JP4744129B2 - Catheter tube - Google Patents
Catheter tube Download PDFInfo
- Publication number
- JP4744129B2 JP4744129B2 JP2004356616A JP2004356616A JP4744129B2 JP 4744129 B2 JP4744129 B2 JP 4744129B2 JP 2004356616 A JP2004356616 A JP 2004356616A JP 2004356616 A JP2004356616 A JP 2004356616A JP 4744129 B2 JP4744129 B2 JP 4744129B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- catheter tube
- ptfe
- layer
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Description
本発明は血管もしくは他の体腔に挿入されて診断や治療に使用される医療用のカテーテルチューブに関するものである。 The present invention relates to a medical catheter tube that is inserted into a blood vessel or other body cavity and used for diagnosis or treatment.
近年、患者の肉体的・時間的負担を軽減するために診断・治療方法にカテーテルを用いる例が増えている。一般に、カテーテルは、血管、尿管、気管、食道等を通して生体内に挿入し、血管壁や生体器官等を傷つけることなく正確に所定の生体部位に到達させるための医療器具としての高い操作性と安全性についての構造的な要求に加えて、その内層樹脂が形成するチューブ内腔を通じて患者の生体内の所定部位に、外部から薬剤等を注入したり、生体内の体液等を排出したり、他の治療器具を通過させるための内腔直径の維持、拡大と内腔表面(内層樹脂層のチューブ内表面)とその中を通過する薬剤あるいは他の治療器具やガイドワイヤ等に対する潤滑性が必要とされている。 In recent years, in order to reduce the physical and time burden of patients, examples of using catheters for diagnosis and treatment methods are increasing. Generally, a catheter is inserted into a living body through a blood vessel, ureter, trachea, esophagus, etc., and has high operability as a medical instrument for accurately reaching a predetermined living body site without damaging a blood vessel wall or a living organ. In addition to structural requirements for safety, injecting drugs, etc. from the outside to a predetermined site in the patient's body through the tube lumen formed by the inner layer resin, discharging body fluid, etc. in the body, Maintaining and expanding the lumen diameter to allow other therapeutic devices to pass through and lubrication of the lumen surface (the inner surface of the tube of the inner resin layer) and the drug passing through it or other therapeutic devices or guide wires It is said that.
従来のカテーテルは、上記の如き構造的な要求に対応して、例えば、血管、生体器官を傷つけずに挿入するための曲げやすく弾力性に富んだ先端部と、この先端部と連続し、先端部を所定の箇所まで確実に到達させるためのトルク伝達性を保持したトルク伝達部(本体部)を有している。また、トルク伝達部(本体部)は、トルク伝達性を高めるために、金属素線を用いた補強層が内層チューブ上に設けられたり、硬い材料で構成されたりしている。また先端部は、曲げやすく弾力性に富んだものとするため、柔らかい材料で構成されたり、本体部(トルク伝達部)に先端部として金属線を含む補強層がないチューブを接続して構成されたりしている。 In response to the structural requirements as described above, the conventional catheter is, for example, a flexible and flexible tip for insertion without damaging blood vessels and living organs, and a continuous tip. A torque transmission portion (main body portion) that retains torque transmission properties for reliably reaching the predetermined portion. In addition, the torque transmission part (main body part) is provided with a reinforcing layer using a metal wire on the inner layer tube or is made of a hard material in order to improve torque transmission. In addition, the tip is made of a soft material so that it is easy to bend and rich in elasticity, or it is made by connecting a tube without a reinforcing layer containing a metal wire as a tip to the main body (torque transmission part). It is.
そして、従来のカテーテルの製造方法としては、先ず金属線(芯線)上に内層樹脂層を設け、得られる金属線(芯線)上に形成された内層樹脂層チューブの外周上に必要に応じて耐食性の金属線(補強材)によって補強を施し、内層樹脂層チューブあるいはこれと補強を覆うように外層樹脂層を設け、得られる多層チューブ体から金属線(芯線)を引抜く製造方法が知られている。例えば、特許文献1参照。 As a conventional catheter manufacturing method, first, an inner resin layer is provided on a metal wire (core wire), and if necessary, corrosion resistance is provided on the outer periphery of the inner resin layer tube formed on the resulting metal wire (core wire). There is known a manufacturing method in which a metal wire (reinforcing material) is used to reinforce, an outer layer resin layer is provided so as to cover the inner layer resin layer tube or the reinforcement, and a metal wire (core wire) is drawn from the obtained multilayer tube body Yes. For example, see Patent Document 1.
さらに、カテーテルの内層樹脂層、殊に内腔表面に関する上記の如き要求性能に対応するために、多種多様なカテーテルチューブの開発が試みられているが、内層樹脂層の構成材料として、高密度ポリエチレン(以下HDPEと略記)樹脂やフッ素樹脂特にPTFE樹脂を用いる例が多い。内層樹脂層にHDPE樹脂やPTFE樹脂を用いたカテーテルチューブは、内表面が低摩擦で潤滑性に優れるために、治療あるいは検査に用いる器具や薬品等の内腔通過が使用開始後の短時間において容易になる点で効果がもたらされる。この場合、X線造影剤を配合したり、強度や先端の加工性を維持するために、外層樹脂層の構成材料としては、ポリアミドやポリウレタン樹脂等が用いられ、又、カテーテルの外径を小さくし、且つ内層樹脂層の内腔内径を大きくするためには、HDPE樹脂やPTFE樹脂から成る内層樹脂層を極めて薄く形成することが要求される。HDPE樹脂とPTEF樹脂では耐熱性・耐久性の観点及びガイドワイヤとの摩擦抵抗低減の目的からPTFE樹脂の方が臨床使用上より好まれている。一般的に素材自体の動摩擦抵抗値の比較においてPTFE樹脂が各種素材中最も低い事は周知であり、耐熱性・耐薬品性もPTFEの方が優れている事が知られている。 Furthermore, in order to meet the above-mentioned required performance with respect to the inner resin layer of the catheter, particularly the lumen surface, a variety of catheter tubes have been developed. As a constituent material of the inner resin layer, high density polyethylene is used. (Hereinafter abbreviated as HDPE) There are many examples of using a resin or a fluororesin, particularly a PTFE resin. Catheter tubes using HDPE resin or PTFE resin for the inner resin layer have low inner surface friction and excellent lubricity. Effective in terms of ease. In this case, polyamide, polyurethane resin, or the like is used as a constituent material of the outer resin layer in order to mix an X-ray contrast agent or maintain strength and workability at the tip, and also reduce the outer diameter of the catheter. In order to increase the inner diameter of the inner resin layer, it is required to form an inner resin layer made of HDPE resin or PTFE resin very thin. In the case of HDPE resin and PTEF resin, PTFE resin is preferred for clinical use from the viewpoints of heat resistance and durability and the purpose of reducing frictional resistance with the guide wire. In general, it is well known that PTFE resin is the lowest among various materials in comparison of dynamic friction resistance values of materials themselves, and it is known that PTFE is superior in heat resistance and chemical resistance.
カテーテル等の医療用具は、生体へ使用されるという事情から、使用前に滅菌される必要がある。滅菌方法としては、ガスや蒸気等様々な種類があるが、これらにはガスの毒性や、滅菌に要する処理時間が長いことなどの課題があり、近年、電子線等の放射線による滅菌が注目されつつある。 Medical devices such as catheters need to be sterilized before use due to the fact that they are used on living bodies. There are various types of sterilization methods such as gas and steam, but these have problems such as the toxicity of gas and the long processing time required for sterilization. In recent years, sterilization by radiation such as electron beams has attracted attention. It's getting on.
しかしながら、PTFEは放射線に対する耐性が著しく低く、著しく劣化してしまう点が課題となっていた。PTFE樹脂は1kGy以上の電離放射線の照射により劣化し(崩壊型)、γ線・電子線滅菌等で汎用される滅菌線量の25kGy前後の吸収線量においては機械特性が極端に劣化する。特には破断伸度が大幅に低下する事が知られている。従って、PTFE樹脂を内層に用いたカテーテルチューブに関しては放射線滅菌の適用が出来ないとされている。仮に適応したとしても放射線滅菌後のPTFE樹脂は破断伸度が著しく低下しているので、カテーテルチューブを屈曲した場合に内層の剥離やクラックを生じ易くカテーテルチューブ自体の強度低下や品質劣化を招くので好ましくない。 However, PTFE has a very low resistance to radiation, and has a problem that it deteriorates remarkably. PTFE resin is deteriorated by irradiation with ionizing radiation of 1 kGy or more (collapse type), and mechanical properties are extremely deteriorated at an absorbed dose of around 25 kGy, which is a sterilization dose generally used for γ-ray and electron beam sterilization. In particular, it is known that the breaking elongation is greatly reduced. Therefore, it is said that radiation sterilization cannot be applied to a catheter tube using PTFE resin as an inner layer. Even if it is adapted, the PTFE resin after radiation sterilization has a significantly reduced elongation at break. Therefore, when the catheter tube is bent, the inner layer is liable to be peeled off or cracked, resulting in a decrease in strength and quality deterioration of the catheter tube itself. It is not preferable.
なお、特許文献1は、カテーテルチューブの耐磨耗性向上を目的とした内層樹脂層及び内層樹脂層上の外層樹脂層を有するカテーテルチューブであるが、上記内層樹脂層が架橋PTFE樹脂を含有するPTFE樹脂によって構成されていることを特徴とするカテーテルチューブを開示している。架橋PTFE樹脂は架橋ポリマーであるため加工性が未架橋PTFE樹脂より更に悪くそのままではチューブへの加工が出来ず未架橋PTFE樹脂とのブレンド体として成形されている。しかしながらその場合、マトリックスとして未架橋PTFE樹脂が主成分とならざるを得ないので、耐放射線滅菌性は未架橋PTFE樹脂と同等以下となるのでカテーテルチューブとしての耐放射線滅菌性は得られない。 Patent Document 1 is a catheter tube having an inner resin layer and an outer resin layer on the inner resin layer for the purpose of improving the wear resistance of the catheter tube, and the inner resin layer contains a crosslinked PTFE resin. A catheter tube characterized by being made of PTFE resin is disclosed. Since the cross-linked PTFE resin is a cross-linked polymer, its processability is worse than that of the non-cross-linked PTFE resin, so that it cannot be processed into a tube as it is and is molded as a blend with the non-cross-linked PTFE resin. However, in that case, since uncrosslinked PTFE resin must be the main component in the matrix, the radiation sterilization resistance is equal to or less than that of the uncrosslinked PTFE resin, so that the radiation sterilization resistance as a catheter tube cannot be obtained.
本発明はこのような課題を解決するために案出されたものである。本発明の目的は、従来カテーテルチューブ内層に好適に用いられてきたPTFE樹脂の潤滑性特性を維持しつつ耐放射線滅菌性を付与した内層樹脂層を有するカテーテルチューブを提供することにある。 The present invention has been devised to solve such problems. An object of the present invention is to provide a catheter tube having an inner resin layer imparted with radiation sterilization resistance while maintaining the lubricity characteristics of PTFE resin that has been suitably used for an inner layer of a conventional catheter tube.
このような目的は、下記(1)から(5)の本発明により達成される。 Such an object is achieved by the present inventions (1) to (5) below.
(1)管腔を有し、架橋PTFE樹脂のみから構成され前記管腔の内表面を規定する樹脂層を有することを特徴とするカテーテルチューブ。 (1) A catheter tube having a lumen and having a resin layer which is made of only a crosslinked PTFE resin and defines the inner surface of the lumen.
(2)前記内層樹脂層の外表面を覆う外層樹脂層を更に有することを特徴とする上記(1)に記載のカテーテルチューブ。 (2) The catheter tube according to (1), further including an outer resin layer that covers an outer surface of the inner resin layer.
(3)前記内層樹脂層と前記外層樹脂層の境界部に補強層が更に設けられてなることを特徴とする上記(2)に記載のカテーテルチューブ。 (3) The catheter tube according to (2), wherein a reinforcing layer is further provided at a boundary portion between the inner resin layer and the outer resin layer.
(4)前記補強層が金属線材からなることを特徴とする上記(3)に記載のカテーテルチューブ。 (4) The catheter tube according to (3), wherein the reinforcing layer is made of a metal wire.
(5)前記内層樹脂層が放射線により架橋されたPTFE樹脂のみからなることを特徴とする上記(1)に記載のカテーテルチューブ。 (5) The catheter tube as described in (1) above, wherein the inner resin layer is composed of only PTFE resin crosslinked by radiation.
本発明によるカテーテルチューブは内層樹脂層に架橋PTFE樹脂を用いており、放射線滅菌の適応が可能である。また、架橋PTFE樹脂は摺動性・耐久性・耐薬品性は未架橋PTFE樹脂と同等であり、HDPE樹脂より優れるので優れた操作性を有するカテーテルチューブを提供することができ、術者の負担を軽減すると共に、医療経済性・環境負荷低減に寄与できるものである。 The catheter tube according to the present invention uses cross-linked PTFE resin for the inner resin layer, and can be adapted for radiation sterilization. Cross-linked PTFE resin is equivalent to uncross-linked PTFE resin in terms of slidability, durability, and chemical resistance, and is superior to HDPE resin. It can contribute to medical economic efficiency and environmental load reduction.
以下、本発明のカテーテルチューブを添付図面に示す好適構成例に基づいて詳細に説明する。 Hereinafter, the catheter tube of the present invention will be described in detail based on a preferred configuration example shown in the accompanying drawings.
図1は、本発明のカテーテルチューブの実施形態を示す全体図である。図2は、図1に示すカテーテルチューブの縦断面図である。 FIG. 1 is an overall view showing an embodiment of a catheter tube of the present invention. FIG. 2 is a longitudinal sectional view of the catheter tube shown in FIG.
カテーテルチューブ1は、先端101と基端102を有する本体部100と、本体部100の基端102に接続されたハブ103とから構成されている。また、ハブ103から先端101までを貫通する管腔104が形成されている。
The catheter tube 1 includes a
図2に示すように本発明のカテーテルチューブ1の本体部100は、架橋PTFE樹脂からなる内層樹脂層2と外層樹脂層3により構成される。内層2の架橋PTFE樹脂層の厚みは、0.1〜1000μmが好ましく、更に好ましくは1〜100μmである。内層2の架橋PTFE樹脂層は潤滑・耐薬品性の機能を提供するのが目的であり、より薄い方が好ましい。外層樹脂層3は所望されるカテーテルチューブ特性により厚みや構成が決められる。即ち手元側・中間部・先端部で樹脂材料や硬度が異なっても良く、手元側は硬く先端101側に行くほど柔らかく構成することが血管への屈曲追随性等のカテーテル操作性において好ましい。また、必要に応じて上記内層樹脂層2と上記外層樹脂層3の間に単独あるいは複数の金属線又は非金属線からなる補強層4を設けても良い。補強層4としては、線状体を編組または螺旋状に巻いた形式が好ましい。
As shown in FIG. 2, the
本実施形態におけるカテーテルチューブの製造方法としては、架橋PTFE樹脂からなる内層樹脂層2を作成後、その周囲に補強層4を設け、更にその周囲に外層樹脂層3を形成する。
As a manufacturing method of the catheter tube in this embodiment, after creating the
架橋PTFE樹脂からなる内層樹脂層2の作成方法としては、公知の方法でPTFEチューブを作成後に電子線を照射する方法と、PTFE膜に電子線を照射し、架橋PTFE膜を作成、チューブ状に加工する方法があるが、製造が容易なのは前者の方である。
The inner
前者におけるPTFEチューブは、一般に金属製の芯線上にPTFEファインパウダーやPTFEコーティング用ディスパージョン等の原料をチューブ押出成形することで成形される。電子線照射時には芯線があってもなくてもよい。 The PTFE tube in the former is generally formed by extruding raw materials such as PTFE fine powder and PTFE coating dispersion on a metal core wire. There may or may not be a core wire during electron beam irradiation.
芯線としては、銅、アルミニウム、鉄、銀、白金、金等のいずれでもよく、又、これ等の合金、さらに又、これ等に錫、亜鉛等を加えた合金であってもよい。又、芯線はチューブ内面の平滑性の観点から単線が好ましいが、必要に応じて撚線でもよく、素線ごと、あるいは一括メッキした物でも良い。作業性・コストの観点から最も好ましい例として単線のスズメッキ軟銅線や銀メッキ軟銅線を挙げることが出来る。 The core wire may be any of copper, aluminum, iron, silver, platinum, gold and the like, or an alloy thereof, or an alloy obtained by adding tin, zinc or the like to these alloys. Further, the core wire is preferably a single wire from the viewpoint of the smoothness of the inner surface of the tube, but may be a stranded wire if necessary, or may be a single wire or a material plated in a lump. The most preferable examples from the viewpoint of workability and cost include a single-line tin-plated annealed copper wire and silver-plated annealed copper wire.
本発明に用いる架橋PTFE樹脂は、示差走査熱量計(以下、DSCと略記する)による樹脂の結晶融点の吸熱カーブ観察において、融点270℃〜320℃かつピーク熱量(△H)が−30〜−40[J/g]を示すものが好ましい。未架橋PTFEにおいて融点は330〜350℃、△Hは−20〜−30[J/g]である。架橋が進むにつれて結晶性は低下していく事が知られているが、あまり結晶性が低下してしまっては素材自体の強度及び伸びがなくなるので好ましくなくなる。具体的には融点280℃以下かつ−20[J/g]以下の架橋PTFEはカテーテルチューブとした時、機械特性が弱く要求を満たさなくなるので好ましくない。また、融点が350℃〜320℃かつ前記△Hが−50〜−60[J/g]のものは電子線照射による高分子主鎖切断を起しており、超低分子量PTFE樹脂単独または超低分子量PTFE樹脂と超低分子量架橋PTFE樹脂の混在物となっており、強度及び破断伸度が著しく低く、これもカテーテルチューブとした時、機械特性が要求を満たさなくなるので好ましくない。架橋・未架橋の遷移状態としてピークの混在(マルチピーク)やショルダーピークの認められる場合があるが、この場合は機械強度について放射線滅菌性前後の確認が必要であり必ず使用できるとは限らない。逆に注意すれば使えるものもあるが不安定である事に留意する必要がある。従って、更に好ましくはシングルピークを示し、融点280℃〜320℃かつピーク熱量(△H)−30〜−40[J/g]を示すものが好ましい。 The cross-linked PTFE resin used in the present invention has a melting point of 270 ° C. to 320 ° C. and a peak calorific value (ΔH) of −30 to −30 in the endothermic curve observation of the crystalline melting point of the resin using a differential scanning calorimeter (hereinafter abbreviated as DSC). What shows 40 [J / g] is preferable. In uncrosslinked PTFE, the melting point is 330 to 350 ° C., and ΔH is −20 to −30 [J / g]. It is known that the crystallinity is lowered as the crosslinking proceeds. However, if the crystallinity is lowered so much, the strength and elongation of the material itself are lost, which is not preferable. Specifically, cross-linked PTFE having a melting point of 280 ° C. or lower and −20 [J / g] or lower is not preferable because the mechanical properties are weak when the catheter tube is used and the requirement is not satisfied. In addition, those having a melting point of 350 ° C. to 320 ° C. and ΔH of −50 to −60 [J / g] cause the main chain of the polymer to be cut by electron beam irradiation, and the ultra low molecular weight PTFE resin alone or super It is a mixture of a low molecular weight PTFE resin and an ultra-low molecular weight crosslinked PTFE resin, and the strength and elongation at break are remarkably low. When this is also used as a catheter tube, the mechanical properties do not satisfy the requirements, which is not preferable. In some cases, a mixed peak (multi-peak) or a shoulder peak may be recognized as a cross-linked / un-cross-linked transition state. In this case, confirmation of mechanical strength before and after radiation sterilization is necessary, and it cannot always be used. On the other hand, there are some that can be used if you are careful, but you need to be aware that they are unstable. Therefore, it is more preferable to show a single peak, a melting point of 280 ° C. to 320 ° C., and a peak heat value (ΔH) of −30 to −40 [J / g].
本発明においてPTFE樹脂を架橋する方法は特に限定されるものではないが、電離性放射線を照射する方法が有効である。好ましくは、脱酸素雰囲気や不活性ガス置換下に被覆PTFE樹脂を融点近傍330℃〜350℃に加熱した状態で、加速電圧100keV以上の電子線を照射して行う。加速電圧100keV以上の電子線は、高い時間線量率が得られ易い点で好ましい。より詳細には、PTFE樹脂層の径や被覆の厚みに応じて異なるので適宜製造条件の選択を行う必要があるが、加速電圧300KeV〜10MeV、照射線量としては1kGy〜10MGyの範囲が好ましく、200kGy〜1MGyの範囲がより好ましい。 In the present invention, the method of crosslinking the PTFE resin is not particularly limited, but a method of irradiating ionizing radiation is effective. Preferably, it is carried out by irradiating an electron beam with an acceleration voltage of 100 keV or higher in a state where the coated PTFE resin is heated to near 330 ° C. to 350 ° C. in a deoxygenated atmosphere or under inert gas substitution. An electron beam having an acceleration voltage of 100 keV or more is preferable in that a high time dose rate can be easily obtained. More specifically, since it varies depending on the diameter of the PTFE resin layer and the thickness of the coating, it is necessary to appropriately select the production conditions. However, the acceleration voltage is preferably 300 KeV to 10 MeV, and the irradiation dose is preferably in the range of 1 kGy to 10 MGy, and 200 kGy. A range of ˜1 MGy is more preferred.
生成した架橋PTFE樹脂について前記DSC分析を行い使用可否の判断を行う事が出来る。不適切な照射条件では架橋PTFE樹脂チューブにクラックや火ぶくれ発生、ピンホール、収縮変形等の不具合が発生する場合があるが、そのようなサンプルでチューブ寸法や外観に問題を生じたものは前記DSCデータ範囲であっても除外する。形成された架橋PTFE樹脂の内層樹脂層の外表面に表面処理を施すことは外層樹脂層との密着性を向上させることが出来るので好ましく、例えばコロナ処理、プラズマ処理、UV処理、テトラエッチ処理及びそれら各種表面処理と共に行われるグラフト重合やアンカーコート剤塗布、接着剤塗布を適宜行っても良い。 The produced cross-linked PTFE resin can be subjected to the DSC analysis to determine whether it can be used. Inappropriate irradiation conditions may cause problems such as cracks, blisters, pinholes, shrinkage deformation, etc. in the crosslinked PTFE resin tube. Even the DSC data range is excluded. It is preferable to perform a surface treatment on the outer surface of the inner resin layer of the formed crosslinked PTFE resin because it can improve the adhesion with the outer resin layer. For example, corona treatment, plasma treatment, UV treatment, tetraetch treatment and Graft polymerization, anchor coating agent application, and adhesive application performed together with these various surface treatments may be appropriately performed.
本発明で言う外層樹脂層の材料としては、例えば、ポリエチレン・ポリプロピレン・ポリブタジエン等のポリオレフィン、軟質・硬質ポリ塩化ビニル、ポリウレタン、エポキシ樹脂、シクロオレフィン、エチレン−酢酸ビニル共重合体、ポリエチレンテレフタレート・ポリブチレンテレフタレート等のポリエステル、ナイロン12・ナイロン11・ナイロン610・ナイロン612・ナイロン66・ナイロン6等のポリアミド、ポリエーテルポリアミド、ポリエーテルブロックアミド、ポリエステルポリアミド、ABS樹脂、AS樹脂、フッ素系樹脂、形状記憶樹脂等の各種樹脂材料やスチレン系・ポリオレフィン系・ポリウレタン系・ポリエステル系・ポリアミド系・ポリブタジエン系・トランスポリイソプレン系・フッ素ゴム系・塩素化ポリエチレン系等の各種熱可塑性エラストマー樹脂、シリコーン・加硫ゴム等の熱硬化性エラストマー樹脂、さらには、これらのうちの2種以上を組合せたもの(ポリマーアロイ、ポリマーブレンド、積層体等)が挙げられる。これらは、適用されるカテーテルの種類や使用される血管の種類に応じて適宜使用される。
Examples of the material for the outer resin layer in the present invention include polyolefins such as polyethylene, polypropylene, and polybutadiene, soft / hard polyvinyl chloride, polyurethane, epoxy resin, cycloolefin, ethylene-vinyl acetate copolymer, polyethylene terephthalate, poly, and the like. Polyester such as butylene terephthalate, polyamide such as nylon 12, nylon 11, nylon 610, nylon 612, nylon 66,
なお、本実施形態のカテーテルチューブは、その先端に、柔軟なチップチューブを更に接続することができる。チップチューブは通常単層で形成され、潤滑性の高い内層は有さない。これは、チップチューブの軸方向長さがチューブ本体部100と比較して十分に短いため、高い潤滑性の内表面を必ずしも要求されないためである。チップチューブの材質としては、例えばポリウレタンエラストマーのような、柔軟性が非常に高く、かつ耐放射線性を有するものが好ましい。
In addition, the catheter tube of this embodiment can further connect a flexible tip tube to the front-end | tip. The tip tube is usually formed of a single layer and does not have an inner layer with high lubricity. This is because the axial length of the tip tube is sufficiently shorter than that of the tube
(架橋PTFE樹脂層の形成)
φ0.65mmの銀メッキ軟銅線に厚さ40μmでPTFE樹脂を押出被覆した連続線を用意した。芯線の導体外径は0.65±0.015mm、PTFE樹脂層の厚みは0.04±0.020mmであった。このPTFE被覆銅線に800keVの加速電圧を有する電子線照射装置を用いて窒素ガス雰囲気下(酸素濃度300ppm以下)にて電子線照射を照射線量370kGyにて連続的かつPTFE被覆銅線の表裏に行った。
(Formation of crosslinked PTFE resin layer)
A continuous wire was prepared by extrusion-coating PTFE resin at a thickness of 40 μm on a silver-plated annealed copper wire of φ0.65 mm. The conductor outer diameter of the core wire was 0.65 ± 0.015 mm, and the thickness of the PTFE resin layer was 0.04 ± 0.020 mm. Using this electron beam irradiation apparatus having an acceleration voltage of 800 keV on this PTFE-coated copper wire, electron beam irradiation was continuously performed at an irradiation dose of 370 kGy in a nitrogen gas atmosphere (oxygen concentration of 300 ppm or less) on both sides of the PTFE-coated copper wire. went.
(架橋PTFE樹脂チューブの評価)
照射後銅線を抜去して得られたチューブのDSC分析結果及び電子線滅菌(加速電圧10MeV、照射線量33kGy-大気中照射)前後の強度および伸度変化を調べた。結果を表1に示す。
(Evaluation of cross-linked PTFE resin tube)
The DSC analysis results of the tube obtained by removing the copper wire after irradiation and the intensity and elongation changes before and after electron beam sterilization (
表1の引張試験結果から、未架橋PTFE樹脂チューブの強度維持率は54%、伸度維持率は5%であり、滅菌により強度は半減し伸びは10分の1以下に低下した。一方、架橋PTFEでは滅菌前後の強度維持率は104%(同伸度84%)であり、滅菌による劣化はほとんど認められない。断面積換算での材料強度は架橋PTFE樹脂においては44MPaあり、通常カテーテルチューブに汎用されるHDPE樹脂やナイロン樹脂等の材料強度が一般的に30〜40MPaである事から実使用上の強度としても十分であると言える。即ち、架橋PTFE樹脂製チューブは電子線滅菌前後で物性劣化がほとんど無い事が分かり、耐放射線滅菌性がある事が未照射PTFEとの比較から明確である。
From the tensile test results shown in Table 1, the strength maintenance rate of the uncrosslinked PTFE resin tube was 54% and the elongation maintenance rate was 5%. By sterilization, the strength was reduced by half and the elongation was reduced to 1/10 or less. On the other hand, in cross-linked PTFE, the strength maintenance ratio before and after sterilization is 104% (same elongation 84%), and almost no deterioration due to sterilization is observed. The material strength in terms of cross-sectional area is 44 MPa in the case of cross-linked PTFE resin, and the strength in practical use is generally 30 to 40 MPa because the material strength of HDPE resin and nylon resin generally used for catheter tubes is generally 30 to 40 MPa. It can be said that it is enough. That is, it can be seen that the cross-linked PTFE resin tube has almost no deterioration in physical properties before and after electron beam sterilization, and it is clear from comparison with unirradiated PTFE that it has radiation sterilization resistance.
架橋PTFEの生成条件としては温度範囲をPTFE樹脂融点340±10℃前後に制御するのが好ましいが、非常にコントロール範囲が狭いので出来上がったチューブをDSC分析にて都度評価し架橋PTFE樹脂製チューブの生成出来た事を確認する事が好ましい。 As a production condition of crosslinked PTFE, it is preferable to control the temperature range to around PTFE resin melting point 340 ± 10 ° C. However, since the control range is very narrow, the resulting tube is evaluated by DSC analysis each time, and the crosslinked PTFE resin tube It is preferable to confirm that it has been generated.
(カテーテルチューブの製造とガイドワイヤ摺動性評価)
上記の通り作成した架橋PTFE樹脂層を有する連続芯線上に、肉厚120μm厚さのポリアミドエラストマー(PAE)(Atochem社製ペバックス)を押出被覆し、得られた複層被覆体より上記芯線を引抜いて外径0.97mm(2.9Fr.)の二層のカテーテルチューブを作成し、実施例とした。比較例として未架橋PTFE樹脂とHDPE樹脂を用いた同様の構成のカテーテルチューブを作成した。比較例1は内径0.65mm、外径0.97mmであり、内層は未架橋PTFE樹脂(肉厚40μm)、外層ポリアミドエラストマー樹脂(肉厚120μm)とした。比較例2は内径0.65mm、外径0.97mmで内層に未架橋HDPE樹脂(肉厚40μm)、外層ポリアミドエラストマー樹脂(肉厚120μm)とした。
(Manufacture of catheter tubes and guidewire slidability evaluation)
On the continuous core wire having the crosslinked PTFE resin layer prepared as described above, a polyamide elastomer (PAE) (Pebax manufactured by Atochem) having a thickness of 120 μm is extrusion coated, and the core wire is drawn from the obtained multilayer coating. A two-layer catheter tube having an outer diameter of 0.97 mm (2.9 Fr.) was prepared as an example. As a comparative example, a catheter tube having the same configuration using uncrosslinked PTFE resin and HDPE resin was prepared. Comparative Example 1 had an inner diameter of 0.65 mm and an outer diameter of 0.97 mm, and the inner layer was an uncrosslinked PTFE resin (thickness 40 μm) and an outer layer polyamide elastomer resin (thickness 120 μm). In Comparative Example 2, the inner diameter was 0.65 mm, the outer diameter was 0.97 mm, and the inner layer was uncrosslinked HDPE resin (thickness 40 μm) and outer layer polyamide elastomer resin (thickness 120 μm).
(内面潤滑性評価試験及びその結果)
実施例及び比較例1・2で得られたカテーテルチューブ(未滅菌品)の内面(内腔表面)のガイドワイヤに対する潤滑性評価試験を行った。図3は潤滑性評価試験の模式説明図である。全長100mmの試験体(カテーテルチューブ)を直径10mmの半円部を持つU字状にしてプラスチック製台紙に透明粘着テープで貼り付け固定し、ガイドワイヤ摺動性を評価した。この時、注射器を用いてカテーテルチューブ1の内腔に生理食塩水を補充する。引張試験用のロードセル5のストロークを50mmに設定し、ストロークの中心でカテーテルチューブ1の先端とガイドワイヤ5の先端の位置が一致するようにセットする。なお、カテーテルチューブ挿入端とガイドワイヤ把持部の距離は50mmとし、ストロークの速度は、500mm/minとした。用いたガイドワイヤ6はレイクリュージョン社製(米国Lake Region社)の外径0.018インチのステンレス製スプリングガイドワイヤ(Cat.No.SSFU80―018)で、PTFEコートのされていないものを用いた。250回ガイトワイヤ6を出し入れして、この際に必要な力(押込荷重と引き込み荷重を足した幅)を測定し、目的とする内面潤滑性評価の指標とした。図4は、押込荷重とガイトワイヤ抜差回数の関係を示すチャートの模式図である。図4に模式的に示される如き、ガイトワイヤ6の出入に要する力の測定における鋸型の波形の振巾を測定値として用いる。即ち、(1)初期の潤滑性値としては、3往復目から5往復目の平均値(以下、初期摺動抵抗値と呼ぶ)、(2)耐久性を見るための潤滑性値としては、100回及び250回往復目の値を用いた。また、試験終了後、赤インクを注入して試験終了時のカテーテルチューブ内面の傷・しわ・キンクの発生有無を観察した。結果を表2に示す。
(Internal lubricity evaluation test and results)
A lubricity evaluation test was conducted on the guide wire on the inner surface (lumen surface) of the catheter tube (non-sterile product) obtained in Examples and Comparative Examples 1 and 2. FIG. 3 is a schematic explanatory view of a lubricity evaluation test. A test body (catheter tube) having a total length of 100 mm was formed into a U shape having a semicircular portion with a diameter of 10 mm, and was fixed to a plastic mount with a transparent adhesive tape, and the slidability of the guide wire was evaluated. At this time, physiological saline is replenished to the lumen of the catheter tube 1 using a syringe. The stroke of the
表2から、比較例1の未架橋PTFE樹脂内層、比較例2のHDPE樹脂内層を有するカテーテルチューブ及び実施例1の架橋PTFE樹脂内層のカテーテルチューブは、いずれも100回摺動抵抗値はおよそ約40〜50gと良好なガイドワイヤ摺動性を有している事が分かった。比較例1も同様の値であったが、比較例2のHDPE樹脂内層を有するカテーテルチューブは初期摺動抵抗値が若干高く、耐久潤滑性値は200回を超えたあたりから再上昇する傾向が見られた。未架橋及び架橋PTFEでは初期摺動抵抗値と耐久潤滑性に差が無かった。内面観察の結果から比較例2のHDPE樹脂内層内面に無数の傷が観察されこれが前記初期摺動抵抗値及び潤滑耐久性に影響しているものと推測された。未架橋及び架橋PTFEでは傷等は見られなかった。
From Table 2, the catheter tube having the uncrosslinked PTFE resin inner layer of Comparative Example 1 and the HDPE resin inner layer of Comparative Example 2 and the catheter tube of the crosslinked PTFE resin inner layer of Example 1 all have a sliding resistance value of about 100 times. It was found to have good guide wire slidability of 40 to 50 g. Comparative Example 1 also had the same value, but the catheter tube having the HDPE resin inner layer of Comparative Example 2 had a slightly high initial sliding resistance value, and the durability lubrication value tended to rise again from around 200 times. It was seen. There was no difference in initial sliding resistance value and durability lubricity between uncrosslinked and crosslinked PTFE. From the results of the inner surface observation, innumerable scratches were observed on the inner surface of the HDPE resin inner layer of Comparative Example 2, and it was assumed that this had an influence on the initial sliding resistance value and the lubrication durability. No scratches or the like were observed in uncrosslinked and crosslinked PTFE.
また、実施例および比較例1・2のカテーテルチューブに対し、電子線滅菌を実施したものに対しても同様の実験を行った。結果、比較例1は、未架橋PTFE樹脂内層が激しく劣化し、U字状に湾曲させるとひび割れなどが発生し最終的に破断したため、試験不可能であった。実施例および比較例2については、未滅菌品と略同等の結果が得られた。 In addition, the same experiment was performed on the catheter tubes of Examples and Comparative Examples 1 and 2 which were sterilized by electron beam. As a result, Comparative Example 1 could not be tested because the uncrosslinked PTFE resin inner layer was severely deteriorated and cracked when it was bent into a U shape and eventually broke. About Example and the comparative example 2, the result substantially equivalent to the non-sterile goods was obtained.
1…カテーテルチューブ
2…内層樹脂層(架橋PTFE樹脂層)
3…外層樹脂層
4…補強層
DESCRIPTION OF SYMBOLS 1 ...
3 ... Outer resin layer 4 ... Reinforcing layer
Claims (5)
The catheter tube according to claim 1, wherein the inner resin layer is made of only PTFE resin crosslinked by radiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004356616A JP4744129B2 (en) | 2004-12-09 | 2004-12-09 | Catheter tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004356616A JP4744129B2 (en) | 2004-12-09 | 2004-12-09 | Catheter tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006158766A JP2006158766A (en) | 2006-06-22 |
JP4744129B2 true JP4744129B2 (en) | 2011-08-10 |
Family
ID=36661387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004356616A Expired - Fee Related JP4744129B2 (en) | 2004-12-09 | 2004-12-09 | Catheter tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4744129B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7097876B2 (en) | 2017-05-15 | 2022-07-08 | テルモ株式会社 | Balloon catheter and method for manufacturing balloon catheter |
CN110273188A (en) * | 2018-03-15 | 2019-09-24 | 北京普益盛济科技有限公司 | A kind of method of quick Fabrication interventional medicine microtubular tube body |
WO2021126904A1 (en) * | 2019-12-16 | 2021-06-24 | Zeus Industrial Products, Inc. | Crosslinked ptfe |
WO2024106490A1 (en) * | 2022-11-15 | 2024-05-23 | 住友電気工業株式会社 | Sliding member and method for producing sliding member |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0857035A (en) * | 1994-08-24 | 1996-03-05 | Terumo Corp | Catheter tube and manufacture thereof |
JP2000316966A (en) * | 1999-05-10 | 2000-11-21 | Hitachi Cable Ltd | Catheter tube and method for manufacture |
JP2000316977A (en) * | 1999-05-10 | 2000-11-21 | Hitachi Cable Ltd | Catheter tube and its manufacturing method |
JP2002028244A (en) * | 2000-07-12 | 2002-01-29 | Hitachi Cable Ltd | Catheter tube and method for manufacturing the same |
JP2003117359A (en) * | 2001-10-10 | 2003-04-22 | Reitekku:Kk | Functional separation membrane, perforated hollow fiber, artificial blood vessel, separation device and method for manufacturing them |
-
2004
- 2004-12-09 JP JP2004356616A patent/JP4744129B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0857035A (en) * | 1994-08-24 | 1996-03-05 | Terumo Corp | Catheter tube and manufacture thereof |
JP2000316966A (en) * | 1999-05-10 | 2000-11-21 | Hitachi Cable Ltd | Catheter tube and method for manufacture |
JP2000316977A (en) * | 1999-05-10 | 2000-11-21 | Hitachi Cable Ltd | Catheter tube and its manufacturing method |
JP2002028244A (en) * | 2000-07-12 | 2002-01-29 | Hitachi Cable Ltd | Catheter tube and method for manufacturing the same |
JP2003117359A (en) * | 2001-10-10 | 2003-04-22 | Reitekku:Kk | Functional separation membrane, perforated hollow fiber, artificial blood vessel, separation device and method for manufacturing them |
Also Published As
Publication number | Publication date |
---|---|
JP2006158766A (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5049596B2 (en) | Catheter and method for manufacturing the same | |
US8377035B2 (en) | Unbalanced reinforcement members for medical device | |
EP0429481B1 (en) | Nylon-peba copolymer catheter | |
AU679646B2 (en) | Catheter with kink-resistant distal tip | |
US7744587B2 (en) | Surface modified reinforcing member for medical device and method for making same | |
US6090099A (en) | Multi-layer distal catheter section | |
AU712466B2 (en) | Catheter with multi-layer section | |
JP2540211B2 (en) | Guide wire | |
JP2008229160A (en) | Catheter | |
JP2004321838A (en) | High performance spiral-wound catheter | |
JPH09506541A (en) | High performance braided catheter | |
JP2010115375A (en) | Medical balloon catheter | |
WO2008056625A1 (en) | Catheter tube for medical use | |
JP2007000392A (en) | Catheter tube | |
CN205698829U (en) | Novel sheath | |
JP4744129B2 (en) | Catheter tube | |
JP5037030B2 (en) | Catheter tube | |
JPWO2015046148A1 (en) | catheter | |
EP4101491A1 (en) | Medical tube and catheter | |
JP2007202979A (en) | Medical guiding catheter tube | |
JP6821870B2 (en) | Tube molded body and catheter using it | |
JP2010136895A (en) | Medical tube | |
JP2023149728A (en) | catheter | |
JP2007319533A (en) | Medical microcatheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110510 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4744129 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |