JP4746366B2 - Titania fiber and method for producing titania fiber - Google Patents

Titania fiber and method for producing titania fiber Download PDF

Info

Publication number
JP4746366B2
JP4746366B2 JP2005199835A JP2005199835A JP4746366B2 JP 4746366 B2 JP4746366 B2 JP 4746366B2 JP 2005199835 A JP2005199835 A JP 2005199835A JP 2005199835 A JP2005199835 A JP 2005199835A JP 4746366 B2 JP4746366 B2 JP 4746366B2
Authority
JP
Japan
Prior art keywords
fiber
titania
titania fiber
solution
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005199835A
Other languages
Japanese (ja)
Other versions
JP2007016352A (en
Inventor
伸弥 小村
孝則 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2005199835A priority Critical patent/JP4746366B2/en
Publication of JP2007016352A publication Critical patent/JP2007016352A/en
Application granted granted Critical
Publication of JP4746366B2 publication Critical patent/JP4746366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はチタニア繊維、およびその製造方法に関する。更に詳しくは本発明は、光触媒として有用なチタニア繊維、およびその製造方法に関する。   The present invention relates to a titania fiber and a method for producing the same. More specifically, the present invention relates to a titania fiber useful as a photocatalyst and a method for producing the same.

近年の地球環境の悪化に伴い、環境問題は社会問題として取上げられ、その関心はますます高まるばかりである。環境問題の深刻化とともに、有害な汚染化学物質の高度な除去技術の開発が求められている。   As the global environment deteriorates in recent years, environmental problems have been taken up as social problems, and their interest is only increasing. As environmental problems become more serious, development of advanced removal technology for harmful pollutants is required.

有害な汚染化学物質を分解除去する技術の一つとして、光触媒作用を有する酸化チタンが着目されている。すなわち酸化チタンからなる光触媒体材料にバンドギャップ以上のエネルギーを持つ波長の光を照射すると光励起により、伝導帯に電子を、価電子帯に正孔を生じるが、この光励起して生成する電子と正孔の高い還元力および酸化力を利用して有害物質を分解することが提案されている。   As one of the techniques for decomposing and removing harmful pollutant chemical substances, titanium oxide having a photocatalytic action has attracted attention. That is, when a photocatalyst material made of titanium oxide is irradiated with light having a wavelength greater than the band gap, photoexcitation generates electrons in the conduction band and holes in the valence band. It has been proposed to decompose harmful substances using the high reducing power and oxidizing power of the pores.

入手可能な酸化チタンは粒子であるため、使用する際の飛散、流出を防ぐ必要がある。その技術の一つに酸化チタン繊維の作製が検討されている(例えば、特許文献1参照。)。しかし、これら酸化チタン繊維は、繊維径が大きいことから、高い光触媒活性を得るために有効とされている表面積が小さいという問題があった。   Since available titanium oxide is a particle, it is necessary to prevent scattering and outflow when used. As one of the techniques, production of titanium oxide fibers has been studied (for example, see Patent Document 1). However, since these titanium oxide fibers have a large fiber diameter, there is a problem that the surface area effective for obtaining high photocatalytic activity is small.

また、繊維径の小さい酸化チタン繊維を作製する技術にエレクトロスピニング法の使用が知られている(例えば、非特許文献1〜2参照。)。   In addition, use of an electrospinning method is known as a technique for producing a titanium oxide fiber having a small fiber diameter (see, for example, Non-Patent Documents 1 and 2).

しかし、これらの方法では、焼成前の繊維に含まれている紡糸助剤である有機高分子が加熱により比較的容易に分解する有機高分子であることから、アモルファスの酸化チタンが結晶化し形態が固定される前に有機高分子が分解することが予想される。そのため繊維表面の構造が平滑なものとなり、高い表面積を有する酸化チタン繊維が得られないことがあった。
特開2000−218170号公報 ダン・リーら((Dan Li、Younan Xia)著、「ダイレクトファブリケーション オブ コンポジット アンド セラミックホローナノファイバーズ バイ エレクトロスピニング(Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning)、ナノレターズ(Nano Letters)、(米国)、(ジ アメリカンケミカルソサエティ)The American Chemical society、2004年5月、第4巻、第5号、P933〜938 ミ・ヨン・ソンら(Mi Yeon Song、Do Kyun Kim、Kyo Jin Ihn、Seong Mu Jo、Dong Young Kim)著、「エレクトロスパンチタニムジオキサイドエレクトロードフォーダイセンシタイズドソーラーセルズ(Electrospun TiO2 electrodes for dye−sensitized solar cells)」、ナノテクノロジー(Nanotechnology)、(米国)、インスティテュートオブフィジックス(Institute Of Physics)、2004年12月、第15巻、12号、P1861〜1865
However, in these methods, since the organic polymer that is a spinning aid contained in the fiber before firing is an organic polymer that is relatively easily decomposed by heating, amorphous titanium oxide is crystallized and has a morphology. It is expected that the organic polymer will decompose before being fixed. For this reason, the structure of the fiber surface becomes smooth, and a titanium oxide fiber having a high surface area may not be obtained.
JP 2000-218170 A Dan Li et al. (Dan Li, Younan Xia), “Direct Fabrication of Composites and Ceramic Hollow Nanofibers by Electrospinning and Ceramic Hollow Nanofibers by Electrospin, USA. ), (The American Chemical Society) The American Chemical Society, May 2004, Vol. 4, No. 5, P933-938 By Mi Yeon Song, Do Kyung Kim, Kyo Jin Ihn, Seong Mu Jo, Dong Young Kim, “Electrospun Tanim Geoxide Electro-Ford 2 Sensitized Solar Cells” sensitized solar cells), Nanotechnology, (USA), Institute of Physics, December 2004, Vol. 15, No. 12, P1861-1865

本発明は、上記従来技術では達成し得なかった、繊維径が小さく、BET比表面積が大きい、チタニア繊維およびその製造方法を提供することにある。   An object of the present invention is to provide a titania fiber having a small fiber diameter and a large BET specific surface area, and a method for producing the same, which could not be achieved by the above-described prior art.

本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。   As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention.

すなわち本発明の目的は、
平均繊維径が50〜1000nmであり、繊維長が50μm以上であり、BET比表面積が10を越えて1000m/g以下であるチタニア繊維によって達成することができる。
That is, the object of the present invention is to
It can be achieved by titania fibers having an average fiber diameter of 50 to 1000 nm, a fiber length of 50 μm or more, and a BET specific surface area of more than 10 and 1000 m 2 / g or less.

更に、本発明の他の目的は、
チタン酸アルキルとの錯体を形成する化合物とチタン酸アルキルの混合物と有機溶媒と炭素前駆体有機高分子から成る溶液を作製する段階と、前記溶液から静電紡糸法にて紡糸する段階と、前記紡糸によって得られた繊維構造体を累積させる段階と、前記累積された繊維構造体を焼成する段階を含む、チタニア繊維の製造方法によって達成される。
Furthermore, another object of the present invention is to
Preparing a solution comprising a compound that forms a complex with an alkyl titanate, an alkyl titanate, an organic solvent, and a carbon precursor organic polymer; spinning from the solution by an electrospinning method; and This is achieved by a method for producing a titania fiber, which includes a step of accumulating a fiber structure obtained by spinning and a step of firing the accumulated fiber structure.

本発明のチタニア繊維は、繊維の平均繊維径が小さく、BET比表面積が10〜1000m/gと大きいことから、繊維表面の構造が多孔であり、光触媒として有用である。 Since the titania fiber of the present invention has a small average fiber diameter and a large BET specific surface area of 10 to 1000 m 2 / g, the fiber surface structure is porous and useful as a photocatalyst.

また、得られるチタニア繊維は編み込むなどの加工を施すことで様々な構造体を形成することも出来るし、また取り扱い性やその他の要求事項に合わせて本発明以外のセラミック繊維と組み合わせて用いることもできる。   In addition, the obtained titania fibers can be formed into various structures by processing such as weaving, and can also be used in combination with ceramic fibers other than the present invention in accordance with handleability and other requirements. it can.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のチタニア繊維は、平均繊維径が50〜1000nmであり、繊維長が50μm以上であり、BET比表面積が10を越えて1000m/g以下である。 The titania fiber of the present invention has an average fiber diameter of 50 to 1000 nm, a fiber length of 50 μm or more, and a BET specific surface area of more than 10 and 1000 m 2 / g or less.

ここで、チタニア繊維とは、酸化チタンを主成分とする酸化物系セラミックスからなる繊維構造体のことを指し、副成分として、Al、SiO、LiO、NaO、MgO、CaO、SrO、BaO、B、P、SnO、ZrO、KO、CsO、ZnO、Sb、As、CeO、V、Cr、MnO、Fe、CoO、NiO、Y、Lu、Yb、HfOなどの酸化物系セラミックスを含むものも挙げられる。 Here, the titania fiber refers to a fiber structure made of an oxide-based ceramic mainly composed of titanium oxide. As subcomponents, Al 2 O 3 , SiO 2 , Li 2 O, Na 2 O, MgO , CaO, SrO, BaO, B 2 O 3, P 2 O 5, SnO 2, ZrO 2, K 2 O, Cs 2 O, ZnO, Sb 2 O 3, As 2 O 3, CeO 2, V 2 O 5 Examples include those containing oxide ceramics such as Cr 2 O 3 , MnO, Fe 2 O 3 , CoO, NiO, Y 2 O 3 , Lu 2 O 3 , Yb 2 O 3 , and HfO 2 .

酸化チタン以外の酸化物系セラミックスの存在比としては、チタニア繊維の重量に対して5重量%以下であることがチタニア繊維の結晶性の点から好ましく、より好ましくは1重量%以下であり、より好ましくは0.1重量%以下である。   The abundance ratio of the oxide-based ceramics other than titanium oxide is preferably 5% by weight or less based on the weight of the titania fiber, more preferably 1% by weight or less, more preferably 1% by weight or less. Preferably it is 0.1 weight% or less.

次に、チタニア繊維の結晶形について説明する。酸化チタンの結晶形には、アナターゼ型、ルチル型、ブルッカイト型が存在するが、本発明のチタニア繊維は主にアナターゼ型からなることが好ましい。アナターゼ型結晶とルチル型結晶の存在比は、チタニア繊維のX線回折図形において、アナターゼ結晶の25〜26°のピーク強度100に対してルチル結晶の27〜28°のピーク強度が1〜30であることが好ましい。より好ましくは、1〜10である。アナターゼ型以外の結晶形が多く存在するとチタニア繊維の光触媒活性が低下することから好ましくない。   Next, the crystal form of the titania fiber will be described. There are anatase type, rutile type and brookite type in the crystal form of titanium oxide, but the titania fiber of the present invention is preferably mainly composed of anatase type. In the X-ray diffraction pattern of the titania fiber, the abundance ratio of the anatase type crystal and the rutile type crystal is 1-30 in the peak intensity of 27-28 ° of the rutile crystal with respect to the peak intensity of 25-26 ° of the anatase crystal. Preferably there is. More preferably, it is 1-10. The presence of many crystal forms other than the anatase type is not preferable because the photocatalytic activity of the titania fiber decreases.

次に、平均繊維径が50〜1000nmであることを説明する。本発明のチタニア繊維の平均繊維径が1000nmを越えると、チタニア繊維の柔軟性が乏しくなることから好ましくない。より好ましくは、100〜800nmの範囲にあることである。   Next, it will be described that the average fiber diameter is 50 to 1000 nm. When the average fiber diameter of the titania fiber of the present invention exceeds 1000 nm, the flexibility of the titania fiber becomes unfavorable. More preferably, it is in the range of 100 to 800 nm.

次に、繊維長が50μm以上であることを説明する。本発明のチタニア繊維の繊維長が50μm以下であると、それによって得られるチタニア繊維集合体の力学強度が不十分なものとなる。繊維長は、好ましくは、150μm以上であり、さらに好ましくは1mm以上である。   Next, it will be described that the fiber length is 50 μm or more. When the fiber length of the titania fiber of the present invention is 50 μm or less, the mechanical strength of the titania fiber aggregate obtained thereby becomes insufficient. The fiber length is preferably 150 μm or more, more preferably 1 mm or more.

次に、BET比表面積が10を越えて1000m/g以下であることについて説明する。本発明のチタニア繊維のBET比表面積が10m/g以下であると、チタニア繊維の表面が平滑であることを示しており、光触媒活性が低下することが考えられることから好ましくない。好ましくは、20〜1000m/gであり、更に好ましくは30〜500m/gであり、更に好ましくは50〜200m/gである。 Next, it will be described that the BET specific surface area is more than 10 and 1000 m 2 / g or less. When the BET specific surface area of the titania fiber of the present invention is 10 m 2 / g or less, it indicates that the surface of the titania fiber is smooth and the photocatalytic activity is considered to be lowered, which is not preferable. Preferably, it is 20-1000 m < 2 > / g, More preferably, it is 30-500 m < 2 > / g, More preferably, it is 50-200 m < 2 > / g.

次に、本発明のチタニア繊維を製造するための態様について説明する。   Next, an embodiment for producing the titania fiber of the present invention will be described.

本発明のチタニア繊維を製造するには、前述の要件を同時に満足するようなチタニア繊維が得られる手法であればいずれも採用することができるが、チタン酸アルキルとの錯体を形成する化合物とチタン酸アルキルの混合物と溶媒と炭素前駆体有機高分子から成る溶液を作製する段階と、前記溶液から静電紡糸法にて紡糸する段階と、前記紡糸によって得られた繊維構造体を累積させる段階と、前記累積された繊維構造体を焼成する段階を含む、チタニア繊維の製造方法が好ましい一態様として挙げることができる。   In order to produce the titania fiber of the present invention, any technique can be used as long as it can obtain a titania fiber that satisfies the above-mentioned requirements at the same time, but a compound that forms a complex with an alkyl titanate and titanium A step of preparing a solution comprising a mixture of an alkyl acid, a solvent, and a carbon precursor organic polymer, a step of spinning from the solution by an electrospinning method, and a step of accumulating the fiber structure obtained by the spinning. A preferred embodiment of the method for producing titania fibers includes a step of firing the accumulated fiber structure.

まず、チタン酸アルキルとの錯体を形成する化合物とチタン酸アルキルの混合物と有機溶媒と有機高分子から成る溶液を作製する段階について説明する。   First, the step of preparing a solution comprising a compound that forms a complex with an alkyl titanate, an alkyl titanate, an organic solvent, and an organic polymer will be described.

ここで用いるチタン酸アルキルには、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラノルマルプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトラターシャリーブトキシドなどが挙げられるが、入手のしやすさより、チタンテトライソプロポキシド、チタンテトラノルマルブトキシドが好ましい。   Examples of the alkyl titanate used herein include titanium tetramethoxide, titanium tetraethoxide, titanium tetranormal propoxide, titanium tetraisopropoxide, titanium tetranormal butoxide, and titanium tetratertiary butoxide. From the standpoint of ease, titanium tetraisopropoxide and titanium tetranormal butoxide are preferred.

次に、チタン酸アルキルの添加量としては、繊維の形成される濃度範囲であれば特に限定されないが、溶解性などの点から1〜15重量%の範囲が好ましく、より好ましくは1〜10重量%である。   Next, the addition amount of the alkyl titanate is not particularly limited as long as it is a concentration range in which fibers are formed. %.

次に、チタン酸アルキルとの錯体を形成する化合物について説明する。チタン酸アルキルとの錯体を形成する化合物には、カルボン酸類、アミド類、エステル類、ケトン類、ホスフィン類、エーテル類、アルコール類、チオール類などの配位性の化合物が挙げられるが、溶液の安定性の点からチタン酸アルキルと強固な錯体を形成し、溶液の安定性が高いことが好ましい。そのため、酢酸、アセチルアセトンがより好ましく、更に好ましくはアセチルアセトンである。   Next, a compound that forms a complex with an alkyl titanate will be described. Compounds that form complexes with alkyl titanates include coordinating compounds such as carboxylic acids, amides, esters, ketones, phosphines, ethers, alcohols, thiols, etc. From the viewpoint of stability, it is preferable that a strong complex is formed with the alkyl titanate and the solution has high stability. Therefore, acetic acid and acetylacetone are more preferable, and acetylacetone is more preferable.

チタン酸アルキルとの錯体を形成する化合物の添加量としては、本発明のチタニア繊維を作製するための溶液が作製される量であれば特に限定されないが、チタン酸アルキルに対して2等量以上であることが好ましく、より好ましくは3〜5等量である。   The amount of the compound that forms a complex with the alkyl titanate is not particularly limited as long as the amount of the solution for preparing the titania fiber of the present invention is prepared, but 2 equivalents or more with respect to the alkyl titanate. It is preferable that it is 3-5 equivalent.

次に、本発明の製造方法に用いる炭素前駆体有機高分子について説明する。本発明でいう、炭素前駆体有機高分子とは、加熱(焼成)により炭化する有機高分子であればいずれであっても用いることができ、例えば、ポリアクリロニトリル、ポリビニルアルコール、ポリ塩化ビニル、ポリアリレートポリパラフェニレンテレフタラミド、ポリパラフェニレンテレフタラミド−3,4′―オキシジフェニレンテレフタラミド共重合体、セルロース、セルロースジアセテート、セルローストリアセテート、メチルセルロース、プロピルセルロース、ベンジルセルロース、ポリカルボジイミド、フェノール樹脂、メラミン樹脂などが挙げられるが、中でもポリアクリロニトリルが溶解性の点からより好ましい。   Next, the carbon precursor organic polymer used in the production method of the present invention will be described. The carbon precursor organic polymer referred to in the present invention may be any organic polymer that is carbonized by heating (firing). For example, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride, Arylate polyparaphenylene terephthalamide, polyparaphenylene terephthalamide-3,4'-oxydiphenylene terephthalamide copolymer, cellulose, cellulose diacetate, cellulose triacetate, methylcellulose, propylcellulose, benzylcellulose, polycarbodiimide, A phenol resin, a melamine resin, etc. are mentioned, Among them, polyacrylonitrile is more preferable from the viewpoint of solubility.

次に、炭素前駆体有機高分子の添加量としては、繊維の形成される濃度範囲であれば特に限定されないが、1〜30重量%であることが好ましい。炭素前駆体有機高分子の濃度が1重量%より小さいと、濃度が低すぎるため繊維構造体を形成することが困難となり好ましくない。また、30重量%より大きいと得られる繊維構造体の繊維径が大きくなり好ましくない。より好ましい溶液中の溶液に対する有機高分子の濃度は5〜15重量%である。   Next, the addition amount of the carbon precursor organic polymer is not particularly limited as long as it is a concentration range in which fibers are formed, but is preferably 1 to 30% by weight. If the concentration of the carbon precursor organic polymer is less than 1% by weight, it is not preferable because the concentration is too low and it becomes difficult to form a fiber structure. On the other hand, if it is greater than 30% by weight, the fiber diameter of the resulting fiber structure is undesirably large. The concentration of the organic polymer with respect to the solution in a more preferable solution is 5 to 15% by weight.

次に、本発明のチタニア繊維を作製するための溶液に用いる有機溶媒について説明する。有機溶媒は一種を単独で用いても良く、複数の有機溶媒を組み合わせても良い。該有機溶媒としては、例えば、アセトン、クロロホルム、エタノール、イソプロパノール、メタノール、トルエン、テトラヒドロフラン、水、ベンゼン、ベンジルアルコール、1,4−ジオキサン、プロパノール、塩化メチレン、四塩化炭素、シクロヘキサン、シクロヘキサノン、フェノール、ピリジン、トリクロロエタン、酢酸、蟻酸、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、N,N−ジメチルホルムアミド、アセトニトリル、N−メチルモルホリン−N−オキシド、1,3−ジオキソラン、メチルエチルケトン、上記溶媒の混合溶媒等が挙げられる。   Next, the organic solvent used for the solution for producing the titania fiber of the present invention will be described. One organic solvent may be used alone, or a plurality of organic solvents may be combined. Examples of the organic solvent include acetone, chloroform, ethanol, isopropanol, methanol, toluene, tetrahydrofuran, water, benzene, benzyl alcohol, 1,4-dioxane, propanol, methylene chloride, carbon tetrachloride, cyclohexane, cyclohexanone, phenol, Examples include pyridine, trichloroethane, acetic acid, formic acid, hexafluoroisopropanol, hexafluoroacetone, N, N-dimethylformamide, acetonitrile, N-methylmorpholine-N-oxide, 1,3-dioxolane, methyl ethyl ketone, and mixed solvents of the above solvents. It is done.

これらのうち、取り扱い性や物性などから、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが好ましい。   Of these, N, N-dimethylformamide and N, N-dimethylacetamide are preferable in view of handling properties and physical properties.

次に、静電紡糸法について説明する。本発明のチタニア繊維は静電紡糸法によって作製されるが、静電紡糸法とは繊維形成性の基質を溶解させた溶液を電極間で形成された静電場中に吐出し、溶液を電極に向けて曳糸し、形成される繊維状物質を捕集基板上に累積することによって繊維構造体を得る方法であって、繊維状物質とは、繊維形成性の基質を溶解させた溶媒が留去して繊維積層体となっている状態のみならず、前記溶媒が繊維状物質に含まれている状態も示している。   Next, the electrostatic spinning method will be described. The titania fiber of the present invention is produced by an electrostatic spinning method. In the electrostatic spinning method, a solution in which a fiber-forming substrate is dissolved is discharged into an electrostatic field formed between the electrodes, and the solution is applied to the electrodes. In which the fibrous material formed is accumulated on a collection substrate to obtain a fiber structure, and the fibrous material is a solvent in which a fiber-forming substrate is dissolved. The figure shows not only the state of leaving the fiber laminate but also the state in which the solvent is contained in the fibrous material.

また、通常の静電紡糸は室温で行われるが、溶媒の揮発が不十分な場合など、必要に応じて紡糸雰囲気の温度を制御したり、捕集基板の温度を制御したりすることも可能である。   Ordinary electrospinning is performed at room temperature, but the temperature of the spinning atmosphere and the temperature of the collection substrate can be controlled as necessary, such as when the solvent is not sufficiently volatilized. It is.

次いで、静電紡糸法で用いる装置について説明する。   Next, an apparatus used in the electrostatic spinning method will be described.

前述の電極は、金属、無機物、または有機物のいかなるものでも導電性を示しさえすれば用いることができ、また、絶縁物上に導電性を示す金属、無機物、または有機物の薄膜を持つものであっても良い。   The above-described electrode can be used as long as it has conductivity, and any metal, inorganic, or organic material has a thin film of conductive metal, inorganic, or organic material on an insulator. May be.

また、静電場は一対又は複数の電極間で形成されており、いずれの電極に高電圧を印加しても良い。これは、例えば電圧値が異なる高電圧の電極が2つ(例えば15kVと10kV)と、アースにつながった電極の合計3つの電極を用いる場合も含み、または3つを越える数の電極を使う場合も含むものとする。   The electrostatic field is formed between a pair or a plurality of electrodes, and a high voltage may be applied to any of the electrodes. This includes, for example, using two high-voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and a total of three electrodes connected to the ground, or when using more than three electrodes. Shall also be included.

次いで、紡糸によって得られた繊維構造体を累積させる段階について説明する。
本発明の製造方法では、静電紡糸法によって紡糸を行うため、繊維構造体は捕集基板である電極上に積層される。捕集基板に平面を用いれば平面状の不織布が得られるが、捕集基板の形状を変えることによって、所望の形状の構造体を作製することも出来る。
Next, the step of accumulating the fiber structure obtained by spinning will be described.
In the production method of the present invention, since the spinning is performed by the electrostatic spinning method, the fiber structure is laminated on the electrode that is the collection substrate. If a flat surface is used for the collection substrate, a planar nonwoven fabric can be obtained. However, by changing the shape of the collection substrate, a structure having a desired shape can be produced.

また、繊維構造体が基板上の一箇所に集中して積層されるなど、均一性が低い場合には、基板を揺動かしたり、回転させたりすることも可能である。   In addition, when the uniformity is low, such as when the fiber structure is concentrated and laminated at one place on the substrate, the substrate can be swung or rotated.

また、本発明の焼成前の繊維構造体は強度が低いことから、捕集基板上に積層された繊維構造体を剥離する際に構造が一部壊れてしまうことがある。そのため、捕集基板とノズルとの間に静電気除去装置などを設置し、ノズルと静電気除去装置との間に綿状に繊維構造体を積層させることも可能である。   Moreover, since the fiber structure before baking of this invention has low intensity | strength, when peeling the fiber structure laminated | stacked on the collection board | substrate, a structure may be broken partially. Therefore, it is also possible to install a static eliminator or the like between the collection substrate and the nozzle and to laminate the fiber structure in a cotton shape between the nozzle and the static eliminator.

次に、繊維構造体を焼成する段階について説明する。本発明のチタニア繊維を作製するには、紡糸によって作製された繊維構造体を焼成する必要がある。焼成には、一般的な電気炉を用いることができるが、必要に応じて炉内の気体を置換可能な電気炉を用いてもよい。また、焼成温度は、十分なアナターゼ型の結晶成長とルチル型の結晶転位を抑制するために、300〜900℃で焼成することが好ましい。より好ましくは500〜800℃である。   Next, the step of firing the fiber structure will be described. In order to produce the titania fiber of the present invention, it is necessary to fire the fiber structure produced by spinning. For firing, a general electric furnace can be used, but an electric furnace capable of replacing the gas in the furnace may be used as necessary. The firing temperature is preferably 300 to 900 ° C. in order to suppress sufficient anatase type crystal growth and rutile type crystal dislocation. More preferably, it is 500-800 degreeC.

以下、本発明を実施例により更に具体的に説明するが、本発明は、これらの実施例により何等限定を受けるものではない。また以下の各実施例、比較例における評価項目は以下のとおりの手法にて実施した。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. The evaluation items in the following examples and comparative examples were carried out by the following methods.

平均繊維径:
得られたチタニア繊維の表面を走査型電子顕微鏡(株式会社日立製作所製S−2400)により撮影(倍率2000倍)して得た写真図から無作為に20箇所を選んでフィラメントの径を測定し、すべての繊維径(n=20)の平均値を求めて、チタニア繊維の平均繊維径とした。
Average fiber diameter:
The diameter of the filament was measured by randomly selecting 20 locations from a photograph obtained by photographing the surface of the obtained titania fiber with a scanning electron microscope (S-2400 manufactured by Hitachi, Ltd.) (magnification 2000 times). The average value of all the fiber diameters (n = 20) was determined and used as the average fiber diameter of titania fibers.

繊維長50μm以下の繊維の存在確認:
得られたチタニア繊維の表面を走査型電子顕微鏡(株式会社日立製作所製S−2400)により撮影(倍率400倍)して得た写真図を観察し、繊維長50μm以下の繊維が存在するか確認した。
Confirmation of the presence of fibers having a fiber length of 50 μm or less:
A photograph obtained by photographing the surface of the obtained titania fiber with a scanning electron microscope (S-2400, manufactured by Hitachi, Ltd.) (magnification 400 times) is observed, and it is confirmed whether a fiber having a fiber length of 50 μm or less exists. did.

BET比表面積の測定方法:
得られたチタニア繊維の比表面積測定を、窒素ガスを用いたBET法により測定した。
Method for measuring BET specific surface area:
The specific surface area of the obtained titania fiber was measured by the BET method using nitrogen gas.

X線回折図形の測定:
得られたチタニア繊維を、X線回折装置(株式会社リガク社製)を使用し、X線源にCuのKα線を用い、多層膜コンフォーカルミラーにより単色化してX線回折図形を得た。
X-ray diffraction pattern measurement:
The resulting titania fibers, using X-ray diffraction apparatus (manufactured by Rigaku Corporation), using K alpha rays of Cu as an X-ray source to obtain an X-ray diffraction pattern with monochromatic by multilayer confocal mirror .

[実施例1]
ポリアクリロニトリル(和光純薬工業株式会社製)1重量部、N,N−ジメチルホルムアミド(和光純薬工業株式会社製、特級)9重量部よりなる溶液に、チタンテトラノルマルブトキシド(和光純薬工業株式会社製、一級)1重量部とアセチルアセトン(和光純薬工業株式会社製、特級)1重量部よりなる溶液を混合し紡糸溶液を調製した。
[Example 1]
In a solution comprising 1 part by weight of polyacrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) and 9 parts by weight of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., special grade), titanium tetranormal butoxide (Wako Pure Chemical Industries, Ltd.) A spinning solution was prepared by mixing a solution consisting of 1 part by weight of company-made, first grade and 1 part by weight of acetylacetone (made by Wako Pure Chemical Industries, Ltd., special grade).

この紡糸溶液から図1に示す装置を用いて、繊維構造体を作製した。噴出ノズル1の内径は0.8mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた繊維構造体を空気雰囲気下で電気炉を用いて600℃まで10時間で昇温し、その後600℃で2時間保持することによりチタニア繊維を作製した。   A fiber structure was produced from the spinning solution using the apparatus shown in FIG. The inner diameter of the ejection nozzle 1 was 0.8 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. The obtained fiber structure was heated to 600 ° C. for 10 hours in an air atmosphere using an electric furnace, and then held at 600 ° C. for 2 hours to produce a titania fiber.

得られたチタニア繊維を電子顕微鏡で観察したところ、繊維径は600nmであり、繊維長50μm以下の繊維は観察されなかった。また、BET比表面積は73m/gであった。得られたチタニア繊維のX線回折結果では、2θ=25.3°にピークが認められたことから、アナターゼ型結晶が主に形成されている事が確認された。得られたチタニア繊維の表面の走査型電子顕微鏡写真を図2及び図3に、X線回折図形を図4に示す。 When the obtained titania fiber was observed with an electron microscope, the fiber diameter was 600 nm, and fibers with a fiber length of 50 μm or less were not observed. Moreover, the BET specific surface area was 73 m < 2 > / g. In the X-ray diffraction result of the obtained titania fiber, a peak was observed at 2θ = 25.3 °, which confirmed that anatase crystals were mainly formed. Scanning electron micrographs of the surface of the obtained titania fiber are shown in FIGS. 2 and 3, and an X-ray diffraction pattern is shown in FIG.

本発明のチタニア繊維を製造するための製造装置を模式的に示した図である。It is the figure which showed typically the manufacturing apparatus for manufacturing the titania fiber of this invention. 実施例1の操作で得られたチタニア繊維の表面を走査型電子顕微鏡で撮影(400倍)して得られた写真図である。FIG. 3 is a photograph obtained by photographing (400 times) the surface of titania fiber obtained by the operation of Example 1 with a scanning electron microscope. 実施例1の操作で得られたチタニア繊維の表面を走査型電子顕微鏡で撮影(2000倍)して得られた写真図である。FIG. 3 is a photograph obtained by photographing the surface of titania fiber obtained by the operation of Example 1 with a scanning electron microscope (2000 times). 実施例1の操作で得られたチタニア繊維のX線回折図形である。2 is an X-ray diffraction pattern of titania fiber obtained by the operation of Example 1. FIG.

符号の説明Explanation of symbols

1 溶液噴出ノズル
2 溶液
3 溶液保持槽
4 電極
5 高電圧発生器
DESCRIPTION OF SYMBOLS 1 Solution ejection nozzle 2 Solution 3 Solution holding tank 4 Electrode 5 High voltage generator

Claims (3)

チタン酸アルキルとの錯体を形成する化合物とチタン酸アルキルの混合物と有機溶媒と炭素前駆体有機高分子から成る溶液を作製する段階と、前記溶液から静電紡糸法にて紡糸する段階と、前記紡糸によって得られた繊維構造体を累積させる段階と、前記累積された繊維構造体を焼成する段階を含む、チタニア繊維の製造方法 Preparing a solution comprising a compound that forms a complex with an alkyl titanate, an alkyl titanate, an organic solvent, and a carbon precursor organic polymer; spinning from the solution by an electrospinning method; and A method for producing a titania fiber, comprising the steps of accumulating a fiber structure obtained by spinning and firing the accumulated fiber structure . 炭素前駆体有機高分子がポリアクリロニトリルである、請求項1記載のチタニア繊維の製造方法。The method for producing a titania fiber according to claim 1, wherein the carbon precursor organic polymer is polyacrylonitrile. チタン酸アルキルとの錯体を形成する化合物がアセチルアセトンまたは酢酸である、請求項1記載のチタニア繊維の製造方法。The manufacturing method of the titania fiber of Claim 1 whose compound which forms a complex with an alkyl titanate is acetylacetone or an acetic acid.
JP2005199835A 2005-07-08 2005-07-08 Titania fiber and method for producing titania fiber Expired - Fee Related JP4746366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199835A JP4746366B2 (en) 2005-07-08 2005-07-08 Titania fiber and method for producing titania fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199835A JP4746366B2 (en) 2005-07-08 2005-07-08 Titania fiber and method for producing titania fiber

Publications (2)

Publication Number Publication Date
JP2007016352A JP2007016352A (en) 2007-01-25
JP4746366B2 true JP4746366B2 (en) 2011-08-10

Family

ID=37753757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199835A Expired - Fee Related JP4746366B2 (en) 2005-07-08 2005-07-08 Titania fiber and method for producing titania fiber

Country Status (1)

Country Link
JP (1) JP4746366B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247073B2 (en) * 2007-06-27 2013-07-24 日本バイリーン株式会社 INORGANIC POROUS FINE FIBER AND METHOD FOR PRODUCING THE SAME
KR101551622B1 (en) * 2008-04-08 2015-09-09 니혼바이린 가부시기가이샤 Process for manufacturing organic fibers containing inorganic component and nonwoven fabric containing the same
JP5320568B2 (en) * 2008-05-07 2013-10-23 石原薬品株式会社 Method for producing fibrous barium titanate
JP2011219359A (en) * 2011-06-14 2011-11-04 Teijin Ltd Method for producing ceramics porous body
CN105435767A (en) * 2016-01-04 2016-03-30 淮北师范大学 Preparation method of photocatalyst adopting one-dimensional CNF (carbon nanofiber)/TiO2 core-shell structure
US20190143301A1 (en) * 2017-11-13 2019-05-16 Honeywell International Inc. Materials for removing air pollutants
CN114225934A (en) * 2021-12-28 2022-03-25 上海第二工业大学 Pt atom loaded nano TiO2Dense foam and method of making same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055841A (en) * 2001-08-10 2003-02-26 Sumitomo Chem Co Ltd Titanium oxide fiber and photocatalyst body using the same
WO2004091785A1 (en) * 2003-04-11 2004-10-28 Teijin Limited Catalyst-supporting fiber structure and method for producing same
JP2005254173A (en) * 2004-03-12 2005-09-22 Toho Titanium Co Ltd Titania fiber photocatalyst and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005020626D1 (en) * 2004-06-23 2010-05-27 Teijin Ltd INORGANIC FIBER, FIBER SCULPTURE AND METHOD FOR PRODUCING THEREOF
JP3747260B1 (en) * 2005-03-07 2006-02-22 国立大学法人京都大学 Titanium oxide-based nanoproduct and method for producing the same
CN101213330B (en) * 2005-05-31 2012-06-06 帝人株式会社 Ceramic fibre and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055841A (en) * 2001-08-10 2003-02-26 Sumitomo Chem Co Ltd Titanium oxide fiber and photocatalyst body using the same
WO2004091785A1 (en) * 2003-04-11 2004-10-28 Teijin Limited Catalyst-supporting fiber structure and method for producing same
JP2005254173A (en) * 2004-03-12 2005-09-22 Toho Titanium Co Ltd Titania fiber photocatalyst and its manufacturing method

Also Published As

Publication number Publication date
JP2007016352A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4575444B2 (en) Ceramic fiber and method for producing the same
JP4746366B2 (en) Titania fiber and method for producing titania fiber
EP1767675B1 (en) Inorganic fiber, fiber structure and method for producing same
JP4742126B2 (en) Method for producing catalyst-supported fiber structure
Jia et al. Flexible ceramic fibers: Recent development in preparation and application
KR101336286B1 (en) Manufacturing method for carbon nano fiber complex and carbon nano fiber complex
KR20180028765A (en) Carbon nanofiber composite having three layer structure and method for manufacturing thereof
JP2008057072A (en) Rare earth metal element-containing crystalline metal oxide fiber and method for producing the same
JPWO2007123114A1 (en) Titania fiber and method for producing titania fiber
JP5155188B2 (en) Ceramic fiber and method for producing ceramic fiber
JP2008038314A (en) Titania fiber and method for producing titania fiber
JP4612476B2 (en) Method for producing zirconia fiber
JP4759358B2 (en) Method for controlling bulk density of fiber assembly produced by electrospinning method
JP4669326B2 (en) INORGANIC FIBER PAPER AND METHOD FOR PRODUCING THE SAME
JP2007217826A (en) Cottony material and method for producing cottony material
JP2011219359A (en) Method for producing ceramics porous body
JP2007217235A (en) Ceramic porous body and method of manufacturing ceramic porous body
JP2007287781A (en) Separator for capacitor and its production process
Kizildag Recent advances in applications of ceramic nanofibers
KR20220115180A (en) Method for manufacturing air purifying photocatalyst composite fiber assembly and air cleaning photocatalyst composite fiber assembly manufactured therefrom
Mankotia et al. Polymer and Ceramic-Based Hollow Nanofibers via Electrospinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees