C shows the relationship between the irregular reflection output after the light amount correction at the time of color shift detection and the toner amount. . Since both the regular reflection output and the irregular reflection output are used in the density detection, the light amount Ld is set so that the regular reflection output is not saturated and the dynamic range is increased. Since the regular reflection output is not used in color misregistration detection, the light amount Lr is set so that the irregular reflection output is not saturated and the dynamic range is increased.

ここで、発光光量決定用トナーパターンの光量設定値をL1、ベルト検出時の正反射出力をVb、発光光量決定用パターン検出時の乱反射出力をVtとする。色ずれ検出時の目標乱反射出力電圧がVrであり、濃度検出時の目標正反射出力電圧がVdとした時、色ずれ検出時の最適な光量設定値Lrと濃度検出時の最適な光量設定値Ldは、式(1)、式(2)より、
Lr=(Vr/Vt)*L1・・・(1)
Ld=(Vd/Vb)*L1・・・(2)
と求めることができる。またこの時、前述したように目標正反射出力電圧値及び目標乱反射出力電圧値は、センサ出力が飽和しない且つセンサ出力のダイナミックレンジが大きくなるように設定する。
Here, it is assumed that the light amount setting value of the light emission amount determining toner pattern is L1, the regular reflection output at the time of detecting the belt is Vb, and the irregular reflection output at the time of detecting the light emission amount determining pattern is Vt. When the target irregular reflection output voltage at the time of color misregistration detection is Vr and the target regular reflection output voltage at the time of density detection is Vd, the optimum light quantity setting value Lr at the time of color misregistration detection and the optimum light quantity setting value at the time of density detection. Ld is calculated from the equations (1) and (2).
Lr = (Vr / Vt) * L1 (1)
Ld = (Vd / Vb) * L1 (2)
It can be asked. At this time, as described above, the target regular reflection output voltage value and the target irregular reflection output voltage value are set so that the sensor output is not saturated and the dynamic range of the sensor output is increased.

以上説明したように、1発光2受光センサで濃度補正は正反射出力と乱反射出力を用いて行い、色ずれ補正は乱反射出力を用いて行う系において、色ずれ検出時に搬送ベルトを検出した際の正反射出力と色ずれ検出パターンを検出した際の乱反射出力から、色ずれ検出時及び濃度検出時に必要なセンサ出力のダイナミックレンジが大きくなるように光量算出を行い、次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定することで、色ずれ検出時と濃度検出時の両方において波形のなまりやランダムノイズによる影響を軽減し、高精度な色ずれ補正と濃度補正を行うことが可能である。また本実施例では光量調整をCPUによるPWM制御によって行っているが、CPUのD/A変換器などを用いて光量調整することが可能であることはいうまでもない。   As described above, in the system in which the density correction is performed using the regular reflection output and the irregular reflection output by the one light emission two light receiving sensor, and the color misregistration correction is performed using the irregular reflection output, when the conveyance belt is detected when the color misregistration is detected. From the diffuse reflection output when the regular reflection output and the color misregistration detection pattern are detected, the light quantity is calculated so that the dynamic range of the sensor output required at the time of color misregistration detection and density detection is increased, and at the next color misalignment detection and density detection. By determining the optimal amount of light separately, it is possible to reduce the influence of waveform rounding and random noise during both color misregistration detection and density detection, and to perform highly accurate color misregistration correction and density correction. It is. In this embodiment, the light amount is adjusted by PWM control by the CPU, but it goes without saying that the light amount can be adjusted by using a D / A converter of the CPU.

また本実施例では、色ずれ検出時に次回色ずれ検出時及び濃度検出時の最適な光量を決定しているが、濃度検出時に同様の工程で次回色ずれ検出時及び濃度検出時の最適な光量を決定することが可能であることはいうまでもない。   In this embodiment, the optimum light amount at the next color misregistration detection and density detection is determined at the time of color misregistration detection, but the optimum light amount at the next color misregistration detection and density detection by the same process at the density detection. Needless to say, it is possible to determine.

本実施例では、1発光2受光センサで濃度補正は正反射出力と乱反射出力を用いて行い、色ずれ補正は正反射出力を用いて行う系において、色ずれ検出時に搬送ベルトを検出した際の正反射出力と発光光量決定用パターンを検出した際の乱反射出力から、色ずれ検出時及び濃度検出時に必要なセンサ出力のダイナミックレンジが大きくなるように光量算出を行い、次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定する。   In the present embodiment, in a system in which density correction is performed using a regular reflection output and irregular reflection output with a single light emission and two light receiving sensor, and color misregistration correction is performed using a specular reflection output, when a conveyance belt is detected when color misregistration is detected. The amount of light is calculated from the irregular reflection output when the specular reflection output and the pattern for determining the amount of emitted light are detected, so that the dynamic range of the sensor output required at the time of color misalignment detection and density detection is increased, and at the next color misalignment detection and density The optimal amount of light at the time of detection is determined separately.

本実施例では、実施例1と同様の検出手段(図9)及び回路構成(図10)を用いる。   In the present embodiment, the same detection means (FIG. 9) and circuit configuration (FIG. 10) as in the first embodiment are used.

図13は、図8の搬送ベルト3上に形成する本実施例における色ずれ検出パターンの構成を示す。本実施例における色ずれ検出装置は、実施例1と同様に色ずれ補正を行い更に次回色ずれ検出時と濃度検出時の最適な光量設定値を算出する為に搬送ベルト3上に図13に示す様な発光光量決定用パターン94(94a,94b)、色ずれ検出用パターン9、10、11、12(a:C、b:Y、c:M、d:Bk)を形成する。また本実施形態の色ずれ検出装置では正反射検知を行う為、実施例1とは異なりBkトナーパターンの下層に光反射率の異なる色トナーパターンを敷く必要はない。   FIG. 13 shows the configuration of the color misregistration detection pattern in the present embodiment formed on the conveyor belt 3 of FIG. The color misregistration detection apparatus in the present embodiment performs color misregistration correction in the same manner as in the first embodiment, and further calculates the optimum light amount setting value at the next color misregistration detection and density detection on the conveying belt 3 as shown in FIG. As shown, a light emission quantity determining pattern 94 (94a, 94b) and color misregistration detection patterns 9, 10, 11, 12 (a: C, b: Y, c: M, d: Bk) are formed. In addition, since the color misregistration detection apparatus according to this embodiment performs regular reflection detection, unlike the first embodiment, it is not necessary to lay a color toner pattern having a different light reflectance below the Bk toner pattern.

また動作アルゴリズムに関しては、実施例1と同様のアルゴリズムで行うことができる。   As for the operation algorithm, the same algorithm as in the first embodiment can be used.

図15(a)は、本実施例のトナー量と反射光量の関係を示す。本実施例では、ベルトを検出した際の正反射光量よりもベルトを検出した際の乱反射光量の方が大きい。図15(a)において、Vx’は正反射及び乱反射出力の目標出力電圧、Va’は光量補正前の正反射最大出力、Vb’は光量補正前の乱反射最大出力を示す。また光量補正前は、正反射出力及び乱反射出力が飽和しない光量L1’での状態を示す。図15(b)に濃度検出時の光量補正後の反射出力とトナー量との関係を示し、図15(c)に色ずれ検出時の光量補正後の反射出力とトナー量との関係を示す。濃度検出では、正反射光成分と乱反射光成分の和から乱反射光成分を差し引く制御を行う為、正反射出力が飽和せず且つダイナミックレンジが大きくなるような光量Ld’をセットする。色ずれ検出では乱反射出力を用いない為、乱反射出力が飽和せず且つダイナミックレンジが大きくなるような光量Lr’をセットする。また本実施例の色ずれ検出パターンは、ベルトからの正反射出力と色ずれ検出パターンから乱反射出力の差が最も大きくなるようなトナー濃度(図15(c)のTx)に設定する。   FIG. 15A shows the relationship between the amount of toner and the amount of reflected light in this embodiment. In this embodiment, the amount of irregularly reflected light when the belt is detected is larger than the amount of regular reflected light when the belt is detected. In FIG. 15A, Vx ′ represents a target output voltage for regular reflection and irregular reflection output, Va ′ represents a regular reflection maximum output before light amount correction, and Vb ′ represents an irregular reflection maximum output before light amount correction. In addition, before the light amount correction, a state at a light amount L1 'in which the regular reflection output and the irregular reflection output are not saturated is shown. FIG. 15B shows the relationship between the reflected output after the light amount correction at the time of density detection and the toner amount, and FIG. 15C shows the relationship between the reflected output after the light amount correction at the time of color shift detection and the toner amount. . In density detection, control is performed to subtract the irregularly reflected light component from the sum of the regular reflected light component and the irregularly reflected light component, so that the light amount Ld ′ is set so that the regular reflection output is not saturated and the dynamic range is increased. Since the irregular reflection output is not used in the color misregistration detection, the light amount Lr ′ is set so that the irregular reflection output is not saturated and the dynamic range is increased. The color misregistration detection pattern of this embodiment is set to a toner density (Tx in FIG. 15C) that maximizes the difference between the regular reflection output from the belt and the irregular reflection output from the color misregistration detection pattern.

また実施例2においても、実施例1と同様の計算方法により次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定する方法で行うことができる。   Also in the second embodiment, the same calculation method as in the first embodiment can be used by separately determining the optimum light amount at the next color misalignment detection and density detection.

以上説明したように、1発光2受光センサで濃度補正は正反射出力と乱反射出力を用いて行い、色ずれ補正は正反射出力を用いて行う系において、色ずれ検出時に搬送ベルトを検出した際の正反射出力と発光光量決定用パターンを検出した際の乱反射出力から、色ずれ検出時及び濃度検出時に必要なセンサ出力のダイナミックレンジが大きくなるように光量算出を行い、次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定することで、色ずれ検出時と濃度検出時の両方において波形のなまりやランダムノイズによる影響を軽減し、高精度な色ずれ補正と濃度補正を行うことが可能である。また実施例1と同様に光量調整をCPUによるPWM制御によって行っているが、CPUのD/A変換器などを用いて光量調整することが可能であることはいうまでもない。また本実施例では、色ずれ検出時に次回色ずれ検出時及び濃度検出時の最適な光量を決定しているが、濃度検出時に同様の工程で次回色ずれ検出時及び濃度検出時の最適な光量を決定することが可能であることはいうまでもない。   As described above, in the system in which the density correction is performed using the regular reflection output and the irregular reflection output by the one light emission / two light receiving sensor, and the color misregistration correction is performed using the specular reflection output, when the conveyance belt is detected when the color misregistration is detected. The amount of light is calculated from the specular reflection output and the diffuse reflection output when the emitted light amount determination pattern is detected, so that the dynamic range of the sensor output required for color misalignment detection and density detection is increased. By determining the optimal amount of light at the time of density detection separately, the effects of waveform rounding and random noise are reduced at both color shift detection and density detection, and high-precision color shift correction and density correction are performed. Is possible. Although the light amount adjustment is performed by the PWM control by the CPU as in the first embodiment, it is needless to say that the light amount can be adjusted using a D / A converter of the CPU. In this embodiment, the optimum light amount at the next color misregistration detection and density detection is determined at the time of color misregistration detection, but the optimum light amount at the next color misregistration detection and density detection by the same process at the density detection. Needless to say, it is possible to determine.

本実施例では、1発光2受光センサで濃度補正は正反射出力と乱反射出力を用いて行い、色ずれ補正は乱反射出力を用いて行う系において、一回目の色ずれ検出時に搬送ベルトを検出した際の正反射出力と発光光量決定用パターンを検出した際の乱反射出力から、色ずれ検出時及び濃度検出時に必要なセンサ出力のダイナミックレンジが大きくなるように光量算出を行い、次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定する。次回色ずれ量検出時からは発光光量決定用パターンをなくし、色ずれ検出時に搬送ベルトを検出した際の正反射出力と色ずれ検出パターンを検出した際の乱反射出力から、色ずれ検出時及び濃度検出時に必要なセンサ出力のダイナミックレンジが大きくなるように光量算出を行い、次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定する。   In this embodiment, in the system in which the density correction is performed using the regular reflection output and the irregular reflection output by the one light emission two light receiving sensor, and the color misregistration correction is performed using the irregular reflection output, the conveyance belt is detected at the first color misalignment detection. The amount of light is calculated from the specular reflection output and the diffuse reflection output when the emitted light intensity determination pattern is detected so that the dynamic range of the sensor output required at the time of color misalignment detection and density detection is increased. In addition, the optimum light quantity at the time of density detection is determined separately. The pattern for determining the amount of emitted light is eliminated from the next detection of the color misregistration amount. From the specular reflection output when the conveyor belt is detected during color misregistration detection and the irregular reflection output when the color misregistration detection pattern is detected, the color misregistration detection and density The amount of light is calculated so that the dynamic range of the sensor output required at the time of detection is increased, and the optimum amount of light at the next color misalignment detection and density detection is determined separately.

本実施例では、実施例1と同様の検出手段(図9)及び回路構成(図10)を用いる。   In the present embodiment, the same detection means (FIG. 9) and circuit configuration (FIG. 10) as in the first embodiment are used.

また動作アルゴリズムに関しては、色ずれ検出一回目は実施例1と同様に行うことができる。二回目以降は、発光光量決定用パターンを形成せず、色ずれ検出パターンから実施例1と同様の計算方法により次回色ずれ検出時及び濃度検出時の最適な光量を別々に決定する方法で行うことができる。   Regarding the operation algorithm, the first color misregistration detection can be performed in the same manner as in the first embodiment. From the second time onward, a pattern for determining the amount of emitted light is not formed, but the method for determining the optimum light amount at the time of next color misregistration detection and density detection separately from the color misregistration detection pattern by the same calculation method as in the first embodiment. be able to.

以上説明したように、1発光2受光センサで濃度補正は正反射出力と乱反射出力を用いて行い、色ずれ補正は乱反射出力を用いて行う系において、二回目以降の色ずれ検出時から発光光量決定用パターンをなくすことによって、実施例1と比較して、2回目以降の色ずれ検出及び光量決定時間を削減することができる。更に実施例1同様、色ずれ検出時と濃度検出時の両方において波形のなまりやランダムノイズによる影響を軽減し、高精度な色ずれ補正と濃度補正を行うことが可能である。また実施例1と同様に光量調整をCPUによるPWM制御によって行っているが、CPUのD/A変換器などを用いて光量調整することが可能であることはいうまでもない。また本実施例では、色ずれ検出時に次回色ずれ検出時及び濃度検出時の最適な光量を決定しているが、濃度検出時に同様の工程で次回色ずれ検出時及び濃度検出時の最適な光量を決定することが可能であることはいうまでもない。   As described above, in the system in which the density correction is performed using the regular reflection output and the irregular reflection output by the one light emission two light receiving sensor, and the color misregistration correction is performed using the irregular reflection output, the light emission amount from the second or subsequent color misalignment detection. By eliminating the determination pattern, it is possible to reduce the second and subsequent color misregistration detection and light amount determination time as compared with the first embodiment. Further, as in the first embodiment, it is possible to reduce the influence of waveform rounding and random noise both at the time of color misregistration detection and at the time of density detection, and to perform highly accurate color misregistration correction and density correction. Although the light amount adjustment is performed by the PWM control by the CPU as in the first embodiment, it is needless to say that the light amount can be adjusted using a D / A converter of the CPU. In this embodiment, the optimum light amount at the next color misregistration detection and density detection is determined at the time of color misregistration detection, but the optimum light amount at the next color misregistration detection and density detection by the same process at the density detection. Needless to say, it is possible to determine.

なお本発明においては、実施例1ないし3に示すように、1発光2受光センサに限定されることなく、これとは異なる発光、受光構成とすることもできる。   In the present invention, as shown in the first to third embodiments, the present invention is not limited to the one-light-emission / two-light-reception sensor, and other light-emission / light-reception configurations may be used.

1 トナー像を担持する像担持体
2 複数の画像形成部
3 複数の画像形成部に対して記録媒体Pを搬送させる搬送部
4 駆動ローラ
5 従動ローラ
6 光センサ
9,10 副走査方向の色ずれ量を検出するためのパターン
11,12 主走査方向の色ずれ量を検出するためのパターン
13 Bkトナーパターンの下層に敷く光反射率の異なる色トナーパターン
17 帯電ローラ
18 現像器
20 転写ローラ
51 発光素子
52、59 受光素子
53 発光光
54 正反射
58 乱反射
DESCRIPTION OF SYMBOLS 1 Image carrier which carries a toner image 2 Several image forming parts 3 Conveying part which conveys the recording medium P with respect to several image forming parts 4 Drive roller 5 Followed roller 6 Optical sensor 9, 10 Color shift of subscanning direction Patterns 11 and 12 for detecting the amount Pattern 13 for detecting the amount of color misregistration in the main scanning direction Color toner pattern 17 having different light reflectivity on the lower layer of the Bk toner pattern 17 Charging roller 18 Developer 20 Transfer roller 51 Light emission Elements 52 and 59 Light-receiving element 53 Emitted light 54 Regular reflection 58 Diffuse reflection

Claims (3)

トナー像を担持する像担持体をそれぞれ有する複数の画像形成手段と、
無端ベルトと、
前記複数の画像形成手段のそれぞれの像担持体に担持されたトナー像を前記無端ベルト上に転写する転写手段と、
該転写手段により前記無端ベルト上に色ずれ検出用パターン及び濃度検出用パターンを形成するパターン形成手段と、
前記無端ベルト上、及び前記色ずれ検出用パターンと前記濃度検出用パターンを照明する照明手段と、
前記照明手段によって光が照射される照射領域からの正反射光量を検出する第1検出部と前記照射領域からの乱反射光量を検出する第2検出部とを有する光量検出手段を具備し、
前記無端ベルト上からの正反射光量と、トナー領域からの正反射光量或いは乱反射光量から、色ずれ検出時及び濃度検出時の発光光量を別々に決定し、色ずれ検出時に、次回色ずれ検出時及び濃度検出時の発光光量を別々に決定することを特徴とする画像形成装置。
A plurality of image forming means each having an image carrier for carrying a toner image;
An endless belt,
Transfer means for transferring a toner image carried on each image carrier of the plurality of image forming means onto the endless belt;
Pattern forming means for forming a color misregistration detection pattern and a density detection pattern on the endless belt by the transfer means;
Illuminating means for illuminating the endless belt and the color misregistration detection pattern and the density detection pattern;
Comprising a first light detecting means for detecting the amount of specular reflection from the irradiation area irradiated with light by the illumination means and a second detection section for detecting the amount of irregular reflection light from the irradiation area;
The amount of emitted light at the time of color misregistration detection and density detection is determined separately from the amount of specular reflection from the endless belt and the amount of specular reflection or irregular reflection from the toner area. And an image forming apparatus characterized by separately determining the amount of emitted light at the time of density detection.
トナー像を担持する像担持体をそれぞれ有する複数の画像形成手段と、
無端ベルトと、
前記複数の画像形成手段のそれぞれの像担持体に担持されたトナー像を前記無端ベルト上に転写する転写手段と、
該転写手段により前記無端ベルト上に色ずれ検出用パターン及び濃度検出用パターンを形成するパターン形成手段と、
前記無端ベルト上、及び前記色ずれ検出用パターンと前記濃度検出用パターンを照明する照明手段と、
前記照明手段によって光が照射される照射領域からの正反射光量を検出する第1検出部と前記照射領域からの乱反射光量を検出する第2検出部とを有する光量検出手段を具備し、
前記無端ベルト上からの正反射光量と、トナー領域からの正反射光量或いは乱反射光量から、色ずれ検出時及び濃度検出時の発光光量を別々に決定し、
濃度検出時に、次回色ずれ検出時及び濃度検出時の発光光量を別々に決定することを特徴とする画像形成装置。
A plurality of image forming means each having an image carrier for carrying a toner image;
An endless belt,
Transfer means for transferring a toner image carried on each image carrier of the plurality of image forming means onto the endless belt;
Pattern forming means for forming a color misregistration detection pattern and a density detection pattern on the endless belt by the transfer means;
Illuminating means for illuminating the endless belt and the color misregistration detection pattern and the density detection pattern;
Comprising a first light detecting means for detecting the amount of specular reflection from the irradiation area irradiated with light by the illumination means and a second detection section for detecting the amount of irregular reflection light from the irradiation area;
From the regular reflection light amount from the endless belt and the regular reflection light amount or irregular reflection light amount from the toner area, separately determine the light emission amount at the time of color shift detection and density detection,
An image forming apparatus characterized by separately determining the amount of emitted light at the next color misregistration detection and density detection at the time of density detection .
感光ドラムと、
前記感光ドラムにトナー像を形成する画像形成手段と、
前記感光ドラム上に形成されたトナー像が転写されるベルトと、を有し、
色ずれ検出用パターンを形成及び検出し該検出結果に基づき色ずれ補正を行うとともに、濃度検出用パターンを形成及び検出し該検出結果に基づき画像濃度制御を行う画像形成装置であって、
前記光を照射する発光素子、及び前記発光素子により光を照射したときの正反射光を受光する正反射光受光素子、及び前記発光素子により光を照射したときの乱反射光を受光する乱反射光受光素子を含む一の光学検知手段と、
前記色ずれ検出用パターンの検出を、前記色ずれ検出用パターンに前記発光素子により光を照射したときの前記乱反射光受光素子の出力に基づき実行するとともに、前記濃度検出用パターンの検出を、前記濃度検出用パターンに前記発光素子により光を照射したときの前記正反射光受光素子の出力及び前記乱反射光受光素子の出力に基づき実行し、
更に、前記色ずれ検出用パターンの検出に関して、前記発光素子により前記色ずれ検出用パターン或いは発光光量決定用トナーパターンに向けて光を照射したときの前記乱反射光受光素子の出力が飽和しないように前記発光素子の発光光量を調整及び設定するとともに、
前記濃度検出用パターンの検出に関して、前記発光素子により前記ベルトに向けて光を照射したときの前記正反射光受光素子の出力が飽和しないように前記発光素子の発光光量を調整及び設定する制御手段と、を有することを特徴とする画像形成装置。
A photosensitive drum;
Image forming means for forming a toner image on the photosensitive drum;
A belt to which a toner image formed on the photosensitive drum is transferred,
An image forming apparatus that forms and detects a color misregistration detection pattern, performs color misregistration correction based on the detection result, forms and detects a density detection pattern, and performs image density control based on the detection result,
A light emitting element that emits light, a regular reflection light receiving element that receives specular reflection light when irradiated by the light emitting element, and a diffuse reflection light reception that receives irregular reflection light when irradiated by the light emitting element. An optical detection means including an element;
The detection of the color misregistration detection pattern is performed based on the output of the irregularly reflected light receiving element when the light misregistration light is irradiated to the color misregistration detection pattern, and the detection of the density detection pattern is performed as described above. Based on the output of the regular reflection light receiving element and the output of the irregular reflection light receiving element when light is emitted from the light emitting element to the density detection pattern,
Further, regarding the detection of the color misregistration detection pattern, the output of the irregularly reflected light receiving element is not saturated when the light emitting element emits light toward the color misregistration detection pattern or the light emission amount determining toner pattern. While adjusting and setting the light emission amount of the light emitting element,
Control means for adjusting and setting the light emission amount of the light emitting element so that the output of the regular reflection light receiving element is not saturated when the light emitting element emits light toward the belt with respect to detection of the density detection pattern an image forming apparatus characterized by chromatic when the.
JP2010173917A 2010-08-02 2010-08-02 Image forming apparatus Expired - Fee Related JP4750897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173917A JP4750897B2 (en) 2010-08-02 2010-08-02 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173917A JP4750897B2 (en) 2010-08-02 2010-08-02 Image forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005071374A Division JP4695899B2 (en) 2005-03-14 2005-03-14 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2010282221A JP2010282221A (en) 2010-12-16
JP4750897B2 true JP4750897B2 (en) 2011-08-17

Family

ID=43538931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173917A Expired - Fee Related JP4750897B2 (en) 2010-08-02 2010-08-02 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4750897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455730B2 (en) * 2016-02-09 2019-01-23 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023444A (en) * 2000-07-07 2002-01-23 Canon Inc Image forming device, control method for the same and storage medium
JP4745512B2 (en) * 2001-02-09 2011-08-10 キヤノン株式会社 Color image forming apparatus
JP4112917B2 (en) * 2002-07-08 2008-07-02 シャープ株式会社 Density sensor calibration method and image forming apparatus
JP2004252321A (en) * 2003-02-21 2004-09-09 Matsushita Electric Ind Co Ltd Color image forming apparatus

Also Published As

Publication number Publication date
JP2010282221A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP4695899B2 (en) Image forming apparatus
US8264733B2 (en) Image forming apparatus and image forming method for detecting light intensities
JP2008096478A (en) Image forming apparatus
US8867937B2 (en) Diffuse reflection output conversion method, attached powder amount conversion method, and image forming apparatus
JP2023048677A (en) Image forming apparatus
JP2006258906A (en) Color image forming apparatus and its color slippage compensation method
JP2007156159A (en) Color shift detection sensor and color shift detecting device
US8811845B2 (en) Registration mark and image forming apparatus
JP5747635B2 (en) Optical device, optical device control method, and image forming apparatus
US7773897B2 (en) Image forming apparatus and control method thereof
JP2006215451A (en) Color image forming apparatus
JP2006025359A (en) Image forming apparatus and image forming method
JP2002307745A (en) Imaging apparatus
JP4750897B2 (en) Image forming apparatus
JP4842536B2 (en) Image forming apparatus
JP2008209659A (en) Image forming device and control method
JP2003228216A (en) Image forming apparatus
JP2009282349A (en) Image forming apparatus
JP2008039636A (en) Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus
JP5636780B2 (en) Image forming apparatus
JP2011107613A (en) Image forming apparatus and processing program
US8150302B2 (en) Image forming apparatus and image forming method that detects an amount of color misalignment using reflected light
JP2009150997A (en) Image forming apparatus
JP6722057B2 (en) Image forming device
JP2004264556A (en) Method and device for detecting the amount of misalignment and image forming apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Ref document number: 4750897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees