JP4744707B2 - Planar imaging apparatus and method of manufacturing planar imaging apparatus - Google Patents

Planar imaging apparatus and method of manufacturing planar imaging apparatus Download PDF

Info

Publication number
JP4744707B2
JP4744707B2 JP2001070797A JP2001070797A JP4744707B2 JP 4744707 B2 JP4744707 B2 JP 4744707B2 JP 2001070797 A JP2001070797 A JP 2001070797A JP 2001070797 A JP2001070797 A JP 2001070797A JP 4744707 B2 JP4744707 B2 JP 4744707B2
Authority
JP
Japan
Prior art keywords
envelope
cathode substrate
substrate
sealing
lower envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001070797A
Other languages
Japanese (ja)
Other versions
JP2002270122A (en
Inventor
三郎 岡崎
敏郎 山岸
吉郎 瀧口
正和 難波
義彦 平田
三喜男 横山
満 田中
茂生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Japan Broadcasting Corp
Original Assignee
Futaba Corp
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp, Japan Broadcasting Corp filed Critical Futaba Corp
Priority to JP2001070797A priority Critical patent/JP4744707B2/en
Publication of JP2002270122A publication Critical patent/JP2002270122A/en
Application granted granted Critical
Publication of JP4744707B2 publication Critical patent/JP4744707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光子の入射によって光電変換膜中に空間分布的に発生、蓄積された信号電荷を、電子ビームの走査によって時系列の電気信号として読み出す平面型撮像装置の真空外囲器に係り、特に電子ビームを放出する電子源が形成された基板の変形防止を目的とする真空外囲器の構造およびその製造方法の改良に関するものである。
【0002】
【従来の技術】
光電変換膜が入射光量に応じて信号電荷を発生してこれを蓄積し、この電荷を電子ビームの走査によって時系列的に外部回路に読み出し、入射光量の空間的分布に対応したアナログ電気信号を発生する撮像装置としては光導電型撮像装置が知られており、前記電子ビームを走査する手段として冷陰極アレイを用いた平面型撮像装置が特開平6−176704号と特開2000−48749号に開示されている。
【0003】
前記両公開公報記載の平面型撮像装置の構造を示す模式的な斜視図を図7(a)に、模式的な断面図を図7(b)に示す。
冷陰極アレイ300は、陰極基板301上に形成されたカソード電極302を有している。カソード電極302の上には絶縁層303が設けられている。絶縁層303の上にはさらにゲート電極304が設けられている。絶縁層303とゲート電極304にはホール305が形成され、ホール305内に露出したカソード電極302上にはコーン形状のエミッタ306が設けられている。カソード電極302とゲート電極304は共に帯状に形成され、互いに直交する方向に配設されてXYマトリクスを構成している。両電極をマトリクス駆動することによって、任意の位置にあるマトリクスの交点のエミッタ群を選択して電子を放出させることができる。
【0004】
冷陰極アレイ300に対面して透光性基板311が設けられている。その内面には透明電極312および光電変換膜313が順次積層されて光電変換ターゲット部310が構成されている。外部からの光320は透光性基板311外面側から透明電極312を透過して光電変換膜313に入射する構成になっている。
【0005】
冷陰極アレイ300から放出される電子ビーム307を光電変換膜313に効果的に到達させるためにグリッド電極308が冷陰極アレイ300と光電変換ターゲット部310との間に挿入され、互いに対面保持し且つ内部を高真空状態に保つため段部を有するスペーサ部材331で冷陰極アレイ300と光電変換ターゲット部310との周縁部が封着されている。基板301には貫通孔301aが形成され、当該貫通孔301aに相対する基板301の下面には下部外囲器350が封着されており、下部外囲器350の内部は基板301の上面側の空間に連通している。このように、透光性基板311、陰極基板301、スペーサ部材331および下部外囲器350により、内部の空間が連通した一体の外囲器が構成されている。そして、前記下部外囲器350の内部にはゲッタ351が配設されており、当該ゲッタ351により封着後の外囲器の内部の高真空状態を保持している。
【0006】
上記の構成において、冷陰極アレイ300をマトリクス駆動させ、エミッタ306から放出された電子ビーム307で前記光電変換膜313を走査する。光電変換膜313の電子ビーム走査側、即ち走査面は2次電子を放出しにくい材料を用いて2次電子を放出しにくい構造で構成されている。あるいは、2次電子を放出しにくい材料で構成されているか、又は2次電子を放出しにくい構造で構成されている。電子ビーム307が到達すると走査面の電位は降下していくが、カソード電極302の電位に等しくなるとそれ以上電子ビーム307が到達し得なくなるため、電子ビーム307の走査直後の走査面電位はカソード電極302の電位に平衡する。
【0007】
透明電極312にはカソード電極302に対して正のターゲット電圧VT が印加されているため、光電変換膜313には透明電極312側が正で走査面側が負の向きの電界が印加されることになる。
【0008】
この状態で、外部からの入射光320が光電変換膜313に入射すると、その入射量に応じた電子正孔対が光電変換膜中に発生し、前記電界によって電子は透明電極312側、正孔は走査面側に走行し、走査面電位は到達した正孔によってカソード電極電位から上昇していく。再び電子ビーム307が到達すると、走査面電位はカソード電極電位にリセットされ、その際、出力端子321から入射光量の空間電荷分布に対応する時系列の電気信号が得られる。
【0009】
また平板状の真空外囲器を有する装置として、電界放射型陰極などを電子源とした表示装置(FED:Field Emission Display)が知られており、その模式的断面の概要例を図8(a)に示し、その部分的な拡大例を図8(b)に示す。図8(a)に示す表示装置はフルカラーの表示装置で、赤(R)・緑(G)・青(B)の蛍光体を塗布された帯状の透明電極212aが透光性基板211の内面に形成されて陽極部210を構成している。
【0010】
陽極部210に対面して陰極基板201が設けられている。陰極基板201の内面には、前記平面型撮像装置と同様にXYマトリクス構造のカソード電極202とゲート電極204、エミッタ206及び絶縁層203からなる電子放出部202aが形成されて冷陰極アレイ200が構成されている。
【0011】
陽極部210と冷陰極アレイ200は画素を区切る隙間部に設けられた支柱241により所定の間隔(例えば約0.2mm)で保持され、透光性基板211と陰極基板201との周縁部はシール材231により封着されて内部が高真空状態に保持された外囲器が構成されている。
【0012】
上記の構成において、冷陰極アレイ200を表示画像データに従いマトリクス駆動し、エミッタ206から放出された電子ビーム207で透明電極212上に塗布された蛍光体を励起して発光させることにより表示画像が得られる。
【0013】
【発明が解決しようとする課題】
上述した平面型撮像装置の従来技術では、内部を高真空状態に保持しながら陰極基板の変形を防止するためには、大気圧力に抗する基板の板厚が必要となり、基板材料にガラスを用いると外囲器重量が重くなる問題点があった。
【0014】
陰極基板に例えば1.5mm程度の薄板ガラスを用いた場合、陰極基板の中央部が大気圧力により光電変換ターゲット部側に押されて変形するため、エミッタから放出される電子ビームが光電変換膜上の所定の位置からずれて到達することになる。このため、出力画像の歪みや残像などの特性が劣化する問題点があった。
【0015】
また上述した表示装置の従来技術では、画素を区切る隙間部に支柱を設けることで陰極基板の変形を防止しているが、従来の撮像装置の場合にこの支柱による補強構造を採用すると、光電変換膜が画素に分割されていないため支柱により光電変換膜が潰されて剥がれたり、高電圧が印加されている透明電極に支柱が接することで冷陰極アレイのゲート電極やカソード電極に電流リークが発生したりするなどの問題点があった。さらに支柱が存在する箇所の光電変換膜に発生・蓄積された電荷が読み出せないため、感度むらや固定雑音なども発生する問題点があった。
【0016】
ところで撮像管に用いられる光電変換膜としてはPbO,Sb2 3 ,Se,Si,Cd,Zn,As,Teなどからなる半導体材料が用いられ、なかでも非晶質Seを主体とする光電変換膜に高電界を印加した場合膜内で信号電荷がアパランシェ増倍され飛躍的に感度を高めることができる。しかし非晶質Seを主体とする光電変換膜は熱に弱く、50℃以上の高温状態に置かれた場合結晶化により出力映像に多数の白点が現れるなどその特性を著しく損なう。このため撮像管の電子源を有するガラス管と光電変換ターゲット部を有する透光性基板とを封着する際、FEDなどの表示装置で一般的に行われているシールガラスなどのシール材を塗布後高温(約500℃)で焼成する工程は行えない。通常撮像管の製作にあたっては、断面を円弧上に加工したインジウムなどの軟質金属を用い加圧により封着する。撮像管の場合ガラス管が長いため透光性基板・軟質金属とガラス管との芯合わせが容易であるが、平面型撮像装置では陰極基板と透光性基板との封着および距離の保持に用いるスペーサ部材の高さが格段に低いため芯合わせが容易でなく、偏芯して封着される場合が多い。このため、透光性基板が陰極基板に対して傾くことにより解像度などの特性に大きく影響を与えたり、封着部の軟質金属が一様に張り出さずに封止不良となる問題点があった。
【0017】
また陰極基板301の貫通孔301aは電子放出領域を避けた位置に形成する必要があるため、上述した従来技術ではゲッタ351を収納する下部外囲器351は陰極基板301の周縁部に設けられる。透光性基板311とスペーサ部材331の封着部分と、下部外囲器と陰極基板の封着部分が、両基板に対して直交する方向でみて一部のみが重なるか交差する配置にある場合には、透光性基板に軟質金属を用いて加圧により封着する工程で、周縁部に下部外囲器351が突出している陰極基板301に対しては圧力を均一に加えることが困難であり、陰極基板にクラックや破損が発生したり、または封着部の軟質金属が一様に張り出さずに透光性基板311の封止が不良となる等の問題点があった。
【0018】
さらに従来の撮像管や表示装置では、残留ガス吸着手段として蒸発ゲッタや非蒸発ゲッタが用いられている。なかでも、外部から高周波の印加によりリング状の金属部材を誘導加熱し、ゲッタを収納している下部外囲器の内面に活性ゲッタ蒸着膜を形成する高周波加熱ゲッタがよく用いられている。しかし、高周波加熱ゲッタと、上側の外囲器の本体を構成する透光性基板311とスペーサ部材331との封着に用いた軟質金属332との距離が短いため、ゲッタが高周波よって加熱されるより前に軟質金属332が溶融して真空不良となる問題点があった。また下部外囲器350が小さいため内部に設けられたゲッタのサイズが制限され、長期間にわたり内部を高真空状態に保つことが困難であった。
【0019】
そこで本発明の目的は、前述の問題点を解決し、撮像装置の特性に影響を及ぼす陰極基板の変形や透光性基板の偏芯・傾きを防止するとともに歩留まり良く製造できる平面型撮像装置の構造とその製造方法を提供するものである。
【0020】
【課題を解決するための手段】
請求項1に記載された平面型撮像装置は、マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設された平面型撮像装置であって、その特徴は次の通りである。即ち、この平面型撮像装置は、前記上部外囲器が、前記陰極基板に封着材を介して固着されるスペーサ部材と封止金属部と透光性基板から構成され、前記制御電極が、前記封止金属部を介して通電されるように前記封止金属部と前記スペーサ部材の間に挟持されて配設され、前記上部外囲器と下部外囲器が、陰極基板に封着される部分の外周形状が実質的に同一であり、陰極基板に直交する方向から見て、その全周にわたり少なくとも一部が重なり合うように陰極基板を挟んで対面する位置において陰極基板に封着されていることを特徴とする。
【0021】
請求項2に記載された平面型撮像装置は、マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設された平面型撮像装置であって、その特徴は次の通りである。即ち、この平面型撮像装置は、前記上部外囲器が、前記陰極基板に封着材を介して固着されるスペーサ部材と封止金属部と透光性基板から構成され、前記制御電極が、前記封止金属部を介して通電されるように前記封止金属部と前記スペーサ部材の間に挟持されて配設され、陰極基板に直交する方向から見て、前記上部外囲器と下部外囲器の一方の陰極基板に対する封着部分が、他方の陰極基板に対する封着部分よりも内側にあり、かつ両封着部分の間隔が周方向に沿って一定の規則性を有するように、前記上部外囲器と下部外囲器が陰極基板を挟んで対面する位置において陰極基板に封着されていることを特徴とする。
【0022】
請求項3に記載された平面型撮像装置は、請求項又は2に記載の平面型撮像装置において、前記陰極基板には陰極に通電するための配線が形成され、前記陰極基板の前記スペーサ部材の周囲において前記配線上には絶縁枠が配設され、前記封止金属部と配線が短絡しないように構成したことを特徴とする。
【0023】
請求項4に記載された平面型撮像装置は、請求項1又は2に記載の平面型撮像装置において、前記下部外囲器が、前記陰極基板に封着される側が開口した箱状部材で形成され、封着材を介して前記陰極基板に固着されることを特徴とする。
【0024】
請求項5に記載された平面型撮像装置は、請求項1又は2に記載の平面型撮像装置において、前記下部外囲器が、前記陰極基板に封着材を介して固着される絶縁性の下部外囲器壁部と封止金属部と基板から構成されたことを特徴とする。
【0025】
請求項6に記載された平面型撮像装置は、請求項1又は5に記載の平面型撮像装置において、前記封止金属部の外周に均一な加圧下での封止を行う為の補強枠が配設されたことを特徴とする。
【0026】
請求項7に記載された平面型撮像装置は、請求項1又は2に記載の平面型撮像装置において、前記ゲッタ部材は通電加熱することによりゲッタ膜が形成されるもので、通電する為のリード線が下部外囲器と陰極基板の封着部分から左右ほぼ均等の位置になるように導出されたことを特徴とする。
【0027】
請求項8に記載された平面型撮像装置は、請求項1又は2又は5に記載の平面型撮像装置において、前記封止金属部は、スペーサ部材と基板の間に係合する段差を有することを特徴とする。
【0028】
請求項9に記載された平面型撮像装置は、請求項1又は2に記載の平面型撮像装置において、前記下部外囲器内に配設されるゲッタ部材は、通電または支持する為のリード線が前記陰極基板と下部外囲器の封着部分を貫通して外部に導出されたことを特徴とする。
【0029】
請求項10に記載された平面型撮像装置は、請求項5に記載の平面型撮像装置において、前記下部外囲器内に配設されるゲッタ部材は、通電または支持する為のリード線が基板を貫通して外部に導出されたことを特徴とする。
【0030】
請求項11に記載された平面型撮像装置の製造方法は、マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器の内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設され、前記上部外囲器は、前記陰極基板に封着材を介して固着されるスペーサ部材と封止金属部と透光性基板と前記封止金属部の外周に設けられている環状乃至筒状の補強枠から構成された平面型撮像装置を製造する為の製造方法である。そして、その特徴は、陰極基板に電子放出源を形成する工程と、上部外囲器の透光性基板に透光性の電極および光電変換素子を形成する工程と、陰極基板に上部外囲器のスペーサ部材を固着する工程と、陰極基板に下部外囲器を固着する工程と、透光性基板とスペーサ部材の間に前記補強枠の内面側に設けられた封止金属部を介在させた状態で陰極基板及び下部外囲器の少なくとも一方と透光性基板とを相手方に向けて相対的に押圧することにより上部外囲器を封止する工程を有する点にある。
【0031】
請求項12に記載された平面型撮像装置の製造方法は、マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器の内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設され、前記上部外囲器は、前記陰極基板に封着材を介して固着されるスペーサ部材と、封止金属部と、透光性基板と前記封止金属部の外周に設けられている環状乃至筒状の補強枠から構成され、前記下部外囲器は、前記陰極基板に封着材を介して固着される絶縁性の下部外囲器壁部と封止金属部と基板から構成された平面型撮像装置を製造する為の製造方法である。そして、その特徴は、陰極基板に電子放出源を形成する工程と、上部外囲器の透光性基板に透光性の電極および光電変換素子を形成する工程と、陰極基板に上部外囲器のスペーサ部材を固着する工程と、陰極基板に下部外囲器壁部を固着する工程と、上部外囲器の透光性基板と上部外囲器のスペーサ部材の間に前記補強枠の内面側に設けられた封止金属部を介在させた状態及び下部外囲器の基板と下部外囲器壁部の間に封止金属部を介在させた状態で上部外囲器の透光性基板と下部外囲器の基板を相手方に向けて相対的に押圧することにより上部外囲器と下部外囲器を封止する工程を有する点にある。
【0032】
請求項13に記載された平面型撮像装置の製造方法は、請求項11又は12に記載の平面型撮像装置の製造方法において、高真空雰囲気中において上部外囲器と下部外囲器を封止する工程を有し、上部外囲器と下部外囲器が高真空状態に保持されることを特徴とする。
【0033】
請求項14に記載された平面型撮像装置の製造方法は、請求項11又12に記載の平面型撮像装置の製造方法であって、あらかじめ下部外囲器に排気孔を形成する工程と、上部外囲器を陰極基板に封着した後、上部外囲器と下部外囲器の内部を排気して前記排気孔を封止する工程を有することを特徴とする。
【0034】
請求項15に記載された平面型撮像装置の製造方法は、請求項12に記載の平面型撮像装置の製造方法であって、高真空雰囲気中において、上部外囲器が封着された陰極基板の下部外囲器が封止される側にゲッタ部材により膜を形成する工程と、前記ゲッタ部材を取り除いて下部外囲器を封止する工程が行なわれることを特徴する。
【0035】
【発明の実施の形態】
以下添付図面を参照し本発明の実施の形態を説明する。
図1に本発明の実施の形態である平面型撮像装置の構造を示す断面図を示し、図2にインジウムなどの軟質金属を用いたシール材の加工断面形状例を示し、また図3に上部外囲器と下部外囲器の陰極基板に対する封着部分(即ち陰極基板及びこれを挟む両外囲器の端面)付近の断面拡大図と上面図を示す。図1の平面撮像装置は上部外囲器圧着形である点において、後述する第2の例の平面型撮像装置が上下両外囲器圧着形であるのと相違する。
【0036】
図1の電子放出部2aおよび冷陰極電極配線4aの構成は図7に示した前記特許公開公報の冷陰極アレイ部の構成とまったく同じである。
陰極基板1上に電子放出部2aとそれに外部から電圧を印加するための冷陰極電極配線4aが電気的に接続されて形成され、上部外囲器30と下部外囲器50との雰囲気を同一にするための貫通孔1aが陰極基板1に設けられている。
【0037】
上部外囲器30の一部を構成する透光性基板11は、例えばガラスなどにより構成される。透光性基板11の内面上には透明電極12が形成され、この透明電極12は透光性基板11内に埋設されたMoなどの金属を用いた信号取り出しピン15と電気的に接続されて外側に電気的に導出されている。さらに前記透明電極12の上には光電変換膜13が形成されて光電変換ターゲット部10を構成している。
【0038】
陰極基板1の上面には、上部外囲器30の一部を構成するスペーサ部材31が固着されている。このスペーサ部材31には、例えば薄いガラスリングのような絶縁性の筒状部材が用いられている。このスペーサ部材31は、グリッド電極8を係止する段部31aを上部端面の内周縁側に有する構造であり、その下部端面がシール材32により陰極基板1の上面に固着されている。グリッド電極8と陰極基板1との間隔は例えば約0.2mm〜1mmとされている。
【0039】
上部外囲器30の一部を構成する封止金属部としてのシール材33が、スペーサ部材31の上端と透光性基板11との間に挿入されている。シール材33にはインジウムなどの軟質金属が用いられている。このシール部材33は、導電性の筒状の部材(例えばステンレス等)であるシール材補強枠34の内面側に設けられている環状乃至筒状の部材である。図示しない治具を用いて透光性基板11を陰極基板1に向けて加圧することにより、透光性基板11がシール材33を介してスペーサ部材31に固着される。また、グリッド電極8は、シール材33とスペーサ部材31の間に挟持されて固定され、シール材33に導通するのでシール材補強枠34を介して外部の回路に接続することができる。
【0040】
シール材33は図2(a)〜(f)に示すような断面形状、即ちスペーサ部材31と透光性基板11の間に係合しうる段差(凸部)を備えた形状に予め加工されている。なお図2(a)〜(f)に示したシール部材は互いに形状が異なっているが、表示の煩雑を避けるためにいずれも同一の符号33で示した。また、図2は図1におけるシール部材33と同様の切断面における断面図であるが、略筒状のシール材を切断して現れる2つの断面の内、一方のみを表示したものである。シール材33をこのような形状とすれば、上述した加圧時に透光性基板11とスペーサ部材31が偏芯した状態に固定されるのが防止され、かつ透光性基板11の傾きを防止することができる。なお、スペーサ部材は、封着時に偏芯しないように治具等で一次的に固定する等の手段をとれば、図2(g)に示すような単なる断面矩形のリング状であっても実用上満足し得る封着効果は得られる。
【0041】
陰極基板1の上に形成された電極配線4aの上には、スペーサ部材31の周囲であって、かつシール材補強枠34の下側の位置に、絶縁枠60が配設されている。この絶縁枠60は、封止金属部であるシール材33と電極配線4aが短絡しないように設けられている。なお、電極配線4aは、絶縁保護膜4bに覆われており、他の電極類等とは無用な導通が生じないようにはなっているが、仮にこの絶縁保護膜4bが薄くても絶縁枠60を設けておけばシール材33と電極配線4aの絶縁はより確実に保持される。
【0042】
図3(a)〜(c)に示すように、上部外囲器30を構成するスペーサ部材31と下部外囲器50(図では第2の例における下部外囲器50の一部である下部外囲器壁部50b)は、陰極基板1の上面と下面にそれぞれ封着される部分の外周形状が実質的に同一の円形であり、陰極基板1に直交する方向から見て、その全周にわたり少なくとも一部(符号70で示す部分)が重なり合うように、陰極基板1を挟んで対面する位置関係で陰極基板1に封着されている。かかる寸法・形状・位置関係において、図示しない適切な治具を用いることでスペーサ部材31と下部外囲器50を陰極基板1の上面及び下面にそれぞれ固着すれば、この固着工程時に陰極基板1に加わる圧力を均等に分散することができ、陰極基板のクラックや破損を防ぐことができる。
【0043】
図3(d)及び(e)は、陰極基板1に直交する方向から見て、下部外囲器50(図では第2の例における下部外囲器50の一部である下部外囲器壁部50b)の陰極基板1に対する封着部分が、上部外囲器30を構成するスペーサ部材31の陰極基板に対する封着部分よりも内側にあり、かつ両封着部分の間隔が周方向に沿って一定の規則性を有するように、スペーサ部材31と下部外囲器50が陰極基板1を挟んで対面する位置関係で陰極基板1に封着されている場合である。ここで、一定の規則性とは、(d)では等間隔であり、(e)では円形の封着部を有するスペーサ部材31に対して下部外囲器50(図では第2の例における下部外囲器50の一部である下部外囲器壁部50b)の封着部分がこの円形の内側に配置される正方形であって両者は中心を一致させている場合に得られる関係である。かかる場合にも、前記固着工程時に陰極基板1の特定部分に圧力が集中して加わることが防止され、上述した図3(a)〜(c)の場合と略同一の陰極基板のクラックや破損を防ぐ効果が得られる。
【0044】
図1に示したように、下部外囲器50は端面側が開口した円筒形又は角筒形の凹形状の蓋部材であり、中心軸付近には排気管を有する排気口56が設けられており、シール材52により前述した図3の位置関係で陰極基板1の下面に固着されている。また下部外囲器50の内部には通電ゲッタ51が収納されている。この通電ゲッタ51は直線状の芯線の周りにゲッタ物質が被着されているものであり、ゲッタ物質の両端から一対の通電端子(通電する為のリード線)53が軸線を一致させて突出している。この通電端子53が、下部外囲器50と陰極基板1との封着部であるシール材52を気密に貫通して外部に導出されており、通電ゲッタ51に外部から通電することができるようになっている。
【0045】
なお、上述のような構造で下部外囲器50内の所定位置に通電ゲッタ51を配置するためには、下部外囲器50を陰極基板1の下面に封着する際に、下部外囲器50の開口した端面の上に通電端子53が引っ掛かるように通電ゲッタ51を掛け渡し、その状態で通電ゲッタ51のゲッタ物質の位置を決め、そのまま封着する。ここで、封着時に通電ゲッタ51がバランスを崩して位置ずれしないようにするため、通電端子53が下部外囲器の封着位置で均等な配置となるようにし、加圧時に加圧力が均等に加わってがたつきがなくなるようにするとよい。
【0046】
あるいは、図4に示すように、一対の通電端子53,53に対して均等である一対の位置で封着部分を貫通するように一対の支持フレーム59,59を設けてもよい。この図示の例では、円形の下部外囲器50に対して、一対の通電端子53,53と一対の支持フレーム59,59を円形の下部外囲器50の周方向に沿って中心角度で45度の間隔となるような半径の位置に配置した。このようにすれば、封着部のシール材52の厚さをさらに均等にでき、封着時の加圧力の分散化がさらに確実になる。一対の支持フレーム59,59は、封着時には外囲器の外側で通電端子53,53と図示しない共通のフレームに接続されており、下部外囲器50の円形の封着領域に対する位置決めが容易であるが、封着作業完了後にはフレームから切断する。支持フレーム59,59は通電ゲッタ51には接続されておらず、ゲッタ活性化のための通電には関与しない。
【0047】
上下両外囲器内の雰囲気は貫通孔1aにより同一となっており、排気管を通して内部雰囲気を高真空状態にした後、排気口56をガスバーナなどの加熱により溶融し封着する。その後通電端子53に通電することで活性ゲッタ膜55を下部外囲器内に形成する。この活性ゲッタ膜55が外囲器内に残留したガスを吸着して外囲器内の真空度を保持乃至向上させる。
【0048】
本例の平面型撮像装置の製造工程を、各部材の組み立て工程を中心に説明する。
陰極基板1に電子放出部2aを形成する。上部外囲器30の透光性基板11に透明電極12および光電変換膜13を構成する。陰極基板1に上部外囲器30のスペーサ部材31を固着する。陰極基板1に下部外囲器50を固着する。透光性基板11とスペーサ部材31の間にシール材33(封止金属部)を介在させた状態で陰極基板1及び下部外囲器50の少なくとも一方と、透光性基板11とを、相手方に向けて相対的に押圧して上部外囲器30を封止する。ここで環状のシール材補強枠34は、均一な加圧下で上記封止作業を行うために有効である。
【0049】
次に、本発明の実施の形態の第2の例を図5を参照して説明する。
図1の平面撮像装置は、下部外囲器50は予め容器状に作製されているが、上部外囲器は透光性基板11とスペーサ部材31をシール部材33で組み立て時に封着する上部外囲器圧着形であった。これに対し、第2の例の平面型撮像装置は上下両外囲器ともにシール部材を用いて封着する構造の上下両外囲器圧着形である。
【0050】
即ち、図5に示すように、下部外囲器50は、陰極基板1の下面に封着された環状(乃至筒状)の下部外囲器壁部50bと、下部外囲器壁部50bの開口を塞ぐ下部外囲器基板50aと、下部外囲器壁部50bと下部外囲器基板50aの間を封止するシール部材57を有している。下部外囲器壁部50bと下部外囲器基板50aは絶縁性材料からなり、シール部材57は前記シール部材33と同材質からなる。
【0051】
下部外囲器50内にはゲッタ51が設けられている。ゲッタ51は一対の通電端子53を有するが、第1の例におけるゲッタ51と異なり、2本の通電端子はゲッタ51の長手方向と直交する同方向に曲げられて全体としてコ字状に成形されている。このゲッタの2本の通電端子53は、下部外囲器基板50aに形成された2個の貫通孔を介して外囲器外に導出されている。通電端子と貫通孔の隙間はシールガラスなどのシール材料54によって気密に充填されている。
【0052】
上部外囲器の構成は第1の例と同一であり、図1と同一の符号を付して説明を省略する。
【0053】
本例の平面型撮像装置の製造工程を説明する。
陰極基板1の上面に電子放出部2aを形成する。また、上部外囲器30の透光性基板11に透明電極12および光電変換膜13を構成する。次に、陰極基板1に上部外囲器30のスペーサ部材31を固着する。次に、陰極基板1の下面に下部外囲器50の下部外囲器壁部50bを固着する。そして、上部外囲器30の透光性基板11とスペーサ部材31の間及び下部外囲器50の下部外囲器基板50aと下部外囲器壁部50bの間にそれぞれシール部材33,57を介在させた状態で、透光性基板11と下部外囲器基板50aを相手方に向けて相対的に押圧する。これにより、上部外囲器30と下部外囲器50を同時に封着することができる。
【0054】
本例の平面型撮像装置の製造工程における上部外囲器30と下部外囲器50を封止する工程は、少なくとも一方は高真空雰囲気中において行なう。これによって上部外囲器30と下部外囲器50の内部は高真空状態に保持される。封着後、ゲッタ51を用いて下部外囲器50の内面に活性ゲッタ膜55を形成する点は第1の例と同一である。
【0055】
次に、本発明の実施の形態の第3の例を図6を参照して説明する。
図6の本例の平面撮像装置は、図5の第2の平面撮像装置からゲッタ51及び下部外囲器基板50aの貫通孔を除いた他は、図5の平面撮像装置と同一構造である。よって、図5と同一の符号を付して構成の説明は省略する。
【0056】
本例の平面撮像装置にゲッタがない理由は、本例の平面撮像装置の製造方法の特徴にある。本例の平面型撮像装置の製造工程を説明する。
図6(a)に示すように陰極基板1の上面に上部外囲器30を封着し、下面には下部外囲器壁部50bを固着する。次に高真空雰囲気中において、同図中に示すように陰極基板1の下部外囲器30が封止される側(即ち下部外囲器壁部50bの内側)に、ゲッタ保持基板50cに取り付けたゲッタ部材51を配置し、陰極基板1の下面に活性ゲッタ膜55を形成する。次に、高真空雰囲気中に配置したままで、ゲッタ部材51を取り除いてから、下部外囲器50を封止する。なお、図5に示す例では下部外囲器基板50aの内面にも活性ゲッタ膜55が形成されるが、本例では活性ゲッタ膜55は陰極基板1の下面にのみ形成される。よって、ゲッタ部材51は活性時にゲッタ物質を陰極基板1の下面のみに向けて放射するように構成されたものであればよい。
【0057】
このような構成とすることにより、ゲッター部材のリード線が封止部分を通ることがないので、封止部分の気密性が向上する。また、リード線が封止部分を通ることがないので加圧力が不均一になることもなく、取り付け精度が向上する。また、ゲッター部材がない分、厚みを薄くすることも可能となる。
【0058】
【発明の効果】
本発明によれば、光電変換素子を上面内面に有し制御電極を内部に有する上部外囲器が電子放出源を有する陰極基板の上面側に封着され、下面側には下部外囲器が封着されて両外囲器が連通している平面型撮像装置において、上部外囲器を、陰極基板に封着材を介して固着されるスペーサ部材と封止金属部と透光性基板で構成した。そして、制御電極を、封止金属部を介して通電されるように封止金属部とスペーサ部材の間に挟持されるように配設した。さらに、上部外囲器と下部外囲器が、陰極基板に封着される部分の外周形状が実質的に同一であり、陰極基板に直交する方向から見て、その全周にわたり少なくとも一部が重なり合うように陰極基板を挟んで対面する位置において陰極基板に封着した。または、上部外囲器と下部外囲器の一方の陰極基板に対する封着部分が、他方の陰極基板に対する封着部分よりも内側にあり、かつ両封着部分の間隔が周方向に沿って一定の規則性を有するように、上部外囲器と下部外囲器が陰極基板を挟んで対面する位置において陰極基板に封着してもよい。
【0059】
このような本発明の構成によれば、従来の問題点が解決され、撮像装置の特性に影響を及ぼす陰極基板の変形や透光性基板の偏芯・傾きが防止され、平面型撮像装置を歩留まり良く製造することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態である平面型撮像装置の第1の例を示す断面図である。
【図2】第1及び第2の例において使用される軟質金属を用いるシール材の加工形状を示す模式的断面図である。
【図3】第1及び第2の例において上部外囲器と下部外囲器の各端面が陰極基板を挟んで対峙する位置関係を示す模式的な部分断面図及び上面図である。
【図4】図1における(イ)−(イ)切断線における断面図である。
【図5】本発明の実施の形態である平面型撮像装置の第2の例を示す断面図である。
【図6】本発明の実施の形態である平面型撮像装置の第3の例の構成及び製造工程を示す断面図である。
【図7】(a)は従来の平面型撮像装置の基本構成を示す模式的斜視図、(b)は同断面図である。
【図8】(a)は従来の平面型表示装置の基本構成を示す断面図、(b)は(a)の部分拡大図である。
【符号の説明】
1 陰極基板
1a 貫通孔
2a 電子放出部
4a 冷陰極アレイ電極配線
8 グリッド電極
10 光電変換ターゲット部
11 透光性基板
12 透明電極
13 光電変換膜
15 信号取り出しピン
31 スペーサ部材
32 シール材(シールガラスなど)
33 シール材(インジウムなどの軟質金属)
34 シール材(インジウムなどの軟質金属)補強部
50 下部外囲器
50a 下部外囲器基板
50b 下部外囲器壁部
50c ゲッタ保持基板
51 ゲッタ
53 ゲッタ支持体を兼ねる通電端子
54 シールガラスなどのシール材料
55 活性ゲッタ膜(ゲッタミラー)
56 排気口(封止部)
60 絶縁枠(絶縁ワニス)
70 上部外囲器30端面と下部外囲器端面が重なる部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum envelope of a flat-type imaging device that reads out signal charges generated and accumulated spatially in a photoelectric conversion film by incidence of photons as time-series electric signals by scanning an electron beam, In particular, the present invention relates to a structure of a vacuum envelope for the purpose of preventing deformation of a substrate on which an electron source that emits an electron beam is formed, and an improvement of a manufacturing method thereof.
[0002]
[Prior art]
The photoelectric conversion film generates a signal charge according to the amount of incident light, accumulates it, reads this charge to an external circuit in time series by scanning an electron beam, and generates an analog electrical signal corresponding to the spatial distribution of the amount of incident light. A photoconductive image pickup device is known as the image pickup device to be generated. A flat-type image pickup device using a cold cathode array as means for scanning the electron beam is disclosed in JP-A-6-176704 and JP-A-2000-48749. It is disclosed.
[0003]
FIG. 7A shows a schematic perspective view showing the structure of the flat-type imaging device described in both publications, and FIG. 7B shows a schematic cross-sectional view thereof.
The cold cathode array 300 has a cathode electrode 302 formed on a cathode substrate 301. An insulating layer 303 is provided on the cathode electrode 302. A gate electrode 304 is further provided on the insulating layer 303. A hole 305 is formed in the insulating layer 303 and the gate electrode 304, and a cone-shaped emitter 306 is provided on the cathode electrode 302 exposed in the hole 305. Both the cathode electrode 302 and the gate electrode 304 are formed in a band shape and are arranged in directions orthogonal to each other to form an XY matrix. By driving both electrodes in a matrix, the emitter group at the intersection of the matrix at an arbitrary position can be selected to emit electrons.
[0004]
A translucent substrate 311 is provided facing the cold cathode array 300. A transparent electrode 312 and a photoelectric conversion film 313 are sequentially laminated on the inner surface to constitute a photoelectric conversion target unit 310. Light 320 from the outside is configured to enter the photoelectric conversion film 313 through the transparent electrode 312 from the outer surface side of the translucent substrate 311.
[0005]
In order to effectively reach the photoelectric conversion film 313 with the electron beam 307 emitted from the cold cathode array 300, a grid electrode 308 is inserted between the cold cathode array 300 and the photoelectric conversion target unit 310, and is held facing each other. In order to keep the inside in a high vacuum state, the peripheral portion of the cold cathode array 300 and the photoelectric conversion target portion 310 is sealed with a spacer member 331 having a stepped portion. A through hole 301 a is formed in the substrate 301, and a lower envelope 350 is sealed on the lower surface of the substrate 301 facing the through hole 301 a, and the inside of the lower envelope 350 is on the upper surface side of the substrate 301. It communicates with space. As described above, the translucent substrate 311, the cathode substrate 301, the spacer member 331, and the lower envelope 350 constitute an integral envelope in which the internal space communicates. A getter 351 is disposed inside the lower envelope 350, and the getter 351 maintains a high vacuum state inside the envelope after sealing.
[0006]
In the above configuration, the cold cathode array 300 is driven in matrix, and the photoelectric conversion film 313 is scanned with the electron beam 307 emitted from the emitter 306. The photoelectric conversion film 313 on the electron beam scanning side, that is, the scanning surface, is configured with a structure that does not easily emit secondary electrons using a material that does not easily emit secondary electrons. Or it is comprised with the material which is hard to discharge | release secondary electrons, or it is comprised with the structure which is hard to discharge | release secondary electrons. When the electron beam 307 arrives, the potential of the scanning surface drops, but when the electron beam 307 becomes equal to the potential of the cathode electrode 302, the electron beam 307 cannot reach any more, so the scanning surface potential immediately after the scanning of the electron beam 307 is the cathode electrode. Equilibrate to 302 potential.
[0007]
The transparent electrode 312 has a positive target voltage V with respect to the cathode electrode 302. T Therefore, an electric field is applied to the photoelectric conversion film 313 with the transparent electrode 312 side being positive and the scanning surface side being negative.
[0008]
In this state, when incident light 320 from the outside enters the photoelectric conversion film 313, an electron-hole pair corresponding to the amount of incident light is generated in the photoelectric conversion film. Travels to the scanning plane side, and the scanning plane potential rises from the cathode electrode potential by the reached holes. When the electron beam 307 arrives again, the scanning surface potential is reset to the cathode electrode potential, and at this time, a time-series electrical signal corresponding to the space charge distribution of the incident light amount is obtained from the output terminal 321.
[0009]
Further, as a device having a flat vacuum envelope, a display device (FED: Field Emission Display) using a field emission cathode or the like as an electron source is known, and a schematic example of a schematic cross section thereof is shown in FIG. FIG. 8B shows an example of partial enlargement. The display device shown in FIG. 8A is a full-color display device, and a strip-shaped transparent electrode 212 a coated with red (R), green (G), and blue (B) phosphors is formed on the inner surface of the light-transmitting substrate 211. The anode part 210 is formed.
[0010]
A cathode substrate 201 is provided facing the anode part 210. On the inner surface of the cathode substrate 201, as in the planar imaging device, an electron emission portion 202a composed of a cathode electrode 202 having an XY matrix structure, a gate electrode 204, an emitter 206, and an insulating layer 203 is formed to constitute the cold cathode array 200. Has been.
[0011]
The anode part 210 and the cold cathode array 200 are held at a predetermined interval (for example, about 0.2 mm) by a support 241 provided in a gap part separating pixels, and the peripheral part between the translucent substrate 211 and the cathode substrate 201 is sealed. An envelope which is sealed with a material 231 and is kept in a high vacuum state is configured.
[0012]
In the above configuration, the cold cathode array 200 is driven in a matrix according to the display image data, and the phosphor applied on the transparent electrode 212 is excited by the electron beam 207 emitted from the emitter 206 to emit light, thereby obtaining a display image. It is done.
[0013]
[Problems to be solved by the invention]
In the prior art of the above-described flat type imaging device, in order to prevent the deformation of the cathode substrate while keeping the inside in a high vacuum state, the thickness of the substrate that resists atmospheric pressure is required, and glass is used as the substrate material. And there was a problem that the envelope weight became heavy.
[0014]
When a thin glass of about 1.5 mm, for example, is used for the cathode substrate, the central portion of the cathode substrate is deformed by being pushed toward the photoelectric conversion target portion by atmospheric pressure, so that the electron beam emitted from the emitter is on the photoelectric conversion film. Therefore, the position is shifted from the predetermined position. For this reason, there has been a problem that characteristics such as distortion and afterimage of the output image deteriorate.
[0015]
Further, in the conventional technology of the display device described above, the support is provided in the gap portion that separates the pixels to prevent the deformation of the cathode substrate. However, in the case of the conventional imaging device, if the reinforcement structure using this support is adopted, photoelectric conversion is performed. Since the film is not divided into pixels, the photoelectric conversion film is crushed and peeled off by the support, or the support contacts the transparent electrode to which a high voltage is applied, causing current leakage to the gate electrode and cathode electrode of the cold cathode array There were problems such as. Furthermore, since the charge generated and accumulated in the photoelectric conversion film at the place where the column is present cannot be read out, there is a problem in that uneven sensitivity and fixed noise are also generated.
[0016]
By the way, as a photoelectric conversion film used for the imaging tube, PbO, Sb 2 S Three , Se, Si, Cd, Zn, As, Te, and the like are used. In particular, when a high electric field is applied to a photoelectric conversion film mainly composed of amorphous Se, signal charges are increased by avalanche in the film. The sensitivity can be dramatically increased. However, the photoelectric conversion film mainly composed of amorphous Se is weak against heat, and when placed in a high temperature state of 50 ° C. or more, the characteristics are remarkably impaired, for example, many white spots appear in the output image due to crystallization. For this reason, when sealing a glass tube having an electron source of an imaging tube and a translucent substrate having a photoelectric conversion target portion, a sealing material such as sealing glass generally used in a display device such as an FED is applied. The post-baking step at a high temperature (about 500 ° C.) cannot be performed. Normally, when manufacturing an image pickup tube, a soft metal such as indium whose cross section is processed into an arc is sealed with pressure. In the case of an imaging tube, since the glass tube is long, it is easy to align the center of the translucent substrate / soft metal and the glass tube. Since the spacer member to be used is extremely low in height, it is not easy to align the core, and the spacer member is often eccentrically sealed. For this reason, there is a problem in that the translucent substrate tilts with respect to the cathode substrate to greatly affect characteristics such as resolution, and the soft metal in the sealing portion does not protrude uniformly, resulting in poor sealing. It was.
[0017]
In addition, since the through hole 301a of the cathode substrate 301 needs to be formed at a position avoiding the electron emission region, the lower envelope 351 for accommodating the getter 351 is provided at the peripheral portion of the cathode substrate 301 in the above-described conventional technology. When the sealing part of the translucent substrate 311 and the spacer member 331 and the sealing part of the lower envelope and the cathode substrate overlap or intersect with each other when viewed in a direction orthogonal to both substrates In this process, it is difficult to uniformly apply pressure to the cathode substrate 301 in which the lower envelope 351 protrudes from the peripheral portion in the process of sealing the light-transmitting substrate with a soft metal by pressurization. In addition, there are problems such as cracks or breakage in the cathode substrate, or the sealing of the light-transmitting substrate 311 resulting in poor sealing of the soft metal in the sealing portion.
[0018]
Further, in conventional imaging tubes and display devices, an evaporative getter or a non-evaporable getter is used as the residual gas adsorbing means. Among them, a high-frequency heating getter is often used in which a ring-shaped metal member is induction-heated by applying high-frequency from the outside to form an active getter vapor deposition film on the inner surface of the lower envelope containing the getter. However, since the distance between the high-frequency heating getter and the soft metal 332 used for sealing the spacer member 331 between the translucent substrate 311 constituting the main body of the upper envelope is short, the getter is heated by the high frequency. There was a problem that the soft metal 332 was melted earlier to cause a vacuum failure. Further, since the lower envelope 350 is small, the size of the getter provided inside is limited, and it is difficult to keep the inside in a high vacuum state for a long time.
[0019]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems, and to prevent the deformation of the cathode substrate and the eccentricity / tilt of the translucent substrate that affect the characteristics of the imaging device, and a flat-type imaging device that can be manufactured with high yield. A structure and a manufacturing method thereof are provided.
[0020]
[Means for Solving the Problems]
The flat-type imaging device according to claim 1, wherein a cathode substrate having a plurality of electron emission sources arranged in a matrix form on an upper surface, an upper envelope sealed on the upper surface of the cathode substrate, A lower envelope sealed to the lower surface of the cathode substrate, and a light-transmitting electrode that transmits incident light from outside and a photoelectric conversion element are laminated on the inner surface of the upper envelope. In addition, a control electrode is disposed between the photoelectric conversion element and the cathode substrate, a hole is formed in the cathode substrate to communicate the upper envelope and the lower envelope, and a getter member is formed in the lower envelope. Is a flat-type imaging device having the following features. That is, in this flat-type imaging device, the upper envelope is composed of a spacer member fixed to the cathode substrate via a sealing material, a sealing metal part, and a translucent substrate, and the control electrode is Between the sealing metal part and the spacer member and disposed so as to be energized through the sealing metal part, the upper envelope and the lower envelope are sealed to the cathode substrate. The outer peripheral shape of the portion is substantially the same, and is sealed to the cathode substrate at a position facing the cathode substrate so that at least a part of the entire circumference overlaps when viewed from the direction orthogonal to the cathode substrate. It is characterized by being.
[0021]
The planar imaging device according to claim 2, wherein a cathode substrate having a plurality of electron emission sources arranged in a matrix on the upper surface, an upper envelope sealed on the upper surface of the cathode substrate, A lower envelope sealed to the lower surface of the cathode substrate, and a light-transmitting electrode that transmits incident light from outside and a photoelectric conversion element are laminated on the inner surface of the upper envelope. In addition, a control electrode is disposed between the photoelectric conversion element and the cathode substrate, a hole is formed in the cathode substrate to communicate the upper envelope and the lower envelope, and a getter member is formed in the lower envelope. Is a flat-type imaging device having the following features. That is, in this flat-type imaging device, the upper envelope is composed of a spacer member fixed to the cathode substrate via a sealing material, a sealing metal part, and a translucent substrate, and the control electrode is The upper envelope and the lower outer portion are disposed between the sealing metal portion and the spacer member so as to be energized through the sealing metal portion, and viewed from a direction orthogonal to the cathode substrate. The sealing part with respect to one cathode substrate of the envelope is inside the sealing part with respect to the other cathode substrate, and the interval between both sealing parts has a certain regularity along the circumferential direction. The upper envelope and the lower envelope are sealed to the cathode substrate at positions facing each other across the cathode substrate.
[0022]
The planar imaging device according to claim 3 is the planar imaging device according to claim 2 or 2, wherein wiring for energizing the cathode is formed on the cathode substrate, and the spacer member of the cathode substrate In the periphery, an insulating frame is disposed on the wiring, and the sealing metal portion and the wiring are configured not to be short-circuited.
[0023]
The flat image pickup device according to claim 4 is the flat image pickup device according to claim 1 or 2, wherein the lower envelope is formed of a box-shaped member having an opening on a side sealed to the cathode substrate. And being fixed to the cathode substrate via a sealing material.
[0024]
The flat image pickup device according to claim 5 is the flat image pickup device according to claim 1 or 2, wherein the lower envelope is fixed to the cathode substrate via a sealing material. Lower envelope wall And a sealing metal part and a substrate.
[0025]
The flat image pickup device according to claim 6 is the flat image pickup device according to claim 1 or 5, wherein a reinforcing frame for performing sealing under uniform pressure on the outer periphery of the sealing metal portion. It is arranged.
[0026]
The flat image pickup device according to claim 7 is the flat image pickup device according to claim 1 or 2, wherein the getter member is formed with a getter film by being energized and heated. It is characterized in that the line is led out from the lower envelope and the sealed portion of the cathode substrate so as to be at substantially equal positions on the left and right.
[0027]
The planar imaging device according to claim 8 is the planar imaging device according to claim 1, 2 or 5, wherein the sealing metal part has a step difference between the spacer member and the substrate. It is characterized by.
[0028]
The planar type according to claim 9 Imaging The apparatus is a planar type according to claim 1 or 2. Imaging In the apparatus, the getter member disposed in the lower envelope has a lead wire for energizing or supporting the lead substrate passing through the sealing portion of the cathode substrate and the lower envelope and being led out to the outside. Features.
[0029]
The planar type according to claim 10 Imaging The apparatus is a planar type according to claim 5. Imaging In the apparatus, the getter member disposed in the lower envelope is characterized in that a lead wire for energizing or supporting is led out through the substrate.
[0030]
The planar type according to claim 11 Imaging A device manufacturing method includes a cathode substrate having a plurality of electron emission sources arranged in a matrix on an upper surface, an upper envelope sealed on the upper surface of the cathode substrate, and sealed on a lower surface of the cathode substrate. A lower envelope, and a light-transmitting electrode that transmits incident light from outside and a photoelectric conversion element are stacked on the inner surface of the upper envelope, and the photoelectric conversion element A control electrode is disposed between the cathode substrate, a hole communicating with the upper envelope and the lower envelope is formed in the cathode substrate, and a getter member is disposed in the lower envelope. Upper part The envelope includes a spacer member, a sealing metal part, and a translucent substrate fixed to the cathode substrate via a sealing material. And an annular or cylindrical reinforcing frame provided on the outer periphery of the sealing metal portion This is a manufacturing method for manufacturing a flat-type imaging device constituted by: And, the feature is that a step of forming an electron emission source on the cathode substrate, a translucent electrode and a photoelectric conversion element on the translucent substrate of the upper envelope. Formation A step of adhering a spacer member of the upper envelope to the cathode substrate, a step of adhering the lower envelope to the cathode substrate, and a space between the translucent substrate and the spacer member. Provided on the inner surface side of the reinforcing frame A step of sealing the upper envelope by relatively pressing at least one of the cathode substrate and the lower envelope and the translucent substrate toward the other party with the sealing metal portion interposed therebetween. It is in.
[0031]
The planar type according to claim 12 Imaging A device manufacturing method includes a cathode substrate having a plurality of electron emission sources arranged in a matrix on an upper surface, an upper envelope sealed on the upper surface of the cathode substrate, and sealed on a lower surface of the cathode substrate. A lower envelope, and a light-transmitting electrode that transmits incident light from outside and a photoelectric conversion element are stacked on the inner surface of the upper envelope, and the photoelectric conversion element A control electrode is disposed between the cathode substrate, a hole communicating with the upper envelope and the lower envelope is formed in the cathode substrate, and a getter member is disposed in the lower envelope. The upper envelope includes a spacer member fixed to the cathode substrate via a sealing material, a sealing metal portion, a translucent substrate, An annular or cylindrical reinforcing frame provided on the outer periphery of the sealing metal portion The lower envelope is made of an insulating material fixed to the cathode substrate via a sealing material. Lower envelope wall And a manufacturing method for manufacturing a flat-type imaging device including a sealing metal part and a substrate. And, the feature is that a step of forming an electron emission source on the cathode substrate, a translucent electrode and a photoelectric conversion element on the translucent substrate of the upper envelope. Formation A step of fixing the spacer member of the upper envelope to the cathode substrate; Lower envelope wall Between the translucent substrate of the upper envelope and the spacer member of the upper envelope A state in which a sealing metal portion provided on the inner surface side of the reinforcing frame is interposed And the substrate of the lower envelope Lower envelope wall Between Sealed The upper envelope and the lower envelope are sealed by relatively pressing the light-transmitting substrate of the upper envelope and the substrate of the lower envelope toward the other party with the stopper metal portion interposed. It has a process.
[0032]
The method for manufacturing a flat image pickup device according to claim 13 is the method for manufacturing a flat image pickup device according to claim 11 or 12, wherein the upper envelope and the lower envelope are sealed in a high vacuum atmosphere. And the upper envelope and the lower envelope are maintained in a high vacuum state.
[0033]
A method for manufacturing a flat image pickup device according to claim 14 is the method for manufacturing a flat image pickup device according to claim 11 or 12, wherein a step of forming an exhaust hole in the lower envelope in advance, After the envelope is sealed to the cathode substrate, the inside of the upper envelope and the lower envelope is evacuated to seal the exhaust hole.
[0034]
A method of manufacturing a flat-type imaging device according to claim 15 Item 1 2. A method of manufacturing a flat-type imaging device according to 2, wherein a film is formed by a getter member on a side where the lower envelope of the cathode substrate to which the upper envelope is sealed is sealed in a high vacuum atmosphere. And a step of removing the getter member and sealing the lower envelope.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing the structure of a flat-type imaging device according to an embodiment of the present invention, FIG. 2 shows an example of a processing cross-sectional shape of a sealing material using a soft metal such as indium, and FIG. An enlarged cross-sectional view and a top view of the vicinity of the sealing portion of the envelope and the lower envelope with respect to the cathode substrate (that is, the cathode substrate and the end surfaces of both envelopes sandwiching the cathode substrate) are shown. The planar imaging device of FIG. 1 is different from that of the upper and lower envelope crimping type in the second example described later in that the planar imaging device of FIG.
[0036]
The configuration of the electron emission portion 2a and the cold cathode electrode wiring 4a in FIG. 1 is exactly the same as the configuration of the cold cathode array portion of the patent publication shown in FIG.
An electron emitting portion 2a and a cold cathode electrode wiring 4a for applying a voltage from the outside are formed on the cathode substrate 1 so as to be electrically connected, and the atmosphere of the upper envelope 30 and the lower envelope 50 is the same. A through-hole 1a is provided in the cathode substrate 1 for the purpose.
[0037]
The translucent substrate 11 constituting a part of the upper envelope 30 is made of, for example, glass. A transparent electrode 12 is formed on the inner surface of the translucent substrate 11, and the transparent electrode 12 is electrically connected to a signal extraction pin 15 using a metal such as Mo embedded in the translucent substrate 11. Electrically derived to the outside. Further, a photoelectric conversion film 13 is formed on the transparent electrode 12 to constitute the photoelectric conversion target unit 10.
[0038]
A spacer member 31 constituting a part of the upper envelope 30 is fixed to the upper surface of the cathode substrate 1. The spacer member 31 is an insulating cylindrical member such as a thin glass ring. The spacer member 31 has a structure having a step portion 31 a for locking the grid electrode 8 on the inner peripheral side of the upper end surface, and the lower end surface thereof is fixed to the upper surface of the cathode substrate 1 by a sealing material 32. The distance between the grid electrode 8 and the cathode substrate 1 is, for example, about 0.2 mm to 1 mm.
[0039]
A sealing material 33 as a sealing metal part that constitutes a part of the upper envelope 30 is inserted between the upper end of the spacer member 31 and the translucent substrate 11. The seal material 33 is made of a soft metal such as indium. The sealing member 33 is an annular or cylindrical member provided on the inner surface side of the sealing material reinforcing frame 34 which is a conductive cylindrical member (for example, stainless steel or the like). The translucent substrate 11 is fixed to the spacer member 31 through the sealing material 33 by pressurizing the translucent substrate 11 toward the cathode substrate 1 using a jig (not shown). Further, the grid electrode 8 is sandwiched and fixed between the sealing material 33 and the spacer member 31 and is electrically connected to the sealing material 33, so that it can be connected to an external circuit via the sealing material reinforcing frame 34.
[0040]
The sealing material 33 is processed in advance into a cross-sectional shape as shown in FIGS. 2A to 2F, that is, a shape having a step (convex portion) that can be engaged between the spacer member 31 and the translucent substrate 11. ing. The seal members shown in FIGS. 2A to 2F are different in shape from each other, but are all denoted by the same reference numeral 33 in order to avoid complicated display. FIG. 2 is a cross-sectional view similar to that of the seal member 33 in FIG. 1, but shows only one of the two cross sections that appear when the substantially cylindrical seal material is cut. When the sealing material 33 has such a shape, it is possible to prevent the translucent substrate 11 and the spacer member 31 from being fixed in an eccentric state during the pressurization described above, and to prevent the translucent substrate 11 from being inclined. can do. Note that the spacer member is practical even if it is a simple ring-shaped ring shape as shown in FIG. 2 (g), as long as it is temporarily fixed with a jig or the like so as not to be eccentric when sealed. A satisfactory sealing effect can be obtained.
[0041]
An insulating frame 60 is disposed on the electrode wiring 4 a formed on the cathode substrate 1 around the spacer member 31 and at a position below the sealing material reinforcing frame 34. The insulating frame 60 is provided so that the sealing material 33, which is a sealing metal portion, and the electrode wiring 4a are not short-circuited. The electrode wiring 4a is covered with an insulating protective film 4b so that unnecessary conduction with other electrodes does not occur. However, even if the insulating protective film 4b is thin, an insulating frame is used. If 60 is provided, the insulation between the sealing material 33 and the electrode wiring 4a is more reliably maintained.
[0042]
As shown in FIGS. 3A to 3C, the spacer member 31 constituting the upper envelope 30 and the lower envelope 50 (the lower portion which is a part of the lower envelope 50 in the second example in the figure). The envelope wall portion 50b) has substantially the same outer peripheral shape of the portion sealed on the upper surface and the lower surface of the cathode substrate 1, and the entire periphery of the envelope wall portion 50b) when viewed from the direction orthogonal to the cathode substrate 1. The cathode substrate 1 is sealed in a positional relationship facing the cathode substrate 1 so that at least a part thereof (a portion indicated by reference numeral 70) overlaps. If the spacer member 31 and the lower envelope 50 are fixed to the upper and lower surfaces of the cathode substrate 1 by using an appropriate jig (not shown) in such dimensions, shapes, and positions, the cathode substrate 1 is fixed to the cathode substrate 1 during the fixing process. The applied pressure can be evenly distributed, and cracks and breakage of the cathode substrate can be prevented.
[0043]
3D and 3E show the lower envelope 50 (the lower envelope wall which is a part of the lower envelope 50 in the second example in the figure) when viewed from the direction orthogonal to the cathode substrate 1. The portion 50b) is sealed to the cathode substrate 1 on the inner side of the sealing member 31 constituting the upper envelope 30 with respect to the cathode substrate, and the interval between the two sealing portions is along the circumferential direction. This is a case where the spacer member 31 and the lower envelope 50 are sealed to the cathode substrate 1 so as to face each other with the cathode substrate 1 interposed therebetween so as to have a certain regularity. Here, the constant regularity is an equal interval in (d), and in (e), the lower envelope 50 (the lower portion in the second example in the figure) with respect to the spacer member 31 having a circular sealing portion. This is a relationship obtained when the sealed portion of the lower envelope wall portion 50b), which is a part of the envelope 50, is a square arranged inside the circle, and the two are aligned at the center. Even in such a case, it is possible to prevent pressure from being concentratedly applied to a specific portion of the cathode substrate 1 during the fixing step, and cracks and breakage of the cathode substrate that are substantially the same as those in FIGS. 3A to 3C described above. The effect which prevents is obtained.
[0044]
As shown in FIG. 1, the lower envelope 50 is a cylindrical or rectangular tube-shaped concave cover member having an open end, and an exhaust port 56 having an exhaust pipe is provided near the central axis. 3 is fixed to the lower surface of the cathode substrate 1 by the sealing material 52 in the positional relationship shown in FIG. An energization getter 51 is housed inside the lower envelope 50. This energization getter 51 is obtained by depositing a getter material around a straight core wire, and a pair of energization terminals (lead wires for energization) 53 projecting from both ends of the getter material with their axes aligned. Yes. The energization terminal 53 is led out to the outside through the sealing material 52 that is a sealing portion between the lower envelope 50 and the cathode substrate 1 so that the energization getter 51 can be energized from the outside. It has become.
[0045]
In order to arrange the energized getter 51 at a predetermined position in the lower envelope 50 with the above-described structure, the lower envelope 50 is sealed when the lower envelope 50 is sealed to the lower surface of the cathode substrate 1. The energization getter 51 is passed over the end face of the opening 50 so that the energization terminal 53 is hooked. In this state, the position of the getter material of the energization getter 51 is determined and sealed as it is. Here, in order to prevent the energization getter 51 from being out of balance and being displaced at the time of sealing, the energizing terminals 53 are arranged evenly at the sealing position of the lower envelope, and the applied pressure is equalized at the time of pressurization. It ’s a good idea to get rid of rattling.
[0046]
Or as shown in FIG. 4, you may provide a pair of support frames 59 and 59 so that a sealing part may be penetrated in a pair of positions equivalent with respect to a pair of electricity supply terminals 53 and 53. As shown in FIG. In the illustrated example, with respect to the circular lower envelope 50, the pair of energizing terminals 53 and 53 and the pair of support frames 59 and 59 are arranged at a central angle of 45 along the circumferential direction of the circular lower envelope 50. They were placed at radial positions that would be at intervals of degrees. In this way, the thickness of the sealing material 52 at the sealing portion can be made more uniform, and the distribution of the applied pressure at the time of sealing is further ensured. The pair of support frames 59 and 59 are connected to the energizing terminals 53 and 53 and a common frame (not shown) outside the envelope at the time of sealing, so that the lower envelope 50 can be easily positioned with respect to the circular sealing region. However, after the sealing operation is completed, the frame is cut off. The support frames 59 and 59 are not connected to the energization getter 51 and are not involved in energization for activating the getter.
[0047]
The atmosphere in the upper and lower envelopes is the same by the through hole 1a. After the internal atmosphere is brought into a high vacuum state through the exhaust pipe, the exhaust port 56 is melted and sealed by heating with a gas burner or the like. Thereafter, the energization terminal 53 is energized to form the active getter film 55 in the lower envelope. The active getter film 55 adsorbs the gas remaining in the envelope to maintain or improve the degree of vacuum in the envelope.
[0048]
The manufacturing process of the planar imaging device of this example will be described focusing on the assembly process of each member.
Electron emission portions 2 a are formed on the cathode substrate 1. The transparent electrode 12 and the photoelectric conversion film 13 are formed on the translucent substrate 11 of the upper envelope 30. A spacer member 31 of the upper envelope 30 is fixed to the cathode substrate 1. The lower envelope 50 is fixed to the cathode substrate 1. At least one of the cathode substrate 1 and the lower envelope 50 and the translucent substrate 11 with the sealing substrate 33 (sealing metal portion) interposed between the translucent substrate 11 and the spacer member 31 The upper envelope 30 is sealed by relatively pressing toward the top. Here, the annular sealing material reinforcing frame 34 is effective for performing the sealing operation under uniform pressure.
[0049]
Next, a second example of the embodiment of the present invention will be described with reference to FIG.
In the planar imaging device of FIG. 1, the lower envelope 50 is made in a container shape in advance, but the upper envelope is formed by sealing the translucent substrate 11 and the spacer member 31 with the seal member 33 at the time of assembly. It was an envelope crimping type. On the other hand, the flat type imaging device of the second example is a both-upper and lower-envelope crimping type structure in which both the upper and lower envelopes are sealed using seal members.
[0050]
That is, as shown in FIG. 5, the lower envelope 50 includes an annular (or cylindrical) lower envelope wall portion 50b sealed on the lower surface of the cathode substrate 1, and a lower envelope wall portion 50b. A lower envelope substrate 50a that closes the opening, and a seal member 57 that seals between the lower envelope wall 50b and the lower envelope substrate 50a are provided. The lower envelope wall 50b and the lower envelope substrate 50a are made of an insulating material, and the seal member 57 is made of the same material as the seal member 33.
[0051]
A getter 51 is provided in the lower envelope 50. The getter 51 has a pair of energization terminals 53, but unlike the getter 51 in the first example, the two energization terminals are bent in the same direction perpendicular to the longitudinal direction of the getter 51 and formed into a U shape as a whole. ing. The two energizing terminals 53 of the getter are led out of the envelope through two through holes formed in the lower envelope substrate 50a. The gap between the current-carrying terminal and the through hole is hermetically filled with a sealing material 54 such as sealing glass.
[0052]
The configuration of the upper envelope is the same as that of the first example, and the same reference numerals as those in FIG.
[0053]
A manufacturing process of the planar imaging device of this example will be described.
An electron emission portion 2 a is formed on the upper surface of the cathode substrate 1. Further, the transparent electrode 12 and the photoelectric conversion film 13 are formed on the translucent substrate 11 of the upper envelope 30. Next, the spacer member 31 of the upper envelope 30 is fixed to the cathode substrate 1. Next, the lower envelope wall 50 b of the lower envelope 50 is fixed to the lower surface of the cathode substrate 1. Then, sealing members 33 and 57 are provided between the translucent substrate 11 and the spacer member 31 of the upper envelope 30 and between the lower envelope substrate 50a and the lower envelope wall 50b of the lower envelope 50, respectively. In the intervening state, the translucent substrate 11 and the lower envelope substrate 50a are relatively pressed toward the other party. Thereby, the upper envelope 30 and the lower envelope 50 can be sealed simultaneously.
[0054]
At least one of the steps of sealing the upper envelope 30 and the lower envelope 50 in the manufacturing process of the planar imaging device of this example is performed in a high vacuum atmosphere. Accordingly, the insides of the upper envelope 30 and the lower envelope 50 are maintained in a high vacuum state. After the sealing, an active getter film 55 is formed on the inner surface of the lower envelope 50 using the getter 51 as in the first example.
[0055]
Next, a third example of the embodiment of the present invention will be described with reference to FIG.
The planar imaging device of this example of FIG. 6 has the same structure as the planar imaging device of FIG. 5 except that the getter 51 and the through hole of the lower envelope substrate 50a are removed from the second planar imaging device of FIG. . Therefore, the same reference numerals as those in FIG.
[0056]
The reason why there is no getter in the planar imaging device of this example is the feature of the manufacturing method of the planar imaging device of this example. A manufacturing process of the planar imaging device of this example will be described.
As shown in FIG. 6A, the upper envelope 30 is sealed on the upper surface of the cathode substrate 1, and the lower envelope wall 50b is fixed to the lower surface. Next, in a high vacuum atmosphere, as shown in the figure, the cathode substrate 1 is attached to the getter holding substrate 50c on the side where the lower envelope 30 is sealed (that is, inside the lower envelope wall portion 50b). The getter member 51 is disposed, and an active getter film 55 is formed on the lower surface of the cathode substrate 1. Next, the getter member 51 is removed while being placed in a high vacuum atmosphere, and then the lower envelope 50 is sealed. In the example shown in FIG. 5, the active getter film 55 is also formed on the inner surface of the lower envelope substrate 50a. However, in this example, the active getter film 55 is formed only on the lower surface of the cathode substrate 1. Therefore, the getter member 51 only needs to be configured to emit the getter material toward only the lower surface of the cathode substrate 1 when activated.
[0057]
By adopting such a configuration, since the lead wire of the getter member does not pass through the sealing portion, the airtightness of the sealing portion is improved. Further, since the lead wire does not pass through the sealed portion, the applied pressure does not become non-uniform and the mounting accuracy is improved. Further, it is possible to reduce the thickness because there is no getter member.
[0058]
【The invention's effect】
According to the present invention, the upper envelope having the photoelectric conversion element on the upper surface inner surface and the control electrode inside is sealed to the upper surface side of the cathode substrate having the electron emission source, and the lower envelope is formed on the lower surface side. In a planar imaging device that is sealed and communicated with both envelopes, the upper envelope is composed of a spacer member, a sealing metal portion, and a translucent substrate that are fixed to the cathode substrate via a sealing material. Configured. And the control electrode was arrange | positioned so that it might be clamped between a sealing metal part and a spacer member so that it might supply with electricity through a sealing metal part. Furthermore, the outer envelope shape of the upper envelope and the lower envelope are substantially the same in the portion sealed to the cathode substrate, and at least a part of the entire circumference is seen from the direction orthogonal to the cathode substrate. It was sealed to the cathode substrate at the position facing the cathode substrate so as to overlap. Alternatively, the sealing portion of the upper envelope and the lower envelope with respect to one cathode substrate is inside the sealing portion with respect to the other cathode substrate, and the interval between both sealing portions is constant along the circumferential direction. The upper envelope and the lower envelope may be sealed to the cathode substrate at a position where the upper envelope and the lower envelope face each other with the cathode substrate interposed therebetween.
[0059]
According to the configuration of the present invention, the conventional problems are solved, the deformation of the cathode substrate and the eccentricity / tilt of the translucent substrate that affect the characteristics of the imaging device are prevented, and the planar imaging device is It can be manufactured with good yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first example of a flat-type image pickup apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a processed shape of a sealing material using a soft metal used in the first and second examples.
FIGS. 3A and 3B are a schematic partial cross-sectional view and a top view illustrating a positional relationship in which the end surfaces of the upper envelope and the lower envelope face each other with the cathode substrate interposed therebetween in the first and second examples.
4 is a cross-sectional view taken along line (A)-(A) in FIG.
FIG. 5 is a cross-sectional view showing a second example of the flat-type image pickup apparatus according to the embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a configuration and manufacturing process of a third example of the flat-type imaging device according to the embodiment of the present invention.
7A is a schematic perspective view showing a basic configuration of a conventional flat-type imaging apparatus, and FIG. 7B is a sectional view of the same.
8A is a cross-sectional view showing a basic configuration of a conventional flat display device, and FIG. 8B is a partially enlarged view of FIG. 8A.
[Explanation of symbols]
1 Cathode substrate
1a Through hole
2a Electron emission part
4a Cold cathode array electrode wiring
8 Grid electrode
10 Photoelectric conversion target part
11 Translucent substrate
12 Transparent electrode
13 Photoelectric conversion film
15 Signal extraction pin
31 Spacer member
32 Sealing materials (such as sealing glass)
33 Sealing materials (soft metals such as indium)
34 Sealing material (soft metal such as indium) reinforcement
50 Lower envelope
50a Lower envelope substrate
50b Lower envelope wall
50c Getter holding substrate
51 Getter
53 Current carrying terminal that also serves as a getter support
54 Sealing materials such as sealing glass
55 Active Getter Film (Getter Mirror)
56 Exhaust port (sealing part)
60 Insulation frame (insulation varnish)
70 A portion where the end face of the upper envelope 30 and the end face of the lower envelope overlap

Claims (15)

マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設された平面型撮像装置において、
前記上部外囲器は、前記陰極基板に封着材を介して固着されるスペーサ部材と封止金属部と透光性基板から構成され、前記制御電極は、前記封止金属部を介して通電されるように前記封止金属部と前記スペーサ部材の間に挟持されて配設され、前記上部外囲器と下部外囲器は、陰極基板に封着される部分の外周形状が実質的に同一であり、陰極基板に直交する方向から見て、その全周にわたり少なくとも一部が重なり合うように陰極基板を挟んで対面する位置において陰極基板に封着されていることを特徴とする平面型撮像装置。
A cathode substrate having a plurality of electron emission sources arranged in a matrix on its upper surface, an upper envelope sealed on the upper surface of the cathode substrate, and a lower envelope sealed on the lower surface of the cathode substrate A transparent electrode that transmits incident light from the outside and a photoelectric conversion element are laminated on the inner surface of the upper envelope, and the photoelectric conversion element and the cathode substrate are disposed between the photoelectric conversion element and the cathode substrate. In a flat-type imaging device in which a control electrode is disposed, a hole communicating with the upper envelope and the lower envelope is formed in the cathode substrate, and a getter member is disposed in the lower envelope.
The upper envelope includes a spacer member fixed to the cathode substrate via a sealing material, a sealing metal portion, and a light-transmitting substrate, and the control electrode is energized via the sealing metal portion. The upper and lower envelopes are substantially sandwiched between the sealing metal portion and the spacer member, and the outer peripheral shape of the portion sealed to the cathode substrate is substantially the same. Planar imaging characterized in that it is the same and is sealed to the cathode substrate at a position facing the cathode substrate so that at least a part of the entire circumference overlaps when viewed from the direction orthogonal to the cathode substrate apparatus.
マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設された平面型撮像装置において、
前記上部外囲器は、前記陰極基板に封着材を介して固着されるスペーサ部材と封止金属部と透光性基板から構成され、前記制御電極は、前記封止金属部を介して通電されるように前記封止金属部と前記スペーサ部材の間に挟持されて配設され、
陰極基板に直交する方向から見て、前記上部外囲器と下部外囲器の一方の陰極基板に対する封着部分が、他方の陰極基板に対する封着部分よりも内側にあり、かつ両封着部分の間隔が周方向に沿って一定の規則性を有するように、前記上部外囲器と下部外囲器が陰極基板を挟んで対面する位置において陰極基板に封着されていることを特徴とする平面型撮像装置。
A cathode substrate having a plurality of electron emission sources arranged in a matrix on its upper surface, an upper envelope sealed on the upper surface of the cathode substrate, and a lower envelope sealed on the lower surface of the cathode substrate A transparent electrode that transmits incident light from the outside and a photoelectric conversion element are laminated on the inner surface of the upper envelope, and the photoelectric conversion element and the cathode substrate are disposed between the photoelectric conversion element and the cathode substrate. In a flat-type imaging device in which a control electrode is disposed, a hole communicating with the upper envelope and the lower envelope is formed in the cathode substrate, and a getter member is disposed in the lower envelope.
The upper envelope includes a spacer member fixed to the cathode substrate via a sealing material, a sealing metal portion, and a light-transmitting substrate, and the control electrode is energized via the sealing metal portion. So as to be sandwiched between the sealing metal part and the spacer member,
Seen from the direction orthogonal to the cathode substrate, the sealing portion of the upper envelope and the lower envelope with respect to one cathode substrate is inside the sealing portion with respect to the other cathode substrate, and both sealing portions The upper envelope and the lower envelope are sealed to the cathode substrate at a position facing each other across the cathode substrate so that the distance between the upper envelope and the lower envelope is constant along the circumferential direction. Planar imaging device.
前記陰極基板には陰極に通電するための配線が形成され、前記陰極基板の前記スペーサ部材の周囲において前記配線上には絶縁枠が配設され、前記封止金属部と配線が短絡しないように構成したことを特徴とする請求項1又は2記載の平面型撮像装置。A wiring for energizing the cathode is formed on the cathode substrate, and an insulating frame is disposed on the wiring around the spacer member of the cathode substrate so that the sealing metal portion and the wiring are not short-circuited. The planar imaging device according to claim 1, wherein the planar imaging device is configured. 前記下部外囲器は、前記陰極基板に封着される側が開口した箱状部材で形成され、封着材を介して前記陰極基板に固着されることを特徴とする請求項1又は2記載の平面型撮像装置。The said lower envelope is formed by the box-shaped member which the side sealed by the said cathode substrate opened, and is fixed to the said cathode substrate via the sealing material. Planar imaging device. 前記下部外囲器は、前記陰極基板に封着材を介して固着される絶縁性の下部外囲器壁部と封止金属部と基板から構成されたことを特徴とする請求項1又は2記載の平面型撮像装置。The said lower envelope is comprised from the insulating lower envelope wall part , the sealing metal part, and board | substrate which are fixed to the said cathode substrate through a sealing material, The board | substrate characterized by the above-mentioned. The planar imaging device described. 前記封止金属部の外周に均一な加圧下での封止を行う為の補強枠が配設されたことを特徴とする請求項1又は5記載の平面型撮像装置。6. The flat image pickup device according to claim 1, wherein a reinforcing frame for performing sealing under uniform pressure is provided on an outer periphery of the sealing metal portion. 前記ゲッタ部材は通電加熱することによりゲッタ膜が形成されるもので、通電する為のリード線が下部外囲器と陰極基板の封着部分から左右ほぼ均等の位置になるように導出されたことを特徴とする請求項1又は2記載の平面型撮像装置。The getter member is formed with a getter film when energized and heated, and the lead wire for energizing is led out from the sealed portion of the lower envelope and the cathode substrate so that they are almost evenly positioned on the left and right. The flat-type imaging device according to claim 1, wherein: 前記封止金属部は、スペーサ部材と基板の間に係合する段差を有することを特徴とする請求項1又は2又は5記載の平面型撮像装置。6. The flat image pickup device according to claim 1, wherein the sealing metal portion has a level difference between the spacer member and the substrate. 前記下部外囲器内に配設されるゲッタ部材は、通電または支持する為のリード線が、前記陰極基板と下部外囲器の封着部分を貫通して外部に導出されたことを特徴とする請求項1又は2記載の平面型撮像装置。The getter member disposed in the lower envelope is characterized in that a lead wire for energizing or supporting is led out through the sealing portion of the cathode substrate and the lower envelope. The planar imaging device according to claim 1 or 2. 前記下部外囲器内に配設されるゲッタ部材は、通電または支持する為のリード線が、基板を貫通して外部に導出されたことを特徴とする請求項5記載の平面型撮像装置。6. The planar imaging device according to claim 5, wherein a lead wire for energizing or supporting the getter member disposed in the lower envelope is led out through the substrate. マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器の内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設され、前記上部外囲器は、前記陰極基板に封着材を介して固着されるスペーサ部材と封止金属部と透光性基板と前記封止金属部の外周に設けられている環状乃至筒状の補強枠から構成された平面型撮像装置を製造する為の製造方法であって、
陰極基板に電子放出源を形成する工程と、上部外囲器の透光性基板に透光性の電極および光電変換素子を形成する工程と、陰極基板に上部外囲器のスペーサ部材を固着する工程と、陰極基板に下部外囲器を固着する工程と、透光性基板とスペーサ部材の間に前記補強枠の内面側に設けられた封止金属部を介在させた状態で陰極基板及び下部外囲器の少なくとも一方と透光性基板とを相手方に向けて相対的に押圧することにより上部外囲器を封止することを特徴とする平面型撮像装置の製造方法。
A cathode substrate having a plurality of electron emission sources arranged in a matrix on its upper surface, an upper envelope sealed on the upper surface of the cathode substrate, and a lower envelope sealed on the lower surface of the cathode substrate A transparent electrode that transmits incident light from the outside and a photoelectric conversion element are stacked on the inner surface of the upper envelope, and the photoelectric conversion element and the cathode substrate are disposed between the photoelectric conversion element and the cathode substrate. Is provided with a control electrode, a hole for communicating the upper envelope and the lower envelope is formed in the cathode substrate, a getter member is provided in the lower envelope, and the upper envelope is A plane composed of a spacer member fixed to the cathode substrate via a sealing material, a sealing metal part, a translucent substrate, and an annular or cylindrical reinforcing frame provided on the outer periphery of the sealing metal part. A manufacturing method for manufacturing a type imaging device,
Fixed forming an electron emission source on the cathode substrate, the transparent substrate of the upper envelope forming a transparent electrode and a photoelectric conversion element, the upper envelope of the spacer members to the cathode substrate A step of fixing the lower envelope to the cathode substrate, and a cathode substrate and a lower portion in a state where a sealing metal portion provided on the inner surface side of the reinforcing frame is interposed between the translucent substrate and the spacer member A method of manufacturing a flat-type imaging device, wherein the upper envelope is sealed by relatively pressing at least one of the envelope and the light-transmitting substrate toward the other party.
マトリクス状に配設された複数の電子放出源を上面に有する陰極基板と、前記陰極基板の上面に封着される上部外囲器と、前記陰極基板の下面に封着される下部外囲器とを有し、前記上部外囲器の内面には外部からの入射光を透過する透光性の電極と光電変換素子が積層して配設され、前記光電変換素子と陰極基板との間には制御電極が配設され、陰極基板には上部外囲器と下部外囲器を連通する孔が形成され、下部外囲器内にはゲッタ部材が配設され、前記上部外囲器は、前記陰極基板に封着材を介して固着されるスペーサ部材と、封止金属部と、透光性基板と前記封止金属部の外周に設けられている環状乃至筒状の補強枠から構成され、前記下部外囲器は、前記陰極基板に封着材を介して固着される絶縁性の下部外囲器壁部と封止金属部と基板から構成された平面型撮像装置を製造する為の製造方法であって、
陰極基板に電子放出源を形成する工程と、上部外囲器の透光性基板に透光性の電極および光電変換素子を形成する工程と、陰極基板に上部外囲器のスペーサ部材を固着する工程と、陰極基板に下部外囲器壁部を固着する工程と、上部外囲器の透光性基板と上部外囲器のスペーサ部材の間に前記補強枠の内面側に設けられた封止金属部を介在させた状態及び下部外囲器の基板と下部外囲器壁部の間に封止金属部を介在させた状態で上部外囲器の透光性基板と下部外囲器の基板を相手方に向けて相対的に押圧することにより上部外囲器と下部外囲器を封止することを特徴とする平面型撮像装置の製造方法。
A cathode substrate having a plurality of electron emission sources arranged in a matrix on its upper surface, an upper envelope sealed on the upper surface of the cathode substrate, and a lower envelope sealed on the lower surface of the cathode substrate A transparent electrode that transmits incident light from the outside and a photoelectric conversion element are stacked on the inner surface of the upper envelope, and the photoelectric conversion element and the cathode substrate are disposed between the photoelectric conversion element and the cathode substrate. Is provided with a control electrode, a hole for communicating the upper envelope and the lower envelope is formed in the cathode substrate, a getter member is provided in the lower envelope, and the upper envelope is It is composed of a spacer member fixed to the cathode substrate via a sealing material, a sealing metal part, a translucent substrate, and an annular or cylindrical reinforcing frame provided on the outer periphery of the sealing metal part. the lower envelope is lower envelope wall insulating which is fixed via the sealing material to the cathode substrate and the metal seal part A manufacturing method for manufacturing a planar imaging device composed of a substrate,
Fixed forming an electron emission source on the cathode substrate, the transparent substrate of the upper envelope forming a transparent electrode and a photoelectric conversion element, the upper envelope of the spacer members to the cathode substrate A step of fixing the lower envelope wall to the cathode substrate, and a sealing provided on the inner surface side of the reinforcing frame between the translucent substrate of the upper envelope and the spacer member of the upper envelope upper envelope of the translucent substrate and the lower envelope of the substrate while interposing a sealing metal portion between the substrate and the lower envelope wall of the allowed states and lower envelope interposed metal section A method of manufacturing a flat-type imaging device, wherein the upper envelope and the lower envelope are sealed by relatively pressing toward each other.
請求項11又は12記載の平面型撮像装置の製造方法において、高真空雰囲気中において上部外囲器と下部外囲器を封止する工程を有し、上部外囲器と下部外囲器が高真空状態に保持されることを特徴とする平面型撮像装置の製造方法。13. The method for manufacturing a planar imaging device according to claim 11, further comprising a step of sealing the upper envelope and the lower envelope in a high vacuum atmosphere, wherein the upper envelope and the lower envelope are high. A method for manufacturing a flat-type imaging device, wherein the flat-type imaging device is held in a vacuum state. 請求項11又12記載の平面型撮像装置の製造方法であって、あらかじめ下部外囲器に排気孔を形成する工程と、上部外囲器を陰極基板に封着した後、上部外囲器と下部外囲器の内部を排気して前記排気孔を封止する工程を有することを特徴とする平面型撮像装置の製造方法。13. A method of manufacturing a flat-type imaging device according to claim 11 or 12, comprising: forming an exhaust hole in the lower envelope in advance; sealing the upper envelope to the cathode substrate; A method of manufacturing a flat-type imaging device, comprising: exhausting the inside of the lower envelope to seal the exhaust hole. 請求項12記載の平面型撮像装置の製造方法であって、高真空雰囲気中において、上部外囲器が封着された陰極基板の下部外囲器が封止される側にゲッタ部材により膜を形成する工程と、前記ゲッタ部材を取り除いて下部外囲器を封止する工程が行なわれることを特徴する平面型撮像装置の製造方法。A manufacturing method of a flat type image pickup apparatus according to claim 1 wherein the membrane by the getter member in a high vacuum atmosphere, on the side of the bottom envelope of a cathode substrate in which the upper envelope is sealed is sealed And a step of removing the getter member and sealing the lower envelope.
JP2001070797A 2001-03-13 2001-03-13 Planar imaging apparatus and method of manufacturing planar imaging apparatus Expired - Fee Related JP4744707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070797A JP4744707B2 (en) 2001-03-13 2001-03-13 Planar imaging apparatus and method of manufacturing planar imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070797A JP4744707B2 (en) 2001-03-13 2001-03-13 Planar imaging apparatus and method of manufacturing planar imaging apparatus

Publications (2)

Publication Number Publication Date
JP2002270122A JP2002270122A (en) 2002-09-20
JP4744707B2 true JP4744707B2 (en) 2011-08-10

Family

ID=18928599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070797A Expired - Fee Related JP4744707B2 (en) 2001-03-13 2001-03-13 Planar imaging apparatus and method of manufacturing planar imaging apparatus

Country Status (1)

Country Link
JP (1) JP4744707B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443865B2 (en) * 2002-06-24 2010-03-31 富士フイルム株式会社 Solid-state imaging device and manufacturing method thereof
FR2874691B1 (en) * 2004-08-24 2006-11-17 Ulis Soc Par Actions Simplifie ELECTROMAGNETIC RADIATION DETECTION COMPONENT, IN PARTICULAR INFRARED, INFRARED IMAGING OPTICAL BLOCK INCORPORATING SUCH A COMPONENT AND METHOD FOR PRODUCING THE SAME
JP2007128733A (en) * 2005-11-02 2007-05-24 Rohm Co Ltd Electronic device and display device with sensor utilizing same
JP5000254B2 (en) * 2006-10-11 2012-08-15 パナソニック株式会社 Imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363842A (en) * 1991-06-10 1992-12-16 Canon Inc Image display device
JPH08106869A (en) * 1994-10-03 1996-04-23 Hitachi Ltd Image element and operating method thereof
JP2000048743A (en) * 1998-05-26 2000-02-18 Futaba Corp Plane image pick-up device, and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363842A (en) * 1991-06-10 1992-12-16 Canon Inc Image display device
JPH08106869A (en) * 1994-10-03 1996-04-23 Hitachi Ltd Image element and operating method thereof
JP2000048743A (en) * 1998-05-26 2000-02-18 Futaba Corp Plane image pick-up device, and its manufacture

Also Published As

Publication number Publication date
JP2002270122A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
US7417365B2 (en) Image display device having electrical lead connections fixed through a portion of an exhausting pipe body
US5504386A (en) Photomultiplier tube having a metal-made sidewall
US20060232189A1 (en) Electron emission device and method for manufacturing the same
US7319286B2 (en) Display device
JP4744707B2 (en) Planar imaging apparatus and method of manufacturing planar imaging apparatus
JPH1050241A (en) Vacuum vessel for housing field emission device
JP2002042636A (en) Photocathode and electron tube
KR100432110B1 (en) Method and apparatus for manufacturing flat image display device
US7446468B2 (en) Electron emission display
US7408298B2 (en) Image display device
JPH06295689A (en) Fluorescent display device and manufacture of fluorescent display device
JPH0347032B2 (en)
US3692379A (en) Method of fabricating a photoconductive pickup tube
US20060250070A1 (en) Vacuum vessel and electron emission display device using the same
EP1848021B1 (en) Vacuum envelope and electron emission display using vacuum envelope
US7518303B2 (en) Electron emission device with plurality of lead lines crossing adhesive film
JP2000215791A (en) Sealing panel device and its manufacture
JP2005322583A (en) Manufacturing method of picture display device
JP2528456Y2 (en) Fluorescent display
KR20060037877A (en) Electron emission display device and method of fabricating the same
JP2000323073A (en) Image display apparatus and manufacture thereof
JP2757271B2 (en) Light emitting device manufacturing equipment
US20070247054A1 (en) Vacuum envelope, method of manufacturing the vacuum envelope, and electron emission display using the vacuum envelope
JP2775205B2 (en) Light emitting element
JPH0722849Y2 (en) Fluorescent display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees