JP2008039636A - Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus - Google Patents

Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus Download PDF

Info

Publication number
JP2008039636A
JP2008039636A JP2006215732A JP2006215732A JP2008039636A JP 2008039636 A JP2008039636 A JP 2008039636A JP 2006215732 A JP2006215732 A JP 2006215732A JP 2006215732 A JP2006215732 A JP 2006215732A JP 2008039636 A JP2008039636 A JP 2008039636A
Authority
JP
Japan
Prior art keywords
light
signal level
emitting element
level
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006215732A
Other languages
Japanese (ja)
Inventor
Susumu Miyazaki
晋 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Printing Systems Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Printing Systems Ltd, Ricoh Co Ltd filed Critical Ricoh Printing Systems Ltd
Priority to JP2006215732A priority Critical patent/JP2008039636A/en
Publication of JP2008039636A publication Critical patent/JP2008039636A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and quickly perform level adjustment of a driving signal for allowing a light reception signal level to reach a target value, when a characteristic of the light emission signal level of a light receiving element to a driving signal level of a light emitting element is expressed by a plurality of approximate expressions corresponding to a domain of the driving signal level, in a photoelectric detection device having the light emitting element and the light receiving element. <P>SOLUTION: The light emitting element is driven by a driving signal having a prescribed reference level (S1, S2), and an adjustment range of the driving signal level and a calculation formula in the adjustment range are selected (S8-S11), based on a height relation between the light reception signal level and its target value (S7), and an approximate expression is determined by using the light reception signal level when the light emitting element is driven by each driving signal having a plurality of levels in the selected adjustment range and the calculation formula, and the driving signal level is adjusted by using the approximate expression (S12). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光素子から放射され、対象物で反射された反射光を受光素子で検知することにより対象物を検知する光電検知装置及びその発光強度調整方法、並びにその光学的検知装置を備えた画像形成装置に関し、詳細には、検知対象物の劣化などにより反射率が低下しても、受光信号のレベルが常に一定になるように発光素子の発光強度を調整する装置及び方法に関する。   The present invention includes a photoelectric detection device that detects an object by detecting reflected light radiated from the light emitting element and reflected by the object, a method for adjusting the emission intensity thereof, and an optical detection device thereof. More specifically, the present invention relates to an apparatus and method for adjusting the light emission intensity of a light emitting element so that the level of a light reception signal is always constant even when the reflectance is reduced due to deterioration of a detection target.

従来、電子写真技術を採用したカラー画像形成装置においては、像担持体としての感光体ドラムを帯電手段により帯電し、帯電された感光体ドラムに画像情報に応じたレーザ光照射を行って潜像を形成し、この潜像を現像手段によって現像し、現像されたトナー像を記録紙に転写して画像を形成することが行われている。   Conventionally, in a color image forming apparatus employing an electrophotographic technique, a photosensitive drum as an image carrier is charged by a charging unit, and a laser beam is irradiated on the charged photosensitive drum in accordance with image information to form a latent image. The latent image is developed by a developing means, and the developed toner image is transferred to a recording paper to form an image.

また、このような一連の画像形成プロセスを実行する画像ステーションを複数備え、C(シアン)、M(マゼンタ)、Y(イエロー)、BK(ブラック)の各色のトナー画像をそれぞれの感光体に形成し、各感光体の転写位置にて無端ベルト状の中間転写ベルト上に重ね合わせて形成した転写用カラー画像を記録紙に転写することによりカラー画像を形成するタンデム方式のカラー画像形成装置が普及している。   In addition, a plurality of image stations that perform such a series of image forming processes are provided, and toner images of each color of C (cyan), M (magenta), Y (yellow), and BK (black) are formed on each photoconductor. In addition, tandem color image forming apparatuses that form color images by transferring color images for transfer formed on an endless belt-like intermediate transfer belt at the transfer position of each photoreceptor onto recording paper have become widespread. is doing.

このタンデム方式のカラー画像形成装置では、各色の感光体に画像を形成し、転写ベルト上の記録紙に転写する際、各色の転写画像位置が理想位置からずれると記録紙上には色ずれのある画像が形成され、画像の品質が劣化する。   In this tandem type color image forming apparatus, when an image is formed on a photoconductor of each color and transferred to a recording paper on a transfer belt, there is a color shift on the recording paper if the transfer image position of each color deviates from the ideal position. An image is formed and the quality of the image is degraded.

そこで、従来、画像形成の前処理として、装置本体の電源スイッチ投入時や所定回数の画像形成毎に、記録紙を搬送せずに感光体ドラム上に位置ずれ補正用パターンのトナー画像を作像し、このトナー画像を中間転写ベルト上に転写し、これをCCDセンサなどで読み取って位置ずれを検出し、記録されるべき画像信号に電気的補正をかけるとともに、レーザ光の光路中に設けられている反射ミラーを駆動して光路長変化或いは光路変化の補正を行っている。(特許文献1参照)。   Therefore, conventionally, as a pre-processing of image formation, a toner image of a misregistration correction pattern is formed on the photosensitive drum without conveying the recording paper when the power switch of the apparatus main body is turned on or every predetermined number of times of image formation. Then, this toner image is transferred onto an intermediate transfer belt, and this is read by a CCD sensor or the like to detect a positional deviation, and an electric signal is applied to the image signal to be recorded, and is provided in the optical path of the laser beam. The reflecting mirror is driven to correct the optical path length change or optical path change. (See Patent Document 1).

また、このような、カラー画像形成装置では、各色のトナー画像を重ね合わせてカラー画像を形成するため、各色のトナー画像を常に適正な濃度で形成することが必要である。何れかの色のトナー画像が適正な濃度で形成されないと、それらの重ね合わせにより形成されるフルカラー画像が色ずれを起こしてしまうからである。   Further, in such a color image forming apparatus, since the color images are formed by superimposing the toner images of the respective colors, it is necessary to always form the toner images of the respective colors with an appropriate density. This is because, if a toner image of any color is not formed with an appropriate density, a full color image formed by superimposing them causes a color shift.

そこで、各色のトナー画像が常に適正な濃度で形成されるようにするために、以下のような調整を行っている。即ち中間転写ベルトの表面に対向させて画像濃度検知センサを設け、画像形成の前処理として、記録紙を搬送せずに感光体ドラムにトナー濃度調整用パターンのトナー画像を形成し、このトナー画像を中間転写ベルト上に転写し、中間転写ベルト上に転写されたトナー画像の濃度を画像濃度検知センサにより検知し、この検知結果に基づいて、画像形成条件の調整を行い、何れの色のトナー画像も常に適正な濃度で形成されるように調整する(特許文献2参照)。   Therefore, the following adjustment is performed in order to always form toner images of the respective colors with appropriate densities. That is, an image density detection sensor is provided so as to face the surface of the intermediate transfer belt, and as a pre-processing of image formation, a toner image of a toner density adjustment pattern is formed on the photosensitive drum without conveying the recording paper. Is transferred onto the intermediate transfer belt, and the density of the toner image transferred onto the intermediate transfer belt is detected by an image density detection sensor. Based on the detection result, image forming conditions are adjusted, and the toner of any color The image is also adjusted so that it is always formed with an appropriate density (see Patent Document 2).

このようにCCDセンサにより位置ずれ補正用パターンを読み取るとき、或いは画像濃度検知センサによりトナー濃度検知用のトナー画像(以下、トナー濃度検知用パターンという)を読み取るとき、発光素子によりそれらのパターンを照明する。ここで、中間転写ベルトの反射率の方がトナーの反射率よりも高いので、CCDセンサ或いは画像濃度検知センサは、中間転写ベルトからの反射光の光電変換出力と、位置ずれ補正用パターン或いはトナー濃度検知用パターンのトナーからの反射光の光電変換出力とのレベルの差に基づいて、それぞれのパターンを検知することができる。   As described above, when the positional deviation correction pattern is read by the CCD sensor, or when the toner image for detecting the toner density (hereinafter referred to as the toner density detection pattern) is read by the image density detection sensor, these patterns are illuminated by the light emitting element. To do. Here, since the reflectance of the intermediate transfer belt is higher than the reflectance of the toner, the CCD sensor or the image density detection sensor detects the photoelectric conversion output of the reflected light from the intermediate transfer belt and the positional deviation correction pattern or toner. Each pattern can be detected based on the level difference from the photoelectric conversion output of the reflected light from the toner of the density detection pattern.

しかしながら、中間転写ベルトの汚れや劣化などによりその反射率が低下すると、トナーの反射率との差異が小さくなるため、位置ずれ補正用パターン或いはトナー濃度検知用パターンを正確に検知することが困難になる。このような問題に対処した画像形成装置として、トナー濃度検知用パターンの地肌(像担持体表面)からの反射光の光電変換出力レベルが常に一定になるようにキャリブレーションを行う画像形成装置が提案されている(特許文献3参照)。ここで、発光素子の発光強度の調整は、発光素子に入力する駆動信号のパルスのデユーティ比を調整すること、つまりPWM(パルス幅変調)により行う。そして、新品時にPWM値を所定値に設定し、そのときの光電変換出力レベルを記憶しておき、記憶された光電変換出力レベルが常に得られるように、以後のPWM値を調整する。   However, if the reflectivity decreases due to dirt or deterioration of the intermediate transfer belt, the difference from the reflectivity of the toner becomes small, so that it is difficult to accurately detect the misalignment correction pattern or the toner density detection pattern. Become. As an image forming apparatus that addresses such problems, an image forming apparatus that performs calibration so that the photoelectric conversion output level of reflected light from the background (image carrier surface) of the toner density detection pattern is always constant is proposed. (See Patent Document 3). Here, the light emission intensity of the light emitting element is adjusted by adjusting the duty ratio of the pulse of the drive signal input to the light emitting element, that is, by PWM (pulse width modulation). Then, when the product is new, the PWM value is set to a predetermined value, the photoelectric conversion output level at that time is stored, and the subsequent PWM value is adjusted so that the stored photoelectric conversion output level is always obtained.

前述の特許文献3には、光電変換出力レベルが常に一定になるように発光素子を調整する手順について記載されていないので、文献に記載されたものではないが、光電変換出力レベルが常に一定になるように発光素子を調整する従来の方法について説明する。   The above-mentioned Patent Document 3 does not describe the procedure for adjusting the light emitting element so that the photoelectric conversion output level is always constant, and thus is not described in the literature, but the photoelectric conversion output level is always constant. A conventional method for adjusting the light emitting element will be described.

図10は、発光素子の駆動信号レベルに対する受光素子の受光信号レベル(光電変換出力レベル)の特性を示すグラフである。この図において、横軸(X軸)は駆動信号レベル、縦軸(Y軸)は受光信号レベルである。また、f(X)は新品時の特性、f(X)は所定時間使用後の特性である。 FIG. 10 is a graph showing characteristics of the light receiving signal level (photoelectric conversion output level) of the light receiving element with respect to the drive signal level of the light emitting element. In this figure, the horizontal axis (X axis) is the drive signal level, and the vertical axis (Y axis) is the received light signal level. Further, f A (X) is a characteristic when new, and f B (X) is a characteristic after use for a predetermined time.

図10において、新品時に駆動信号レベルをX11に設定したとき、受光信号レベルがY11(=f(X11))であったとする。画像形成装置の使用に伴い、中間転写ベルトの汚れや劣化などによりその反射率が低下し、駆動信号レベル対受光信号レベル特性がf(X)に変化した場合、駆動信号を新品時と同じX11に設定すると、受光信号レベルはY12(=f(X11))となり、新品時よりも低下してしまう。そこで、f(X)=Y11を持たすXであるX12を以下の手順により求める。 In FIG. 10, it is assumed that the light reception signal level is Y 11 (= f A (X 11 )) when the drive signal level is set to X 11 when the product is new. When the image forming apparatus is used, the reflectance decreases due to dirt or deterioration of the intermediate transfer belt, and the drive signal level vs. received light signal level characteristic changes to f B (X). If set to X 11, received light signal level Y 12 (= f B (X 11)) , and the lowered than when new. Therefore, X 12 which is X having f B (X) = Y 11 is obtained by the following procedure.

図10において、駆動信号レベルの最大値を1とすると、まず駆動信号レベルを1/2に設定し、受光信号レベルを測定する。受光信号レベルがY11よりも大きかった場合は、駆動信号レベルを1/4(=1/2−1/4)に設定し、受光信号レベルがY11よりも小さかった場合は、駆動信号レベルを3/4(=1/2+1/4)に設定する。以下、同様にして、受光信号レベルとY11との大小関係に応じて、駆動信号レベルの加減値(大きい場合は減算、小さい場合は加算)を比が1/2の等比級数になるように設定していくことにより、X12に収束させる。 In FIG. 10, when the maximum value of the drive signal level is 1, first, the drive signal level is set to ½, and the received light signal level is measured. If light reception signal level is larger than Y 11, to set the levels of the drive signal to 1/4 (= 1 / 2-1 / 4), if the received light signal level is smaller than Y 11, drive signal level Is set to 3/4 (= 1/2 + 1/4). In the same manner, according to the magnitude relationship between the received light signal level and Y 11 , the drive signal level addition / subtraction value (subtraction when large, addition when small) is a geometric series having a ratio of ½. by going to set to converge to X 12.

しかしながら、この方法では、ノイズの混入により、受光信号レベルとY11との大小関係が反転してしまった場合は、適正な駆動信号レベルX12を求めることができなくなる。駆動信号レベルを多数設定し、それぞれに対し、上記手順を実行すれば、この問題を解決することは出来るが、その分時間がかかり、かつ処理の負荷も増大する。 However, in this method, when the magnitude relationship between the light reception signal level and Y 11 is inverted due to noise mixing, it is not possible to obtain an appropriate drive signal level X 12 . If a large number of drive signal levels are set and the above procedure is executed for each of them, this problem can be solved, but it takes much time and the processing load also increases.

そこで、このように多数の駆動信号レベルを設定せず、f(X)の近似式を求めることにより、上記X12を求める方法がある。即ち、例えばf(X)を一次関数αX+β(α、βは定数)で近似し、駆動信号レベルのサンプル値を複数設定し、それらのサンプル値に対応する受光信号レベルを用いてα、βを求めることで近似式を決定し、それを用いて上記X12を求める。 Thus, there is a method for obtaining X 12 by obtaining an approximate expression of f B (X) without setting a large number of drive signal levels in this way. That is, for example, f B (X) is approximated by a linear function αX + β (α and β are constants), a plurality of drive signal level sample values are set, and α, β using the received light signal levels corresponding to those sample values. Is used to determine the approximate expression and X 12 is determined using the approximate expression.

しかし、このような近似式により駆動信号レベルを求める方法では、駆動信号レベル対受光信号レベル特性によっては、近似式が1つしかない場合、近似式と実際の特性とのズレが大きくなり、正確な駆動信号レベルを求められないという問題がある。この問題を解決するため、近似式を2つ以上にすることが考えられるが、それだけでは、正確な駆動信号レベルを求めることはできるものの、そのための時間が長くなる。   However, in such a method for calculating the drive signal level using the approximate expression, if there is only one approximate expression depending on the drive signal level versus the light receiving signal level characteristic, the difference between the approximate expression and the actual characteristic becomes large, and the There is a problem that a high drive signal level cannot be obtained. In order to solve this problem, it is conceivable to use two or more approximate equations. However, it is possible to obtain an accurate drive signal level by itself, but it takes a long time.

特許第2642351号公報Japanese Patent No. 2642351 特開2002−6568号公報(段落0004)JP2002-6568 (paragraph 0004) 特開2002−296852号公報JP 2002-296852 A

本発明は、このような問題点を解決するためになされたものであり、その目的は、発光素子から放射され、対象物で反射された反射光を受光素子で検知することにより対象物を検知する光電検知装置において、駆動信号レベル対受光信号レベル特性が駆動信号レベルの変域に応じて複数の近似式で表現される場合に、駆動信号レベルの調整範囲を限定し、調整範囲に適合した近似式を選択することにより、正確かつ迅速に駆動信レベルの設定を行えるようにすることである。   The present invention has been made to solve such problems, and its object is to detect an object by detecting reflected light emitted from a light emitting element and reflected by the object with a light receiving element. In the photoelectric sensing device, when the drive signal level vs. received light signal level characteristic is expressed by a plurality of approximate expressions according to the drive signal level range, the adjustment range of the drive signal level is limited and adapted to the adjustment range By selecting an approximate expression, the driving signal level can be set accurately and quickly.

請求項1の発明は、発光素子と、該発光素子から対象物に照射された光の反射光を検知する受光素子とを有し、前記発光素子の駆動信号レベルに対する前記受光素子の受光信号レベルの特性が前記駆動信号レベルの変域に応じて異なる複数の近似式で表されるものである光電検知装置であって、前記発光素子を所定の基準レベルの駆動信号で駆動する基準レベル駆動手段と、前記発光素子が所定の基準レベルの駆動信号で駆動されたときの受光信号レベルと前記目標値との大小関係を判定する判定手段と、該判定手段の判定結果に基づいて前記駆動信号レベルの調整範囲及びその調整範囲の前記計算式を選択する選択手段と、該選択手段により選択された調整範囲内の複数のレベルの駆動信号で前記発光素子を駆動したときの前記受光素子の受光信号レベルと、前記選択手段で選択された計算式とを用いて前記近似式を求めるとともに、該近似式を用いて前記受光素子の受光信号レベルを前記目標値とする駆動信号レベルを決定する手段とを備えたことを特徴とする光電検知装置。
請求項2の発明は、請求項1記載の光電検知装置において、前記基準レベルを複数有することを特徴とする。
請求項3の発明は、請求項2記載の光電検知装置において、発光素子と受光素子との組を複数有し、前記基準レベル駆動手段は、発光素子毎に異なる基準レベルの駆動信号で駆動し、前記判定手段は、前記組毎に受光素子の受光信号レベルと前記目標値との大小関係を判定し、前記選択手段は、前記判定手段の判定結果に基づいて前記組毎に駆動信号レベルの調整範囲及び前記計算式を選択することを特徴とする。
請求項4の発明は、請求項1〜3の何れかに記載の光電検知装置において、前記基準レベルは、前記複数の近似式の境界の駆動信号レベルであることを特徴とする。
請求項5の発明は、請求項1〜4の何れかに記載の光電検知装置を備えたことを特徴とする画像形成装置である。
請求項6の発明は、発光素子と、前記発光素子から対象物に照射された光の反射光を検知する受光素子とを有し、前記発光素子の駆動信号レベルに対する前記受光素子の受光信号レベルの特性が前記駆動信号レベルの変域に応じて異なる複数の近似式で表されるものである光電検知装置の前記受光信号レベルが所定の目標値になるように前記発光素子の発光強度を調整する方法であって、発光素子を所定の基準レベルの駆動信号で駆動する基準レベル駆動工程と、前記基準レベルで駆動された前記発光素子から前記対象物に照射された光の反射光を前記受光素子で受光し、受光信号を生成する工程と、該受光信号のレベルと前記目標値との大小関係を判定する工程と、該大小関係の判定結果に基づいて、前記駆動信号レベルの調整範囲、及びその調整範囲の近似式を求めるための計算式を選択する工程と、選択された調整範囲内の複数のレベルの駆動信号で前記発光素子を駆動する工程と、該複数のレベルの駆動信号で駆動された前記発光素子から前記対象物に照射された光の反射光を前記受光素子で受光し、受光信号を生成する工程と、該複数の受光信号のレベルと前記選択された計算式とを用いて、前記近似式を求めるとともに、該近似式を用いて前記受光素子の受光信号レベルを前記目標値とする駆動信号レベルを決定する工程とを備えたことを特徴とする光電検知装置の発光強度調整方法である。
請求項7の発明は、請求項6記載の光電検知装置の発光強度調整方法において、発光素子と受光素子との組を複数設け、前記基準レベル駆動工程は、発光素子毎に異なる基準レベルの駆動信号で駆動し、前記判定工程は、前記組毎に受光素子の受光信号レベルと前記目標値との大小関係を判定し、前記選択工程は、前記判定工程の判定結果に基づいて前記組毎に駆動信号レベルの調整範囲及び前記計算式を選択することを特徴とする。
The invention according to claim 1 includes a light emitting element and a light receiving element that detects reflected light of light emitted from the light emitting element to an object, and a light receiving signal level of the light receiving element with respect to a driving signal level of the light emitting element. Is a photoelectric detection device whose characteristics are expressed by a plurality of approximate expressions that differ according to the drive signal level range, and that drives the light emitting element with a drive signal of a predetermined reference level. Determining means for determining a magnitude relationship between the light receiving signal level and the target value when the light emitting element is driven by a driving signal of a predetermined reference level, and the drive signal level based on the determination result of the determining means A selection means for selecting the adjustment range and the calculation formula of the adjustment range, and the light-receiving element when the light-emitting element is driven by drive signals of a plurality of levels within the adjustment range selected by the selection means. The approximate expression is obtained using the optical signal level and the calculation formula selected by the selection means, and the drive signal level with the received light signal level of the light receiving element as the target value is determined using the approximate expression. And a photoelectric detector.
According to a second aspect of the present invention, there is provided the photoelectric detection device according to the first aspect, wherein a plurality of the reference levels are provided.
According to a third aspect of the present invention, in the photoelectric detection device according to the second aspect, the plurality of pairs of light emitting elements and light receiving elements are provided, and the reference level driving means is driven by a driving signal having a different reference level for each light emitting element. The determining means determines the magnitude relationship between the light receiving signal level of the light receiving element and the target value for each set, and the selecting means determines the drive signal level for each set based on the determination result of the determining means. The adjustment range and the calculation formula are selected.
According to a fourth aspect of the present invention, in the photoelectric detection device according to any one of the first to third aspects, the reference level is a drive signal level at a boundary between the plurality of approximate expressions.
A fifth aspect of the present invention is an image forming apparatus comprising the photoelectric detection device according to any one of the first to fourth aspects.
The invention according to claim 6 includes a light emitting element and a light receiving element that detects reflected light of light emitted from the light emitting element to an object, and a light receiving signal level of the light receiving element with respect to a driving signal level of the light emitting element. The light emission intensity of the light emitting element is adjusted so that the light reception signal level of the photoelectric detection device is a predetermined target value, in which the characteristics of the photoelectric detection device are expressed by a plurality of approximate expressions that vary depending on the drive signal level range A reference level driving step of driving a light emitting element with a drive signal of a predetermined reference level, and a light reflected from the light emitted from the light emitting element driven at the reference level to the object. Receiving light by the element, generating a received light signal, determining a magnitude relationship between the level of the received light signal and the target value, and an adjustment range of the drive signal level based on a determination result of the magnitude relationship; as well as Selecting a calculation formula for obtaining an approximate expression of the adjustment range, driving the light emitting element with a plurality of levels of drive signals within the selected adjustment range, and driving with the plurality of levels of drive signals The reflected light of the light emitted from the light emitting element to the object is received by the light receiving element, a light receiving signal is generated, and the levels of the plurality of light receiving signals and the selected calculation formula are used. And a step of determining a drive signal level using the approximate expression as a target value with the received light signal level of the light receiving element as a target value. It is an adjustment method.
According to a seventh aspect of the present invention, in the method for adjusting the light emission intensity of the photoelectric detection device according to the sixth aspect, a plurality of pairs of light emitting elements and light receiving elements are provided, and the reference level driving step drives different reference levels for each light emitting element. Driven by a signal, the determination step determines a magnitude relationship between the light reception signal level of the light receiving element and the target value for each set, and the selection step is performed for each set based on a determination result of the determination step. The adjustment range of the drive signal level and the calculation formula are selected.

本発明によれば、発光素子の駆動信号レベルに対する受光素子の受光信号レベルの特性を前記駆動信号レベルの変域に応じて異なる複数の近似式で表し、発光素子を所定の基準レベルの駆動信号で駆動したときの受光素子の受光信号レベルとその目標値との大小関係に基づいて、駆動信号レベルの調整範囲、及びその調整範囲の近似式を求めるための計算式を選択し、選択された調整範囲内の複数のレベルの駆動信号で発光素子を駆動したときの受光素子の受光信号レベルと、前記選択された計算式とを用いて、前記近似式を求め、その近似式を用いて、前記受光素子の受光信号レベルを前記目標値とする駆動信号レベルを決定するので、駆動信号レベルの調整範囲を限定し、調整範囲に適合した近似式を用いるので、正確かつ迅速に駆動信号レベルの設定を行うことができる。   According to the present invention, the characteristics of the light receiving signal level of the light receiving element with respect to the driving signal level of the light emitting element are expressed by a plurality of approximate expressions that differ according to the range of the driving signal level, and the light emitting element is represented by a driving signal having a predetermined reference level. Based on the magnitude relationship between the light receiving signal level of the light receiving element and its target value when driven with the, select the calculation formula for obtaining the adjustment range of the driving signal level and the approximate expression of the adjustment range Using the light receiving signal level of the light receiving element when driving the light emitting element with a plurality of levels of driving signals within the adjustment range and the selected calculation formula, the approximate expression is obtained, and using the approximate expression, Since the drive signal level with the received light signal level of the light receiving element as the target value is determined, the adjustment range of the drive signal level is limited, and an approximate expression suitable for the adjustment range is used. Level setting can be performed.

以下、本発明の実施形態について図面を参照しながら説明する。
[第1の実施形態]
図1は本発明の第1の実施形態のカラー画像形成装置の要部の構成を示す正面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a front view showing a configuration of a main part of a color image forming apparatus according to a first embodiment of the present invention.

このカラー画像形成装置は、中間転写ベルトに沿って各色の画像形成部が並べられた構成を備えるものであり、所謂、タンデム方式である。即ち、中間転写ベルト5の回転方向の上流側から順に、4つの画像形成部(電子写真プロセス部)6Y、6M、6C、6BKが配列されている。中間転写ベルト5は回転駆動される駆動ローラ7と従動ローラ8とに巻回されたエンドレス(無端状)のベルトであり、駆動ローラ7は駆動モータ(図示せず)により回転駆動される。   This color image forming apparatus has a configuration in which image forming portions of respective colors are arranged along an intermediate transfer belt, and is a so-called tandem system. That is, four image forming units (electrophotographic process units) 6Y, 6M, 6C, and 6BK are arranged in order from the upstream side in the rotation direction of the intermediate transfer belt 5. The intermediate transfer belt 5 is an endless (endless) belt wound around a drive roller 7 and a driven roller 8 that are driven to rotate. The drive roller 7 is driven to rotate by a drive motor (not shown).

これら複数の画像形成部6Y、6M、6C、6BKは、形成するトナー画像の色が異なるだけで内部構成は共通である。画像形成部6Yはイエローのトナー画像を、画像形成部6Mはマゼンタのトナー画像を、画像形成部6Cはシアンのトナー画像を、画像形成部6BKはブラックのトナー画像をそれぞれ形成する。よって、以下の説明では、画像形成部6Yについて具体的に説明するが、他の画像形成部6M、6C、6BKの構成は画像形成部6Yと同様であるので、それらの画像形成部6M、6C、6BKの各構成要素については、画像形成装置6Yの各構成要素に付したYに替えて、M、C、BKによって区別した符号を図に表示するにとどめ、説明を省略する。   The plurality of image forming units 6Y, 6M, 6C, and 6BK have the same internal configuration except that the colors of the toner images to be formed are different. The image forming unit 6Y forms a yellow toner image, the image forming unit 6M forms a magenta toner image, the image forming unit 6C forms a cyan toner image, and the image forming unit 6BK forms a black toner image. Therefore, in the following description, the image forming unit 6Y will be specifically described. However, since the other image forming units 6M, 6C, and 6BK have the same configuration as the image forming unit 6Y, the image forming units 6M, 6C are similar to the image forming unit 6Y. 6BK, only the symbols distinguished by M, C, and BK are displayed in the figure in place of the Y added to each component of the image forming apparatus 6Y, and the description thereof is omitted.

画像形成部6Yは、感光体ドラム9Y、この感光体ドラム9Yの周囲に配置された帯電器10Y、露光器11、現像器12Y、感光体クリーナ(図示せず)、除電器13Y等から構成されている。露光器11は、各画像形成部6Y、6M、6C、6BKが形成するトナー画像の色に対応する露光光であるレーザ光14Y、14M、14C、14BKを照射するように構成されている。   The image forming unit 6Y includes a photoreceptor drum 9Y, a charger 10Y disposed around the photoreceptor drum 9Y, an exposure device 11, a developing device 12Y, a photoreceptor cleaner (not shown), a static eliminator 13Y, and the like. ing. The exposure device 11 is configured to irradiate laser beams 14Y, 14M, 14C, and 14BK that are exposure lights corresponding to the colors of the toner images formed by the image forming units 6Y, 6M, 6C, and 6BK.

画像形成に際し、感光体ドラム9Yの外周面は、暗中にて帯電器10Yにより一様に帯電された後、露光器11からのイエロー画像に対応したレーザ光14Yにより露光され、静電潜像が形成される。現像器12Yは、この静電潜像をイエローのトナーにより可視像化(現像)し、このことにより感光体ドラム9Y上にイエローのトナー画像が形成される。このイエローのトナー画像は、感光体ドラム9Yと中間転写ベルト5とが接する位置(1次転写位置)で、転写器15Yの働きにより中間転写ベルト5上に転写される。トナー画像の転写が終了した感光体ドラム9Yは、外周面に残留した不要なトナーが感光体クリーナにより払拭された後、除電器13Yにより除電され、次の画像形成のために待機する。同様に、マゼンタのトナー画像、シアンのトナー画像、ブラックのトナー画像は、それぞれ感光体ドラム9M、9C、9BKと上記1次転写位置で、転写器15M、15C、15BKの働きにより中間転写ベルト5上に転写される。この転写により、中間転写ベルト5上に各色のトナーによる画像が重ね合わされたフルカラー画像が形成される。   At the time of image formation, the outer peripheral surface of the photosensitive drum 9Y is uniformly charged by the charger 10Y in the dark, and then exposed by the laser beam 14Y corresponding to the yellow image from the exposure device 11, so that the electrostatic latent image is formed. It is formed. The developing device 12Y visualizes (develops) the electrostatic latent image with yellow toner, thereby forming a yellow toner image on the photosensitive drum 9Y. This yellow toner image is transferred onto the intermediate transfer belt 5 by the action of the transfer unit 15Y at a position where the photosensitive drum 9Y and the intermediate transfer belt 5 are in contact (primary transfer position). After the transfer of the toner image is completed, unnecessary toner remaining on the outer peripheral surface of the photosensitive drum 9Y is wiped off by the photosensitive cleaner, and then is neutralized by the static eliminator 13Y and waits for the next image formation. Similarly, a magenta toner image, a cyan toner image, and a black toner image are respectively transferred to the intermediate transfer belt 5 by the functions of the transfer units 15M, 15C, and 15BK at the photosensitive drums 9M, 9C, and 9BK and the primary transfer position. Transcribed above. By this transfer, a full color image is formed on the intermediate transfer belt 5 by superimposing the images of the respective color toners.

一方、給紙トレイ1に収納された用紙4は最も上のものから順に送り出され、中間転写ベルト5上に搬送され、中間転写ベルト5と用紙4とが接する位置(2次転写位置)にて、フルカラーのトナー画像を転写される。このフルカラーの重ね合わせ画像が形成された用紙4は、中間転写ベルト5から剥離されて定着器16にて画像を定着された後、画像形成装置の外部に排紙される。   On the other hand, the sheets 4 stored in the sheet feeding tray 1 are sent out in order from the uppermost one, conveyed onto the intermediate transfer belt 5, and at a position where the intermediate transfer belt 5 and the sheet 4 are in contact (secondary transfer position). A full color toner image is transferred. The sheet 4 on which the full-color superimposed image is formed is peeled off from the intermediate transfer belt 5 and fixed on the image by the fixing device 16, and then discharged to the outside of the image forming apparatus.

また、本実施形態のカラー画像形成装置では、従来の画像形成装置と同様に、装置本体の電源スイッチ投入時や所定回数の画像形成毎に画像形成の前処理として、画像形成部6Y、6M、6C、6BKにより中間転写ベルト5に位置ずれ補正パターン、トナー濃度検知用パターンなどを作像し、中間転写ベルト5の回転方向の画像形成部6BKよりも下流側に対向するように配置された光電センサ17によりそれらのパターンを検出し、位置ずれ補正制御やトナー濃度制御を行う。これらの制御の詳細は前述した特許文献1、2などに開示されているので、ここでは説明せず、中間転写ベルト5からの反射光の受光信号レベルが所定の目標値になるように、光電センサ17の発光強度を調整する手段について説明する。   In the color image forming apparatus according to the present embodiment, as in the conventional image forming apparatus, the image forming units 6Y, 6M, 6M, 6M, and 6M are pre-processed when the power switch of the apparatus main body is turned on or every predetermined number of image formations. 6C and 6BK form a positional deviation correction pattern, a toner density detection pattern, and the like on the intermediate transfer belt 5, and photoelectric elements disposed so as to face the downstream side of the image forming unit 6BK in the rotation direction of the intermediate transfer belt 5. These patterns are detected by the sensor 17, and positional deviation correction control and toner density control are performed. Details of these controls are disclosed in the above-mentioned Patent Documents 1 and 2, etc., and will not be described here. The control is performed so that the light reception signal level of the reflected light from the intermediate transfer belt 5 becomes a predetermined target value. A means for adjusting the light emission intensity of the sensor 17 will be described.

図2は、光電センサ17の発光素子20の発光強度の調整を行う装置の電気的構成を示すブロック図である。
この装置は、データバス31により互いに接続されたCPU30、RAM32、ROM33、不揮発性メモリ34、及びI/Oポート35と、それぞれがI/Oポート35に接続された、光電センサ17の発光素子20の発光量を制御する部分(駆動回路23、発光量制御部24)と、光電センサ17の受光素子21の検知信号を取り込む部分(増幅器25、A/D変換器26)とからなる。光電センサ17は、発光素子20から放射された光が中間転写ベルト5(図1)の表面の平坦部或いは曲面部(ローラ7上)に照射されて反射し、正反射光又は拡散反射光が受光素子21で受光されるように配置されている。
FIG. 2 is a block diagram showing an electrical configuration of a device that adjusts the light emission intensity of the light emitting element 20 of the photoelectric sensor 17.
This device includes a CPU 30, a RAM 32, a ROM 33, a nonvolatile memory 34, and an I / O port 35 connected to each other via a data bus 31, and the light emitting element 20 of the photoelectric sensor 17 that is connected to the I / O port 35. The portion for controlling the light emission amount (the drive circuit 23, the light emission amount control unit 24) and the portion for taking in the detection signal of the light receiving element 21 of the photoelectric sensor 17 (amplifier 25, A / D converter 26). The photoelectric sensor 17 irradiates and reflects the light emitted from the light emitting element 20 on the flat surface or curved surface (on the roller 7) of the surface of the intermediate transfer belt 5 (FIG. 1), and the regular reflected light or diffuse reflected light is reflected. The light receiving element 21 is disposed so as to receive light.

CPU30はこの装置全体の制御や各種処理を実行し、RAM32はCPU30が各種制御などを実行するときのワークエリアとなり、ROM33にはCPU30が各種制御などを実行するときに使用するプログラムが格納されている。また、NVRAM(不揮発性RAM)やフラッシュメモリなどの不揮発性メモリ34には、受光素子21の検知信号レベルが所定の目標値になるように設定するために必要な各種データ(詳細は後述)が格納されている。   The CPU 30 executes control of the entire apparatus and various processes, the RAM 32 serves as a work area when the CPU 30 executes various controls, and the ROM 33 stores programs used when the CPU 30 executes various controls. Yes. Further, in the nonvolatile memory 34 such as NVRAM (nonvolatile RAM) or flash memory, various data (details will be described later) necessary for setting the detection signal level of the light receiving element 21 to a predetermined target value. Stored.

図3は発光素子20及び駆動回路23の具体的構成例を示す回路図である。この図に示すように、発光ダイオードからなる発光素子20のアノードが電源に接続され、発光素子20のカソードは、駆動回路23を構成するトランジスタのコレクタに接続され、そのトランジスタのベースには、発光量制御部24からのPWM駆動信号が、ローパスフィルタ及びアンプを通して供給される。また、上記トランジスタのエミッタとグランドとの間には、抵抗及びダイオードの直列回路が接続されている。このダイオードは、発光素子20が所定の閾値(例、0.7ボルト)以下のノイズにより発光するのを防止するために設けられている。   FIG. 3 is a circuit diagram showing a specific configuration example of the light emitting element 20 and the drive circuit 23. As shown in this figure, the anode of the light emitting element 20 made of a light emitting diode is connected to the power source, the cathode of the light emitting element 20 is connected to the collector of the transistor constituting the drive circuit 23, and the base of the transistor has light emission. A PWM drive signal from the quantity control unit 24 is supplied through a low-pass filter and an amplifier. A series circuit of a resistor and a diode is connected between the emitter of the transistor and the ground. This diode is provided in order to prevent the light emitting element 20 from emitting light due to noise of a predetermined threshold value (eg, 0.7 volts) or less.

図4は発光素子20の駆動信号レベルに対する受光素子21の受光信号レベルの特性(駆動信号レベル対受光信号レベル特性)を示すグラフである。このグラフの横軸(X軸)は発光素子20の駆動信号レベルであり、縦軸(Y軸)は受光素子21の受光信号レベルである。この図に示すように、駆動信号レベル対受光信号レベル特性は、駆動信号の0から最大値の間が駆動信号Xを境界として二つの近似関数で表わしている。ここでは、Xより以下の領域(領域a)は二次関数f(X)=eX2+gX(e、gは定数)、X以上の領域(領域b)は一次関数f(X)=hX+k(h、kは定数)である。ここで、受光素子21の光電変換特性はリニアとしており、従って、発光層素子20の駆動電流レベルに対する発光強度もこの図と同様な特性となる。 FIG. 4 is a graph showing the characteristics of the light reception signal level of the light receiving element 21 with respect to the drive signal level of the light emitting element 20 (drive signal level versus light reception signal level characteristic). The horizontal axis (X axis) of this graph is the drive signal level of the light emitting element 20, and the vertical axis (Y axis) is the light reception signal level of the light receiving element 21. As shown in this figure, drive signal level to the received light signal level characteristics, between a maximum value from 0 of the driving signal is expressed by two approximate functions as a boundary drive signal X 0. Here, the region (region a) below X 0 is the quadratic function f 1 (X) = eX 2 + gX (e and g are constants), and the region (region b) above X 0 is the linear function f 2 (X ) = HX + k (h and k are constants). Here, the photoelectric conversion characteristic of the light receiving element 21 is linear, and therefore, the light emission intensity with respect to the drive current level of the light emitting layer element 20 is the same characteristic as this figure.

不揮発性メモリ34には、中間転写ベルト5が新品のときの駆動信号レベル対受光信号レベル特性(f(X)、f(X))のデータが格納されている。また、不揮発性メモリ34には、中間転写ベルト5が新品のときに、受光信号レベルが所定の目標値Y11になるときの駆動信号レベルX11が格納されている。さらに、不揮発性メモリ34には、f(X)及びf(X)が格納されている。従って、中間転写ベルト5が新品のときは、発光素子20の駆動信号レベルをX11とすると、受光素子21の受光信号レベルはY11となり、駆動信号レベルをX11から増減することにより、受光信号レベルをY11から増減することができる。 The nonvolatile memory 34 stores data of drive signal level vs. received light signal level characteristics (f 1 (X), f 2 (X)) when the intermediate transfer belt 5 is new. The non-volatile memory 34 stores a drive signal level X 11 when the light reception signal level reaches a predetermined target value Y 11 when the intermediate transfer belt 5 is new. Further, f 1 (X) and f 2 (X) are stored in the nonvolatile memory 34. Therefore, when the intermediate transfer belt 5 is new, when the drive signal level of the light emitting element 20 and X 11, the light receiving signal level of the light receiving element 21 by increasing or decreasing next Y 11, the levels of the drive signal from X 11, a light receiving it is possible to increase or decrease the signal level from the Y 11.

しかし、画像形成装置を使用することにより、中間転写ベルト5の汚れや劣化などによりその反射率が低下すると、発光素子20の駆動信号レベルをX11に設定しても、受光素子21の受光信号レベルはY11よりも小さくなる。このため、受光信号レベルを新品時の目標値Y11にするためには、駆動信号レベルをX11よりも大きくする必要がある。本実施形態では、以下の手順により、駆動信号レベルを求めている。 However, by using an image forming apparatus, if the reflectivity by dirt and deterioration of the intermediate transfer belt 5 is lowered, setting a driving signal level of the light emitting element 20 to X 11, a light receiving signal of the light receiving element 21 level is less than Y 11. Therefore, in order to make the light reception signal level to the target value Y 11 at the time of a new, it is necessary to drive a signal level greater than X 11. In the present embodiment, the drive signal level is obtained by the following procedure.

ここで、中間転写ベルト5の汚れや劣化などによりその反射率が低下したときの駆動信号レベル対受光信号レベル特性が図4に示すように、領域aではF(X)、領域bではF(X)になっているものとする。本実施形態では、F(X)をpX2+qX、F(X)をrX+sとし、その近似式を用いて、受光信号レベルを目標値Y11にするための駆動信号レベルを求める。以下、図5に示すフローチャートを参照しながら説明する。 Here, as shown in FIG. 4, the drive signal level vs. received light signal level characteristics when the reflectance is reduced due to dirt or deterioration of the intermediate transfer belt 5 are F 1 (X) in the region a, and F in the region b. 2 (X). In this embodiment, F 1 (X) is set to pX 2 + qX, F 2 (X) is set to rX + s, and an approximate expression thereof is used to obtain a drive signal level for setting the received light signal level to the target value Y 11 . Hereinafter, a description will be given with reference to the flowchart shown in FIG.

まず、CPU30は、発光量制御部24を制御して、駆動回路23から基準レベルの駆動信号(以下、基準信号という)を発光素子20に入力し(S1)、発光素子20を発光させる(S2)。ここで、基準レベルは、図4におけるX、即ち領域aとbの境界のレベルである。次いで、中間転写ベルト5で反射した光を受光素子21で検知し(S3)、増幅器25により増幅し、その受光信号レベルをA/D変換器26によりデジタル値に変換してRAM32に記録する(S4)。 First, the CPU 30 controls the light emission amount control unit 24 to input a drive signal of a reference level (hereinafter referred to as a reference signal) from the drive circuit 23 to the light emitting element 20 (S1), and causes the light emitting element 20 to emit light (S2). ). Here, the reference level is X 0 in FIG. 4, that is, the level at the boundary between the regions a and b. Next, the light reflected by the intermediate transfer belt 5 is detected by the light receiving element 21 (S3), amplified by the amplifier 25, and the received light signal level is converted into a digital value by the A / D converter 26 and recorded in the RAM 32 ( S4).

次いで、サンプル値を全て記録したか否かを判断する(S5)。ここでは、基準信号により発光素子を駆動したときの受光信号レベルを記録しただけなので、ステップS6へ進み、入力信号が基準信号であるか否かを判断する(S6)。ここでは入力信号が基準信号であるから、ステップS7へ進み、受光信号レベルが所定の値Z以上か否かを判断する。ここで、Zはf(X)(=f(X))でもよいが、ノイズを考慮して、f(X)よりも少し大きな値にすることが好適である。 Next, it is determined whether all sample values have been recorded (S5). Here, since only the received light signal level when the light emitting element is driven by the reference signal is recorded, the process proceeds to step S6 to determine whether or not the input signal is the reference signal (S6). Here, since the input signal is the reference signal, the process proceeds to step S7, and it is determined whether or not the light reception signal level is equal to or higher than a predetermined value Z. Here, Z may be f 2 (X 0 ) (= f 1 (X 0 )), but is preferably set to a value slightly larger than f 2 (X 0 ) in consideration of noise.

ステップS7にて受光信号レベルがZ以上であると判断した場合は(S7:YES)、領域aの近似式であるpX2+qXを求めるための計算式Aを不揮発性メモリ34から読み出してRAM32に記憶し(S8)、領域a内に複数の異なる駆動信号レベルのサンプルを設定する(S9)。一方、ステップS7にて受光信号レベルがZ未満であると判断した場合は(S7:NO)、領域bの近似式であるrX+sを求めるための計算式Bを不揮発性メモリ34から読み出してRAM32に記憶し(S10)、領域b内に複数の異なる駆動信号レベルのサンプルを設定する(S11)。 If it is determined in step S7 that the received light signal level is equal to or higher than Z (S7: YES), a calculation formula A for obtaining pX 2 + qX, which is an approximate expression for the region a, is read from the nonvolatile memory 34 and stored in the RAM 32. Store (S8), and set a plurality of samples of different drive signal levels in the region a (S9). On the other hand, if it is determined in step S7 that the received light signal level is less than Z (S7: NO), calculation formula B for obtaining rX + s, which is an approximate expression for region b, is read from nonvolatile memory 34 and stored in RAM 32. Store (S10), and set a plurality of samples of different drive signal levels in the region b (S11).

上記ステップS8〜S11の処理について図4を用いて説明する。この図の場合、駆動信号レベルがXのときの受光信号レベルはZ(≒Y11)よりも小さいため、ステップS10へ進み、領域bの近似式であるrX+sを求めるための計算式Bを選択してRAM32に設定するとともに、領域b内に複数の異なる駆動信号レベルのサンプルを設定する。次いで、この複数の駆動信号レベルにより順次発光素子20を駆動し(S2)、受光素子21の受光信号レベルをRAM32に記録する(S3、S4)。そして、駆動信号レベルの全てのサンプルに対する受光信号レベルのサンプルの記録を行う迄、ステップS2〜S4の処理を繰り返し(S5:NO、S6:NO)、全てのサンプルの記録が終了したときに(S5:YES)、調整を実行する(S12)。 The processes in steps S8 to S11 will be described with reference to FIG. In this case, since the received light signal level when the drive signal level is X 0 is smaller than Z (≈Y 11 ), the process proceeds to step S10, and a calculation formula B for obtaining rX + s, which is an approximate expression of the region b, is obtained. While being selected and set in the RAM 32, a plurality of samples having different drive signal levels are set in the region b. Next, the light emitting element 20 is sequentially driven by the plurality of driving signal levels (S2), and the light receiving signal level of the light receiving element 21 is recorded in the RAM 32 (S3, S4). Then, the processes of steps S2 to S4 are repeated (S5: NO, S6: NO) until the recording of the light reception signal level for all the samples of the drive signal level is performed (S5: NO, S6: NO). S5: YES), adjustment is executed (S12).

ステップS12の調整は以下のようにして行う。まず、複数の異なる駆動信号レベルのサンプルXに対する受光信号レベルYを用いて、上記計算式により近似式rX+sのr及びsの値を求める。次いで、この近似式にて、rX+s=Y11となるXを求める。図4の場合は、X=X12=(Y11−s)/rである。領域aの近似式を用いるステップS9、S10の場合は、pX2+qX=Y11を解くことにより、駆動信号レベルを決定する。r及びsを求める計算式、並びにp及びqを求める計算式の一例を以下に示す。 The adjustment in step S12 is performed as follows. First, by using the received light signal level Y i for the sample X i of a plurality of different levels of the drive signal, determining the values of r and s approximations rX + s by the above equation. Next, X that satisfies rX + s = Y 11 is obtained by this approximate expression. In the case of FIG. 4, X = X 12 = (Y 11 -s) / r. In the case of steps S9 and S10 using the approximate expression of the region a, the drive signal level is determined by solving for pX 2 + qX = Y 11 . An example of a calculation formula for obtaining r and s and a calculation formula for obtaining p and q are shown below.

Figure 2008039636
Figure 2008039636
上記の式[1]はrを求める計算式であり、式[2]はsを求める計算式である。
Figure 2008039636
Figure 2008039636
The above formula [1] is a formula for calculating r, and formula [2] is a formula for calculating s.

Figure 2008039636
Figure 2008039636
Figure 2008039636
Figure 2008039636
また、p、qは、式[3]及び式[4]を解くことで得られる、式[5]、式[6]により算出する。
Figure 2008039636
Figure 2008039636
Figure 2008039636
Figure 2008039636
In addition, p and q are calculated by Equation [5] and Equation [6] obtained by solving Equation [3] and Equation [4].

このように本発明の第1の実施形態の画像形成装置によれば、発光素子20を所定の基準レベルの駆動信号で駆動したときの受光素子21の受光信号レベルとその目標値との大小関係に基づいて、駆動信号レベルの調整範囲、及びその調整範囲の近似式を求めるための計算式を選択し、選択された調整範囲内で駆動信号レベルのサンプル値を設定し、サンプル値の駆動信号で発光素子20を駆動したときの受光素子21の受光信号レベルと、前記選択された計算式とを用いて、近似式を求め、その近似式を用いて、受光素子21の受光信号レベルを目標値とする駆動信号レベルを決定するので、駆動信号レベル対受光信号レベル特性に応じて、複数の近似式を設定し、正確かつ迅速に駆動電流の設定を行うことができる。なお、以上の説明では、基準値として領域aとbの境界のレベルの値を採用したが、領域a内又は領域b内の値を用いてもよい。   As described above, according to the image forming apparatus of the first embodiment of the present invention, the magnitude relationship between the light reception signal level of the light receiving element 21 and the target value when the light emitting element 20 is driven by the drive signal of the predetermined reference level. The drive signal level adjustment range and a calculation formula for obtaining an approximate expression of the adjustment range are selected, and the drive signal level sample value is set within the selected adjustment range, and the sample value drive signal is set. An approximate expression is obtained using the received light signal level of the light receiving element 21 when the light emitting element 20 is driven and the selected calculation formula, and the received light signal level of the light receiving element 21 is set as a target using the approximate expression. Since the drive signal level to be a value is determined, a plurality of approximate expressions can be set according to the drive signal level vs. received light signal level characteristics, and the drive current can be set accurately and quickly. In the above description, the value of the level at the boundary between the regions a and b is used as the reference value, but the value in the region a or the region b may be used.

[第2の実施形態]
図6は本発明の第2の実施形態のカラー画像形成装置における光電センサの駆動信号レベル対受光信号レベル特性を示すグラフであり、図7は受光素子の受光信号レベルを新品時の目標値に設定するための発光素子の駆動信号レベルを求める手順を示すフローチャートである。なお、本実施形態のカラー画像形成装置の要部の構成、及び光電センサの発光素子の発光強度の調整を行う装置の電気的構成は第1の実施形態と同じであるから、説明を省略する。
[Second Embodiment]
FIG. 6 is a graph showing the drive signal level vs. received light signal level characteristic of the photoelectric sensor in the color image forming apparatus according to the second embodiment of the present invention, and FIG. 7 shows the received light signal level of the light receiving element as a target value when new. It is a flowchart which shows the procedure which calculates | requires the drive signal level of the light emitting element for setting. The configuration of the main part of the color image forming apparatus according to the present embodiment and the electrical configuration of the apparatus that adjusts the light emission intensity of the light emitting element of the photoelectric sensor are the same as those in the first embodiment, and thus the description thereof is omitted. .

図6に示すように、本実施形態の光電センサ17の駆動信号レベル対受光信号レベル特性は、駆動信号の0から最大値の間が4つの領域a、b、c、d(この図のa、bと図4のa、bとは異なる)に分かれており、それぞれの領域を異なる近似式により表す。そして、受光素子21の受光信号レベルを目標値に設定するときに、基準信号として、信号A、即ち領域a、bの境界のレベルであるレベルXの信号を用い、その基準信号に対する受光信号レベルと、所定の値Z以上であれば、駆動信号レベルの調整範囲を領域aとし、領域aの近似式を求める計算式A(図5の計算式Aとは異なる)を選択し、領域a内に駆動信号レベルのサンプルを設定し、所定の値Z未満であれば、基準信号として、信号B、即ち領域b、cの境界のレベルであるレベルXの信号を用い、同様の手順を実行する。以下、図7を参照しながら説明する。 As shown in FIG. 6, the drive signal level vs. received light signal level characteristic of the photoelectric sensor 17 of the present embodiment has four regions a, b, c, d (a in this figure) between 0 and the maximum value of the drive signal. , B and a and b in FIG. 4 are different, and each region is represented by a different approximate expression. Then, when setting the light reception signal level of the light receiving element 21 to the target value, as the reference signal, signal A, i.e. with a signal in the area a, the level is the level of the boundary of b X A, light receiving signal for the reference signal If the level is equal to or greater than the predetermined value Z, the adjustment range of the drive signal level is set to the region a, and a calculation formula A for obtaining an approximate expression of the region a (different from the calculation formula A in FIG. 5) is selected. sets a sample drive signal level within, is less than the predetermined value Z, as the reference signal, the signal B, that region b, using the signal level X B is the level of the boundary of c, and the same procedure Execute. Hereinafter, a description will be given with reference to FIG.

まず、信号Aを基準信号として駆動回路23から発光素子20に入力し(S21、S22)、発光素子20を発光させる(S23)。次いで、中間転写ベルト5で反射した光を受光素子21で検知し(S24)、増幅器25により増幅し、その受光信号レベルをA/D変換器26によりデジタル値に変換してRAM32に記録する(S25)。   First, the signal A is input as a reference signal from the drive circuit 23 to the light emitting element 20 (S21, S22), and the light emitting element 20 is caused to emit light (S23). Next, the light reflected by the intermediate transfer belt 5 is detected by the light receiving element 21 (S24), amplified by the amplifier 25, and the received light signal level is converted into a digital value by the A / D converter 26 and recorded in the RAM 32 ( S25).

次いで、受光信号レベルが所定の値Z以上か否かを判断する。ここで、Zの値は第1の実施形態と同様に、新品時の駆動電流レベル対受光信号レベル特性において、駆動電流XAに対応する値よりも少し大きな値にすることが好適である。 Next, it is determined whether the light reception signal level is equal to or higher than a predetermined value Z. Here, the value of Z, as in the first embodiment, the drive current level to the received light signal level characteristics at the time of a new, it is preferable to slightly larger value than the value corresponding to the drive current X A.

ステップS26にて受光信号レベルがZ以上であると判断した場合は(S26:YES)、基準信号として信号Aが入力されているときは、領域aの近似式を求めるための計算式Aを不揮発性メモリ34から読み出してRAM32に記憶し、領域a内に複数の異なる駆動信号レベルのサンプルを設定する(S29)。また、基準信号として、それぞれ信号B、信号C(領域c、dの境界のレベルであるレベルXの信号)、信号D(領域dの駆動信号の最大値)が入力されているときは、それぞれ領域b、c、dの近似式を求めるための計算式B(図5の計算式Bとは異なる)、C、Dを不揮発性メモリ34から読み出してRAM32に記憶し、領域b、c、d内に複数の異なる駆動信号レベルのサンプルを設定する。 When it is determined in step S26 that the received light signal level is equal to or higher than Z (S26: YES), when the signal A is input as the reference signal, the calculation formula A for obtaining the approximate expression of the region a is nonvolatile. The data is read from the memory 34 and stored in the RAM 32, and a plurality of samples having different drive signal levels are set in the region a (S29). In addition, when a signal B, a signal C (level X C signal that is a level at the boundary between the areas c and d), and a signal D (maximum value of the driving signal in the area d) are input as reference signals, Calculation formulas B (different from calculation formula B in FIG. 5), C, and D for obtaining approximate expressions for the regions b, c, and d are read from the nonvolatile memory 34 and stored in the RAM 32, respectively. A plurality of samples of different drive signal levels are set in d.

ステップS29の設定を行った後は、第1の実施形態と同様に、設定した領域内の複数の駆動信号レベルにより順次発光素子20を駆動し(S31)、受光素子21の受光信号レベルをRAM32に記録し(S32、S33)、駆動信号レベルの全てのサンプルに対する受光信号レベルの記録が終了したときに(S34:YES)、調整を実行する(S35)。   After the setting in step S29, as in the first embodiment, the light emitting element 20 is sequentially driven by a plurality of drive signal levels in the set area (S31), and the light receiving signal level of the light receiving element 21 is set in the RAM 32. (S32, S33), and when the recording of the received light signal level for all the samples of the drive signal level is completed (S34: YES), the adjustment is executed (S35).

一方、ステップS26にて受光信号レベルがZ未満であると判断した場合は(S26:NO)、入力されている基準信号が信号Cであるか否かを判定し(S27)、信号Cでなかった場合は(S27:NO)は、入力されている基準信号が信号Aのときは信号Bに変更し、信号Bのときは信号Cに変更した後にステップS22へ進む。また、信号Cであった場合は(S27:YES)、基準信号を信号Dに設定してステップ31へ進む。   On the other hand, when it is determined in step S26 that the received light signal level is less than Z (S26: NO), it is determined whether or not the input reference signal is the signal C (S27). If (S27: NO), the signal is changed to the signal B when the input reference signal is the signal A, and when the signal is the signal B, the signal is changed to the signal C and then the process proceeds to step S22. If it is signal C (S27: YES), the reference signal is set to signal D and the routine proceeds to step 31.

つまり、受光信号レベルがZ以上になるまで、基準信号をレベルの小さい方から大きい方へと順に変更していき、基準信号が信号Dになる前に受光信号レベルがZ以上になった場合はその領域に、信号Dになった場合は領域Dに、複数の異なる駆動信号レベルのサンプルを設定し、設定した領域内の複数の駆動信号レベルにより順次発光素子20を駆動し、受光素子21の受光信号レベルをRAM32に記録するし、全ての駆動信号レベルのサンプルに対する受光信号レベルの記録が終了したときに、調整を実行している。   In other words, until the received light signal level becomes Z or higher, the reference signal is changed in order from the lower level to the higher level, and the received light signal level becomes Z or higher before the reference signal becomes the signal D. In the area, when the signal D is obtained, a plurality of samples having different drive signal levels are set in the area D, and the light emitting element 20 is sequentially driven by the plurality of drive signal levels in the set area. The received light signal level is recorded in the RAM 32, and the adjustment is executed when the received light signal level recording for all the samples of the drive signal level is completed.

このように、本実施形態によれば、駆動信号レベル対受光信号レベル特性を第1の実施形態よりも多数の近似式を用いて近似しているので、駆動信号レベルをより正確に調整することができる。   As described above, according to the present embodiment, the drive signal level vs. received light signal level characteristic is approximated by using a larger number of approximate equations than in the first embodiment, so that the drive signal level can be adjusted more accurately. Can do.

[第3の実施形態]
図8は本発明の第3の実施形態のカラー画像形成装置における画像形成部、中間転写ベルト、及び光電センサを示す斜視図であり、図9は受光素子の受光信号レベルを新品時の目標値に設定するための発光素子の駆動信号レベルを求める手順を示すフローチャートである。なお、本実施形態のカラー画像形成装置の要部の構成は第1の実施形態と同じであり、光電センサの駆動信号レベル対受光信号レベル特性の近似関数は第2の実施形態と同じである。
[Third Embodiment]
FIG. 8 is a perspective view showing an image forming unit, an intermediate transfer belt, and a photoelectric sensor in a color image forming apparatus according to a third embodiment of the present invention, and FIG. 9 shows a light receiving signal level of a light receiving element as a target value when new. 5 is a flowchart showing a procedure for obtaining a drive signal level of a light emitting element for setting to 1. The configuration of the main part of the color image forming apparatus of this embodiment is the same as that of the first embodiment, and the approximation function of the drive signal level vs. light reception signal level characteristic of the photoelectric sensor is the same as that of the second embodiment. .

図8に示すように、本実施形態では、中間転写ベルト5の主走査方向に3つの光電センサ17、18、19を対向させ、それぞれが左端付近、中央、右端付近からの反射光を検知する。   As shown in FIG. 8, in this embodiment, three photoelectric sensors 17, 18, 19 are opposed to each other in the main scanning direction of the intermediate transfer belt 5, and each detects reflected light from the vicinity of the left end, the center, and the vicinity of the right end. .

図9に示すように、光電センサ17、18、19の発光素子を駆動する基準信号として、光電センサ17は信号A、光電センサは信号B、光電センサ19は信号Cを設定し(S41)、各駆動回路から各発光素子に入力し(S42)、各発光素子を発光させる(S43)。次いで、中間転写ベルト5で反射した光を各受光素子で検知し(S44)、それぞれ増幅、デジタル変換を行いRAM32に記録する(S45)。   As shown in FIG. 9, as a reference signal for driving the light emitting elements of the photoelectric sensors 17, 18, and 19, the photoelectric sensor 17 sets the signal A, the photoelectric sensor sets the signal B, and the photoelectric sensor 19 sets the signal C (S41). Each light emitting element is inputted from each drive circuit (S42), and each light emitting element is caused to emit light (S43). Next, the light reflected by the intermediate transfer belt 5 is detected by each light receiving element (S44), amplified and digitally converted, and recorded in the RAM 32 (S45).

次いで、光電センサ17の受光信号レベルが所定の値Z以上か否かを判断し(S46)、Z以上であると判断した場合は(S46:YES)、領域aの近似式を求めるための計算式Aを不揮発性メモリ34から読み出してRAM32に記憶し、領域a内に複数の異なる駆動信号レベルのサンプルを設定する(S49)。   Next, it is determined whether or not the light reception signal level of the photoelectric sensor 17 is equal to or higher than a predetermined value Z (S46). If it is determined that it is equal to or higher than Z (S46: YES), calculation for obtaining an approximate expression of the region a. Expression A is read from the nonvolatile memory 34 and stored in the RAM 32, and a plurality of samples having different drive signal levels are set in the region a (S49).

ステップS49の設定を行った後は、第1の実施形態と同様に、領域a内の複数の駆動信号レベルにより順次発光素子を駆動し(S53)、受光素子の受光信号レベルをRAM32に記録し(S54、S55)、全ての駆動信号レベルのサンプルに対する受光信号レベルの記録が終了したときに(S56:YES)、調整を実行する(S57)。   After the setting in step S49, as in the first embodiment, the light emitting elements are sequentially driven by a plurality of drive signal levels in the region a (S53), and the light receiving signal levels of the light receiving elements are recorded in the RAM 32. (S54, S55) When the recording of the received light signal level for all the samples of the drive signal level is completed (S56: YES), the adjustment is executed (S57).

一方、ステップS46にて受光信号レベルがZ未満であると判断した場合は(S46:NO)、光電センサ18の受光信号レベルが所定の値Z以上か否かを判断する(S47)。そして、Z以上であると判断した場合は(S47:YES)、領域bの近似式を求めるための計算式Bを不揮発性メモリ34から読み出してRAM32に記憶し、領域b内に複数の異なる駆動信号レベルのサンプルを設定する(S50)。その後、設定した領域b内の複数の駆動信号レベルにより順次発光素子を駆動し(S53)、受光素子の受光信号レベルをRAM32に記録し(S54、S55)、全ての駆動信号レベルのサンプルに対する受光信号レベルの記録が終了したときに(S56:YES)、調整を実行する(S57)。   On the other hand, if it is determined in step S46 that the light reception signal level is less than Z (S46: NO), it is determined whether or not the light reception signal level of the photoelectric sensor 18 is equal to or greater than a predetermined value Z (S47). If it is determined that the value is greater than or equal to Z (S47: YES), the calculation formula B for obtaining the approximate expression of the region b is read from the nonvolatile memory 34 and stored in the RAM 32, and a plurality of different drives are stored in the region b. A signal level sample is set (S50). Thereafter, the light emitting elements are sequentially driven by a plurality of driving signal levels in the set region b (S53), and the light receiving signal levels of the light receiving elements are recorded in the RAM 32 (S54, S55). When the recording of the signal level is completed (S56: YES), adjustment is executed (S57).

また、ステップS47にて受光信号レベルがZ未満であると判断した場合は(S47:NO)、光電センサ19の受光信号レベルが所定の値Z以上か否かを判断する(S48)。そして、Z以上であると判断した場合は(S48:YES)、領域cの近似式を求めるための計算式Cを不揮発性メモリ34から読み出してRAM32に記憶し、領域c内に複数の異なる駆動信号レベルのサンプルを設定する(S51)。その後、設定した領域c内の複数の駆動信号レベルにより順次発光素子を駆動し(S53)、受光素子の受光信号レベルをRAM32に記録し(S54、S55)、全ての駆動信号レベルのサンプルに対する受光信号レベルの記録が終了したときに(S56:YES)、調整を実行する(S57)。   If it is determined in step S47 that the light reception signal level is less than Z (S47: NO), it is determined whether the light reception signal level of the photoelectric sensor 19 is equal to or greater than a predetermined value Z (S48). If it is determined that the value is greater than or equal to Z (S48: YES), a calculation formula C for obtaining an approximate expression of the region c is read from the nonvolatile memory 34 and stored in the RAM 32, and a plurality of different drivings are stored in the region c. A signal level sample is set (S51). Thereafter, the light emitting elements are sequentially driven by a plurality of drive signal levels in the set area c (S53), the light receiving signal levels of the light receiving elements are recorded in the RAM 32 (S54, S55), and the light receiving for all the driving signal level samples is received. When the recording of the signal level is completed (S56: YES), adjustment is executed (S57).

さらに、ステップS48にて受光信号レベルがZ未満であると判断した場合は(S48:NO)、領域dの近似式を求めるための計算式Dを不揮発性メモリ34から読み出してRAM32に記憶し、領域d内に複数の異なる駆動信号レベルのサンプルを設定する(S52)。その後、設定した領域d内の複数の駆動信号レベルにより、光電センサ17、18、19のいずれかの発光素子を駆動し(S53)、受光素子の受光信号レベルをRAM32に記録し(S54、S55)、全ての駆動信号レベルのサンプルに対する受光信号レベルの記録が終了したときに(S56:YES)、調整を実行する(S57)。   Furthermore, when it is determined in step S48 that the received light signal level is less than Z (S48: NO), the calculation formula D for obtaining the approximate expression of the region d is read from the nonvolatile memory 34 and stored in the RAM 32, A plurality of samples having different drive signal levels are set in the region d (S52). Thereafter, one of the photoelectric sensors 17, 18, and 19 is driven by the plurality of drive signal levels in the set area d (S53), and the received light signal level of the light receiving element is recorded in the RAM 32 (S54, S55). ) When the recording of the received light signal level for all the samples of the drive signal level is completed (S56: YES), the adjustment is executed (S57).

このように、第2の実施形態では信号A、B、Cの駆動信号を順次に用いていたのに対し、本実施形態では同時に用いていることになるから、その分、調整速度が速くなる。   As described above, the driving signals of the signals A, B, and C are sequentially used in the second embodiment, but are simultaneously used in the present embodiment, so that the adjustment speed is increased accordingly. .

なお、以上の各実施形態では、中間転写ベルト5からの反射光のレベルが所定の値になるように発光強度を調整しているが、感光体ドラムからの反射光、或いは用紙を搬送するための搬送ベルトからの反射光が所定の値になるように発光強度を調整する装置に対しても本発明を適用できる。   In each of the above embodiments, the light emission intensity is adjusted so that the level of the reflected light from the intermediate transfer belt 5 becomes a predetermined value. However, in order to convey the reflected light from the photosensitive drum or paper. The present invention can also be applied to an apparatus that adjusts the emission intensity so that the reflected light from the conveyor belt becomes a predetermined value.

本発明の第1の実施形態のカラー画像形成装置の要部の構成を示す正面図である。1 is a front view showing a configuration of a main part of a color image forming apparatus according to a first embodiment of the present invention. 図1の光電センサの発光素子の発光強度の調整を行う装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the apparatus which adjusts the emitted light intensity of the light emitting element of the photoelectric sensor of FIG. 図2の発光素子及び駆動回路の具体的構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a specific configuration example of a light emitting element and a drive circuit in FIG. 2. 図2の発光素子の駆動信号レベルに対する受光素子の受光信号レベルの特性を示すグラフである。3 is a graph showing characteristics of a light receiving signal level of a light receiving element with respect to a driving signal level of the light emitting element of FIG. 2. 本発明の第1の実施形態の実施形態のカラー画像形成装置において、受光信号レベルを新品時の目標値に設定するための駆動信号レベルを求める手順を示すフローチャートである。6 is a flowchart illustrating a procedure for obtaining a drive signal level for setting a light reception signal level to a target value at the time of a new product in the color image forming apparatus according to the first embodiment of the present invention. 本発明の第2の実施形態のカラー画像形成装置における光電センサの駆動信号レベル対受光信号レベル特性を示すグラフである。6 is a graph showing a drive signal level vs. received light signal level characteristic of a photoelectric sensor in a color image forming apparatus according to a second embodiment of the present invention. 本発明の第2の実施形態の実施形態のカラー画像形成装置において、受光信号レベルを新品時の目標値に設定するための駆動信号レベルを求める手順を示すフローチャートである。6 is a flowchart illustrating a procedure for obtaining a drive signal level for setting a light reception signal level to a target value at the time of a new product in the color image forming apparatus according to the second embodiment of the present invention. 本発明の第3の実施形態の実施形態のカラー画像形成装置おける画像形成部、中間転写ベルト、及び光電センサを示す斜視図である。FIG. 10 is a perspective view illustrating an image forming unit, an intermediate transfer belt, and a photoelectric sensor in a color image forming apparatus according to a third embodiment of the present invention. 本発明の第3の実施形態の実施形態のカラー画像形成装置において、受光信号レベルを新品時の目標値に設定するための駆動信号レベルを求める手順を示すフローチャートである。10 is a flowchart illustrating a procedure for obtaining a drive signal level for setting a light reception signal level to a target value at the time of a new product in the color image forming apparatus according to the third embodiment of the present invention. 発光素子の駆動電流に対する受光素子の受光信号レベルの特性を示すグラフである。It is a graph which shows the characteristic of the light reception signal level of the light receiving element with respect to the drive current of a light emitting element.

符号の説明Explanation of symbols

5・・・中間転写ベルト、6Y,6M,6C,6BK・・・画像形成部、17,18,19・・・センサ、20・・・発光素子、21・・・受光素子、23・・・駆動回路、24・・・発光量制御部、32・・・RAM、30・・・CPU。   5 ... Intermediate transfer belt, 6Y, 6M, 6C, 6BK ... Image forming section, 17, 18, 19 ... Sensor, 20 ... Light emitting element, 21 ... Light receiving element, 23 ... Drive circuit, 24... Luminescence amount control unit, 32... RAM, 30.

Claims (7)

発光素子と、該発光素子から対象物に照射された光の反射光を検知する受光素子とを有し、前記発光素子の駆動信号レベルに対する前記受光素子の受光信号レベルの特性が前記駆動信号レベルの変域に応じて異なる複数の近似式で表されるものである光電検知装置であって、
前記発光素子を所定の基準レベルの駆動信号で駆動する基準レベル駆動手段と、前記発光素子が所定の基準レベルの駆動信号で駆動されたときの受光信号レベルと前記目標値との大小関係を判定する判定手段と、該判定手段の判定結果に基づいて前記駆動信号レベルの調整範囲及びその調整範囲の前記計算式を選択する選択手段と、該選択手段により選択された調整範囲内の複数のレベルの駆動信号で前記発光素子を駆動したときの前記受光素子の受光信号レベルと、前記選択手段で選択された計算式とを用いて前記近似式を求めるとともに、該近似式を用いて前記受光素子の受光信号レベルを前記目標値とする駆動信号レベルを決定する手段とを備えたことを特徴とする光電検知装置。
A light-receiving element that detects reflected light of light emitted from the light-emitting element to an object, and the characteristics of the light-receiving signal level of the light-receiving element with respect to the driving signal level of the light-emitting element are the drive signal level Is a photoelectric detection device represented by a plurality of different approximate expressions depending on the range of
Reference level driving means for driving the light emitting element with a driving signal of a predetermined reference level, and determining a magnitude relationship between a light receiving signal level and the target value when the light emitting element is driven with a driving signal of a predetermined reference level A selection unit that selects the adjustment range of the drive signal level and the calculation formula of the adjustment range based on the determination result of the determination unit, and a plurality of levels within the adjustment range selected by the selection unit The approximate expression is obtained using the received light signal level of the light receiving element when the light emitting element is driven by the drive signal and the calculation formula selected by the selection means, and the light receiving element is obtained using the approximate expression. And a means for determining a drive signal level having the received light signal level as the target value.
請求項1記載の光電検知装置において、
前記基準レベルを複数有することを特徴とする光電検知装置。
The photoelectric detection device according to claim 1,
A photoelectric detection device comprising a plurality of the reference levels.
請求項2記載の光電検知装置において、
発光素子と受光素子との組を複数有し、前記基準レベル駆動手段は、発光素子毎に異なる基準レベルの駆動信号で駆動し、前記判定手段は、前記組毎に受光素子の受光信号レベルと前記目標値との大小関係を判定し、前記選択手段は、前記判定手段の判定結果に基づいて前記組毎に駆動信号レベルの調整範囲及び前記計算式を選択することを特徴とする光電検知装置。
The photoelectric detection device according to claim 2,
There are a plurality of sets of light emitting elements and light receiving elements, the reference level driving means is driven by a driving signal having a different reference level for each light emitting element, and the judging means A photoelectric detection apparatus, wherein a magnitude relationship with the target value is determined, and the selection unit selects a drive signal level adjustment range and the calculation formula for each group based on a determination result of the determination unit. .
請求項1〜3の何れかに記載の光電検知装置において、
前記基準レベルは、前記複数の近似式の境界の駆動信号レベルであることを特徴とする光電検知装置。
In the photoelectric detection device according to any one of claims 1 to 3,
The photoelectric detection device according to claim 1, wherein the reference level is a driving signal level at a boundary between the plurality of approximate expressions.
請求項1〜4の何れかに記載の光電検知装置を備えたことを特徴とする画像形成装置。   An image forming apparatus comprising the photoelectric detection device according to claim 1. 発光素子と、前記発光素子から対象物に照射された光の反射光を検知する受光素子とを有し、前記発光素子の駆動信号レベルに対する前記受光素子の受光信号レベルの特性が前記駆動信号レベルの変域に応じて異なる複数の近似式で表されるものである光電検知装置の前記受光信号レベルが所定の目標値になるように前記発光素子の発光強度を調整する方法であって、
発光素子を所定の基準レベルの駆動信号で駆動する基準レベル駆動工程と、前記基準レベルで駆動された前記発光素子から前記対象物に照射された光の反射光を前記受光素子で受光し、受光信号を生成する工程と、該受光信号のレベルと前記目標値との大小関係を判定する工程と、該大小関係の判定結果に基づいて、前記駆動信号レベルの調整範囲、及びその調整範囲の近似式を求めるための計算式を選択する工程と、選択された調整範囲内の複数のレベルの駆動信号で前記発光素子を駆動する工程と、該複数のレベルの駆動信号で駆動された前記発光素子から前記対象物に照射された光の反射光を前記受光素子で受光し、受光信号を生成する工程と、該複数の受光信号のレベルと前記選択された計算式とを用いて、前記近似式を求めるとともに、該近似式を用いて前記受光素子の受光信号レベルを前記目標値とする駆動信号レベルを決定する工程とを備えたことを特徴とする光電検知装置の発光強度調整方法。
A light emitting element and a light receiving element that detects reflected light of light emitted from the light emitting element to an object, and the characteristics of the light receiving signal level of the light receiving element with respect to the driving signal level of the light emitting element are the drive signal level A method of adjusting the light emission intensity of the light emitting element so that the light receiving signal level of the photoelectric detection device, which is expressed by a plurality of different approximate expressions depending on the range of the above, becomes a predetermined target value,
A reference level driving step of driving the light emitting element with a driving signal of a predetermined reference level, and the light receiving element receives reflected light of the light irradiated from the light emitting element driven at the reference level to the object. A step of generating a signal, a step of determining a magnitude relationship between the level of the received light signal and the target value, an adjustment range of the drive signal level, and an approximation of the adjustment range based on a determination result of the magnitude relationship Selecting a calculation formula for obtaining a formula; driving the light emitting element with a plurality of levels of driving signals within the selected adjustment range; and the light emitting element driven with the plurality of levels of driving signals The approximate expression using the step of receiving the reflected light of the light irradiated to the object from the light receiving element and generating a light reception signal, the level of the plurality of light reception signals and the selected calculation formula Asking for The light emission intensity adjustment method of a photoelectric detection device, wherein a received light signal level of the light receiving element and a step of determining a driving signal level to the target value by using the approximate expression.
請求項6記載の光電検知装置の発光強度調整方法において、
発光素子と受光素子との組を複数設け、前記基準レベル駆動工程は、発光素子毎に異なる基準レベルの駆動信号で駆動し、前記判定工程は、前記組毎に受光素子の受光信号レベルと前記目標値との大小関係を判定し、前記選択工程は、前記判定工程の判定結果に基づいて前記組毎に駆動信号レベルの調整範囲及び前記計算式を選択することを特徴とする光電検知装置の発光強度調整方法。
The light emission intensity adjustment method of the photoelectric detection device according to claim 6,
A plurality of sets of light emitting elements and light receiving elements are provided, and the reference level driving step is driven by a driving signal having a different reference level for each light emitting element, and the determination step includes the light receiving signal level of the light receiving element and the light receiving element for each set. Determining a magnitude relationship with a target value, wherein the selection step selects a driving signal level adjustment range and the calculation formula for each group based on a determination result of the determination step; Luminous intensity adjustment method.
JP2006215732A 2006-08-08 2006-08-08 Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus Pending JP2008039636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006215732A JP2008039636A (en) 2006-08-08 2006-08-08 Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215732A JP2008039636A (en) 2006-08-08 2006-08-08 Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2008039636A true JP2008039636A (en) 2008-02-21

Family

ID=39174809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215732A Pending JP2008039636A (en) 2006-08-08 2006-08-08 Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2008039636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300106A (en) * 2008-06-10 2009-12-24 Hitachi Omron Terminal Solutions Corp Optical sensor system and method for adjusting amount of light emission
JP2010085488A (en) * 2008-09-29 2010-04-15 Brother Ind Ltd Image forming apparatus
JP2011217925A (en) * 2010-04-08 2011-11-04 Sanyo Product Co Ltd Game machine
JP2014166325A (en) * 2013-12-26 2014-09-11 Sanyo Product Co Ltd Game machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300106A (en) * 2008-06-10 2009-12-24 Hitachi Omron Terminal Solutions Corp Optical sensor system and method for adjusting amount of light emission
JP2010085488A (en) * 2008-09-29 2010-04-15 Brother Ind Ltd Image forming apparatus
JP2011217925A (en) * 2010-04-08 2011-11-04 Sanyo Product Co Ltd Game machine
JP2014166325A (en) * 2013-12-26 2014-09-11 Sanyo Product Co Ltd Game machine

Similar Documents

Publication Publication Date Title
EP1321827B1 (en) Color image forming method and apparatus
EP1586954B1 (en) Image-forming device with test patterns detection
US8229307B2 (en) Image forming apparatus and image forming apparatus control method
US8797600B2 (en) Image forming apparatus and gradation correction method with density unevenness detection
US9389564B2 (en) Image forming apparatus for performing registration and density correction control
JP2006251686A (en) Image forming apparatus
US9501017B2 (en) Image forming apparatus that suppresses fluctuations in density of successively formed images even if charge amount of developer changes
JP2013238669A (en) Image forming apparatus
JPH11249374A (en) Image forming device
JP5171165B2 (en) Image forming apparatus
JP2016090699A (en) Image forming apparatus
JP2008039636A (en) Photoelectric detection device, its light emission intensity adjusting method, and image forming apparatus
JPH11231736A (en) Image forming device
US8290388B2 (en) Image forming apparatus having an optical sensor
JP6750863B2 (en) Image forming device
JP2004252321A (en) Color image forming apparatus
JP5262671B2 (en) Image forming apparatus and image forming method
US9037016B2 (en) Apparatus for forming image according to image formation condition
JP2004206137A (en) Image forming apparatus
JP5644346B2 (en) Image forming apparatus
JP4750897B2 (en) Image forming apparatus
JP2017219758A (en) Image forming apparatus
JP2011158837A (en) Image forming apparatus and image forming method
JP3051470B2 (en) Image forming apparatus and image forming method
JP2004157446A (en) Color image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081029