JP4745909B2 - Method for producing containerized milk coffee beverage - Google Patents

Method for producing containerized milk coffee beverage Download PDF

Info

Publication number
JP4745909B2
JP4745909B2 JP2006205656A JP2006205656A JP4745909B2 JP 4745909 B2 JP4745909 B2 JP 4745909B2 JP 2006205656 A JP2006205656 A JP 2006205656A JP 2006205656 A JP2006205656 A JP 2006205656A JP 4745909 B2 JP4745909 B2 JP 4745909B2
Authority
JP
Japan
Prior art keywords
coffee
hydrogen peroxide
hydroxyhydroquinone
amount
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006205656A
Other languages
Japanese (ja)
Other versions
JP2007054054A (en
Inventor
千年 重野
英武 中村
祥司 山崎
義信 早川
真士 山本
義和 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006205656A priority Critical patent/JP4745909B2/en
Publication of JP2007054054A publication Critical patent/JP2007054054A/en
Application granted granted Critical
Publication of JP4745909B2 publication Critical patent/JP4745909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

本発明は、長期飲用しても体内での過酸化水素の発生を抑制することのできる容器詰ミルクコーヒー飲料の製造方法に関する。   The present invention relates to a method for producing a packaged milk coffee beverage capable of suppressing the generation of hydrogen peroxide in the body even after long-term drinking.

活性酸素の一つである過酸化水素は、変異原性、癌原性等の他、動脈硬化症、虚血性心疾患等の循環器系疾患、消化器疾患、アレルギー疾患、眼疾患など多くの疾患に深く関与しているといわれている(非特許文献1)。一方、コーヒーには、焙煎によって自然発生する過酸化水素が含まれており(非特許文献2)、カタラーゼ、ペルオキシダーゼ、抗酸化剤(特許文献1〜4)等を添加することにより、コーヒー中の過酸化水素を除去する技術が報告されている。
栄養―評価と治療 19,3 (2002) Mutat. Res. 16,308(2) (1994) 特公平4−29326号公報 特開平3−127950号公報 特開平11−266842号公報 特開2003−81824号公報
Hydrogen peroxide, one of the active oxygens, is not only mutagenic, carcinogenic, etc., but also has many cardiovascular diseases such as arteriosclerosis and ischemic heart disease, digestive system diseases, allergic diseases, eye diseases, etc. It is said to be deeply involved in the disease (Non-patent Document 1). On the other hand, coffee contains hydrogen peroxide that is naturally generated by roasting (Non-patent Document 2), and by adding catalase, peroxidase, antioxidant (Patent Documents 1 to 4), etc. in the coffee A technique for removing hydrogen peroxide in water has been reported.
Nutrition-Evaluation and Treatment 19,3 (2002) Mutat. Res. 16,308 (2) (1994) Japanese Examined Patent Publication No. 4-29326 Japanese Patent Laid-Open No. 3-127950 JP 11-266842 A JP 2003-81824 A

本発明者らが、過酸化水素を除去したコーヒーをラットに飲用させたところ、体内で過酸化水素が生成し、尿中過酸化水素濃度が上昇することが判明した。すなわち、従来の、コーヒー飲料中の過酸化水素除去技術によっては、コーヒー飲用後に体内での過酸化水素生成を抑制することはできなかった。   When the present inventors allowed rats to drink coffee from which hydrogen peroxide had been removed, it was found that hydrogen peroxide was produced in the body and the urine hydrogen peroxide concentration increased. That is, conventional hydrogen peroxide removal technology in coffee beverages has not been able to suppress the production of hydrogen peroxide in the body after drinking coffee.

本発明の目的は、飲用後に体内で過酸化水素を生成させない容器詰ミルクコーヒー飲料を提供することにある。   An object of the present invention is to provide a packaged milk coffee beverage that does not produce hydrogen peroxide in the body after drinking.

本発明者は、コーヒー中の何らかの成分が生体内において過酸化水素を生成させるのではないかとの仮説に基づき、種々検討した結果、コーヒー中に含まれるヒドロキシヒドロキノンに、生体内で過酸化水素を生成させる作用があること、及びヒドロキシヒドロキノンの含有量を通常含まれる量より十分に少ない0〜0.00009質量%に制御すれば、生体内で過酸化水素生成を増加させないコーヒー組成物が得られることを見出した。   As a result of various studies based on the hypothesis that some component in coffee may generate hydrogen peroxide in vivo, the present inventor has added hydrogen peroxide to hydroxyhydroquinone contained in coffee in vivo. If the content of hydroxyhydroquinone is controlled to 0 to 0.00009% by mass, which is sufficiently smaller than the amount normally contained, a coffee composition that does not increase the production of hydrogen peroxide in vivo can be obtained. I found out.

しかし、このコーヒー組成物に乳成分を配合して容器詰ミルクコーヒー飲料とした場合、ヒドロキシヒドロキノン含量を低下させても、加熱殺菌処理工程でヒドロキシヒドロキノンが再生成してしまうことが判明した。そこで更に検討した結果、殺菌条件を限定することで、加熱殺菌処理によるヒドロキシヒドロキノンの生成を抑制できることを見出した。   However, it has been found that when a milk component is blended with this coffee composition to make a container-packed milk coffee drink, even if the hydroxyhydroquinone content is reduced, hydroxyhydroquinone is regenerated in the heat sterilization treatment step. As a result of further investigation, it was found that the production of hydroxyhydroquinone by heat sterilization treatment can be suppressed by limiting the sterilization conditions.

すなわち、本発明は、 ヒドロキシヒドロキノン含有量が0〜0.000085質量%であり、乳成分を含有するコーヒー組成物を、殺菌温度123℃以上、殺菌時間20分以内で加熱殺菌処理しヒドロキシヒドロキノン含有量が0〜0.000085質量%に維持された容器詰ミルクコーヒー飲料の製造方法を提供するものである。   That is, in the present invention, the hydroxyhydroquinone content is 0 to 0.000085% by mass, and the coffee composition containing the milk component is heat sterilized at a sterilization temperature of 123 ° C. or higher and within a sterilization time of 20 minutes. The present invention provides a method for producing a containerized milk coffee beverage whose amount is maintained at 0 to 0.000085% by mass.

本発明によれば、飲用後に生体内で過酸化水素が生成しない容器詰ミルクコーヒー飲料を得ることができる。   According to the present invention, it is possible to obtain a packaged milk coffee beverage in which hydrogen peroxide is not generated in vivo after drinking.

本発明方法に用いられるミルクコーヒー組成物は、ヒドロキシヒドロキノン含有量が0〜0.000085質量%に調整されており、ヒドロキシヒドロキノン含有量が上記範囲内である場合には、これらの組成物を飲用したときに生体内での過酸化水素の発生が抑制される。コーヒー組成物中の好ましいヒドロキシヒドロキノン含有量は、0〜0.00005質量%、より好ましくは0〜0.00003質量%であり、更に好ましくは0〜0.00001質量%である。   The milk coffee composition used in the method of the present invention has a hydroxyhydroquinone content adjusted to 0 to 0.000085% by mass, and when the hydroxyhydroquinone content is within the above range, these compositions are drunk. Generation of hydrogen peroxide in the living body is suppressed. The preferred hydroxyhydroquinone content in the coffee composition is 0 to 0.00005% by mass, more preferably 0 to 0.00003% by mass, and still more preferably 0 to 0.00001% by mass.

当該ヒドロキシヒドロキノン含量は、高速液体クロマトグラフィー(HPLC)により測定することができる。HPLCにおける検出手段としては、UV検出が一般的であるが、CL(化学発光)検出、EC(電気化学)検出、LC−Mass検出等により更に高感度で検出でき、特にEC(電気化学)検出が極微量のヒドロキシヒドロキノンを測定できる点で好ましい。なお、HPLCによるヒドロキシヒドロキノン含量の測定にあたっては、コーヒー飲料又はコーヒー組成物を濃縮した後に測定することもできる。   The hydroxyhydroquinone content can be measured by high performance liquid chromatography (HPLC). As a detection means in HPLC, UV detection is generally used, but it can be detected with higher sensitivity by CL (chemiluminescence) detection, EC (electrochemical) detection, LC-Mass detection, etc., especially EC (electrochemical) detection. Is preferable in that a trace amount of hydroxyhydroquinone can be measured. In addition, in measuring the hydroxyhydroquinone content by HPLC, it can also measure after concentrating a coffee drink or a coffee composition.

更にヒドロキシヒドロキノン含量は、HPLCで直接測定することもできるが、本発明により得られた容器詰飲料又はコーヒー組成物から、各種クロマトグラフィーによりヒドロキシヒドロキノンを濃縮して、その濃縮画分の量を測定することによっても定量できる。   Further, the hydroxyhydroquinone content can be directly measured by HPLC, but the hydroxyhydroquinone is concentrated by various chromatographies from the packaged beverage or coffee composition obtained by the present invention, and the amount of the concentrated fraction is measured. It can also be quantified.

ヒトが通常の市販のインスタントコーヒー2杯(280g)を飲用すると、尿中過酸化水素量は有意に増加する(図1)。一方、通常のコーヒー及び過酸化水素除去コーヒーを摂取したラットの尿中過酸化水素増加は同程度であった(図2)。   When humans drink two regular commercial instant coffees (280 g), the amount of hydrogen peroxide in urine is significantly increased (FIG. 1). On the other hand, the increase in urine hydrogen peroxide in rats fed normal coffee and coffee from which hydrogen peroxide had been removed was similar (FIG. 2).

このことから、コーヒー中に含まれる過酸化水素により、飲用後の尿中過酸化水素量が増加しているのではなく、コーヒー中に含まれる何らかの成分が生体内で過酸化水素を生成させていることは明らかである。 From this, the amount of hydrogen peroxide in the urine after drinking is not increased by the hydrogen peroxide contained in the coffee, but some component contained in the coffee generates hydrogen peroxide in the living body. Obviously.

そこで本発明者は、コーヒー中に含まれる種々の成分の体内での過酸化水素生成能について検討した。その結果、ヒドロキシヒドロキノンは通常、市販のコーヒー中に0.2〜3mg/190g含まれているが、極めて少量の摂取でも体内過酸化水素生成を増加させる作用を有し(図3、4)、ヒドロキシヒドロキノン含有量を0.00009質量%以下に調整したコーヒーを摂取した場合には、体内での過酸化水素生成が抑制されることが判明した(図7)。   Therefore, the present inventor examined the ability of various components contained in coffee to generate hydrogen peroxide in the body. As a result, hydroxyhydroquinone is usually contained in commercially available coffee in an amount of 0.2 to 3 mg / 190 g, but has an effect of increasing the production of hydrogen peroxide in the body even when ingested in a very small amount (FIGS. 3 and 4). It was found that when coffee whose hydroxyhydroquinone content was adjusted to 0.00009% by mass or less was ingested, the production of hydrogen peroxide in the body was suppressed (FIG. 7).

本発明方法に用いられるコーヒー組成物は、ヒドロキシヒドロキノン含有量を低減させる以外は、通常のコーヒー成分をそのまま含有しているのが好ましい。   The coffee composition used in the method of the present invention preferably contains a normal coffee component as it is except that the hydroxyhydroquinone content is reduced.

また本発明の容器詰ミルクコーヒー飲料又はミルクコーヒー組成物は、H22(過酸化水素)の含有量が1ppm以下、より好ましくは0.1ppm以下、更に0.05ppm以下、特に0.01ppm以下であるのがコーヒー本来の風味の点で好ましい。過酸化水素の測定は通常用いられる過酸化水素計を用いて行うことができ、例えば、セントラル科学社製の高感度過酸化水素計スーパーオリテクターモデル5(SUPER ORITECTOR MODEL5)等を用いることができる。特にH22は開缶前は殺菌処理により失われているものの、開缶によって空気に触れると時間経過と共に徐々に増加する傾向があることから、特許第3732782号、特許第3706339号に記載の測定条件に則り、開缶後迅速かつ速やかに分析する。 Further, the container-packed milk coffee beverage or milk coffee composition of the present invention has a H 2 O 2 (hydrogen peroxide) content of 1 ppm or less, more preferably 0.1 ppm or less, even more preferably 0.05 ppm or less, particularly 0.01 ppm. The following is preferable in terms of the original flavor of coffee. The measurement of hydrogen peroxide can be performed using a commonly used hydrogen peroxide meter. For example, a high-sensitivity hydrogen peroxide meter Super Orientor Model 5 (SUPER ORITECTOR MODEL 5) manufactured by Central Science Co., Ltd. can be used. . In particular, H 2 O 2 is lost by sterilization before opening of the can, but when it comes into contact with air by opening the can, it tends to gradually increase with time, so it is described in Japanese Patent Nos. 37322782 and 3706339. Analyze quickly and promptly after opening the can according to the measurement conditions.

本発明方法に用いられるコーヒー組成物は、コーヒー豆からの抽出物、インスタントコーヒーの水溶液などから調製することができる。
本発明において、コーヒー組成物を得るのに用いるコーヒー豆の種類は、特に限定されないが、例えばブラジル、コロンビア、タンザニア、モカ、キリマンジェロ、マンデリン、ブルーマウンテン等が挙げられる。コーヒー豆種としては、アラビカ種、ロブスタ種などがある。コーヒー豆は1種でもよいし、複数種をブレンドして用いてもよい。コーヒー豆を焙煎により焙煎コーヒー豆とする方法については、特に制限はなく、焙煎温度、焙煎環境についても制限はないが、好ましい焙煎温度は100〜300℃であり、好ましくは150〜250℃である。好ましい焙煎方法としては直火式、熱風式、半熱風式が選択があり、回転ドラムを有している形式が更に好ましい。また、風味の観点より焙煎後1時間以内に0〜100℃まで冷却することが好ましく、さらに好ましくは10〜60℃である。
The coffee composition used in the method of the present invention can be prepared from an extract from coffee beans, an aqueous solution of instant coffee, or the like.
In the present invention, the type of coffee beans used to obtain the coffee composition is not particularly limited, and examples thereof include Brazil, Colombia, Tanzania, mocha, kilimangelo, mandelin, and blue mountain. Coffee beans include Arabica and Robusta. One kind of coffee beans may be used, or a plurality of kinds may be blended. There is no particular restriction on the method of making coffee beans roasted by roasting, and there is no restriction on the roasting temperature and roasting environment, but the preferred roasting temperature is 100 to 300 ° C., preferably 150. ~ 250 ° C. As a preferred roasting method, there are a direct flame type, a hot air type and a semi-hot air type, and a type having a rotating drum is more preferred. Moreover, it is preferable to cool to 0-100 degreeC within 1 hour after roasting from a viewpoint of flavor, More preferably, it is 10-60 degreeC.

焙煎コーヒー豆の焙煎度としては、ライト、シナモン、ミディアム、ハイ、シティ、フルシティ、フレンチ、イタリアンがあり、ライト、シナモン、ミディアム、ハイ、シティが好ましい。焙煎度を色差計で測定したL値としては、10から30が好ましく、さらに好ましくは15から25である。尚、焙煎度の違うコーヒー豆を混合しても良い。   As roasting degree of roasted coffee beans, there are light, cinnamon, medium, high, city, full city, french and italian, and light, cinnamon, medium, high and city are preferred. The L value obtained by measuring the roasting degree with a color difference meter is preferably 10 to 30, more preferably 15 to 25. Note that coffee beans having different roasting degrees may be mixed.

コーヒー豆からの抽出方法についても制限はなく、例えば焙煎コーヒー豆又はその粉砕物から水〜熱水(0〜100℃)などの抽出溶媒を用いて10秒〜30分抽出する方法が挙げられる。粉砕度合いとしては、極細挽き(0.250-0.500μm)、細挽き(0.300-0.650μm)、中細挽き(0.530-1.000μm)、中挽き(0.650-1.500μm)、中粗挽き、粗挽き(0.850-2.100μm)、極粗挽き(1.000-2.500μm)や平均粒径3mmや同5mm、同10mm程度のカット品が挙げられる。抽出方法は、ボイリング式、エスプレッソ式、サイホン式、ドリップ式(ペーパー、ネル等)等が挙げられる。   There is no restriction | limiting also about the extraction method from coffee beans, For example, the method of extracting for 10 seconds-30 minutes from roasted coffee beans or its ground material using extraction solvents, such as water-hot water (0-100 degreeC), is mentioned. . As the pulverization degree, extra fine grinding (0.250-0.500 μm), fine grinding (0.300-0.650 μm), medium fine grinding (0.530-1.000 μm), medium grinding (0.650-1.500 μm), medium coarse grinding, coarse grinding (0.850) -2.100μm), ultra-coarse grind (1.000-2.500μm), and cut products with average particle sizes of 3mm, 5mm, and 10mm. Examples of the extraction method include a boiling type, an espresso type, a siphon type, and a drip type (paper, flannel, etc.).

抽出溶媒としては、水、アルコール含有水、ミルク、炭酸水などが挙げられる。抽出溶媒のpHは通常4−10であり、風味の観点からは5−7が好ましい。尚、抽出溶媒の中にpH調整剤、例えば重炭酸水素ナトリウム、炭酸水素ナトリウム、L−アスコルビン酸、L−アルコルビン酸Naを含有させ、pHを適宜調整しても良い。   Examples of the extraction solvent include water, alcohol-containing water, milk, carbonated water, and the like. The pH of the extraction solvent is usually 4-10, and 5-7 is preferable from the viewpoint of flavor. In addition, a pH adjusting agent such as sodium bicarbonate, sodium bicarbonate, L-ascorbic acid, or L-alcorbic acid Na may be contained in the extraction solvent, and the pH may be adjusted appropriately.

抽出器としては、ペーパードリップ、不織布ドリップ、サイフォン、ネルドリップ、エスプレッソマシン、コーヒーマシン、パーコレーター、コーヒープレス、イブリック、ウォータードリップ、ボイリング、コーヒーカップへ実質的に懸架可能なペーパー又は不織布の袋状構造体、上部にスプレーノズル下部に実質的にコーヒー豆の固液分離可能な構造体(メッシュやパンチングメタルなど)を有するドリップ抽出器、上部及び下部に実質的にコーヒー豆の固液分離可能な構造体(メッシュやパンチングメタルなど)を有するカラム抽出器等が挙げられる。抽出器は加熱又は冷却可能な構造(例えば、電気ヒーター、温水や蒸気、冷水が通液可能なジャケット)を有していても良い。   The extractor includes paper drip, non-woven drip, siphon, nel drip, espresso machine, coffee machine, percolator, coffee press, ibrick, water drip, boiling, coffee or a bag-like non-woven bag structure that can be suspended in a coffee cup. Body, drip extractor having a structure (mesh, punching metal, etc.) capable of substantially separating coffee beans in the lower part of the spray nozzle, and structure capable of substantially separating coffee beans in the upper and lower parts. Examples include a column extractor having a body (such as a mesh or punching metal). The extractor may have a structure that can be heated or cooled (for example, an electric heater, a jacket through which hot water, steam, or cold water can flow).

抽出方法としてはバッチ式抽出法、半バッチ式抽出法、連続式抽出法が挙げられる。バッチ式抽出法又は半バッチ式抽出法の抽出時間は風味の観点より10秒〜120分が好ましく、30秒〜30分が更に好ましい。   Examples of the extraction method include a batch extraction method, a semi-batch extraction method, and a continuous extraction method. The extraction time of the batch type extraction method or the semi-batch type extraction method is preferably 10 seconds to 120 minutes, more preferably 30 seconds to 30 minutes, from the viewpoint of flavor.

また、本発明方法に用いられるコーヒー組成物は乳成分を含有する。乳成分としては、例えば生乳、牛乳、全粉乳、脱脂粉乳、生クリーム、濃縮乳、脱脂乳、部分脱脂乳、練乳、植物油等が挙げられる。これらの乳成分は、合計でコーヒー組成物中に乳固形分換算で0.1〜10質量%、さらに0.5〜6質量%、特に1〜4質量%含有するのが好ましい。   The coffee composition used in the method of the present invention contains a milk component. Examples of the milk component include raw milk, cow milk, whole milk powder, skim milk powder, fresh cream, concentrated milk, skim milk, partially skimmed milk, condensed milk, vegetable oil and the like. These milk components are preferably contained in the coffee composition in a total amount of 0.1 to 10% by mass, further 0.5 to 6% by mass, particularly 1 to 4% by mass in terms of milk solid content.

本発明方法により製造される容器詰ミルクコーヒー飲料は、飲料100gあたりコーヒー豆を生豆換算で1g以上、好ましくはコーヒー豆を2.5g以上、更に好ましくはコーヒー豆を5g以上使用しているものである。   The packaged milk coffee beverage produced by the method of the present invention uses 1 g or more of coffee beans in terms of green beans per 100 g of beverage, preferably 2.5 g or more of coffee beans, more preferably 5 g or more of coffee beans. It is.

本発明方法に用いられるコーヒー組成物は、コーヒー抽出液を含む液を吸着剤処理してヒドロキシヒドロキノン量を低減させる方法(吸着剤処理法)、コーヒー抽出液を含む液中の酵素処理によりヒドロキシヒドロキノン含量を低減させることにより得られる方法などによりヒドロキシヒドロキノン量を調整することができる。吸着剤処理法に用いる吸着剤としては、活性炭、逆相クロマトグラフ担体、白土(活性白土、酸性白土)などが挙げられ、これら2種以上の混合物であってもよい。吸着剤の平均粒径は、通常1μm〜20mmが好ましく、さらに好ましくは50μm〜5mmである。吸着剤処理方法は、バッチ法であってもカラム通液方法であっても良い。   The coffee composition used in the method of the present invention includes a method of reducing the amount of hydroxyhydroquinone by treating a liquid containing a coffee extract with an adsorbent (adsorbent treatment method), and an enzyme treatment in the liquid containing the coffee extract. The amount of hydroxyhydroquinone can be adjusted by a method obtained by reducing the content. Examples of the adsorbent used in the adsorbent treatment method include activated carbon, reverse phase chromatographic carrier, white clay (active white clay, acidic white clay), and the like, and a mixture of two or more of these may be used. The average particle diameter of the adsorbent is usually preferably 1 μm to 20 mm, more preferably 50 μm to 5 mm. The adsorbent treatment method may be a batch method or a column liquid passing method.

バッチ法としては、例えばコーヒー抽出液を含む液に吸着剤を加え−10〜100℃で0.5分〜5時間撹拌した後、吸着剤を除去すればよい。処理時の雰囲気としては、空気下、不活性ガス下(窒素ガス、アルゴンガス、ヘリウムガス、二酸化炭素、炭酸ガス)が挙げられるが、風味の観点より不活性ガス下が好ましい。   As a batch method, for example, an adsorbent may be added to a liquid containing a coffee extract and stirred at −10 to 100 ° C. for 0.5 minutes to 5 hours, and then the adsorbent may be removed. Examples of the atmosphere during the treatment include air and inert gas (nitrogen gas, argon gas, helium gas, carbon dioxide, carbon dioxide gas), but inert gas is preferred from the viewpoint of flavor.

カラム通液法としては、例えば吸着カラム内に吸着剤を充填し、コーヒー抽出液を含む液をカラム下部又は上部から通液させ、他方から排出させ、必要に応じて吸着剤を除去する。吸着剤のカラム内への充填量は、通液前に吸着カラムに充填できる量であれば良い。吸着カラムの上段又は下段の少なくとも1つにメッシュ(網)又はパンチングメタルなど有し実質的に吸着剤が漏れ出さない分離構造体を有していれば良い。   In the column liquid passing method, for example, an adsorbent is filled in an adsorption column, a liquid containing a coffee extract is passed from the lower or upper part of the column, discharged from the other, and the adsorbent is removed as necessary. The amount of the adsorbent packed into the column may be an amount that can be packed into the adsorption column before passing the liquid. It is sufficient that at least one of the upper and lower stages of the adsorption column has a separation structure that has a mesh (net) or punching metal and does not substantially leak the adsorbent.

吸着剤量は、コーヒー抽出液中のコーヒー豆由来可溶性固形分に対して、0.01〜100倍が好ましい。風味の観点より、活性炭の場合は、0.02〜1.0倍、逆相クロマトグラフ担体の場合は2〜100倍用いるのが好ましい。   The amount of the adsorbent is preferably 0.01 to 100 times the soluble solid derived from coffee beans in the coffee extract. From the viewpoint of flavor, it is preferable to use 0.02 to 1.0 times for activated carbon and 2 to 100 times for reverse phase chromatographic carrier.

活性炭としては、ミクロ孔領域における平均細孔半径が5オングストローム(Å)以下、更には、2〜5オングストロームの範囲であることが好ましく、特に3〜5オングストロームの範囲であることが好ましい。本発明におけるミクロ孔領域とは、10オングストローム以下を示し、平均細孔半径は、MP法により測定して得た細孔分布曲線のピークトップを示す細孔半径の値とした。MP法とは、文献(Colloid and Interface Science, 26, 46(1968))に記載の細孔測定法であり、株式会社住化分析センター、株式会社東レリサーチセンター等にて採用されている方法である。また、活性炭の種類としては、ヤシ殻活性炭が好ましく、更に水蒸気賦活化ヤシ殻活性炭が好ましい。活性炭の市販品としては、白鷺WH2C、WH2CL、W2CL、W2C、EH(日本エンバイロケミカルズ)、太閣CW(二村化学)、クラレコールGW(クラレケミカル)等を用いることができる。   As the activated carbon, the average pore radius in the micropore region is preferably 5 angstroms (Å) or less, more preferably in the range of 2 to 5 angstroms, and particularly preferably in the range of 3 to 5 angstroms. In the present invention, the micropore region indicates 10 angstroms or less, and the average pore radius is a value of the pore radius indicating the peak top of the pore distribution curve obtained by measurement by the MP method. The MP method is a pore measurement method described in the literature (Colloid and Interface Science, 26, 46 (1968)), and is a method adopted by Sumika Chemical Analysis Co., Ltd., Toray Research Center, etc. is there. Moreover, as a kind of activated carbon, coconut shell activated carbon is preferable, and also water vapor activated coconut shell activated carbon is preferable. As a commercially available product of activated carbon, Shirakaba WH2C, WH2CL, W2CL, W2C, EH (Nippon Envirochemicals), Taiko CW (Nikamura Chemical), Kuraray Coal GW (Kuraray Chemical), etc. can be used.

白土は、5%のサスペンジョンのpHが5〜10である酸性白土が好ましい。酸性白土の市販品としては、ミズカエース等を用いることができる。逆相クロマトグラフ担体としては、YMC・ODS−A(YMC)、C18(GLサイエンス)等が挙げられる。   The clay is preferably an acid clay with a 5% suspension pH of 5-10. As a commercial product of acidic clay, Mizuka Ace or the like can be used. Examples of the reverse phase chromatographic carrier include YMC • ODS-A (YMC), C18 (GL Science) and the like.

これらの吸着剤処理法のうち、活性炭を用いた吸着剤処理法は選択的にヒドロキシヒドロキノン含量を低減させることができるだけでなく、風味も良く工業的にも有利である。
尚、吸着剤処理工程は、コーヒー抽出液のみで処理をおこなうのが好適であるが、乳や乳製品、副原料を混合し処理をおこなっても良い。またコーヒー組成物を殺菌する前に吸着剤処理工程をおこなうのが好適であるが、殺菌後充填前に吸着剤処理工程を導入しても良い。
Among these adsorbent treatment methods, the adsorbent treatment method using activated carbon not only can selectively reduce the hydroxyhydroquinone content, but also has good flavor and is industrially advantageous.
The adsorbent treatment step is preferably performed only with the coffee extract, but may be performed by mixing milk, dairy products, and auxiliary materials. Further, it is preferable to perform the adsorbent treatment step before sterilizing the coffee composition, but the adsorbent treatment step may be introduced before filling after sterilization.

本発明方法に用いられるコーヒー組成物は、高速液体クロマトグラフィーによる分析における、没食子酸を標準物質とした場合の没食子酸に対する相対保持時間が0.54〜0.61の時間領域に実質的にピークを有しないことが好ましい。当該時間領域に実質的にピークを有しないことを確認するには、一般的なHPLCを使用することができ、例えば溶離液として0.05M酢酸水溶液と0.05M酢酸100%アセトニトリル溶液のグラジエントを用い、ODSカラムを用いて、紫外線吸光光度計等により検出することで確認することができる。   The coffee composition used in the method of the present invention has a peak substantially in the time region where the relative retention time for gallic acid is 0.54 to 0.61 when gallic acid is used as the standard substance in the analysis by high performance liquid chromatography. It is preferable not to have. In order to confirm that there is substantially no peak in the time domain, general HPLC can be used. For example, a gradient of 0.05 M acetic acid aqueous solution and 0.05 M acetic acid 100% acetonitrile solution is used as an eluent. It can be confirmed by using an ODS column and detecting with an ultraviolet absorptiometer or the like.

本発明において没食子酸に対する相対保持時間が0.54〜0.61の時間領域に実質的にピークを有しないとは、没食子酸の1ppm溶液を分析時の面積値をS1とし、同条件でコーヒー組成物を分析した時の前記特定の領域に溶出する成分に由来するピーク面積の総和をS2としたとき、S2/S1<0.01であることを意味する。   In the present invention, the fact that the relative retention time with respect to gallic acid does not substantially have a peak in the time region of 0.54 to 0.61 means that the area value at the time of analysis of a 1 ppm solution of gallic acid is S1, and coffee under the same conditions. When the sum of the peak areas derived from the components eluted in the specific region when the composition is analyzed is S2, it means that S2 / S1 <0.01.

本発明方法に用いられるコーヒー組成物には、所望により、ショ糖、グルコース、フルクトース、キシロース、果糖ブドウ糖液、糖アルコール等の糖分、抗酸化剤、pH調整剤、香料等を添加することができる。コーヒー組成物のpHとしては、5〜7、更に5.4〜6.5、特に5.6〜6.3が飲料の安定性の面で好ましい。   If desired, sugar composition such as sucrose, glucose, fructose, xylose, fructose glucose solution, sugar alcohol, antioxidant, pH adjuster, fragrance and the like can be added to the coffee composition used in the method of the present invention. . The pH of the coffee composition is preferably 5 to 7, more preferably 5.4 to 6.5, and particularly preferably 5.6 to 6.3 in terms of beverage stability.

本発明方法により製造される容器詰ミルクコーヒー飲料は、摂取後体内での過酸化水素量の発生が抑えられるため尿中の過酸化水素量を増加させない。特に、参考例7に示すようにヒトにコーヒー組成物を280mLを経口投与した場合に投与後2時間後に尿中過酸化水素量が増加しないものが好ましい。このためには加熱殺菌処理後、ヒドロキシヒドロキノン量が0.00085質量%以下、好ましくは0〜0.00005質量%、より好ましくは0〜0.00001質量%であることが必要である。   The packaged milk coffee beverage produced by the method of the present invention does not increase the amount of hydrogen peroxide in urine because the generation of the amount of hydrogen peroxide in the body is suppressed after ingestion. In particular, as shown in Reference Example 7, when 280 mL of the coffee composition is orally administered to humans, it is preferable that the amount of hydrogen peroxide in urine does not increase 2 hours after the administration. For this purpose, after the heat sterilization treatment, the amount of hydroxyhydroquinone is required to be 0.00085% by mass or less, preferably 0 to 0.00005% by mass, more preferably 0 to 0.00001% by mass.

本発明方法により製造される容器詰ミルクコーヒー飲料は、コーヒー組成物をPETボトル、缶(アルミニウム、スチール)、紙、レトルトパウチ、瓶(ガラス)等の容器に詰めて製造することができる。この場合、コーヒー組成物を容器に詰めて50〜2500mLの容器詰ミルクコーヒー飲料とすることができる。飲みやすさの点から好ましくは150〜350mL、更に好ましくは180〜250mLの容器である。容器詰ミルクコーヒー飲料は、シングルストレングスであることが好ましい。ここでシングルストレングスとは、容器詰飲料を開封した後、常態として薄めずにそのまま飲めるものをいう。容器詰ミルクコーヒー飲料のpHとしては5〜7が好ましく、更に5.4〜6.5が好ましく、特に5.6〜6.3が好ましい。また、本発明により得られる容器詰ミルクコーヒー飲料中のモノカフェオイルキナ酸の構成比としては、4−カフェオイルキナ酸/3−カフェオイルキナ酸質量比が0.6〜1.2であり、5−カフェオイルキナ酸/3−カフェオイルキナ酸質量比が0.01〜3であることが好ましい。   The packaged milk coffee beverage produced by the method of the present invention can be produced by filling the coffee composition into a container such as a PET bottle, can (aluminum, steel), paper, retort pouch, bottle (glass) and the like. In this case, the coffee composition can be packed in a container to obtain a 50 to 2500 mL packed milk coffee drink. From the viewpoint of ease of drinking, the container is preferably 150 to 350 mL, more preferably 180 to 250 mL. The packaged milk coffee beverage is preferably single-strength. Here, “single strength” means that after opening a packaged beverage, it can be taken as it is without being diluted. The pH of the packaged milk coffee beverage is preferably 5 to 7, more preferably 5.4 to 6.5, and particularly preferably 5.6 to 6.3. Moreover, as a constituent ratio of monocaffeoylquinic acid in the packaged milk coffee beverage obtained by the present invention, the mass ratio of 4-caffeoylquinic acid / 3-caffeoylquinic acid is 0.6 to 1.2. The mass ratio of 5-caffeoylquinic acid / 3-caffeoylquinic acid is preferably 0.01 to 3.

容器としては、コーヒー中の成分の変化を防止する観点から、酸素透過度の低い容器が好ましく、例えば、アルミニウムや、スチールなどの缶、ガラス製のビン等を用いるのが良い。缶やビンの場合、リキャップ可能な、リシール型のものも含まれる。ここで酸素透過度とは、容器・フィルム酸素透過率測定器で20℃、相対湿度50%の環境下で測定した酸素透過度(cc・mm/m2・day・atm)である。酸素透過度は、5以下が好ましく、更に3以下、特に1以下が好ましい。 As the container, a container having a low oxygen permeability is preferable from the viewpoint of preventing changes in the components in the coffee. For example, a can made of aluminum or steel, a glass bottle, or the like may be used. In the case of cans and bottles, resealable ones that can be recapped are also included. Here, the oxygen permeability is oxygen permeability (cc · mm / m 2 · day · atm) measured in an environment of 20 ° C. and 50% relative humidity with a container / film oxygen permeability meter. The oxygen permeability is preferably 5 or less, more preferably 3 or less, and particularly preferably 1 or less.

本発明方法により製造される容器詰ミルクコーヒー飲料は、前記のコーヒー組成物に乳成分を配合し、殺菌温度123℃以上、殺菌時間20分以内で加熱殺菌処理を行うことにより製造される。本発明において、殺菌温度は、微生物学的安定性及びヒドロキシヒドロキノンの再生成を効果的に抑制する点で123℃以上が好ましく、さらに123〜150℃、特に123〜145℃が好ましい。バッチ式殺菌機においての殺菌温度は、風味の観点より123〜135℃が好ましく、比較的短時間で殺菌可能である連続式殺菌機においての殺菌温度は、風味の観点より130〜150℃が好ましい。   The container-packed milk coffee beverage produced by the method of the present invention is produced by blending a milk component with the above-mentioned coffee composition and subjecting it to heat sterilization at a sterilization temperature of 123 ° C. or more and a sterilization time of 20 minutes or less. In the present invention, the sterilization temperature is preferably 123 ° C. or higher, more preferably 123 to 150 ° C., and particularly preferably 123 to 145 ° C. in terms of effectively suppressing microbiological stability and hydroxyhydroquinone regeneration. The sterilization temperature in the batch sterilizer is preferably 123 to 135 ° C from the viewpoint of flavor, and the sterilization temperature in the continuous sterilizer that can be sterilized in a relatively short time is preferably 130 to 150 ° C from the viewpoint of flavor. .

また、本発明において、殺菌時間は、ヒドロキシヒドロキノンの再生成を効果的に抑制する点で、20分以内であり、好ましくは1秒〜20分、より好ましくは3秒〜20分、更に好ましくは15秒〜20分である。バッチ式殺菌機においての殺菌時間は、風味の観点より好ましくは2〜20分、更に好ましくは3〜15分である。連続式殺菌機においての殺菌時間は、風味の観点より好ましくは10〜90秒、更に好ましくは20〜80秒である。   In the present invention, the sterilization time is within 20 minutes, preferably from 1 second to 20 minutes, more preferably from 3 seconds to 20 minutes, still more preferably from the viewpoint of effectively suppressing the regeneration of hydroxyhydroquinone. 15 seconds to 20 minutes. The sterilization time in the batch sterilizer is preferably 2 to 20 minutes, more preferably 3 to 15 minutes from the viewpoint of flavor. The sterilization time in the continuous sterilizer is preferably 10 to 90 seconds, more preferably 20 to 80 seconds from the viewpoint of flavor.

殺菌器はバッチ式殺菌機又は連続式殺菌機が使用可能である。バッチ式殺菌機としては、レトルト釜がある。連続式殺菌機としては、チューブ式殺菌機、プレート式殺菌機、HTSTプレート式殺菌装置、UHT殺菌機などがある(改訂版ソフトドリンクス、頁546−558、頁633−638、監修:全国清涼飲料工業会、発行:光琳)。風味の観点より、連続殺菌機が好ましく。特に、連続加熱殺菌後無菌下で充填する技術が好ましい。   As the sterilizer, a batch sterilizer or a continuous sterilizer can be used. There is a retort pot as a batch type sterilizer. Continuous sterilizers include tube-type sterilizers, plate-type sterilizers, HTST plate-type sterilizers, UHT sterilizers, etc. (revised soft drinks, pages 546-558, pages 633-638, supervised by Seiyo Nationwide) Beverage Manufacturers Association, published by Korin). From the viewpoint of flavor, a continuous sterilizer is preferred. In particular, a technique of filling under aseptic conditions after continuous heat sterilization is preferable.

また殺菌温度及び殺菌時間はF0値で管理するのが好ましい。好ましいF0値は30〜50、より好ましくは35〜50、更に好ましくは37〜45である。ここで、F0値とは、容器詰ミルクコーヒー飲料を加熱殺菌した場合の加熱殺菌効果を評価する値で、基準温度(121.1℃)における加熱時間(分)を示す。F0値は、容器内温度に対する致死率(121.1℃で1)に、加熱時間(分)を乗じて算出される。致死率は致死率表(藤巻正生ら、「食品工業」、恒星社厚生閣、1985年、1049頁)から求めることができる。F0値を算出するには、一般的に用いられる面積計算法、公式法等を採用することができる(例えば谷川ら《缶詰製造学》頁220、厚生閣参照)。   Further, the sterilization temperature and the sterilization time are preferably managed with F0 values. A preferable F0 value is 30 to 50, more preferably 35 to 50, and still more preferably 37 to 45. Here, the F0 value is a value for evaluating the heat sterilization effect when the packaged milk coffee beverage is heat sterilized, and indicates the heating time (minutes) at the reference temperature (121.1 ° C.). The F0 value is calculated by multiplying the lethality rate (1 at 121.1 ° C.) with respect to the temperature in the container by the heating time (minutes). The fatality rate can be obtained from the fatality rate table (Masao Fujimaki et al., “Food Industry”, Hoshiseisha Koseikaku, 1985, page 1049). In order to calculate the F0 value, a commonly used area calculation method, formula method, or the like can be employed (see, for example, Tanikawa et al. << Canned Manufacturing Science >> page 220, Koseikaku).

当該加熱殺菌処理は、上記条件の他、金属缶のように容器に充填後、加熱殺菌できる場合にあっては食品衛生法に定められた殺菌条件で行われる。PETボトルや紙容器のようにレトルト殺菌できないものについては、あらかじめ食品衛生法に定められた条件と同等の殺菌条件、例えばプレート式熱交換器で高温短時間殺菌後、一定の温度迄冷却して容器に充填する等の方法が採用される。また無菌下で加熱殺菌後、無菌下でpHを中性に戻すことや、中性下で加熱殺菌後、無菌下でpHを酸性に戻す等の操作も可能である。   In addition to the above conditions, the heat sterilization treatment is performed under the sterilization conditions stipulated in the Food Sanitation Law if the container can be heat sterilized after filling into a container like a metal can. For items such as PET bottles and paper containers that cannot be sterilized by retort, sterilization conditions equivalent to the conditions stipulated in the Food Sanitation Law in advance, such as sterilization at a high temperature and short time in a plate heat exchanger, are cooled to a certain temperature. A method such as filling the container is adopted. In addition, after sterilization under heat, the pH may be returned to neutral under aseptic conditions, or after sterilization under heat under neutral conditions, the pH may be returned to acidity under aseptic conditions.

かくして得られる容器詰ミルクコーヒー飲料は、変異原性、癌原性等の他、動脈硬化症、虚血性心疾患等の循環器系疾患、消化器系疾患、アレルギー疾患、眼疾患など多くの疾患に深く関与していると考えられる過酸化水素の生体内での生成を抑制することができる。   In addition to mutagenicity, carcinogenicity, etc., the packaged milk coffee drink thus obtained has many diseases such as circulatory system diseases such as arteriosclerosis and ischemic heart disease, digestive system diseases, allergic diseases, and eye diseases. In vivo production of hydrogen peroxide, which is thought to be deeply involved in the body, can be suppressed.

実施例1
中焙煎度のコーヒー豆に対して8倍量のイオン交換水(95℃)で抽出し、コーヒー抽出液を得た。次に本コーヒー抽出液中のBrixを測定し、Brixに対して50重量%の量の活性炭(白鷺WH2C)を充填したカラム(内径45mm、長さ150mm)を準備した。その後、活性炭を充填したカラムに温度25℃、SV8[1/容量[m3]/流量[m3/hr]]の条件下でコーヒー抽出液を通液し、活性炭処理してヒドロキシヒドロキノンを除去したコーヒー組成物を得た。
こうして得られたヒドロキシヒドロキノンを除去したコーヒー組成物中のクロロゲン酸類量を測定し、イオン交換水で希釈し、牛乳を11.5質量%になる様に配合し、加熱殺菌処理後のpH値が表1に示す値になるよう重曹にてpH調整を行った。加熱殺菌前のヒドロキシヒドロキノンは、検出限界以下であった(HPLC−電気化学検出器によるヒドロキシヒドロキノンの分析方法)。次にこうして得られたコーヒー組成物を190g缶に充填後、密封し、表1に示す殺菌条件に従いレトルト殺菌処理を施し、容器詰ミルクコーヒー飲料を得た。また加熱殺菌後のヒドロキシヒドロキノンは、HPLC−電気化学検出器によるヒドロキシヒドロキノンの分析方法を用いた。
Example 1
The coffee beans were extracted with 8 times the amount of ion-exchanged water (95 ° C.) with respect to medium-roasted coffee beans. Next, Brix in the coffee extract was measured, and a column (inner diameter: 45 mm, length: 150 mm) filled with activated carbon (Shirakaba WH2C) in an amount of 50% by weight with respect to Brix was prepared. Thereafter, the coffee extract is passed through a column filled with activated carbon under the conditions of a temperature of 25 ° C. and SV8 [1 / volume [m 3 ] / flow rate [m 3 / hr]] and treated with activated carbon to remove hydroxyhydroquinone. Coffee composition was obtained.
The amount of chlorogenic acids in the coffee composition from which the hydroxyhydroquinone thus obtained was removed was measured, diluted with ion-exchanged water, blended so that milk was 11.5% by mass, and the pH value after heat sterilization treatment was The pH was adjusted with sodium bicarbonate so that the values shown in Table 1 were obtained. The hydroxyhydroquinone before heat sterilization was below the detection limit (HPLC-analysis method of hydroxyhydroquinone with an electrochemical detector). Next, the coffee composition thus obtained was filled in a 190 g can, sealed, and subjected to retort sterilization treatment according to the sterilization conditions shown in Table 1 to obtain a packaged milk coffee beverage. Moreover, the hydroxyhydroquinone after heat sterilization used the analysis method of the hydroxyhydroquinone by a HPLC-electrochemical detector.

実施例2、3及び比較例1、2
表1に示す殺菌条件(殺菌時間、殺菌温度)にそれぞれ制御した以外は、実施例1と同様に容器詰ミルクコーヒー飲料を製造した。
Examples 2 and 3 and Comparative Examples 1 and 2
A packaged milk coffee beverage was produced in the same manner as in Example 1 except that the sterilization conditions (sterilization time and sterilization temperature) shown in Table 1 were controlled.

実施例4
中焙煎度のコーヒーエキスのBrixに対して、50重量%の活性炭(白鷺WH2C)を充填したカラム(内径45mm,長さ150mm)に、温度25℃,SV8[1/容量[m3]/流量[m3/hr]]の条件下で、前記コーヒーエキスを通液した。
予め乳化剤、カゼインNa、脱脂粉乳を溶解した溶液に、牛乳、砂糖水溶液、及び上記活性炭処理コーヒーエキスを混合し、重曹を溶解した水溶液を用いてpH調整を行った後、クロロゲン酸類が170mg/100gとなるようにイオン交換水で希釈した。
得られた、コーヒー組成物を190g缶に充填後、密封し、135℃で100秒間のレトルト殺菌を行った。
Example 4
A column (inner diameter: 45 mm, length: 150 mm) packed with 50% by weight of activated carbon (Shirakaba WH2C) with respect to Brix, a medium-roasted coffee extract, was heated to 25 ° C., SV8 [1 / capacity [m 3 ] / The coffee extract was passed under the condition of a flow rate [m 3 / hr].
A solution in which emulsifier, casein Na and skim milk powder are dissolved in advance is mixed with milk, an aqueous sugar solution, and the above activated carbon-treated coffee extract, and pH adjustment is performed using an aqueous solution in which sodium bicarbonate is dissolved, and then chlorogenic acids are 170 mg / 100 g. It diluted with ion-exchange water so that it might become.
The obtained coffee composition was filled in a 190 g can, sealed, and retort sterilized at 135 ° C. for 100 seconds.

実施例5
中焙煎度、及び低焙煎度のコーヒー混合エキスのBrixに対して、50重量%の活性炭(白鷺WH2C)を充填したカラム(内径45mm,長さ150mm)に、温度25℃,SV8[1/容量[m3]/流量[m3/hr]]の条件下で、前記コーヒー混合エキスを通液した。
予め乳化剤,カゼインNa,脱脂粉乳を溶解した溶液に、牛乳、砂糖水溶液、及び上記活性炭処理コーヒーエキスを混合し、重曹を溶解した水溶液を用いてpH調整を行った後、クロロゲン酸類が350mg/100gとなるようにイオン交換水で希釈した。
得られた、コーヒー組成物を190g缶に充填後、密封し、135℃で100秒間のレトルト殺菌を行った。
Example 5
A column (inner diameter: 45 mm, length: 150 mm) packed with 50% by weight of activated carbon (Shirakaba WH2C) with respect to Brix, which is a coffee mixture extract of medium roasting degree and low roasting degree, is heated at 25 ° C., SV8 [1 The coffee mixed extract was passed under the conditions of / volume [m 3 ] / flow rate [m 3 / hr].
A solution in which emulsifier, sodium caseinate and skim milk powder are dissolved in advance is mixed with milk, an aqueous sugar solution, and the activated carbon-treated coffee extract, and pH adjustment is performed using an aqueous solution in which sodium bicarbonate is dissolved, and then chlorogenic acids are 350 mg / 100 g. It diluted with ion-exchange water so that it might become.
The obtained coffee composition was filled in a 190 g can, sealed, and retort sterilized at 135 ° C. for 100 seconds.

比較例3
高焙煎度のコーヒーエキスのBrixに対して、50重量%の活性炭(モルシーボンX2M)を充填したカラム(内径45mm,長さ150mm)に、温度25℃、SV8[1/容量[m3]/流量[m3/hr]]の条件下で、前記コーヒーエキスを通液した。
予め乳化剤、カゼインNa、脱脂粉乳を溶解した溶液に、牛乳、砂糖水溶液、及び上記活性炭処理コーヒーエキスを混合し、重曹を溶解した水溶液を用いてpH調整を行った後、クロロゲン酸類が170mg/100gとなるようにイオン交換水で希釈した。
得られた、コーヒー組成物を190g缶に充填後、密封し、127℃で11分間のレトルト殺菌を行った。
Comparative Example 3
A column (inner diameter: 45 mm, length: 150 mm) packed with 50% by weight of activated carbon (Morcybon X2M) with respect to Brix, a coffee extract with a high roasting degree, was heated to 25 ° C., SV8 [1 / volume [m 3 ] / The coffee extract was passed under the condition of a flow rate [m 3 / hr].
A solution in which emulsifier, casein Na and skim milk powder are dissolved in advance is mixed with milk, an aqueous sugar solution, and the above activated carbon-treated coffee extract, and pH adjustment is performed using an aqueous solution in which sodium bicarbonate is dissolved, and then chlorogenic acids are 170 mg / 100 g. It diluted with ion-exchange water so that it might become.
The obtained coffee composition was filled in a 190 g can, sealed, and retort sterilized at 127 ° C. for 11 minutes.

結果
表1に示したように、殺菌時間及び温度を制御することで加熱殺菌後のヒドロキシヒドロキノンの再生成が抑制され、過酸化水素も生成しないことが判った。
HPLC−電気化学検出器によるヒドロキシヒドロキノンの分析方法
コーヒー飲料のヒドロキシヒドロキノンの分析法は次の通りである。分析機器はHPLC−電気化学検出器(クーロメトリック型)であるクーロアレイシステム(モデル5600A、開発・製造:米国ESA社、輸入・販売:エム・シー・メディカル(株))を使用した。装置の構成ユニットの名称・型番は次の通りである。
アナリティカルセル:モデル5010、クーロアレイオーガナイザー、クーロアレイエレクトロニクスモジュール・ソフトウエア:モデル5600A、溶媒送液モジュール:モデル582、グラジエントミキサー、オートサンプラー:モデル542、パルスダンパー、デガッサー:Degasys Ultimate DU3003、カラムオーブン:505、カラム:CAPCELL PAK C18 AQ 内径4.6mm×長さ250mm 粒子径5μm((株)資生堂)。
分析条件は次の通りである。
サンプル注入量:10μL、流量:1.0mL/min、電気化学検出器の印加電圧:0mV、カラムオーブン設定温度:40℃、溶離液A:0.1(W/V)%リン酸、0.1mM 1−ヒドロキシエタン−1,1−ジホスホン酸、5(V/V)%メタノール溶液、溶離液B:0.1(W/V)%リン酸、0.1mM 1−ヒドロキシエタン−1,1−ジホスホン酸、50(V/V)%メタノール溶液。
Results As shown in Table 1, it was found that by controlling the sterilization time and temperature, regeneration of hydroxyhydroquinone after heat sterilization was suppressed, and hydrogen peroxide was not generated.
Analysis method of hydroxyhydroquinone by HPLC-electrochemical detector The analysis method of hydroxyhydroquinone in coffee beverage is as follows. The analytical instrument used was a Couloarray system (model 5600A, development / manufacturing: ESA, USA, import / sales: MC Medical Co., Ltd.) which is an HPLC-electrochemical detector (coulometric type). The names and model numbers of the constituent units of the apparatus are as follows.
Analytical cell: Model 5010, Couloarray Organizer, Couloarray Electronics Module / Software: Model 5600A, Solvent Delivery Module: Model 582, Gradient Mixer, Autosampler: Model 542, Pulse Damper, Degasser: Degasys Ultimate DU3003, Column Oven : 505, column: CAPCELL PAK C18 AQ inner diameter 4.6 mm × length 250 mm Particle diameter 5 μm (Shiseido Co., Ltd.).
The analysis conditions are as follows.
Sample injection volume: 10 μL, flow rate: 1.0 mL / min, applied voltage of electrochemical detector: 0 mV, column oven set temperature: 40 ° C., eluent A: 0.1 (W / V)% phosphoric acid, 0. 1 mM 1-hydroxyethane-1,1-diphosphonic acid, 5 (V / V)% methanol solution, eluent B: 0.1 (W / V)% phosphoric acid, 0.1 mM 1-hydroxyethane-1,1 -Diphosphonic acid, 50 (V / V)% methanol solution.

溶離液A及びBの調製には、高速液体クロマトグラフィー用蒸留水(関東化学(株))、高速液体クロマトグラフィー用メタノール(関東化学(株))、リン酸(特級、和光純薬工業(株))、1−ヒドロキシエタン−1,1−ジホスホン酸(60%水溶液、東京化成工業(株))を用いた。   Eluents A and B were prepared by using distilled water for high performance liquid chromatography (Kanto Chemical Co., Ltd.), methanol for high performance liquid chromatography (Kanto Chemical Co., Ltd.), phosphoric acid (special grade, Wako Pure Chemical Industries, Ltd.) )), 1-hydroxyethane-1,1-diphosphonic acid (60% aqueous solution, Tokyo Chemical Industry Co., Ltd.).

濃度勾配条件
時間 溶離液A 溶離液B
0.0分 100% 0%
10.0分 100% 0%
10.1分 0% 100%
20.0分 0% 100%
20.1分 100% 0%
50.0分 100% 0%
Concentration gradient condition Time Eluent A Eluent B
0.0 minutes 100% 0%
10.0 minutes 100% 0%
10.1 min 0% 100%
20.0 minutes 0% 100%
20.1 minutes 100% 0%
50.0 minutes 100% 0%

分析試料の調製は、試料5gを精秤後、0.5(W/V)%リン酸、0.5mM 1−ヒドロキシエタン−1,1−ジホスホン酸、5(V/V)%メタノール溶液にて10mLにメスアップし、この溶液について遠心分離を行い上清を得た。この上清について、ボンドエルートSCX(固相充填量:500mg、リザーバ容量:3mL、ジーエルサイエンス(株))に通液し、初通過液約0.5mLを除いて通過液を得た。この通過液について、メンブレンフィルター(GLクロマトディスク25A,孔径0.45μm,ジーエルサイエンス(株))にて濾過し、速やかに分析に供した。   The analytical sample was prepared by accurately weighing 5 g of the sample, and then adding 0.5 (W / V)% phosphoric acid, 0.5 mM 1-hydroxyethane-1,1-diphosphonic acid, 5 (V / V)% methanol solution. The volume was made up to 10 mL, and this solution was centrifuged to obtain a supernatant. This supernatant was passed through Bond Elut SCX (solid phase filling amount: 500 mg, reservoir volume: 3 mL, GL Sciences Inc.), and about 0.5 mL of the first passage solution was removed to obtain a passage solution. The passing liquid was filtered through a membrane filter (GL chromatodisc 25A, pore size 0.45 μm, GL Sciences Inc.) and immediately subjected to analysis.

HPLC−電気化学検出器の上記の条件における分析において、ヒドロキシヒドロキノンの保持時間は、6.38分であった。得られたピークの面積値から、ヒドロキシヒドロキノン(和光純薬工業(株))を標準物質とし、質量%を求めた。   In the analysis under the above conditions of the HPLC-electrochemical detector, the retention time of hydroxyhydroquinone was 6.38 minutes. From the obtained peak area value, mass% was determined using hydroxyhydroquinone (Wako Pure Chemical Industries, Ltd.) as a standard substance.

<ヒドロキシヒドロキノンの測定前処理の具体例>
容器詰ミルクコーヒーを開缶後、直ちに5gを精秤後、0.5(W/V)%リン酸、0.5mM 1−ヒドロキシエタン−1,1−ジホスホン酸を含有する5(V/V)%メタノール溶液にて10mLにメスアップし、この溶液について遠心分離を行い上清を得た。この上清について、ボンドエルートJR SCX(固相充填量:500mg、ジーエルサイエンス(株))に通液し、初通過液約1.0mLを除いて、通過液を得た。この通過液について、メンブレンフィルター(GLクロマトディスク25A,孔径0.45μm,ジーエルサイエンス(株))にて濾過し、速やかに分析に供した。
<Specific example of measurement pretreatment of hydroxyhydroquinone>
After opening the container-packed milk coffee, 5 g was accurately weighed and then 5 (V / V) containing 0.5 (W / V)% phosphoric acid and 0.5 mM 1-hydroxyethane-1,1-diphosphonic acid. ) The volume was made up to 10 mL with a% methanol solution, and this solution was centrifuged to obtain a supernatant. The supernatant was passed through Bond Elute JR SCX (solid phase filling amount: 500 mg, GL Sciences Inc.), and about 1.0 mL of the first passage liquid was removed to obtain a passage liquid. The passing liquid was filtered through a membrane filter (GL chromatodisc 25A, pore size 0.45 μm, GL Sciences Inc.) and immediately subjected to analysis.

<過酸化水素の測定具体例>
過酸化水素分析計SUPER ORITECTOR MODEL 5(セントラル科学(株))を使用し、標準校正液(過酸化水素1ppm)で校正した後、分析計測定セル内に、0.5%臭素酸カリウム配合の0.2Mリン酸バッファー(pH7.0)を1mLで希釈し、窒素送付によりセル内の溶存酸素がゼロになった時点で30℃恒温槽に静置しておいた市販缶コーヒーならびに試験サンプルを開缶し1mLを速やかに抜き取り、測定セル内に加えた。後は、装置の測定手順に従い、発生した酸素濃度をプリンターから読み取った。尚、外そうする場合には、以後、15分毎に測定し、得られた1時間後までのデータを用いて最小二乗法で直線を引き、求めた。ここでMODEL5の検出限界は0.1mg/kgであった。
<Specific measurement example of hydrogen peroxide>
After using the hydrogen peroxide analyzer SUPER ORITECTOR MODEL 5 (Central Science Co., Ltd.) and calibrating with the standard calibration solution (hydrogen peroxide 1ppm), the analyzer measurement cell contains 0.5% potassium bromate. After diluting 0.2M phosphate buffer (pH 7.0) with 1mL, when the dissolved oxygen in the cell became zero by sending nitrogen, commercial canned coffee and test samples that had been left in a constant temperature bath at 30 ° C The can was opened and 1 mL was quickly extracted and added to the measurement cell. Thereafter, the generated oxygen concentration was read from the printer according to the measurement procedure of the apparatus. In this case, the measurement was performed every 15 minutes, and a straight line was drawn by the least square method using the data obtained after 1 hour. Here, the detection limit of MODEL5 was 0.1 mg / kg.

参考例1
(焙煎コーヒーが体内過酸化水素量に与える影響)
(a)焙煎コーヒーの調製
インスタントコーヒー(ネスカフェ(登録商標)カフェインレス)4gをミネラルウォーター280mLに溶解した。この時コーヒー280mL中のクロロゲン酸量は210mg、ヒドロキシヒドロキノン(HHQ)量は2.6mgとなる。
(b)得られたコーヒー280mLを健常男性6名に飲用させ、その後1〜5時間後に尿中過酸化水素量を測定した。なお、尿中過酸化水素量は、FOX(ferrous ion oxidation-xylenol orange)アッセイにより測定した。
Reference example 1
(Effect of roasted coffee on the amount of hydrogen peroxide in the body)
(A) Preparation of roasted coffee 4 g of instant coffee (Nescafe (registered trademark) caffeine-less) was dissolved in 280 mL of mineral water. At this time, the amount of chlorogenic acid in 280 mL of coffee is 210 mg, and the amount of hydroxyhydroquinone (HHQ) is 2.6 mg.
(B) 280 mL of the obtained coffee was allowed to be drunk by 6 healthy men, and the urine hydrogen peroxide amount was measured 1 to 5 hours later. The amount of hydrogen peroxide in urine was measured by FOX (ferrous ion oxidation-xylenol orange) assay.

その結果、図1に示すように、焙煎コーヒーの飲用により、ヒトの尿中過酸化水素量は増加することがわかる。   As a result, as shown in FIG. 1, it is understood that the amount of hydrogen peroxide in human urine increases by drinking roasted coffee.

参考例2
(過酸化水素除去コーヒーが体内過酸化水素量に与える影響)
(a)焙煎コーヒー
インスタントコーヒー(ネスカフェ(登録商標)カフェインレス)10gを26mLの蒸留水に溶解した。
(b)過酸化水素除去コーヒー
インスタントコーヒー(ネスカフェ(登録商標)カフェインレス)10gを23mLの蒸留水に溶解し、3mLのカタラーゼ溶液(セントラル科学)を添加した。
(c)上記(a)及び(b)で得られたコーヒーを、6週齢のSD系雄性ラット(n=4)に強制経口投与(10mL/kg)した。投与後3時間目に採尿し、尿中過酸化水素量を測定した。なお、尿中過酸化水素量はFOX(ferrous ion oxidation-xylenol orange)アッセイにより測定した。
Reference example 2
(Effect of hydrogen peroxide-removed coffee on the amount of hydrogen peroxide in the body)
(A) Roasted coffee 10 g of instant coffee (Nescafe (registered trademark) caffeine-less) was dissolved in 26 mL of distilled water.
(B) Hydrogen peroxide-removed coffee 10 g of instant coffee (Nescafe (registered trademark) caffeine-less) was dissolved in 23 mL of distilled water, and 3 mL of catalase solution (Central Science) was added.
(C) The coffee obtained in (a) and (b) above was forcibly orally administered (10 mL / kg) to 6-week-old SD male rats (n = 4). Urine was collected 3 hours after administration, and the amount of hydrogen peroxide in the urine was measured. The amount of hydrogen peroxide in urine was measured by FOX (ferrous ion oxidation-xylenol orange) assay.

その結果、図2に示すように、焙煎コーヒーの摂取により尿中過酸化水素量は増加し、その増加率は焙煎コーヒーから過酸化水素を除去してもほとんど変化しなかった。このことから、焙煎コーヒーを摂取することにより体内で新たに過酸化水素が生成することがわかる。   As a result, as shown in FIG. 2, the amount of hydrogen peroxide in the urine increased due to the intake of roasted coffee, and the increase rate hardly changed even when hydrogen peroxide was removed from the roasted coffee. This shows that hydrogen peroxide is newly generated in the body by ingesting roasted coffee.

参考例3
(体内で過酸化水素を生成させる成分)
(a)焙煎コーヒー
インスタントコーヒー(ネスカフェ(登録商標)カフェインレス)を下記の溶離液Aに溶解し、20mg/mLのコーヒー溶液を作製した。
ヒドロキシヒドロキノンの定量:分析方法A
この焙煎コーヒー中のヒドロキシヒドロキノン量を定量したところ、0.0013質量%であった。ここで焙煎コーヒー中のヒドロキシヒドロキノンの分析法は次の通りである。以下の分析条件を分析条件Aとする。分析機器はHPLC(島津製作所(株))を使用した。装置の構成ユニットの型番は次の通り。ディテクター:SPD−M10A、オーブン:CTO−10AC、ポンプ:LC−10AD、オートサンプラー:SIL−10AD、カラム:Inertsil ODS−2 内径4.6mm×長さ250mm。
Reference example 3
(Ingredients that generate hydrogen peroxide in the body)
(A) Roasted coffee Instant coffee (Nescafe (registered trademark) caffeine-less) was dissolved in the following eluent A to prepare a 20 mg / mL coffee solution.
Determination of hydroxyhydroquinone: Analytical method A
When the amount of hydroxyhydroquinone in the roasted coffee was quantified, it was 0.0013% by mass. Here, the analysis method of hydroxyhydroquinone in roasted coffee is as follows. The following analysis conditions are set as analysis condition A. The analytical instrument used was HPLC (Shimadzu Corporation). The model numbers of the unit units are as follows. Detector: SPD-M10A, oven: CTO-10AC, pump: LC-10AD, autosampler: SIL-10AD, column: Inertsil ODS-2 inner diameter 4.6 mm × length 250 mm.

分析条件は次の通り。サンプル注入量:10μL、流量:1.0mL/min、紫外線吸光光度計検出波長:290nm、溶離液A:0.05M酢酸3%アセトニトリル溶液、溶離液B:0.05M酢酸100%アセトニトリル溶液   The analysis conditions are as follows. Sample injection amount: 10 μL, flow rate: 1.0 mL / min, UV absorption photometer detection wavelength: 290 nm, eluent A: 0.05 M acetic acid 3% acetonitrile solution, eluent B: 0.05 M acetic acid 100% acetonitrile solution

濃度勾配条件
時間 溶離液A 溶離液B
0分 100% 0%
20分 80% 20%
35分 80% 20%
45分 0% 100%
60分 0% 100%
70分 100% 0%
120分 100% 0%
Concentration gradient condition Time Eluent A Eluent B
0 minutes 100% 0%
20 minutes 80% 20%
35 minutes 80% 20%
45 minutes 0% 100%
60 minutes 0% 100%
70 minutes 100% 0%
120 minutes 100% 0%

ヒドロキシヒドロキノンのリテンションタイム:5.5分。ここで求めたエリアからヒドロキシヒドロキノンを標準物質とし、質量%を求めた。   Hydroxyquinone retention time: 5.5 minutes. From the area determined here, mass% was determined using hydroxyhydroquinone as a standard substance.

ヒドロキシヒドロキノンの定量:分析方法B
また、コーヒー組成物中のヒドロキシヒドロキノンは以下の分析法によっても測定できる。以下の分析条件を分析条件Bとする。分析機器はHPLC(日立製作所(株))を使用した。装置の構成ユニットの型番は次の通り。ディテクター:L−7455、オーブン:L−7300、ポンプ:L−7100、オートサンプラー:L−7200、カラム:Inertsil ODS−2 内径4.6mm×長さ250mm。
Determination of hydroxyhydroquinone: Analytical method B
Further, hydroxyhydroquinone in the coffee composition can be measured by the following analytical method. The following analysis conditions are set as analysis condition B. The analytical instrument was HPLC (Hitachi, Ltd.). The model numbers of the unit units are as follows. Detector: L-7455, Oven: L-7300, Pump: L-7100, Autosampler: L-7200, Column: Inertsil ODS-2 Inner diameter 4.6 mm × Length 250 mm.

分析条件は次の通りである。サンプル注入量:10μL、流量:1.0mL/min、紫外線吸光光度計検出波長:258又は288nm、溶離液A:0.05M酢酸水溶液、溶離液B:0.05M酢酸100%アセトニトリル溶液   The analysis conditions are as follows. Sample injection amount: 10 μL, flow rate: 1.0 mL / min, ultraviolet absorption photometer detection wavelength: 258 or 288 nm, eluent A: 0.05 M acetic acid aqueous solution, eluent B: 0.05 M acetic acid 100% acetonitrile solution

濃度勾配条件
時間 溶離液A 溶離液B
0分 100% 0%
15分 100% 0%
15.1分 0% 100%
25分 0% 100%
25.1分 100% 0%
30分 100% 0%
Concentration gradient condition Time Eluent A Eluent B
0 minutes 100% 0%
15 minutes 100% 0%
15.1 min 0% 100%
25 minutes 0% 100%
25.1 minutes 100% 0%
30 minutes 100% 0%

ヒドロキシヒドロキノンの保持時間:6.8分。ここで求めたエリアからヒドロキシヒドロキノンを標準物質とし、質量%を求めた。同様に測定した没食子酸の保持時間は11.5分であった。   Retention time of hydroxyhydroquinone: 6.8 minutes. From the area determined here, mass% was determined using hydroxyhydroquinone as a standard substance. Similarly, the retention time of gallic acid measured was 11.5 minutes.

(b)インスタントコーヒー(ネスカフェ(登録商標)カフェインレス)2.4g/kg(ヒドロキシヒドロキノンとして1.6mg/kg)、ヒドロキシヒドロキノン1.6mg/kgを、7週齢のSD系雄性ラット(n=4)に強制経口投与した。投与前及び投与後3時間、6時間目に採尿し、実施例2と同様にして尿中過酸化水素量を測定した。 (B) 2.4 g / kg of instant coffee (Nescafe (registered trademark) caffeine-less) (1.6 mg / kg as hydroxyhydroquinone) and 1.6 mg / kg of hydroxyhydroquinone were added to 7-week-old SD male rats (n = 4) Forced oral administration. Urine was collected before administration and 3 hours and 6 hours after administration, and the amount of hydrogen peroxide in urine was measured in the same manner as in Example 2.

その結果、図3に示すように、ヒドロキシヒドロキノン及び焙煎コーヒー摂取群では摂取後3時間目の尿中過酸化水素量が有意に増加し、増加した尿中過酸化水素量はヒドロキシヒドロキノン及び焙煎コーヒー摂取群で同程度であった。これにより、コーヒー中の体内過酸化水素生成の原因物質がヒドロキシヒドロキノンであることが判明した。   As a result, as shown in FIG. 3, in the hydroxyhydroquinone and roasted coffee ingestion group, the amount of hydrogen peroxide in urine at 3 hours after ingestion increased significantly, and the increased amount of hydrogen peroxide in urine increased with hydroxyhydroquinone and roasted coffee. It was similar in the roasted coffee intake group. As a result, it was found that hydroxyhydroquinone was the causative substance for the production of hydrogen peroxide in the body of coffee.

参考例4
7週齢のSD系雄性ラット(n=3)に、ヒドロキシヒドロキノン(0.1、0.3、1及び3mg/kg)を強制経口投与した。投与前及び投与後3時間、6時間目に採尿し、参考例2と同様にして尿中過酸化水素量を測定した。
Reference example 4
Hydroxyquinone (0.1, 0.3, 1 and 3 mg / kg) was orally administered by gavage to 7-week-old SD male rats (n = 3). Urine was collected before administration and 3 hours and 6 hours after administration, and the amount of hydrogen peroxide in urine was measured in the same manner as in Reference Example 2.

その結果、図4に示すように、0.3mg/kg以上のヒドロキシヒドロキノンの摂取によって、用量依存的に体内の過酸化水素が増加することが判明した。   As a result, as shown in FIG. 4, it was found that the intake of 0.3 mg / kg or more of hydroxyhydroquinone increased the amount of hydrogen peroxide in the body in a dose-dependent manner.

参考例5
コーヒー組成物Qを次の方法で製造した。
活性炭処理コーヒーの製造
市販インスタントコーヒー(ネスカフェ(登録商標)ゴールドブレンド赤ラベル)20gを、蒸留水1400mLに溶解したのち(このコーヒーをコーヒー組成物Pという)、活性炭白鷺WH2C 28/42(日本エンバイロケミカルズ)を30g加え、1時間攪拌したのち、メンブレンフィルター(0.45μm)を用いてろ過し、ろ液を得た(このコーヒーをコーヒー組成物Qという)。得られたろ液を、凍結乾燥し、褐色粉末15.8gを得た。この褐色粉末を蒸留水に溶解し、参考例1と同様にしてHPLC分析により、クロロゲン酸及びHHQの定量を行なったところ、クロロゲン酸は4.12質量%含まれ、HHQは検出限界以下(分析条件Bによる)であった。また、ICP発光分光分析法でカリウム含量を測定したところ、原料インスタントコーヒー及び活性炭処理コーヒーのいずれも約4.2質量%であった。コーヒー組成物P、コーヒー組成物Q、及び没食子酸をHPLCを用いて分析すると図5及び6に示すチャートが得られた。コーヒー組成物Qにおいては保持時間6.8分付近のピークが消失し実質的にピークを有していない。図5におけるaはコーヒー組成物Pのチャートを、bはコーヒー組成物Qのチャートを、cは没食子酸のチャートを示す。図6におけるbはコーヒー組成物Pのチャートを、cはコーヒー組成物Qのチャートを、aは没食子酸のチャートを示す。
また、コーヒー組成物Q中のヒドロキシヒドロキノン(HHQ)量の測定は以下の方法でも行った。
Reference Example 5
Coffee composition Q was produced by the following method.
Production of activated carbon-treated coffee After dissolving 20 g of commercial instant coffee (Nescafe (registered trademark) Gold Blend Red Label) in 1400 mL of distilled water (this coffee is referred to as coffee composition P), activated carbon white rice WH2C 28/42 (Nippon Enviro Chemicals) ) Was added and stirred for 1 hour, followed by filtration using a membrane filter (0.45 μm) to obtain a filtrate (this coffee is referred to as coffee composition Q). The obtained filtrate was freeze-dried to obtain 15.8 g of a brown powder. This brown powder was dissolved in distilled water, and chlorogenic acid and HHQ were quantified by HPLC analysis in the same manner as in Reference Example 1. As a result, 4.12% by mass of chlorogenic acid was contained, and HHQ was below the detection limit (analysis). (Condition B). Moreover, when the potassium content was measured by ICP emission spectroscopic analysis, both the raw instant coffee and the activated carbon-treated coffee were about 4.2% by mass. When the coffee composition P, the coffee composition Q, and gallic acid were analyzed using HPLC, the charts shown in FIGS. 5 and 6 were obtained. In the coffee composition Q, the peak around the retention time of 6.8 minutes disappears and has substantially no peak. In FIG. 5, a is a chart of the coffee composition P, b is a chart of the coffee composition Q, and c is a chart of gallic acid. In FIG. 6, b is a chart of the coffee composition P, c is a chart of the coffee composition Q, and a is a chart of gallic acid.
The amount of hydroxyhydroquinone (HHQ) in the coffee composition Q was also measured by the following method.

ヒドロキシヒドロキノンの測定:HPLC−電気化学検出器による
コーヒー組成物Qのヒドロキシヒドロキノンの分析法は次の通りである。分析機器はHPLC−電気化学検出器(クーロメトリック型)であるクーロアレイシステム(モデル5600A、開発・製造:米国ESA社、輸入・販売:エム・シー・メディカル(株))を使用した。装置の構成ユニットの名称・型番は次の通りである。
アナリティカルセル:モデル5010、クーロアレイオーガナイザー、クーロアレイエレクトロニクスモジュール・ソフトウエア:モデル5600A、溶媒送液モジュール:モデル582、グラジエントミキサー、オートサンプラー:モデル542、パルスダンパー、デガッサー:Degasys Ultimate DU3003、カラムオーブン:505。カラム:CAPCELL PAK C18 AQ 内径4.6mm×長さ250mm 粒子径5μm((株)資生堂)。
分析条件は次の通りである。
サンプル注入量:10μL、流量:1.0mL/min、電気化学検出器の印加電圧:0mV、カラムオーブン設定温度:40℃、溶離液A:0.1(W/V)%リン酸、0.1mM 1−ヒドロキシエタン−1,1−ジホスホン酸、5(V/V)%メタノール溶液、溶離液B:0.1(W/V)%リン酸、0.1mM 1−ヒドロキシエタン−1,1−ジホスホン酸、50(V/V)%メタノール溶液。
Determination of hydroxyhydroquinone: Analysis of hydroxyhydroquinone in coffee composition Q by HPLC-electrochemical detector is as follows. The analytical instrument used was a Couloarray system (model 5600A, development / manufacturing: ESA, USA, import / sales: MC Medical Co., Ltd.) which is an HPLC-electrochemical detector (coulometric type). The names and model numbers of the constituent units of the apparatus are as follows.
Analytical Cell: Model 5010, Couloarray Organizer, Couloarray Electronics Module / Software: Model 5600A, Solvent Delivery Module: Model 582, Gradient Mixer, Autosampler: Model 542, Pulse Damper, Degasser: Degasys Ultimate DU3003, Column Oven : 505. Column: CAPCELL PAK C18 AQ inner diameter 4.6 mm × length 250 mm Particle diameter 5 μm (Shiseido Co., Ltd.).
The analysis conditions are as follows.
Sample injection volume: 10 μL, flow rate: 1.0 mL / min, applied voltage of electrochemical detector: 0 mV, column oven set temperature: 40 ° C., eluent A: 0.1 (W / V)% phosphoric acid, 0. 1 mM 1-hydroxyethane-1,1-diphosphonic acid, 5 (V / V)% methanol solution, eluent B: 0.1 (W / V)% phosphoric acid, 0.1 mM 1-hydroxyethane-1,1 -Diphosphonic acid, 50 (V / V)% methanol solution.

溶離液A及びBの調製には、高速液体クロマトグラフィー用蒸留水(関東化学(株))、高速液体クロマトグラフィー用メタノール(関東化学(株))、リン酸(特級、和光純薬工業(株))、1−ヒドロキシエタン−1,1−ジホスホン酸(60%水溶液、東京化成工業(株))を用いた。   Eluents A and B were prepared by using distilled water for high performance liquid chromatography (Kanto Chemical Co., Ltd.), methanol for high performance liquid chromatography (Kanto Chemical Co., Ltd.), phosphoric acid (special grade, Wako Pure Chemical Industries, Ltd.) )), 1-hydroxyethane-1,1-diphosphonic acid (60% aqueous solution, Tokyo Chemical Industry Co., Ltd.).

濃度勾配条件
時間 溶離液A 溶離液B
0.0分 100% 0%
10.0分 100% 0%
10.1分 0% 100%
20.0分 0% 100%
20.1分 100% 0%
50.0分 100% 0%
Concentration gradient condition Time Eluent A Eluent B
0.0 minutes 100% 0%
10.0 minutes 100% 0%
10.1 min 0% 100%
20.0 minutes 0% 100%
20.1 minutes 100% 0%
50.0 minutes 100% 0%

分析試料の調製は、試料5gを精秤後、0.5(W/V)%リン酸、0.5mM 1−ヒドロキシエタン−1,1−ジホスホン酸、5(V/V)%メタノール溶液にて10mLにメスアップし、この溶液について遠心分離を行い上清を得た。この上清について、ボンドエルートSCX(固相充填量:500mg、リザーバ容量:3mL、ジーエルサイエンス(株))に通液し、初通過液約0.5mLを除いて通過液を得た。この通過液について、メンブレンフィルター(GLクロマトディスク25A,孔径0.45μm,ジーエルサイエンス(株))にて濾過し、速やかに分析に供した。   The analytical sample was prepared by accurately weighing 5 g of the sample, and then adding 0.5 (W / V)% phosphoric acid, 0.5 mM 1-hydroxyethane-1,1-diphosphonic acid, 5 (V / V)% methanol solution. The volume was made up to 10 mL, and this solution was centrifuged to obtain a supernatant. This supernatant was passed through Bond Elut SCX (solid phase filling amount: 500 mg, reservoir volume: 3 mL, GL Sciences Inc.), and about 0.5 mL of the first passage solution was removed to obtain a passage solution. The passing liquid was filtered through a membrane filter (GL chromatodisc 25A, pore size 0.45 μm, GL Sciences Inc.) and immediately subjected to analysis.

上記の条件における分析において、ヒドロキシヒドロキノンの保持時間は、6.38分であった。得られたピークの面積値から、ヒドロキシヒドロキノン(和光純薬工業(株))を標準物質とし、質量%を求めた。
尚、コーヒー組成物Q中の過酸化水素量を高感度過酸化水素計を用いて測定したところ、過酸化水素量は検出限界以下であり検出されなかった。
In the analysis under the above conditions, the retention time of hydroxyhydroquinone was 6.38 minutes. From the obtained peak area value, mass% was determined using hydroxyhydroquinone (Wako Pure Chemical Industries, Ltd.) as a standard substance.
In addition, when the amount of hydrogen peroxide in the coffee composition Q was measured using a highly sensitive hydrogen peroxide meter, the amount of hydrogen peroxide was below the detection limit and was not detected.

参考例6
ラットにおける焙煎コーヒーと参考例5で製造した活性炭処理コーヒー(コーヒー組成物Q)の体内過酸化水素量に対する影響
(a)焙煎コーヒーの調製
インスタントコーヒー(ネスカフェ(登録商標)カフェインレス)8gを12mLの蒸留水に溶解した。
(b)活性炭処理コーヒーの調製
参考例5で製造した活性炭処理コーヒー8gを12mLの蒸留水に溶解した。
(c)上記(a)及び(b)で得られたコーヒーを、7週齢のSD系雄性ラット(n=8)に強制経口投与(10mL/kg)した。投与前及び投与後3時間、6時間目に採尿し、参考例2と同様にして尿中過酸化水素量を測定した。
その結果、図7に示すように、焙煎コーヒー摂取群では摂取後3時間目の尿中過酸化水素量が蒸留水摂取群に比べて有意に増加するが、活性炭処理コーヒー摂取群では蒸留水摂取群と同等であることがわかる。
Reference Example 6
Effect of roasted coffee in rats and activated carbon-treated coffee (coffee composition Q) produced in Reference Example 5 on the amount of hydrogen peroxide in the body (a) Preparation of roasted coffee Instant coffee (Nescafe (registered trademark) caffeine-less) 8 g Was dissolved in 12 mL of distilled water.
(B) Preparation of activated carbon-treated coffee 8 g of activated carbon-treated coffee produced in Reference Example 5 was dissolved in 12 mL of distilled water.
(C) The coffee obtained in (a) and (b) above was forcibly orally administered (10 mL / kg) to 7-week-old SD male rats (n = 8). Urine was collected before administration and 3 hours and 6 hours after administration, and the amount of hydrogen peroxide in urine was measured in the same manner as in Reference Example 2.
As a result, as shown in FIG. 7, in the roasted coffee ingestion group, the amount of hydrogen peroxide in the urine at 3 hours after ingestion was significantly increased as compared to the distilled water ingestion group. It turns out that it is equivalent to an ingestion group.

参考例7
ヒトにおける焙煎コーヒーと活性炭処理コーヒー(コーヒ組成物Q)の体内過酸化水素量に対する影響
(a)焙煎コーヒーの調製
インスタントコーヒー(ネスカフェ(登録商標)カフェインレス)4.5gをミネラルウォーター280mLに溶解した。
(b)活性炭処理コーヒーの調製
参考例5で製造した活性炭処理コーヒー4.5gをミネラルウォーター280mLに溶解した。
(c)上記(a)及び(b)で得られたコーヒー280mLを健常男性7名に飲用させ、その後1〜5時間後に尿中過酸化水素量を測定した。また試験はクロスオーバーを行った。参考例2と同様にして尿中過酸化水素量を測定した。
Reference Example 7
Effects of roasted coffee and activated carbon-treated coffee (coffee composition Q) on the amount of hydrogen peroxide in the human body (a) Preparation of roasted coffee 4.5 g of instant coffee (Nescafe (registered trademark) caffeineless) 280 mL of mineral water Dissolved in.
(B) Preparation of activated carbon-treated coffee 4.5 g of activated carbon-treated coffee produced in Reference Example 5 was dissolved in 280 mL of mineral water.
(C) 280 mL of coffee obtained in the above (a) and (b) was allowed to be consumed by 7 healthy men, and the urine hydrogen peroxide amount was measured after 1 to 5 hours. Moreover, the test performed crossover. The amount of hydrogen peroxide in urine was measured in the same manner as in Reference Example 2.

その結果、図8に示すように、焙煎コーヒーの飲用により、ヒトの尿中過酸化水素量は増加するが、コーヒー組成物Q(活性炭処理コーヒー)をミネラルウォーターに溶解したコーヒーでは増加しないことがわかる。   As a result, as shown in FIG. 8, the amount of hydrogen peroxide in human urine increases by drinking roasted coffee, but it does not increase in coffee in which coffee composition Q (activated carbon-treated coffee) is dissolved in mineral water. I understand.

焙煎コーヒーが体内過酸化水素に与える影響(ヒト)を示す図である。It is a figure which shows the influence (human) which roasted coffee has on the body hydrogen peroxide. 過酸化水素除去コーヒーが体内過酸化水素量に与える影響を示す図である。It is a figure which shows the influence which the hydrogen peroxide removal coffee has on the amount of hydrogen peroxide in a body. 体内で過酸化水素を生成させるコーヒー中の成分を示す図である。It is a figure which shows the component in the coffee which produces | generates hydrogen peroxide in a body. ヒドロキシヒドロキノンが体内過酸化水素生成に及ぼす作用を示す図である。It is a figure which shows the effect | action which hydroxyhydroquinone has on body hydrogen peroxide production | generation. コーヒーQのHPLCチャート(検出波長258nm)を示す図である。It is a figure which shows the HPLC chart (detection wavelength 258nm) of Coffee Q. コーヒーQのHPLCチャート(検出波長288nm)を示す図である。It is a figure which shows the HPLC chart (detection wavelength 288nm) of Coffee Q. 活性炭処理コーヒーがラットの体内過酸化水素量に与える影響を示す図である。It is a figure which shows the influence which activated carbon treatment coffee has on the amount of hydrogen peroxide in a body of a rat. 活性炭処理コーヒーがヒトの体内過酸化水素量に与える影響を示す図である。It is a figure which shows the influence which activated carbon treatment coffee has on the amount of hydrogen peroxide in a human body.

Claims (3)

吸着剤処理によりヒドロキシヒドロキノン含有量0〜0.000085質量%に低減し、乳成分を含有するコーヒー組成物を、殺菌温度123℃以上、殺菌時間20分以内で加熱殺菌処理しヒドロキシヒドロキノン含有量が0.000041〜0.000085質量%に維持された容器詰ミルクコーヒー飲料の製造方法。 The hydroxyhydroquinone content is reduced to 0 to 0.000085% by mass by adsorbent treatment , and the coffee composition containing milk components is heat sterilized at a sterilization temperature of 123 ° C. or more and within a sterilization time of 20 minutes, and the hydroxyhydroquinone content is reduced. Is a method for producing a containerized milk coffee beverage in which is maintained at 0.000041 to 0.000085% by mass. 容器の酸素透過度が5(cc・mm/m2・day・atm)である請求項1記載の容器詰ミルクコーヒー飲料の製造方法。 The method for producing a containerized milk coffee beverage according to claim 1, wherein the container has an oxygen permeability of 5 (cc · mm / m 2 · day · atm). pHが5.5〜6.8である請求項1又は2記載の容器詰ミルクコーヒー飲料の製造方法。   The method for producing a containerized milk coffee beverage according to claim 1 or 2, wherein the pH is 5.5 to 6.8.
JP2006205656A 2005-07-29 2006-07-28 Method for producing containerized milk coffee beverage Active JP4745909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006205656A JP4745909B2 (en) 2005-07-29 2006-07-28 Method for producing containerized milk coffee beverage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005222042 2005-07-29
JP2005222042 2005-07-29
JP2006205656A JP4745909B2 (en) 2005-07-29 2006-07-28 Method for producing containerized milk coffee beverage

Publications (2)

Publication Number Publication Date
JP2007054054A JP2007054054A (en) 2007-03-08
JP4745909B2 true JP4745909B2 (en) 2011-08-10

Family

ID=37918086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205656A Active JP4745909B2 (en) 2005-07-29 2006-07-28 Method for producing containerized milk coffee beverage

Country Status (1)

Country Link
JP (1) JP4745909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118825A (en) * 2011-12-07 2013-06-17 Snow Brand Milk Products Co Ltd Milk-containing beverage and method for producing the same
JP7350557B2 (en) * 2019-08-01 2023-09-26 株式会社 伊藤園 Dairy raw materials for blending beverages, packaged beverages, and methods for suppressing aggregation in beverages

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3138781B2 (en) * 1992-10-30 2001-02-26 太陽化学株式会社 Method for removing caffeine from aqueous solution containing caffeine
JP2578316B2 (en) * 1994-03-25 1997-02-05 松下電器産業株式会社 coffee maker
JPH07313063A (en) * 1994-05-23 1995-12-05 Unie Kafue:Kk Method for obtaining flavored coffee extract, method for obtaining coffee beverage from the same, method for obtaining instant coffee from the same, and method for obtaining concentrated solution of coffee extract from the same
JP3830712B2 (en) * 1999-03-24 2006-10-11 三菱化学株式会社 milk beverage
JP3830948B2 (en) * 1999-03-24 2006-10-11 三菱化学株式会社 Milk beverage production method
JP4086447B2 (en) * 2000-03-31 2008-05-14 日本たばこ産業株式会社 Method for producing canned beverage with milk
JP4360189B2 (en) * 2002-12-03 2009-11-11 三菱化学株式会社 Milk beverage containing sucrose fatty acid ester and polyglycerin fatty acid ester
JP4287824B2 (en) * 2004-01-30 2009-07-01 花王株式会社 Coffee beverage composition
JP3973676B2 (en) * 2005-07-29 2007-09-12 花王株式会社 Method for producing containerized milk coffee beverage

Also Published As

Publication number Publication date
JP2007054054A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
KR101214030B1 (en) Coffee drink composition
JP4287824B2 (en) Coffee beverage composition
JP4012560B1 (en) Containerized coffee beverage
JP4012561B1 (en) Bottled milk coffee beverage
JP3839831B2 (en) Coffee beverage composition
JP3973675B2 (en) Bottled milk coffee beverage
WO2009066794A1 (en) Coffee beverage packed in container
JP5015758B2 (en) Method for producing containerized coffee beverage
JP4953949B2 (en) Method for producing containerized coffee beverage
JP5015759B2 (en) Method for producing containerized coffee beverage
KR101162935B1 (en) Coffee drink composition
KR101266574B1 (en) Container-packed milk coffee beverage
JP3973672B2 (en) Containerized coffee beverage
JP4876179B2 (en) Method for producing concentrated coffee extract
JP4745909B2 (en) Method for producing containerized milk coffee beverage
JP3973676B2 (en) Method for producing containerized milk coffee beverage
JP2009028013A (en) Packaged coffee drink
JP4077014B2 (en) Method for producing containerized black coffee beverage
JP2006345874A (en) Packaged drink
JP4097676B2 (en) Method for producing containerized black coffee beverage
JP2009148175A (en) Method for producing coffee extract
JP3973673B2 (en) Bottled milk coffee beverage
JP2006333873A (en) Soluble coffee composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4745909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250